JP5615381B2 - Hot water supply and air conditioning complex equipment - Google Patents

Hot water supply and air conditioning complex equipment Download PDF

Info

Publication number
JP5615381B2
JP5615381B2 JP2012549480A JP2012549480A JP5615381B2 JP 5615381 B2 JP5615381 B2 JP 5615381B2 JP 2012549480 A JP2012549480 A JP 2012549480A JP 2012549480 A JP2012549480 A JP 2012549480A JP 5615381 B2 JP5615381 B2 JP 5615381B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
water supply
heat source
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012549480A
Other languages
Japanese (ja)
Other versions
JPWO2012085970A1 (en
Inventor
博文 ▲高▼下
博文 ▲高▼下
智一 川越
智一 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2012085970A1 publication Critical patent/JPWO2012085970A1/en
Application granted granted Critical
Publication of JP5615381B2 publication Critical patent/JP5615381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H6/00Combined water and air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、ヒートポンプサイクルを搭載し、空調負荷及び給湯負荷を同時に提供することができる給湯空調複合装置に関し、特に年間を通しての熱源の安定供給を図るようにした給湯空調複合装置に関するものである。   TECHNICAL FIELD The present invention relates to a hot water supply and air conditioning complex apparatus that is equipped with a heat pump cycle and can simultaneously provide an air conditioning load and a hot water supply load, and particularly relates to a hot water supply and air conditioning complex apparatus that can stably supply a heat source throughout the year.

従来から、一元の冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる給湯空調複合装置が存在する。そのようなものとして、「1台の圧縮機を備え、該圧縮機と、熱源機側熱交換器、利用側熱交換器、蓄冷熱槽および給湯熱交換器とを接続した冷媒回路により構成され、それぞれの熱交換器への冷媒の流れを切り換えることにより、冷暖房・給湯・蓄熱・蓄冷の単独運転およびそれらの複合運転を可能とする冷凍サイクルを構成してなる多機能ヒートポンプシステム」が提案されている(たとえば、特許文献1参照)。   2. Description of the Related Art Conventionally, there is a hot water supply and air conditioning complex apparatus that can simultaneously provide a cooling load, a heating load, and a hot water supply load by a unified refrigeration cycle. As such, “comprising a refrigerant circuit comprising one compressor and connecting the compressor to a heat source machine side heat exchanger, a use side heat exchanger, a cold storage heat tank, and a hot water supply heat exchanger. , A multi-functional heat pump system is proposed that configures a refrigeration cycle that enables independent operation of air conditioning, hot water supply, heat storage, and cold storage and their combined operation by switching the flow of refrigerant to each heat exchanger. (For example, refer to Patent Document 1).

また、二元の冷凍サイクルによって高温の給湯と室内空調機能を同時に提供することができる給湯空調複合装置も存在している。そのようなものとして、「第1圧縮機、冷媒分配装置、第1熱交換器、第2熱交換器、第1絞り装置、熱源機側熱交換器、四方弁および上記第1圧縮機をこの順に接続するとともに、上記冷媒分配装置から上記四方弁、利用側熱交換器及び第2絞り装置をこの順に介装して上記第2熱交換器と上記第1絞り装置の間に接続し、第1の冷媒が流される低段側の冷媒回路と、第2圧縮機、凝縮器、第3の絞り装置、上記第1熱交換器および上記第2圧縮機をこの順に接続し、第2の冷媒が流れる高段側の冷媒回路と、上記第2熱交換器及び上記凝縮器をこの順に接続し、給湯水が流される給湯経路とを備えたヒートポンプ式給湯装置」が提案されている(たとえば、特許文献2参照)。   There is also a hot water supply and air conditioning complex apparatus that can simultaneously provide hot water supply and an indoor air conditioning function by a dual refrigeration cycle. As such, “the first compressor, the refrigerant distributor, the first heat exchanger, the second heat exchanger, the first expansion device, the heat source side heat exchanger, the four-way valve, and the first compressor are And connecting the four-way valve, the use side heat exchanger and the second expansion device in this order from the refrigerant distribution device to connect between the second heat exchanger and the first expansion device. A refrigerant circuit on the lower stage side through which the first refrigerant flows, a second compressor, a condenser, a third expansion device, the first heat exchanger, and the second compressor are connected in this order, and the second refrigerant A heat pump type hot water supply apparatus including a high-stage refrigerant circuit through which the refrigerant flows, a second hot exchanger and the condenser in this order, and a hot water supply path through which hot water flows is proposed (for example, Patent Document 2).

特開平11−270920号公報(第3−4頁、図1)Japanese Patent Laid-Open No. 11-270920 (page 3-4, FIG. 1) 特開平4−263758号公報(第2−3頁、図1)JP-A-4-263758 (page 2-3, FIG. 1)

特許文献1に記載されているような多機能ヒートポンプシステムは、一元の冷凍サイクル、つまり1つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、複数の使用要求に関して、使用要求の数だけ空気調和装置、給湯装置が必要となり、システムを構築するに当たり、設計負荷及び投資負荷が多くなるという問題があった。   The multi-functional heat pump system as described in Patent Document 1 provides a cooling load, a heating load, and a hot water supply load simultaneously by a single refrigeration cycle, that is, one refrigeration cycle. However, in such a system, the air conditioning apparatus and the hot water supply apparatus are required for the plurality of usage requests, and there is a problem that the design load and the investment load increase in constructing the system.

特許文献2に記載されているようなヒートポンプ式給湯装置は、二元の冷凍サイクル、つまり2つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、室内機にて空調を行なう冷媒回路と、給湯を行なう冷媒回路とが、異なる取り扱いとなっており、単純に室内機の代替として給湯機能を付加することができないため、既設の空気調和機に容易には導入できないという問題があった。また、このようなシステムでも、特許文献1に記載されているようなシステムと同様に、複数の使用要求に関して、使用要求の数だけ空気調和装置、給湯装置が必要となり、システムを構築するに当たり、設計負荷及び投資負荷が多くなるという問題があった。   The heat pump hot water supply apparatus as described in Patent Document 2 is configured to provide a cooling load, a heating load, and a hot water supply load simultaneously by two refrigeration cycles, that is, two refrigeration cycles. However, in such a system, the refrigerant circuit that performs air conditioning in the indoor unit and the refrigerant circuit that performs hot water supply are handled differently, and a hot water supply function cannot simply be added as an alternative to the indoor unit. There is a problem that it cannot be easily introduced into an existing air conditioner. Further, even in such a system, as in the system described in Patent Document 1, as for a plurality of use requests, as many air conditioners and hot water supply devices as the number of use requests are required. There was a problem that the design load and the investment load increased.

本発明は、上記の問題を解決するためになされたもので、空調負荷及び給湯負荷を同時に処理でき、夏場のような外気温度が高い場合でも、安定した熱源を供給可能にした給湯空調複合装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and is capable of simultaneously processing an air conditioning load and a hot water supply load, and can provide a stable heat source even when the outside air temperature is high, such as in summer, to provide a stable heat source. The purpose is to provide.

本発明に係る給湯空調複合装置は、第1冷媒を圧縮する空調用圧縮機及び熱源機側熱交換器が搭載された少なくとも1台の熱源機と、前記熱源機に対して並列に接続され、前記第1冷媒が流れる利用側熱交換器が搭載された少なくとも1台の室内機と、前記熱源機に対して並列に接続され、前記第1冷媒と前記第2冷媒とが流れる冷媒−冷媒熱交換器、熱媒体と前記第2冷媒が流れる熱媒体−冷媒熱交換器、及び、前記第2冷媒を圧縮する給湯用圧縮機が搭載された少なくとも1台の給湯機と、を備え、暖房運転時において、前記給湯機のみが運転している状態で、前記空調用圧縮機から吐出される前記第1冷媒の高圧圧力を所定範囲内とするように、前記熱源機に搭載されている前記熱源機側熱交換機の容量を制御して、前記熱源機の負荷と、前記室内機及び前記給湯機の合計負荷と、の均衡を図るようにしていることを特徴とする。 The hot water supply air-conditioning composite apparatus according to the present invention is connected in parallel to at least one heat source unit on which an air conditioning compressor that compresses the first refrigerant and a heat source unit side heat exchanger are mounted, and the heat source unit, Refrigerant-refrigerant heat that is connected in parallel to at least one indoor unit on which the use side heat exchanger through which the first refrigerant flows is mounted and the heat source unit, and through which the first refrigerant and the second refrigerant flow. A heating operation comprising: an exchanger, a heat medium-refrigerant heat exchanger through which the heat medium and the second refrigerant flow, and at least one hot water supply device equipped with a hot water supply compressor that compresses the second refrigerant. The heat source mounted on the heat source device so that the high-pressure pressure of the first refrigerant discharged from the air conditioning compressor is within a predetermined range when only the water heater is in operation. The load of the heat source machine is controlled by controlling the capacity of the machine side heat exchanger , Characterized in that as reduce the total load of the indoor unit and the water heater, the balance.

本発明に係る給湯空調複合装置によれば、暖房運転時に熱源機側熱交換器の容量を制御して、熱源機の負荷と、室内機及び給湯機の合計負荷と、の均衡を図るようにしているので、特に夏場等の外気温度が高い場合でも安定した高温出湯が実現できる。   According to the hot water supply air-conditioning combined apparatus according to the present invention, the capacity of the heat source unit side heat exchanger is controlled during the heating operation so as to balance the load of the heat source unit and the total load of the indoor unit and the hot water supply unit. Therefore, even when the outside air temperature is high particularly in summer, a stable high temperature hot water can be realized.

本発明の実施の形態に係る給湯空調複合装置の冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the refrigerant circuit structure of the hot water supply air-conditioning composite apparatus which concerns on embodiment of this invention. 熱源機側熱交換器の熱交換器能力と、暖房運転容量比/室外負荷と、の関係を示すグラフである。It is a graph which shows the relationship between the heat exchanger capacity | capacitance of a heat source machine side heat exchanger, and heating operation capacity ratio / outdoor load. 本発明の実施の形態1に係る給湯空調複合装置の設置例を示す模式図である。It is a schematic diagram which shows the example of installation of the hot water supply air-conditioning composite apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る給湯空調複合装置の冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the refrigerant circuit structure of the hot water supply air-conditioning composite apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る給湯空調複合装置の冷媒回路構成の一例を示す冷媒回路図であるIt is a refrigerant circuit diagram which shows an example of the refrigerant circuit structure of the hot water supply air-conditioning composite apparatus which concerns on Embodiment 3 of this invention.

以下、図面に基づいて本発明の実施の形態について説明する。なお、各図中、同一又は相当する部分については、同一符号を付してその説明を適宜省略または簡略化するものとしている。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.

実施の形態1.
図1は、本発明の実施の形態に係る給湯空調複合装置100の冷媒回路構成の一例を示す冷媒回路図である。図1に基づいて、給湯空調複合装置100の冷媒回路構成及び動作について説明する。この給湯空調複合装置100は、たとえばスポーツジムやホテル、福祉施設等に設置され、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of a hot water supply and air conditioning composite apparatus 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration and operation of the hot water supply air-conditioning composite apparatus 100 will be described. The hot water supply / air conditioning complex apparatus 100 is installed in, for example, sports gyms, hotels, welfare facilities, and the like, and can supply a cooling load, a heating load, and a hot water supply load at the same time by using a refrigeration cycle (heat pump cycle) that circulates refrigerant. is there.

本実施の形態1に係る給湯空調複合装置100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用負荷3と、を少なくとも有している。空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒−冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用負荷3とは熱媒体−冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。   Hot water supply air-conditioning combined apparatus 100 according to Embodiment 1 has at least air-conditioning refrigeration cycle 1, hot-water supply refrigeration cycle 2, and hot-water supply load 3. The refrigeration cycle 1 for air conditioning and the refrigeration cycle 2 for hot water supply are refrigerant-refrigerant heat exchangers 41, and the refrigeration cycle for hot water supply 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51. The heat exchange is performed without mixing.

[空調用冷凍サイクル1]
空調用冷凍サイクル1は、熱源機Aと、たとえば冷房負荷もしくは暖房負荷を担当する複数の室内機Bと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Cと、によって構成されている。このうち、室内機B及び給湯熱源用回路Cは、熱源機Aに対して並列となるように接続されている。そして、熱源機Aと、室内機B及び給湯熱源用回路Cと、において第1冷媒である空調用冷媒の流れを切り換え循環させることで、室内機B及び給湯熱源用回路Cとしての機能を発揮させるようになっている。
[Refrigeration cycle 1 for air conditioning]
The air-conditioning refrigeration cycle 1 includes a heat source unit A, a plurality of indoor units B in charge of cooling loads or heating loads, for example, and a hot water supply heat source circuit C that serves as a heat source for the hot water supply refrigeration cycle 2. Among these, the indoor unit B and the hot water supply heat source circuit C are connected to the heat source unit A in parallel. The function of the indoor unit B and the hot water supply heat source circuit C is exhibited by switching and circulating the flow of the air conditioning refrigerant as the first refrigerant in the heat source unit A, the indoor unit B, and the hot water supply heat source circuit C. It is supposed to let you.

{熱源機A}
熱源機Aは、室内機B及び給湯熱源用回路Cに温熱又は冷熱を供給する機能を有している。この熱源機Aには、空調用圧縮機101と、流路切替手段である四方弁102と、熱源機側熱交換器103と、アキュムレーター104とが直列に接続されて搭載されている。なお、熱源機Aには、熱源機側熱交換器103に空気を供給するためのファン等の送風機を熱源機側熱交換器103の近傍位置に設けるとよい。
{Heat source machine A}
The heat source unit A has a function of supplying hot or cold heat to the indoor unit B and the hot water supply heat source circuit C. In this heat source machine A, an air-conditioning compressor 101, a four-way valve 102 which is a flow path switching means, a heat source machine side heat exchanger 103, and an accumulator 104 are mounted in series. The heat source unit A may be provided with a blower such as a fan for supplying air to the heat source unit side heat exchanger 103 in the vicinity of the heat source unit side heat exchanger 103.

空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、空調用冷媒の流れを切り替えるものである。熱源機側熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレーター104は、空調用圧縮機101の吸入側に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレーター104は、過剰な空調用冷媒を貯留できる容器であればよい。   The air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature / high pressure state. The four-way valve 102 switches the flow of the air conditioning refrigerant. The heat source apparatus side heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into an evaporating gas. Or is condensed or liquefied. The accumulator 104 is disposed on the suction side of the air conditioning compressor 101, and stores excess air conditioning refrigerant. The accumulator 104 may be any container that can store excess air-conditioning refrigerant.

{室内機B}
室内機Bは、熱源機Aからの温熱又は冷熱の供給を受けて暖房負荷又は冷房負荷を担当する機能を有している。室内機Bには、空調用絞り手段117と、利用側熱交換器118とが、直列に接続されて搭載されている。なお、室内機Bには、2台の空調用絞り手段117と、2台の利用側熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。また、室内機Bには、利用側熱交換器118に空気を供給するためのファン等の送風機を利用側熱交換器118の近傍に設けるとよい。
{Indoor unit B}
The indoor unit B has a function of receiving heating or cooling supply from the heat source unit A and taking charge of heating load or cooling load. In the indoor unit B, an air conditioning throttle means 117 and a use side heat exchanger 118 are mounted connected in series. In addition, the indoor unit B shows an example in which two air conditioning throttle means 117 and two usage-side heat exchangers 118 are mounted in parallel. The indoor unit B may be provided with a blower such as a fan for supplying air to the use side heat exchanger 118 in the vicinity of the use side heat exchanger 118.

空調用絞り手段117は、減圧弁や膨張弁としての機能を有し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。利用側熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び利用側熱交換器118は、直列に接続されている。   The air conditioning throttle means 117 has a function as a pressure reducing valve or an expansion valve, and expands the air conditioning refrigerant by reducing the pressure. The air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The use-side heat exchanger 118 functions as a radiator (condenser) or an evaporator, performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and condenses or liquefies the air conditioning refrigerant. Evaporative gasification. The air conditioning throttle means 117 and the use side heat exchanger 118 are connected in series.

{給湯熱源用回路C}
給湯熱源用回路Cは、熱源機Aからの温熱又は冷熱を冷媒−冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。給湯熱源用回路Cには、給湯熱源用絞り手段119と、冷媒−冷媒熱交換器41とが、直列に接続されて構成されている。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒−冷媒熱交換器41でカスケード接続されているのである。
{Circuit C for hot water supply source}
The hot water supply heat source circuit C has a function of supplying the hot or cold heat from the heat source unit A to the hot water supply refrigeration cycle 2 via the refrigerant-refrigerant heat exchanger 41. In the hot water supply heat source circuit C, a hot water supply heat source throttle means 119 and a refrigerant-refrigerant heat exchanger 41 are connected in series. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41.

給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁としての機能を有し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒−冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2を循環する第2冷媒である給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。   Like the air conditioning throttle means 117, the hot water supply heat source throttle means 119 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant. The hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary. The refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that is a second refrigerant that circulates in the hot water supply refrigeration cycle 2 and for air conditioning that circulates in the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant.

以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、利用側熱交換器118、空調用絞り手段117及び熱源機側熱交換器103が、空調用圧縮機101、四方弁102、冷媒−冷媒熱交換器41、給湯熱源用絞り手段119及び熱源機側熱交換器103が、それぞれ直列に接続されており、利用側熱交換器118と冷媒−冷媒熱交換器41とが並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。なお、四方弁102と、利用側熱交換器118及び冷媒−冷媒熱交換器41と、はガス側接続配管106で接続されている。また、熱源機側熱交換器103と、空調用絞り手段117及び給湯熱源用絞り手段119と、は液側接続配管107で接続されている、   As described above, the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the use-side heat exchanger 118, the air-conditioning throttle means 117, and the heat-source-unit-side heat exchanger 103, the air-conditioning compressor 101, The four-way valve 102, the refrigerant-refrigerant heat exchanger 41, the hot water supply heat source throttling means 119, and the heat source machine side heat exchanger 103 are connected in series, and the use side heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 are connected. Are connected in parallel to form a first refrigerant circuit, and air conditioning refrigerant is circulated through the first refrigerant circuit. The four-way valve 102 is connected to the use side heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by a gas side connection pipe 106. The heat source machine side heat exchanger 103, the air conditioning throttle means 117 and the hot water supply heat source throttle means 119 are connected by a liquid side connection pipe 107.

なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。   The air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw. The air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.

また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO2 )や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。The type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited. For example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.

ここで、空調用冷凍サイクル1の動作について説明する。
ここでは、室内機Bが暖房負荷を担当し、給湯熱源用回路Cが給湯負荷を担当する場合における運転動作について説明する。
Here, the operation of the air-conditioning refrigeration cycle 1 will be described.
Here, the operation in the case where the indoor unit B is in charge of the heating load and the hot water supply heat source circuit C is in charge of the hot water supply load will be described.

まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、ガス側接続配管106に導かれ、過熱ガス状態の空調用冷媒として、室内機Bや給湯熱源用回路Cに流入するようになっている。   First, the air-conditioning refrigerant heated to high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, led to the gas side connection pipe 106 via the four-way valve 102, and air-conditioning in a superheated gas state. The refrigerant flows into the indoor unit B and the hot water supply heat source circuit C as the refrigerant for use.

室内機Bに流入した空調用冷媒は、利用側熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、室内機Bから流出して合流する。また、給湯熱源用回路Cに流入した空調用冷媒は、冷媒−冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、給湯熱源用回路Cから流出し、室内機Bから流出した空調用冷媒と合流する。合流した空調用冷媒は、熱源機側熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレーター104を経て空調用圧縮機101へ戻る。   The air-conditioning refrigerant that has flowed into the indoor unit B radiates heat at the use-side heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, flows out of the indoor unit B, and merges. The air-conditioning refrigerant that has flowed into the hot water supply heat source circuit C dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119. The refrigerant flows out of the heat source circuit C and merges with the air conditioning refrigerant that flows out of the indoor unit B. The combined air-conditioning refrigerant is guided to the heat source unit-side heat exchanger 103, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and returns to the air-conditioning compressor 101 via the four-way valve 102 and the accumulator 104.

[給湯用冷凍サイクル2]
給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体−冷媒熱交換器51と、給湯用絞り手段22と、冷媒−冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体−冷媒熱交換器51、給湯用絞り手段22、及び、冷媒−冷媒熱交換器41が冷媒配管45で直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。
[Refrigeration cycle 2 for hot water supply]
The hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit.

給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機21は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機21は、吸入した給湯用冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機21を構成することができる。   The hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant into a high temperature and high pressure state. The hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. The hot water supply compressor 21 is not particularly limited as long as it can compress the sucked hot water supply refrigerant into a high pressure state. For example, the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.

熱媒体−冷媒熱交換器51は、給湯用負荷3を循環する熱媒体(水や不凍液等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル2と給湯用負荷3とは、熱媒体−冷媒熱交換器51を介してカスケード接続されている。給湯用絞り手段22は、減圧弁や膨張弁としての機能を有し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒−冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。   The heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water or antifreeze liquid) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. It is. That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected via the heat medium-refrigerant heat exchanger 51. The hot water supply throttle means 22 has a function as a pressure reducing valve or an expansion valve, and expands the hot water supply refrigerant by reducing the pressure. The hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary. The refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.

なお、給湯用冷凍サイクル2を循環する給湯用冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。   Note that the type of the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited. For example, natural refrigerants such as carbon dioxide, hydrocarbons, and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, Alternatively, any of CFC-based refrigerants such as R22 and R134a used in existing products may be used.

ここで、給湯用冷凍サイクル2の動作について説明する。
まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体−冷媒熱交換器51に流入する。この熱媒体−冷媒熱交換器51では、流入した給湯用冷媒が放熱することで給湯用負荷3を循環している水を加熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Cにおける冷媒−冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒−冷媒熱交換器41で、空調用冷凍サイクル1を構成する給湯熱源用回路Cを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
Here, the operation of the hot water supply refrigeration cycle 2 will be described.
First, the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51. In the heat medium-refrigerant heat exchanger 51, the water circulating in the hot water supply load 3 is heated by the heat supplied hot water refrigerant radiating heat. This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit C of the air conditioning refrigeration cycle 1. The expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit C constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.

[給湯用負荷3]
給湯用負荷3は、水循環用ポンプ31と、熱媒体−冷媒熱交換器51と、貯湯タンク32と、によって構成されている。つまり、給湯用負荷3は、水循環用ポンプ31、熱媒体−冷媒熱交換器51、及び、貯湯タンク32が貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)を構成し、この水回路に給湯用水を循環させることで成立している。なお、水回路を構成する貯湯水循環用配管203は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
[Load 3 for hot water supply]
The hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit. The hot water circulation pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.

水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用負荷3内を循環させるものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。熱媒体−冷媒熱交換器51は、上述したように、給湯用負荷3を循環する熱媒体(水や不凍液等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体−冷媒熱交換器51で加熱された水を貯えておくものである。   The water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3. For example, the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure. As described above, the heat medium-refrigerant heat exchanger 51 is between the heat medium (fluid such as water or antifreeze liquid) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Heat exchange is performed. The hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.

ここで、給湯用負荷3の動作について説明する。
まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、熱媒体−冷媒熱交換器51に流入し、この熱媒体−冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体−冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。
Here, the operation of the hot water supply load 3 will be described.
First, the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31. The water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 in the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.

説明の便宜上、冷媒−冷媒熱交換器41、給湯熱源用絞り手段119、熱媒体−冷媒熱交換器51、給湯用圧縮機21、及び、給湯用絞り手段22を給湯機と称する。また、図示していないが、給湯空調複合装置100には、空調用冷媒の吐出圧力を検知するセンサーや空調用冷媒の吸入圧力を検知するセンサー、空調用冷媒の吐出温度を検知するセンサー、空調冷媒の吸引温度を検知するセンサー、熱源機側熱交換器103に流出入する空調用冷媒の温度を検知するセンサー、熱源機Aに取り込まれる外気温を検知するセンサー、利用側熱交換器118に流出入する空調用冷媒の温度を検知するセンサー、貯湯タンク32内に貯留される水の温度を検知するセンサー等を設けておくとよい。   For convenience of explanation, the refrigerant-refrigerant heat exchanger 41, the hot water supply heat source throttle means 119, the heat medium-refrigerant heat exchanger 51, the hot water supply compressor 21, and the hot water supply throttle means 22 are referred to as a hot water heater. Although not shown, the hot water supply and air conditioning complex apparatus 100 includes a sensor for detecting the discharge pressure of the air conditioning refrigerant, a sensor for detecting the suction pressure of the air conditioning refrigerant, a sensor for detecting the discharge temperature of the air conditioning refrigerant, and air conditioning. A sensor for detecting the suction temperature of the refrigerant, a sensor for detecting the temperature of the air-conditioning refrigerant flowing into and out of the heat source unit side heat exchanger 103, a sensor for detecting the outside air temperature taken into the heat source unit A, and the use side heat exchanger 118 A sensor for detecting the temperature of the air-conditioning refrigerant flowing in and out, a sensor for detecting the temperature of water stored in the hot water storage tank 32, and the like may be provided.

これらの各種センサーで検知された情報(温度情報や圧力情報等)は、給湯空調複合装置100の動作を制御する図示省略の制御手段に送られ、空調用圧縮機101の駆動周波数や、四方弁102の切り替え、給湯用圧縮機21の駆動周波数、水循環用ポンプ31の駆動、各絞り手段の開度等の制御に利用されることになる。   Information (temperature information, pressure information, etc.) detected by these various sensors is sent to a control means (not shown) that controls the operation of the hot water supply air-conditioning composite apparatus 100, and the drive frequency of the air-conditioning compressor 101 and the four-way valve It is used for control of switching of 102, driving frequency of the hot water supply compressor 21, driving of the water circulation pump 31, opening of each throttle means, and the like.

なお、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1を構成する第1冷媒回路及び給湯用冷凍サイクル2を構成する第2冷媒回路)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒−冷媒熱交換器41及び熱媒体−冷媒熱交換器51にて互いに熱交換するように流れている。   Note that, as described above, the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1). 2 refrigerant circuits), the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.

また、給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行なう際に熱媒体−冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行なうためには、より高度な制御が要求される。一方、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。   Further, when a refrigerant having a low critical temperature is used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 is in a supercritical state when hot water supply is performed. . However, generally, when the refrigerant in the heat dissipation process is in a supercritical state, the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP. The On the other hand, in general, a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.

さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が62℃以上であることを鑑みると、給湯の目標温度が最低でも62℃以上となることが多いと想定される。以上のことを踏まえ、給湯用冷媒には、最低でも62℃以上の臨界温度を持つ冷媒を採用している。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができるからである。   Furthermore, considering that the recommended temperature of the water stored in the hot water storage tank 32 for suppressing the growth of Legionella bacteria and the like is 62 ° C. or higher, it is assumed that the target temperature for hot water supply is often 62 ° C. or higher at a minimum. Is done. Based on the above, a refrigerant having a critical temperature of 62 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost.

また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレーター104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレーター104を取り除いてもよい。さらに、図1では、室内機Bが2台以上接続されている場合を例に示しているが、接続台数を特に限定するものではなく、たとえば室内機Bが1台以上接続されていればよい。そして、空調用冷凍サイクル1を構成している各室内機の容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。   Moreover, although the case where the excess refrigerant | coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It is stored with the heat exchanger used as a heat radiator in a refrigerating cycle. In this case, the accumulator 104 may be removed. Furthermore, in FIG. 1, the case where two or more indoor units B are connected is shown as an example, but the number of connected units is not particularly limited. For example, one or more indoor units B may be connected. . And the capacity | capacitance of each indoor unit which comprises the refrigerating cycle 1 for an air conditioning may be made all the same, and you may make it differ from large to small.

以上のように、この実施の形態に係る給湯空調複合装置100では、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル2の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、室内機Bの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーなどによって提供する必要があったが、給湯空調複合装置100では従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。   As described above, in the hot water supply air-conditioning composite apparatus 100 according to this embodiment, the hot water supply load system is configured in a two-way cycle. Therefore, when hot water supply demand (for example, 80 ° C.) is provided, What is necessary is just to make the temperature of the radiator of the refrigeration cycle 2 high (for example, condensing temperature 85 ° C.), and when there is another heating load, without increasing the condensing temperature of the indoor unit B (for example 50 ° C.). It will save energy. Further, for example, when there is a demand for hot water supply during the air conditioning cooling operation in summer, it has been necessary to provide it with a boiler or the like in the past. Since hot water is reused, the system COP is greatly improved and energy is saved.

また、給湯空調複合装置100では、室内機Bの負荷と給湯機の負荷とを、たとえば流路切替弁等の流路切替装置により切り替え可能な構成にしている。このようにしておけば、室内機Bにおける昼間の空調負荷と給湯機における夜間の冷却負荷、もしくは、室内機Bにおける昼間の空調負荷と給湯機における加熱負荷の切り替えを適宜実行できることになり、電力の平準化が実現でき、余分な設備費用が省略でき、ランニングコストも安価なものになる。つまり、空調負荷と給湯負荷とを切り替え可能とすることで、夜間電力を有効に活用することができる。   Moreover, in the hot water supply air-conditioning composite apparatus 100, the load of the indoor unit B and the load of the hot water heater can be switched by a flow path switching device such as a flow path switching valve, for example. If it does in this way, it will be possible to appropriately switch between the daytime air conditioning load in the indoor unit B and the nighttime cooling load in the water heater, or the daytime air conditioning load in the indoor unit B and the heating load in the water heater. Leveling can be realized, the extra equipment cost can be omitted, and the running cost can be reduced. In other words, by making it possible to switch between the air conditioning load and the hot water supply load, it is possible to effectively use nighttime power.

図2は、熱源機側熱交換器103の熱交換器能力と、暖房運転容量比/室外負荷と、の関係を示すグラフである。図2に基づいて、年間を通して暖房運転をできるようにした熱源機側熱交換器103について説明する。図2では、縦軸が熱源機側熱交換器103の熱交換器能力(室外AK)を、横軸が暖房運転容量比(室内負荷+給湯負荷)/室外負荷を、それぞれ表している。   FIG. 2 is a graph showing the relationship between the heat exchanger capacity of the heat source device side heat exchanger 103 and the heating operation capacity ratio / outdoor load. Based on FIG. 2, the heat-source-unit-side heat exchanger 103 that enables heating operation throughout the year will be described. In FIG. 2, the vertical axis represents the heat exchanger capacity (outdoor AK) of the heat source device side heat exchanger 103, and the horizontal axis represents the heating operation capacity ratio (indoor load + hot water supply load) / outdoor load.

通常の空調用途のみに給湯空調複合装置100を用いる場合、外気湿球温度が15℃以下で暖房運転を行なうことが一般的である。一方、給湯空調複合装置100を用い、夏場などの外気湿球温度が15℃を超える条件で給湯運転を行なう場合、外気温度に関係なく給湯運転を行なう必要がある。また、冷房運転、暖房運転が切り替えできる給湯空調複合装置を夏場などの外気湿球温度が15℃を超える条件で用いる場合、凝縮能力に対して、蒸発能力が過剰になる。そのため、高圧上昇が発生しやすく、高温出湯することができない。   When the hot-water supply / air-conditioning combined apparatus 100 is used only for normal air-conditioning applications, it is common to perform heating operation at an outdoor air wet bulb temperature of 15 ° C. or lower. On the other hand, when the hot water supply operation is performed using the hot water supply air-conditioning composite apparatus 100 under the condition where the outdoor wet bulb temperature exceeds 15 ° C. in summer or the like, it is necessary to perform the hot water supply operation regardless of the outdoor air temperature. Further, when a hot water supply / air-conditioning combined apparatus that can be switched between cooling operation and heating operation is used under conditions where the outdoor wet bulb temperature exceeds 15 ° C., such as in summer, the evaporation capability becomes excessive with respect to the condensation capability. Therefore, high pressure rise is likely to occur and high temperature hot water cannot be discharged.

そこで、給湯空調複合装置100では、外気湿球温度が32℃まで上昇した場合、熱源機側熱交換器103の熱交換器能力(室外AK)を低下させることで空調用圧縮機101の運転範囲を逸脱しないようにするとともに高圧上昇を抑制するようにしている。具体的には、図2に示すように、給湯空調複合装置100では、暖房運転時に熱源機側熱交換器103の容量を制御して、熱源機Aの負荷と複数台の室内機B及び給湯機の合計負荷との均衡を図り、夏場のような外気温度が高い場合でも、安定した熱源を供給可能にしている。たとえば、熱源機A内の空調用圧縮機101を駆動させるための制御器には、空調用圧縮機101の入力分を所定量放熱させるため所定風量以上にする必要がある。そのため、熱源機Aの熱交換器能力(室外AK)には下限(最小AK)があり、これ以上熱交換器能力(室外AK)を下げることはできない。この最小AKから熱源機側熱交換器103の熱交換器能力(室外AK)と暖房運転容量比((室内負荷+給湯負荷)/室外負荷)が均衡状態(実線)の範囲で運転を継続することができ、この実線を境界として左上の範囲において高圧上昇、右下の範囲において高圧上昇しない範囲となる。特に、外気湿球温度が32℃のような外気温度が高い場合には、最小AKに近接するようなになる。   Therefore, in the hot water supply air-conditioning composite apparatus 100, when the outdoor wet bulb temperature rises to 32 ° C., the operating range of the air conditioning compressor 101 is reduced by reducing the heat exchanger capacity (outdoor AK) of the heat source apparatus side heat exchanger 103. The high pressure rise is suppressed while not deviating from the above. Specifically, as shown in FIG. 2, in the hot water supply and air conditioning complex apparatus 100, the capacity of the heat source unit side heat exchanger 103 is controlled during heating operation to load the heat source unit A, the plurality of indoor units B, and the hot water supply. It balances with the total load of the machine and makes it possible to supply a stable heat source even when the outside air temperature is high, such as in summer. For example, the controller for driving the air-conditioning compressor 101 in the heat source device A needs to have a predetermined airflow or more in order to dissipate a predetermined amount of heat input to the air-conditioning compressor 101. For this reason, the heat exchanger capacity (outdoor AK) of the heat source device A has a lower limit (minimum AK), and the heat exchanger capacity (outdoor AK) cannot be further reduced. From this minimum AK, operation is continued in a range where the heat exchanger capacity (outdoor AK) and the heating operation capacity ratio ((indoor load + hot water supply load) / outdoor load) of the heat source device side heat exchanger 103 are in an equilibrium state (solid line). With this solid line as a boundary, the high pressure rises in the upper left range, and the high pressure rises in the lower right range. In particular, when the outside air temperature is high, such as 32 ° C., the temperature becomes close to the minimum AK.

なお、熱源機側熱交換器103の容量制御は、たとえば熱交換器を構成している伝熱管に流す冷媒の量を調整したり、熱交換器に供給する風量を調整したり、することで実行すればよい。また、給湯機のみの運転時においては、空調用圧縮機101からの吐出冷媒の高圧圧力が所定範囲となるように熱源機側熱交換器103の容量を制御すればよい。   The capacity control of the heat source device side heat exchanger 103 is performed by adjusting the amount of refrigerant flowing through the heat transfer tubes constituting the heat exchanger, or adjusting the amount of air supplied to the heat exchanger, for example. Just do it. Further, when only the water heater is in operation, the capacity of the heat source unit side heat exchanger 103 may be controlled so that the high pressure of the refrigerant discharged from the air conditioning compressor 101 falls within a predetermined range.

以上のような構成の給湯空調複合装置100によれば、熱源機側熱交換器103の容量を制御することで、空調負荷と給湯負荷との均衡を図り、夏場のような外気温度が高い場合でも、安定した暖房運転を実現できる。また、空調負荷と給湯負荷を切換可能とすることで、昼間はスタジオや一般事務室等の空調を行ない、夜間はプールの水を夏場は冷却、冬場は温熱をすることで、空調機器と給湯機器を共通で使用するため、イニシャルコストが低減するだけでなく、夜間電力の有効利用により電力の平準化を行い、省エネとなる。加えて、給湯空調複合装置100によれば、外気温度が高い場合でも安定した高温出湯が可能になるだけでなく、そのための特別な構成が不要なり、その分のコストが低減できることにもなる。   According to the hot water supply air-conditioning combined apparatus 100 having the above configuration, when the capacity of the heat source unit side heat exchanger 103 is controlled, the air conditioning load and the hot water supply load are balanced, and the outside air temperature is high as in summer. However, stable heating operation can be realized. In addition, by switching between air conditioning load and hot water supply load, air conditioning in studios and general offices is performed in the daytime, pool water is cooled in the summer, and heat is heated in the winter and air conditioning equipment and hot water supply in the winter. Since the devices are used in common, not only the initial cost is reduced, but also the power is leveled by the effective use of nighttime power, resulting in energy saving. In addition, according to the hot water supply and air-conditioning combined apparatus 100, not only a stable high-temperature hot water supply is possible even when the outside air temperature is high, but a special configuration for that purpose is unnecessary, and the cost can be reduced accordingly.

図3は、給湯空調複合装置100の設置例を示す模式図である。図3に基づいて、給湯空調複合装置100の設置に基づく運転方法について詳細に説明する。図3では、給湯空調複合装置100をスポーツジムやホテル、福祉施設等の建物500に設置した状態をイメージして表している。建物500には、給湯用利用室406を備えた居住空間408、及び、調理場411を備えた商用施設410を有している。   FIG. 3 is a schematic diagram illustrating an installation example of the hot water supply air-conditioning composite apparatus 100. Based on FIG. 3, the operation method based on installation of the hot water supply air-conditioning composite apparatus 100 will be described in detail. In FIG. 3, the hot water supply and air-conditioning composite apparatus 100 is illustrated in an image of a state where it is installed in a building 500 such as a sports gym, a hotel, or a welfare facility. The building 500 includes a residential space 408 provided with a hot water supply room 406 and a commercial facility 410 provided with a cooking area 411.

給湯空調複合装置100は、室外機400、給湯装置401、及び、5台の室内空調機407が冷媒配管412(ガス側接続配管106や液側接続配管107に相当)で接続されて構成されている。室外機400は、図1で示す熱源機Aに相当するものである。給湯装置401は、図1で示す給湯機に相当するものである。室内空調機407は、図1で示す室内機Bに相当するものである。   The hot water supply and air conditioning complex apparatus 100 is configured by connecting an outdoor unit 400, a hot water supply apparatus 401, and five indoor air conditioners 407 through refrigerant pipes 412 (corresponding to the gas side connection pipe 106 and the liquid side connection pipe 107). Yes. The outdoor unit 400 corresponds to the heat source unit A shown in FIG. The water heater 401 corresponds to the water heater shown in FIG. The indoor air conditioner 407 corresponds to the indoor unit B shown in FIG.

給湯装置401は、貯湯タンク32に相当する貯湯タンク403が貯湯水循環用配管203を介して接続されている。貯湯タンク403は、供給主配管415を介して給湯用利用室406の給湯用出湯装置405に、供給配管414を介して調理場411の給湯用出湯装置405に接続している。   In the hot water supply apparatus 401, a hot water storage tank 403 corresponding to the hot water storage tank 32 is connected via a hot water storage water circulation pipe 203. The hot water storage tank 403 is connected to the hot water supply hot water outlet 405 of the hot water supply use room 406 via the supply main pipe 415, and connected to the hot water supply hot water outlet 405 of the kitchen 411 via the supply pipe 414.

給湯空調複合装置100の年間を通しての運転方法について説明する。
<夏期の場合における給湯空調複合装置100の運転方法>
この場合、室外機400は暖房運転、室内空調機407は冷房運転を行なっていることが多い。また、居住空間408に設置されている給湯用利用室406では、時間に関係なく、湯が利用されることが多い。つまり、給湯用利用室406では、人がシャワーや入浴といった用途によって湯を使用することが多い。さらに、調理場411では、年間を通して給湯用途及び冷房用途が使用されていることが多い。
A year-round operation method of the hot water supply air-conditioning composite apparatus 100 will be described.
<Operation Method of Hot Water Supply Air Conditioning Combined Device 100 in Summer>
In this case, the outdoor unit 400 often performs a heating operation, and the indoor air conditioner 407 often performs a cooling operation. Also, hot water is often used in the hot water supply room 406 installed in the living space 408 regardless of the time. That is, in the hot water supply use room 406, a person often uses hot water depending on purposes such as showering or bathing. Furthermore, the kitchen 411 is often used for hot water supply and cooling throughout the year.

しかしながら、夏期においては、通常、外気温度が高い。したがって、給湯空調複合装置100では、設定温度を低く設定し、貯湯タンク403に貯湯する湯量を増加させるようにしている。また、給湯空調複合装置100では、従来排熱として室外機400で廃棄していた熱を、給湯装置401にて湯の沸き上げ運転に使用することで、省エネ運転を可能としている。   However, in summer, the outside air temperature is usually high. Therefore, in the hot water supply and air conditioning composite apparatus 100, the set temperature is set low, and the amount of hot water stored in the hot water storage tank 403 is increased. Further, in the hot water supply air-conditioning composite apparatus 100, the heat that has been discarded in the outdoor unit 400 as waste heat in the past is used in the hot water boiling operation by the hot water supply apparatus 401, thereby enabling an energy saving operation.

また、夏期の場合、給湯用途に使用する温度帯は、低温度でよく、設定温度を下げることができ、給湯装置401を運転する時間が短くて済み、システムとしても運転時間を減少でき、省エネ運転が可能となる。さらに、夏期であって居住空間408にて空調負荷が使用されていない場合、給湯装置401で加熱運転を実行し、居住空間408に排熱することで、システムでの省エネ運転が可能となる。また、冷媒を介した空調用途について説明したが、給湯装置401で作った冷水をファンコイルユニット等を利用して冷房用として使用してもよい。   Further, in the summer season, the temperature range used for hot water supply may be low, the set temperature can be lowered, the time for operating the hot water supply device 401 is short, the operating time can be reduced as a system, and the energy is saved. Driving is possible. Further, when the air conditioning load is not used in the living space 408 in the summer season, an energy saving operation in the system can be performed by performing a heating operation with the hot water supply device 401 and exhausting heat to the living space 408. Moreover, although the air-conditioning use via a refrigerant | coolant was demonstrated, you may use the cold water made with the hot-water supply apparatus 401 for cooling using a fan coil unit etc.

<冬期の場合における給湯空調複合装置100の使用状態>
この場合、室外機400は冷房運転、室内空調機407は暖房運転を行なっていることが多い。また、居住空間408に設置されている給湯用利用室406では、時間に関係なく、湯が利用されることが多い。さらに、夜間や早朝には、供給配管414、及び、供給主配管415は、外気温度の低下による配管凍結保護運転が要求される。また年間を通して、調理場411は給湯用途、冷房用途が必要となる。
<Use condition of hot water supply air-conditioning composite apparatus 100 in winter>
In this case, the outdoor unit 400 often performs a cooling operation, and the indoor air conditioner 407 often performs a heating operation. Also, hot water is often used in the hot water supply room 406 installed in the living space 408 regardless of the time. Further, at night or early in the morning, the supply pipe 414 and the supply main pipe 415 are required to perform a pipe freezing protection operation due to a decrease in the outside air temperature. Throughout the year, the kitchen 411 is required for hot water supply and cooling.

冬期の場合、水を導通する水配管は凍結することが考えられる。そのため、従来は水配管には電気ヒーター等を巻くことで、凍結保護運転を行なっていた。これに対して、給湯空調複合装置100では、貯湯タンク403に貯湯した中温度の水を、夜間や外気温度が低下した場合に供給することで、配管凍結を防げるようにしておくとよい。   In the winter season, it is conceivable that the water pipe that conducts water freezes. Therefore, conventionally, the freeze protection operation has been performed by winding an electric heater or the like around the water pipe. On the other hand, in the hot water supply and air-conditioning combined apparatus 100, it is preferable to prevent the pipe from being frozen by supplying medium temperature water stored in the hot water storage tank 403 at night or when the outside air temperature is lowered.

以上のような構成の給湯空調複合装置100によれば、暖房運転時に熱源機側熱交換器103の容量を制御して、熱源機Aの負荷と室内機B及び給湯機の合計負荷との均衡を図るようにしているので、特に夏場等の外気温度が高い場合でも安定した高温出湯できることになり、年間を通してのエネルギー効率が最適となる運転を実現できる。   According to the hot water supply air-conditioning composite apparatus 100 configured as described above, the capacity of the heat source unit side heat exchanger 103 is controlled during the heating operation to balance the load of the heat source unit A and the total load of the indoor unit B and the hot water supply unit. Therefore, even when the outside air temperature is high particularly in summer, stable hot high-temperature hot water can be obtained, and operation with optimum energy efficiency throughout the year can be realized.

実施の形態2.
図4は、本発明の実施の形態2に係る給湯空調複合装置100Aの冷媒回路構成の一例を示す冷媒回路図である。図4に基づいて、給湯空調複合装置100Aについて説明する。中温の給湯需要(たとえば45℃)を提供する場合に、この給湯空調複合装置100Aは、実施の形態1に係る給湯空調複合装置100と同様に、たとえばスポーツジムやホテル、福祉施設等に設置され、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。
Embodiment 2. FIG.
FIG. 4 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of a hot water supply and air conditioning composite apparatus 100A according to Embodiment 2 of the present invention. Based on FIG. 4, hot water supply air-conditioning composite apparatus 100A will be described. When providing a hot water supply demand of medium temperature (for example, 45 ° C.), this hot water supply / air conditioning complex apparatus 100A is installed in, for example, a sports gym, a hotel, a welfare facility, etc., similarly to the hot water supply / air conditioning complex apparatus 100 according to the first embodiment. The cooling load, the heating load, and the hot water supply load can be simultaneously supplied by using a refrigeration cycle (heat pump cycle) for circulating the refrigerant.

給湯空調複合装置100Aは、図4に示すように給湯用冷凍サイクル2が設けられていない。つまり、給湯空調複合装置100Aは、熱媒体−冷媒熱交換器51を介して空調用冷凍サイクルと給湯用負荷3とを接続するようにしているのである。なお、給湯空調複合装置100Aを、図3に示す態様に設置してもよいことは言うまでもない。また、給湯器には、少なくとも熱媒体−冷媒熱交換器51の一部が搭載されている。   As shown in FIG. 4, the hot water supply air-conditioning combined apparatus 100A is not provided with the hot water supply refrigeration cycle 2. That is, the hot-water supply / air-conditioning combined apparatus 100 </ b> A connects the air-conditioning refrigeration cycle and the hot-water supply load 3 via the heat medium-refrigerant heat exchanger 51. Needless to say, the hot water supply and air conditioning complex apparatus 100A may be installed in the mode shown in FIG. In addition, at least a part of the heat medium-refrigerant heat exchanger 51 is mounted on the water heater.

以上のような構成の給湯空調複合装置100Aによれば、実施の形態1に係る給湯空調複合装置100と同様に、熱源機側熱交換器103の容量を制御することで、空調負荷と給湯負荷との均衡を図り、夏場のような外気温度が高い場合でも、安定した暖房運転を実現できる。また、空調負荷と給湯負荷を切換可能とすることで、昼間はスタジオや一般事務室等の空調を行ない、夜間はプールの水を夏場は冷却、冬場は温熱をすることで、空調機器と給湯機器を共通で使用するため、イニシャルコストが低減するだけでなく、夜間電力の有効利用により電力の平準化を行い、省エネとなる。加えて、給湯空調複合装置100Aによれば、外気温度が高い場合でも安定した高温出湯が可能になるだけでなく、そのための特別な構成が不要なり、その分のコストが低減できることにもなる。   According to the hot water supply / air conditioning complex apparatus 100A having the above-described configuration, as with the hot water supply / air conditioning complex apparatus 100 according to Embodiment 1, by controlling the capacity of the heat source unit side heat exchanger 103, the air conditioning load and the hot water supply load are controlled. Even when the outside air temperature is high, such as in summer, stable heating operation can be realized. In addition, by switching between air conditioning load and hot water supply load, air conditioning in studios and general offices is performed in the daytime, pool water is cooled in the summer, and heat is heated in the winter and air conditioning equipment and hot water supply in the winter. Since the devices are used in common, not only the initial cost is reduced, but also the power is leveled by the effective use of nighttime power, resulting in energy saving. In addition, according to the hot-water supply / air-conditioning combined apparatus 100A, not only stable high-temperature hot water supply is possible even when the outside air temperature is high, but a special configuration for that purpose is not required, and the cost can be reduced accordingly.

また、給湯空調複合装置100Aでは、室内機Bの負荷と給湯機の負荷とを切り替え可能な構成にしている。このようにしておけば、室内機Bにおける昼間の空調負荷と給湯機における夜間の冷却負荷、もしくは、室内機Bにおける昼間の空調負荷と給湯機における加熱負荷の切り替えを適宜実行できることになり、電力の平準化が実現でき、余分な設備費用が省略でき、ランニングコストも安価なものになる。つまり、空調負荷と給湯負荷とを切り替え可能とすることで、夜間電力を有効に活用することができる。   Moreover, in hot water supply air-conditioning combined apparatus 100A, it is set as the structure which can switch the load of the indoor unit B, and the load of a water heater. If it does in this way, it will be possible to appropriately switch between the daytime air conditioning load in the indoor unit B and the nighttime cooling load in the water heater, or the daytime air conditioning load in the indoor unit B and the heating load in the water heater. Leveling can be realized, the extra equipment cost can be omitted, and the running cost can be reduced. In other words, by making it possible to switch between the air conditioning load and the hot water supply load, it is possible to effectively use nighttime power.

実施の形態3.
図5は、本発明の実施の形態3に係る給湯空調複合装置100Bの冷媒回路構成の一例を示す冷媒回路図である。図5に基づいて、給湯空調複合装置100Bについて説明する。この給湯空調複合装置100Bは、実施の形態1に係る給湯空調複合装置100と同様に、たとえばスポーツジムやホテル、福祉施設等に設置され、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。
Embodiment 3 FIG.
FIG. 5 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of a hot water supply air-conditioning composite apparatus 100B according to Embodiment 3 of the present invention. Based on FIG. 5, the hot water supply air-conditioning composite apparatus 100B will be described. This hot water supply air-conditioning combined apparatus 100B is installed in, for example, a sports gym, a hotel, a welfare facility, etc., and uses a refrigeration cycle (heat pump cycle) that circulates the refrigerant, similarly to hot water supply air conditioning combined apparatus 100 according to Embodiment 1. The cooling load, the heating load and the hot water supply load can be supplied simultaneously.

給湯空調複合装置100B、図5に示すように熱源機側熱交換器103をバイパスするバイパス管10を設けた点で実施の形態1又は実施の形態2に係る給湯空調複合装置とは相違している。このバイパス管10は、熱源機側熱交換器103の出入口側を接続するように設けられている。また、バイパス管10には、バイパス管10を開閉するバイパス弁11が設置されている。すなわち、バイパス弁11の開閉を制御することで、熱源機側熱交換器103に流入する冷媒の一部をバイパス管10に流入させ、熱源機側熱交換器103の容量を制御しているのである。なお、給湯空調複合装置100Bを、図3に示す態様に設置してもよいことは言うまでもない。   The hot water supply air-conditioning composite apparatus 100B differs from the hot water supply air conditioning composite apparatus according to the first or second embodiment in that a bypass pipe 10 that bypasses the heat source unit side heat exchanger 103 is provided as shown in FIG. Yes. The bypass pipe 10 is provided so as to connect the entrance / exit side of the heat source apparatus side heat exchanger 103. The bypass pipe 10 is provided with a bypass valve 11 that opens and closes the bypass pipe 10. That is, by controlling the opening and closing of the bypass valve 11, a part of the refrigerant flowing into the heat source unit side heat exchanger 103 is caused to flow into the bypass pipe 10, and the capacity of the heat source unit side heat exchanger 103 is controlled. is there. Needless to say, the hot water supply / air conditioning composite apparatus 100B may be installed in the mode shown in FIG.

以上のような構成の給湯空調複合装置100Bによれば、実施の形態1に係る給湯空調複合装置100と同様に、熱源機側熱交換器103の容量を制御することで、空調負荷と給湯負荷との均衡を図り、夏場のような外気温度が高い場合でも、安定した暖房運転を実現できる。また、空調負荷と給湯負荷を切換可能とすることで、昼間はスタジオや一般事務室等の空調を行ない、夜間はプールの水を夏場は冷却、冬場は温熱をすることで、空調機器と給湯機器を共通で使用するため、イニシャルコストが低減するだけでなく、夜間電力の有効利用により電力の平準化を行い、省エネとなる。加えて、給湯空調複合装置100Bによれば、外気温度が高い場合でも安定した高温出湯が可能になるだけでなく、そのための特別な構成が不要なり、その分のコストが低減できることにもなる。   According to the hot water supply / air conditioning composite apparatus 100B having the above-described configuration, as with the hot water supply / air conditioning composite apparatus 100 according to Embodiment 1, by controlling the capacity of the heat source unit side heat exchanger 103, the air conditioning load and the hot water supply load are controlled. Even when the outside air temperature is high, such as in summer, stable heating operation can be realized. In addition, by switching between air conditioning load and hot water supply load, air conditioning in studios and general offices is performed in the daytime, pool water is cooled in the summer, and heat is heated in the winter and air conditioning equipment and hot water supply in the winter. Since the devices are used in common, not only the initial cost is reduced, but also the power is leveled by the effective use of nighttime power, resulting in energy saving. In addition, according to the hot water supply and air-conditioning combined apparatus 100B, not only a stable high-temperature hot water supply is possible even when the outside air temperature is high, but a special configuration for that purpose is unnecessary, and the cost can be reduced accordingly.

また、給湯空調複合装置100Bでは、室内機Bの負荷と給湯機の負荷とを流路切替弁等の流路切替装置により切り替え可能な構成にしている。このようにしておけば、室内機Bにおける昼間の空調負荷と給湯機における夜間の冷却負荷、もしくは、室内機Bにおける昼間の空調負荷と給湯機における加熱負荷の切り替えを適宜実行できることになり、電力の平準化が実現でき、余分な設備費用が省略でき、ランニングコストも安価なものになる。つまり、空調負荷と給湯負荷とを切り替え可能とすることで、夜間電力を有効に活用することができる。   Moreover, in the hot water supply air-conditioning composite apparatus 100B, the load of the indoor unit B and the load of the hot water heater can be switched by a flow path switching device such as a flow path switching valve. If it does in this way, it will be possible to appropriately switch between the daytime air conditioning load in the indoor unit B and the nighttime cooling load in the water heater, or the daytime air conditioning load in the indoor unit B and the heating load in the water heater. Leveling can be realized, the extra equipment cost can be omitted, and the running cost can be reduced. In other words, by making it possible to switch between the air conditioning load and the hot water supply load, it is possible to effectively use nighttime power.

1 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯用負荷、10 バイパス管、11 バイパス弁、21 給湯用圧縮機、22 給湯用絞り手段、31 水循環用ポンプ、32 貯湯タンク、41 冷媒熱交換器、45 冷媒配管、51 冷媒熱交換器、100 給湯空調複合装置、100A 給湯空調複合装置、100B 給湯空調複合装置、101 空調用圧縮機、102 四方弁、103 熱源機側熱交換器、104 アキュムレーター、106 ガス側接続配管、107 液側接続配管、117 空調用絞り手段、118 利用側熱交換器、119 給湯熱源用絞り手段、203 貯湯水循環用配管、400 室外機、401 給湯装置、403 貯湯タンク、405 給湯用出湯装置、406 給湯用利用室、407 室内空調機、408 居住空間、410 商用施設、411 調理場、412 冷媒配管、414 供給配管、415 供給主配管、500 建物、A 熱源機、B 室内機、C 給湯熱源用回路。   1 Refrigeration cycle for air conditioning, 2 refrigeration cycle for hot water supply, 3 load for hot water supply, 10 bypass pipe, 11 bypass valve, 21 compressor for hot water supply, 22 hot water throttling means, 31 water circulation pump, 32 hot water storage tank, 41 refrigerant heat exchange 45, Refrigerant piping, 51 Refrigerant heat exchanger, 100 Hot water supply air conditioning combined device, 100A Hot water supply air conditioning combined device, 100B Hot water supply air conditioning combined device, 101 Air conditioning compressor, 102 Four-way valve, 103 Heat source side heat exchanger, 104 Accum 106, gas side connection pipe, 107 liquid side connection pipe, 117 air conditioning throttle means, 118 use side heat exchanger, 119 hot water supply heat source throttle means, 203 hot water circulation pipe, 400 outdoor unit, 401 hot water supply apparatus, 403 hot water storage Tank, 405 Hot water supply outlet, 406 Hot water use room, 407 Indoor air conditioner, 408 Living space, 410 commercial facility, 411 kitchen, 412 refrigerant piping, 414 supply piping, 415 supply main piping, 500 building, A heat source machine, B indoor unit, C hot water supply heat source circuit.

Claims (4)

第1冷媒を圧縮する空調用圧縮機及び熱源機側熱交換器が搭載された少なくとも1台の熱源機と、
前記熱源機に対して並列に接続され、前記第1冷媒が流れる利用側熱交換器が搭載された少なくとも1台の室内機と、
前記熱源機に対して並列に接続され、前記第1冷媒と前記第2冷媒とが流れる冷媒−冷媒熱交換器、熱媒体と前記第2冷媒が流れる熱媒体−冷媒熱交換器、及び、前記第2冷媒を圧縮する給湯用圧縮機が搭載された少なくとも1台の給湯機と、を備え、
暖房運転時において、
前記給湯機のみが運転している状態で、前記空調用圧縮機から吐出される前記第1冷媒の高圧圧力を所定範囲内とするように、前記熱源機に搭載されている前記熱源機側熱交換機の容量を制御して、
前記熱源機の負荷と、前記室内機及び前記給湯機の合計負荷と、の均衡を図るようにしている
給湯空調複合装置。
At least one heat source unit equipped with an air conditioning compressor for compressing the first refrigerant and a heat source unit side heat exchanger;
At least one indoor unit that is connected in parallel to the heat source unit and is equipped with a use side heat exchanger through which the first refrigerant flows;
A refrigerant-refrigerant heat exchanger that is connected in parallel to the heat source unit and through which the first refrigerant and the second refrigerant flow, a heat medium-refrigerant heat exchanger through which the heat medium and the second refrigerant flow, and And at least one hot water heater equipped with a hot water compressor for compressing the second refrigerant,
During heating operation,
The heat source machine side heat mounted on the heat source machine so that the high pressure of the first refrigerant discharged from the air conditioning compressor is within a predetermined range in a state where only the water heater is operating. Control the capacity of the exchange,
A hot water supply and air-conditioning composite apparatus that balances the load of the heat source unit and the total load of the indoor unit and the hot water heater.
第1冷媒を圧縮する空調用圧縮機及び熱源機側熱交換器が搭載された少なくとも1台の熱源機と、
前記熱源機に対して並列に接続され、前記第1冷媒が流れる利用側熱交換器が搭載された少なくとも1台の室内機と、
前記熱源機に対して並列に接続され、熱媒体と前記第1冷媒が流れる熱媒体−冷媒熱交換器が少なくとも搭載された少なくとも1台の給湯機と、を備え、
暖房運転時において、
前記給湯機のみが運転している状態で、前記空調用圧縮機から吐出される前記第1冷媒の高圧圧力を所定範囲内とするように、前記熱源機に搭載されている前記熱源機側熱交換機の容量を制御して、
前記熱源機の負荷と、前記室内機及び前記給湯機の合計負荷と、の均衡を図るようにしている
給湯空調複合装置。
At least one heat source unit equipped with an air conditioning compressor for compressing the first refrigerant and a heat source unit side heat exchanger;
At least one indoor unit that is connected in parallel to the heat source unit and is equipped with a use side heat exchanger through which the first refrigerant flows;
And at least one water heater that is connected in parallel to the heat source unit and that includes at least a heat medium-refrigerant heat exchanger through which the heat medium and the first refrigerant flow.
During heating operation,
The heat source machine side heat mounted on the heat source machine so that the high pressure of the first refrigerant discharged from the air conditioning compressor is within a predetermined range in a state where only the water heater is operating. Control the capacity of the exchange,
A hot water supply and air-conditioning composite apparatus that balances the load of the heat source unit and the total load of the indoor unit and the hot water heater.
前記熱源機側熱交換器をバイパスするバイパス管と、
前記バイパス管に設置されたバイパス弁と、を設け、
前記バイパス弁を制御することで前記バイパス管に流入する前記第1冷媒の流量を調整することで前記熱源機に搭載されている前記熱源機側熱交換器の容量を制御する
請求項1又は2に記載の給湯空調複合装置。
A bypass pipe for bypassing the heat source machine side heat exchanger;
A bypass valve installed in the bypass pipe,
The capacity of the heat source unit side heat exchanger mounted on the heat source unit is controlled by adjusting the flow rate of the first refrigerant flowing into the bypass pipe by controlling the bypass valve. The hot water supply air-conditioning combined device described in 1.
前記室内機の負荷と前記給湯機の負荷とを切り替え可能に構成している
請求項1〜3のいずれか一項に記載の給湯空調複合装置。
The hot water supply air-conditioning composite apparatus according to any one of claims 1 to 3, wherein the load of the indoor unit and the load of the hot water supply device are switchable.
JP2012549480A 2010-12-22 2010-12-22 Hot water supply and air conditioning complex equipment Expired - Fee Related JP5615381B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007434 WO2012085970A1 (en) 2010-12-22 2010-12-22 Hot-water-supplying, air-conditioning composite device

Publications (2)

Publication Number Publication Date
JPWO2012085970A1 JPWO2012085970A1 (en) 2014-05-22
JP5615381B2 true JP5615381B2 (en) 2014-10-29

Family

ID=46313276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012549480A Expired - Fee Related JP5615381B2 (en) 2010-12-22 2010-12-22 Hot water supply and air conditioning complex equipment

Country Status (5)

Country Link
US (1) US9528713B2 (en)
EP (1) EP2657628B1 (en)
JP (1) JP5615381B2 (en)
CN (1) CN103229006B (en)
WO (1) WO2012085970A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076947A1 (en) * 2014-11-12 2016-05-19 Carrier Corporation Refrigeration system
WO2016084186A1 (en) * 2014-11-27 2016-06-02 三菱電機株式会社 Combined air conditioning and hot-water supply system
DE212016000038U1 (en) * 2015-01-09 2017-08-11 Trane International Inc. heat pump
US11231205B2 (en) * 2015-12-08 2022-01-25 Trane International Inc. Using heat recovered from heat source to obtain high temperature hot water
US10088208B2 (en) * 2016-01-06 2018-10-02 Johnson Controls Technology Company Vapor compression system
EP3299732B1 (en) 2016-09-23 2020-04-29 Daikin Industries, Limited System for air-conditioning and hot-water supply
JP6689404B2 (en) * 2016-12-02 2020-04-28 三菱電機株式会社 Refrigeration cycle equipment
US10578345B2 (en) * 2017-01-29 2020-03-03 Billybob Corporation Heat transfer and hydronic systems
DE102017202524A1 (en) * 2017-02-16 2018-08-16 Robert Bosch Gmbh System with an air conditioning device and a service water device
CN108278792B (en) * 2018-03-21 2020-11-27 天津商业大学 Air source heat pump system capable of realizing winter overlapping circulation heating
CN109579300A (en) * 2018-12-21 2019-04-05 广东志高暖通设备股份有限公司 A kind of hot water multi system and control method with the switching of more four-way valve flow paths
CN109579299A (en) * 2018-12-21 2019-04-05 广东志高暖通设备股份有限公司 A kind of hot water multi system and its control method
CN109990462B (en) * 2018-12-26 2021-07-06 青岛经济技术开发区海尔热水器有限公司 Cold and hot air coupling heat pump water heater system with waste heat recovery function
CN111795480B (en) 2019-04-08 2023-08-22 开利公司 Thermal circulation system and control method for thermal circulation system
CN110145888A (en) * 2019-06-06 2019-08-20 西安航空学院 A kind of cold and heat combined supply control system using high temperature heat pump
JP7211512B2 (en) * 2019-07-04 2023-01-24 三菱電機株式会社 hot water system
CN111156698B (en) * 2020-01-08 2021-07-27 北京建筑大学 Cold storage type instant heating heat pump water heater
US11739952B2 (en) * 2020-07-13 2023-08-29 Rheem Manufacturing Company Integrated space conditioning and water heating/cooling systems and methods thereto
CN112524836B (en) * 2020-12-17 2022-07-08 广东积微科技有限公司 Three-pipe multi-split system and control method thereof
CN114719355B (en) * 2022-04-06 2023-02-03 中煤科工(天津)清洁能源研究院有限公司 Temperature adjusting system and calculating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103352A (en) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp Air conditioner
JPH05149648A (en) * 1991-11-29 1993-06-15 Mitsubishi Heavy Ind Ltd Air-conditioner
JP2006283989A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Cooling/heating system
WO2009122476A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2244551A (en) * 1938-03-30 1941-06-03 Honeywell Regulator Co Air conditioning system
US2260477A (en) * 1938-09-24 1941-10-28 Honeywell Regulator Co Air conditioning system
US3837174A (en) * 1973-03-16 1974-09-24 Sanyo Electric Co Control device for an absorption system hot and cold water supply apparatus
US4196595A (en) * 1976-01-29 1980-04-08 Dunham-Bush, Inc. Integrated thermal solar heat pump system
US4209996A (en) * 1976-01-29 1980-07-01 Dunham-Bush, Inc. Reciprocating compressor refrigeration system using step expansion and auto staging
US4062489A (en) * 1976-04-21 1977-12-13 Henderson Roland A Solar-geothermal heat system
US4326387A (en) * 1978-04-03 1982-04-27 Hussmann Refrigerator Co. Fluidic time delay system
JPS55162561A (en) * 1979-06-04 1980-12-17 Yukio Kajino Heat amplifying method and apparatus
US4253153A (en) * 1979-06-28 1981-02-24 United Technologies Corporation Energy conservative control of terminal reheat heating, ventilating, and air conditioning (HVAC) systems
JPS588956A (en) * 1981-07-10 1983-01-19 株式会社システム・ホ−ムズ Heat pump type air conditioner
US4644756A (en) * 1983-12-21 1987-02-24 Daikin Industries, Ltd. Multi-room type air conditioner
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
KR900000809B1 (en) * 1984-02-09 1990-02-17 미쓰비시전기 주식회사 Room-warming/cooling and hot-water supplying heat-pump apparatus
JPH0327249Y2 (en) * 1984-10-26 1991-06-12
KR900001875B1 (en) * 1985-02-20 1990-03-26 미쓰비시전기주식회사 Air-conditioner
KR910000677B1 (en) * 1985-07-15 1991-01-31 도오도오 기기 가부시기가이샤 Multiple-purpose instantaneous gas water heater
US4697434A (en) * 1985-10-17 1987-10-06 Mitsubishi Denki Kabushiki Kaisha Prime mover driven air-conditioning and hot-water supplying system
JPS62102046A (en) * 1985-10-28 1987-05-12 Toshiba Corp Air conditioner
JPS63118546A (en) * 1986-11-05 1988-05-23 Takenaka Komuten Co Ltd Air conditioning system for building
US4727727A (en) * 1987-02-20 1988-03-01 Electric Power Research Institute, Inc. Integrated heat pump system
US4878357A (en) * 1987-12-21 1989-11-07 Sanyo Electric Co., Ltd. Air-conditioning apparatus
JP3090672B2 (en) * 1989-12-08 2000-09-25 東芝キヤリア株式会社 Heating system
US5095715A (en) * 1990-09-20 1992-03-17 Electric Power Research Institute, Inc. Electric power demand limit for variable speed heat pumps and integrated water heating heat pumps
US5050394A (en) * 1990-09-20 1991-09-24 Electric Power Research Institute, Inc. Controllable variable speed heat pump for combined water heating and space cooling
JP2554208B2 (en) 1991-02-18 1996-11-13 関西電力株式会社 Heat pump water heater
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
CA2121794A1 (en) * 1991-10-30 1993-05-13 Theodore C. Gilles Ancillary heat pump apparatus for producing domestic hot water
US5351502A (en) * 1991-10-30 1994-10-04 Lennox Industries, Inc. Combination ancillary heat pump for producing domestic hot h20 with multimodal dehumidification apparatus
JP3322684B2 (en) * 1992-03-16 2002-09-09 東芝キヤリア株式会社 Air conditioner
JP3230845B2 (en) * 1992-07-10 2001-11-19 東芝キヤリア株式会社 Multi-type air conditioner
JP3352469B2 (en) * 1992-07-14 2002-12-03 東芝キヤリア株式会社 Air conditioner
JPH06201176A (en) * 1992-12-28 1994-07-19 Toshiba Corp Air-conditioner
US5313804A (en) * 1993-04-23 1994-05-24 Maritime Geothermal Ltd. Direct expansion geothermal heat pump
US5417076A (en) * 1993-11-16 1995-05-23 Reefco Manufacturing Corporation Cooling system automatically configurable to operate in cascade or single compressor mode
FR2716959B1 (en) * 1994-03-04 1996-05-15 Thermique Generale Vinicole Distribution and / or collection of cold and / or hot.
JP3113793B2 (en) * 1995-05-02 2000-12-04 株式会社エヌ・ティ・ティ ファシリティーズ Air conditioning system
US6062035A (en) * 1995-10-24 2000-05-16 Daikin Industries, Ltd. Air conditioner
US5947373A (en) * 1996-02-09 1999-09-07 Sanyo Electric Co., Ltd. Refrigerant circuit with fluid heated refrigerant
JP3729552B2 (en) * 1996-02-22 2005-12-21 東プレ株式会社 Air conditioner
JPH11270920A (en) 1998-03-20 1999-10-05 Mitsubishi Electric Corp Multifunctional heat pump system and method of its operation control
JP3737381B2 (en) * 2000-06-05 2006-01-18 株式会社デンソー Water heater
CN1173142C (en) * 2000-07-31 2004-10-27 矢崎总业株式会社 Air conditioner
JP4032634B2 (en) * 2000-11-13 2008-01-16 ダイキン工業株式会社 Air conditioner
US6711907B2 (en) * 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
US6446448B1 (en) * 2001-06-26 2002-09-10 Chi-Yi Wang Cooling tower for automatically adjusting flow rates of cooling water and cooling air with variations of a load
US6557361B1 (en) * 2002-03-26 2003-05-06 Praxair Technology Inc. Method for operating a cascade refrigeration system
KR100473823B1 (en) * 2002-08-06 2005-03-08 삼성전자주식회사 Air conditioner having cold and hot water supplying apparatus
KR20040050477A (en) * 2002-12-10 2004-06-16 엘지전자 주식회사 An air-condition system
JP3858015B2 (en) * 2003-09-30 2006-12-13 三洋電機株式会社 Refrigerant circuit and heat pump water heater
EP1701112B1 (en) * 2003-11-28 2017-11-15 Mitsubishi Denki Kabushiki Kaisha Freezer and air conditioner
US7716943B2 (en) * 2004-05-12 2010-05-18 Electro Industries, Inc. Heating/cooling system
JP4599910B2 (en) * 2004-07-01 2010-12-15 ダイキン工業株式会社 Water heater
JP4649897B2 (en) * 2004-07-09 2011-03-16 ダイキン工業株式会社 Heat transfer system
KR20060112844A (en) * 2005-04-28 2006-11-02 엘지전자 주식회사 Cogeneration system
JP3876911B2 (en) * 2005-06-29 2007-02-07 ダイキン工業株式会社 Water heater
US8132419B2 (en) * 2006-03-23 2012-03-13 Daikin Industries, Ltd. Refrigeration system and refrigeration system analyzer
KR101270615B1 (en) * 2006-07-25 2013-06-07 엘지전자 주식회사 Co-generation and Control method of the same
KR101270616B1 (en) * 2006-07-27 2013-06-07 엘지전자 주식회사 Co-generation
KR101294737B1 (en) * 2006-07-31 2013-08-08 엘지전자 주식회사 Cogeneration system
JP5197576B2 (en) * 2007-03-27 2013-05-15 三菱電機株式会社 Heat pump equipment
JP5018496B2 (en) * 2008-01-16 2012-09-05 ダイキン工業株式会社 Refrigeration equipment
JP4780479B2 (en) * 2008-02-13 2011-09-28 株式会社日立プラントテクノロジー Electronic equipment cooling system
JP2009257655A (en) * 2008-03-04 2009-11-05 Daikin Ind Ltd Refrigerating apparatus
US8991202B2 (en) 2008-03-31 2015-03-31 Mitsubishi Electric Corporation Air-conditioning hot-water supply complex system
US20100031953A1 (en) * 2008-08-07 2010-02-11 Krassimire Mihaylov Penev Hybrid Water Heating System
US8657207B2 (en) * 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
JP5495526B2 (en) * 2008-08-29 2014-05-21 三菱重工業株式会社 Heat source system and control method thereof
JP2010196946A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
JP2010196953A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103352A (en) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp Air conditioner
JPH05149648A (en) * 1991-11-29 1993-06-15 Mitsubishi Heavy Ind Ltd Air-conditioner
JP2006283989A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Cooling/heating system
WO2009122476A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system

Also Published As

Publication number Publication date
CN103229006B (en) 2015-11-25
US20130219945A1 (en) 2013-08-29
EP2657628A1 (en) 2013-10-30
CN103229006A (en) 2013-07-31
WO2012085970A1 (en) 2012-06-28
JPWO2012085970A1 (en) 2014-05-22
EP2657628A4 (en) 2014-07-02
US9528713B2 (en) 2016-12-27
EP2657628B1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
JP5518101B2 (en) Air conditioning and hot water supply complex system
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
JP5121922B2 (en) Air conditioning and hot water supply complex system
JP5084903B2 (en) Air conditioning and hot water supply complex system
KR101366986B1 (en) Heat pump system
JP5373964B2 (en) Air conditioning and hot water supply system
JP5455521B2 (en) Air conditioning and hot water supply system
US9360226B2 (en) Heat pump system
JP5572711B2 (en) Air conditioning and hot water supply system
JP2006283989A (en) Cooling/heating system
JPWO2013144996A1 (en) Air conditioner
JP4885481B2 (en) Cooling device operation method
JP3702724B2 (en) Heat pump system and heat pump system installation method
JP6528078B2 (en) Air conditioner
JPWO2011099074A1 (en) Refrigeration cycle equipment
JP2005274134A (en) Heat pump type floor heating air conditioner
KR101454756B1 (en) Heat storaging apparatus having cascade cycle and Control process of the same
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP5955409B2 (en) Air conditioner
KR20100059176A (en) Storage system
JP2006010137A (en) Heat pump system
JP5499153B2 (en) Air conditioner
JP2009109086A (en) Air conditioning system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5615381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees