JP2006283989A - Cooling/heating system - Google Patents

Cooling/heating system Download PDF

Info

Publication number
JP2006283989A
JP2006283989A JP2005100368A JP2005100368A JP2006283989A JP 2006283989 A JP2006283989 A JP 2006283989A JP 2005100368 A JP2005100368 A JP 2005100368A JP 2005100368 A JP2005100368 A JP 2005100368A JP 2006283989 A JP2006283989 A JP 2006283989A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
indoor
pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100368A
Other languages
Japanese (ja)
Inventor
Masahisa Otake
雅久 大竹
Ichiro Kamimura
一朗 上村
Hiroshi Mukoyama
洋 向山
Koji Sato
晃司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005100368A priority Critical patent/JP2006283989A/en
Priority to CNA2006100681018A priority patent/CN1840992A/en
Priority to US11/392,772 priority patent/US20060218948A1/en
Publication of JP2006283989A publication Critical patent/JP2006283989A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling/heating system capable of controlling operation capacity to achieve maximum coefficient of performance, in the cooling/heating system using a refrigerant in a supercritical state. <P>SOLUTION: This cooling/heating system 130 composed of an outdoor unit 101 comprising a compressor 102 and an outdoor heat exchanger 103, a plurality of indoor units 105 comprising indoor heat exchangers 106, a high-pressure pipe 111, a low-pressure pipe 112, and an intermediate-pressure pipe 113, further comprises a refrigerant pressure detecting means P<SB>CO1</SB>for detecting a pressure of the refrigerant discharged from the compressor 102, a first refrigerant temperature detecting means T<SB>CO3</SB>for detecting an outlet temperature of the refrigerant when the outdoor heat exchanger 103 is functioned as a radiator, and detecting an inlet temperature when the outdoor heat exchanger 103 is functioned as a heat absorber, and a second refrigerant temperature detecting means T<SB>CO8</SB>for detecting the outlet temperature of the refrigerant when the indoor heat exchanger 106 is functioned as the radiator, and detecting the inlet temperature of the refrigerant when the indoor heat exchanger 106 is functioned as the heat absorber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷暖房システムに関し、詳細には、冷媒を超臨界の状態で使用する冷暖房システムにおいて、成績係数が最大となるように運転能力の制御を行うことができる冷暖房システムに関するものである。   The present invention relates to an air conditioning system, and more particularly, to an air conditioning system that can control operating capacity so as to maximize the coefficient of performance in an air conditioning system that uses a refrigerant in a supercritical state.

二酸化炭素冷媒を超臨界の状態で使用する冷暖房システムであって、室外ユニットと複数台の室内ユニットとを有し、複数台の室内ユニットを同時に冷房運転もしくは暖房運転することができ、かつ、冷房運転と暖房運転とを混在して行うことができるものとして、特許文献1のようなシステムが知られている。ここで、冷房とは室内ユニットの設定温度が室内温度より低いときに行われ、暖房とは室内ユニットの設定温度が室内温度より高いときに行われる運転をいう。
特開2004−226018号公報
A cooling / heating system using a carbon dioxide refrigerant in a supercritical state, having an outdoor unit and a plurality of indoor units, wherein the plurality of indoor units can be simultaneously operated for cooling or heating, and As a system that can perform both operation and heating operation, a system as disclosed in Patent Document 1 is known. Here, the cooling is performed when the set temperature of the indoor unit is lower than the room temperature, and the heating is an operation performed when the set temperature of the indoor unit is higher than the room temperature.
JP 2004-226018 A

フルオロカーボン冷媒を使用する冷暖房システムであれば、蒸発温度(あるいは蒸発圧力)と凝縮温度(あるいは凝縮圧力)とを検出して冷媒の状態を把握し、その検出値が目標値に近づくよう(成績係数が最大となるよう)に室外ユニット内の熱交換器及び圧縮機の容量制御を行うことにより、運転能力の制御を行っていた。ここで、室外ユニット内の熱交換器の容量制御とは、室内側の冷房負荷と暖房負荷との熱収支に応じて、大きさの異なる複数の熱交換器を接続し、それぞれに切換弁を設け、稼動させる熱交換器の数を変更したり、各熱交換器を循環する冷媒の循環量を調整したり、各熱交換器に設けられた送風機の回転数を調整したりすることにより、目標とする蒸発温度または凝縮温度に到達するように制御することである。   For air conditioning systems that use fluorocarbon refrigerants, the evaporating temperature (or evaporating pressure) and condensing temperature (or condensing pressure) are detected to determine the state of the refrigerant so that the detected value approaches the target value (coefficient of performance) The operation capacity was controlled by controlling the capacity of the heat exchanger and the compressor in the outdoor unit so that the maximum capacity of the outdoor unit was achieved. Here, the capacity control of the heat exchanger in the outdoor unit means that a plurality of heat exchangers of different sizes are connected according to the heat balance between the cooling load and the heating load on the indoor side, and a switching valve is connected to each. By changing the number of heat exchangers to be installed and operated, adjusting the circulation amount of the refrigerant circulating through each heat exchanger, or adjusting the rotation speed of the blower provided in each heat exchanger, Control to reach the target evaporation temperature or condensation temperature.

これに対し、二酸化炭素のような冷媒を超臨界の状態で使用する冷暖房システムは、高圧側が超臨界状態となるため、フルオロカーボン冷媒と異なり凝縮温度(実際には凝縮は起こらないので、高圧側の温度のことをいう。)から一義的に凝縮圧力(高圧圧力)を求めることができず、冷媒の状態を把握するために高圧側では凝縮温度と凝縮圧力との両方を検出しなければならないという問題があった。そのため、成績係数が最大となるような熱交換器及び圧縮機の容量制御を行うことが困難であった。   On the other hand, in a cooling / heating system that uses a refrigerant such as carbon dioxide in a supercritical state, the high pressure side is in a supercritical state. Therefore, unlike a fluorocarbon refrigerant, the condensation temperature (actually, condensation does not occur. The condensing pressure (high pressure) cannot be determined uniquely from the temperature.) In order to grasp the state of the refrigerant, both the condensing temperature and condensing pressure must be detected on the high pressure side. There was a problem. Therefore, it has been difficult to control the capacity of the heat exchanger and the compressor so that the coefficient of performance is maximized.

そこで、本発明は、成績係数が最大となるように運転能力の制御を行うことができる冷媒を超臨界の状態で使用する冷暖房システムを提供することを目的とする。   Then, an object of this invention is to provide the air conditioning system which uses the refrigerant | coolant which can control an operating capability so that a coefficient of performance may become the maximum in a supercritical state.

本発明は上記の目的を達成するためになされたものであり、請求項1記載の発明は、圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える複数の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、前記圧縮機の冷媒吐出管と冷媒吸込管とに択一的に接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧管と、前記冷媒吸込管に接続された低圧管と、前記室外熱交換器の他端に接続された中圧管とを有して構成され、前記各室内ユニットは、前記室内熱交換器の一端が前記高圧管と前記低圧ガス管に択一的に接続され、他端が前記中圧管に接続され、前記複数の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、前記複数の室内ユニットを同時に冷房運転と暖房運転とを混在して運転可能とするよう構成される冷暖房システムにおいて、前記圧縮機より吐出される冷媒の圧力を検出する冷媒圧力検出手段と、前記室外ユニットに設けられ、前記室外熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室外熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第1の冷媒温度検出手段と、前記室内ユニットに設けられ、前記室内熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室内熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第2の冷媒温度検出手段と、を備えることを特徴とする。   The present invention has been made to achieve the above object, and the invention according to claim 1 includes an outdoor unit including a compressor and an outdoor heat exchanger, and a plurality of indoor units including an indoor heat exchanger. Are connected by an inter-unit pipe, one end of the outdoor heat exchanger is alternatively connected to a refrigerant discharge pipe and a refrigerant suction pipe of the compressor, and the inter-unit pipe is connected to the refrigerant discharge pipe. A high-pressure pipe, a low-pressure pipe connected to the refrigerant suction pipe, and an intermediate-pressure pipe connected to the other end of the outdoor heat exchanger, and each indoor unit includes the indoor heat exchanger One end of which is selectively connected to the high-pressure pipe and the low-pressure gas pipe, and the other end is connected to the medium-pressure pipe, and the plurality of indoor units can be simultaneously operated for cooling or heating, or the plurality of indoors Unit cooling and heating at the same time In the cooling and heating system configured to be able to operate in a mixed manner, refrigerant pressure detection means for detecting the pressure of the refrigerant discharged from the compressor, provided in the outdoor unit, and the outdoor heat exchanger First refrigerant temperature detecting means for detecting an outlet temperature of the refrigerant when functioning as a radiator and detecting an inlet temperature of the refrigerant when the outdoor heat exchanger functions as a heat absorber; and the indoor unit A refrigerant outlet temperature is detected when the indoor heat exchanger functions as a radiator, and an inlet temperature of the refrigerant is detected when the indoor heat exchanger functions as a heat absorber. And a refrigerant temperature detecting means.

また、請求項2記載の発明は、圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える複数の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、前記圧縮機の冷媒吐出管と冷媒吸込管とに択一的に接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧管と、前記冷媒吸込管に接続された低圧管と、前記室外熱交換器の他端に接続された中圧管とを有して構成され、前記各室内ユニットは、前記室内熱交換器の一端が前記高圧管と前記低圧ガス管に択一的に接続され、他端が前記中圧管に接続され、前記複数の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、前記複数の室内ユニットを同時に冷房運転と暖房運転とを混在して運転可能とするよう構成される冷暖房システムにおいて、前記圧縮機より吐出される冷媒の温度を検出する吐出温度検出手段と、前記室外ユニットに設けられ、前記室外熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室外熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第1の冷媒温度検出手段と、前記室内ユニットに設けられ、前記室内熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室内熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第2の冷媒温度検出手段と、を備えることを特徴とする。   According to a second aspect of the present invention, an outdoor unit comprising a compressor and an outdoor heat exchanger and a plurality of indoor units comprising an indoor heat exchanger are connected by inter-unit piping, and one end of the outdoor heat exchanger Are alternatively connected to the refrigerant discharge pipe and the refrigerant suction pipe of the compressor, and the inter-unit pipe is connected to the refrigerant discharge pipe, and the low pressure pipe is connected to the refrigerant suction pipe. And an intermediate pressure pipe connected to the other end of the outdoor heat exchanger, and each indoor unit is configured such that one end of the indoor heat exchanger is alternatively selected from the high pressure pipe and the low pressure gas pipe. The other end is connected to the intermediate pressure pipe, and the plurality of indoor units can be simultaneously operated for cooling or heating, or the plurality of indoor units can be operated simultaneously with a cooling operation and a heating operation. Cool and warm configured to In the system, a discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the compressor, and an outlet temperature of the refrigerant when the outdoor heat exchanger functions as a radiator provided in the outdoor unit. In addition, when the outdoor heat exchanger functions as a heat absorber, a first refrigerant temperature detecting means for detecting an inlet temperature of the refrigerant is provided in the indoor unit, and the indoor heat exchanger functions as a radiator. And a second refrigerant temperature detecting means for detecting an outlet temperature of the refrigerant and detecting an inlet temperature of the refrigerant when the indoor heat exchanger functions as a heat absorber.

そして、請求項3記載の発明は、請求項1または請求項2記載の冷暖房システムにおいて、前記冷媒吐出管に接続された高圧管内が前記冷暖房システムの運転中に超臨界圧力で運転されることを特徴とし、請求項4記載の発明は、請求項3記載の冷暖房システムにおいて、前記冷媒として二酸化炭素を用いることを特徴とする。   According to a third aspect of the present invention, in the air conditioning system according to the first or second aspect, the inside of the high pressure pipe connected to the refrigerant discharge pipe is operated at a supercritical pressure during the operation of the air conditioning system. The invention according to claim 4 is characterized in that, in the air conditioning system according to claim 3, carbon dioxide is used as the refrigerant.

本発明は、冷媒を超臨界の状態で使用する冷暖房システムにおいて、成績係数が最大となるように運転能力の制御を行うことができる。   According to the present invention, in an air conditioning system that uses a refrigerant in a supercritical state, it is possible to control the operation capacity so that the coefficient of performance is maximized.

図1は、本発明の冷暖房システムの冷媒回路構成を示す冷媒回路構成図である。   FIG. 1 is a refrigerant circuit configuration diagram showing a refrigerant circuit configuration of an air conditioning system according to the present invention.

この冷暖房システム30は、圧縮機2、室外熱交換器3a、3b及び室外膨張弁27a、27bを備えた室外ユニット1と、室内熱交換器6a及び室内膨張弁18aを備えた室内ユニット5aと、室内熱交換器6b及び室内膨張弁18bを備えた室内ユニット5bと、ガスクーラ41、貯湯タンク43、循環ポンプ45及び膨張弁47を備えた給湯ユニット50とを有して構成される。そして、これら室外ユニット1と室内ユニット5a、5bと給湯ユニット50とがユニット間配管10により接続されて、冷暖房システム30は、給湯ユニット50を運転しながら、室内ユニット5a、5bを同時に冷房運転もしくは暖房運転可能とし、または、これらの冷房運転と暖房運転とを混在して実施可能とする。   The air conditioning system 30 includes an outdoor unit 1 including a compressor 2, outdoor heat exchangers 3a and 3b, and outdoor expansion valves 27a and 27b, an indoor unit 5a including an indoor heat exchanger 6a and an indoor expansion valve 18a, The indoor unit 5b including the indoor heat exchanger 6b and the indoor expansion valve 18b, and the hot water supply unit 50 including the gas cooler 41, the hot water storage tank 43, the circulation pump 45, and the expansion valve 47 are configured. The outdoor unit 1, the indoor units 5a and 5b, and the hot water supply unit 50 are connected by the inter-unit piping 10, and the air conditioning system 30 operates the indoor units 5a and 5b at the same time while operating the hot water supply unit 50. The heating operation can be performed, or the cooling operation and the heating operation can be mixedly performed.

上記室外ユニット1では、室外熱交換器3a、3bの一端が、圧縮機2の吐出管7と吸込管8とに、それぞれ切換弁9a、9bと19a、19bとを介して択一的に接続されている。また、吸込管8にアキュムレータ4が配設されている。室外ユニット1は(図示しない)室外制御装置を備え、この室外制御装置が、室外ユニット1内の圧縮機2、室外膨張弁27a、27b、切換弁9a、9b、19a、19b、並びに冷暖房システム30全体を制御する。上記ユニット間配管10は、高圧ガス管11、低圧ガス管12及び液管13を備えてなる。高圧ガス管11が吐出管7に接続され、低圧ガス管12が吸込管8に接続される。上記液管13は、室外膨張弁27a、27bを介して、室外熱交換器3a、3bの他端にそれぞれ接続される。   In the outdoor unit 1, one end of each of the outdoor heat exchangers 3a and 3b is alternatively connected to the discharge pipe 7 and the suction pipe 8 of the compressor 2 through switching valves 9a and 9b and 19a and 19b, respectively. Has been. An accumulator 4 is disposed in the suction pipe 8. The outdoor unit 1 includes an outdoor control device (not shown). The outdoor control device includes the compressor 2, the outdoor expansion valves 27a and 27b, the switching valves 9a, 9b, 19a, and 19b, and the air conditioning system 30 in the outdoor unit 1. Control the whole. The inter-unit pipe 10 includes a high-pressure gas pipe 11, a low-pressure gas pipe 12 and a liquid pipe 13. A high pressure gas pipe 11 is connected to the discharge pipe 7, and a low pressure gas pipe 12 is connected to the suction pipe 8. The liquid pipe 13 is connected to the other ends of the outdoor heat exchangers 3a and 3b via outdoor expansion valves 27a and 27b, respectively.

室内ユニット5a、5bの室内熱交換器6a、6bは、その一端が、吐出側弁16a、16bを介して、高圧ガス管11に接続され、吸込側弁17a、17bを介して、低圧ガス管12に接続される。また、それらの他端が、室内膨張弁18a、18bを介して液管13に接続される。吐出側弁16aと吸込側弁17aは、一方が開操作された時、他方が閉操作される。吐出側弁16bと吸込側弁17bも、同様に、一方が開操作された時、他
方が閉操作される。これにより、各室内熱交換器6a、6bの一端は、ユニット間配管10の高圧ガス管11と低圧ガス管12とに択一的に接続される。室内ユニット5a、5bは、更に室内ファン23a、23b、(図示しない)リモートコントローラ及び室内制御装置を有する。各室内ファン23a、23bは、室内熱交換器6a、6bのそれぞれに近接配置されて、これらそれぞれの室内熱交換器6a、6bに送風する。また、各リモートコントローラは、室内ユニット5a、5bにそれぞれ接続されて、各室内ユニット5a、5bのそれぞれの室内制御装置へ、冷房若しくは暖房運転指令、または停止指令等を出力する。
One end of each of the indoor heat exchangers 6a and 6b of the indoor units 5a and 5b is connected to the high pressure gas pipe 11 via the discharge side valves 16a and 16b, and the low pressure gas pipe via the suction side valves 17a and 17b. 12 is connected. Further, the other end thereof is connected to the liquid pipe 13 via the indoor expansion valves 18a and 18b. When one of the discharge side valve 16a and the suction side valve 17a is opened, the other is closed. Similarly, when one of the discharge side valve 16b and the suction side valve 17b is opened, the other is closed. Thereby, one end of each indoor heat exchanger 6a, 6b is alternatively connected to the high pressure gas pipe 11 and the low pressure gas pipe 12 of the inter-unit pipe 10. The indoor units 5a and 5b further include indoor fans 23a and 23b, a remote controller (not shown), and an indoor control device. Each indoor fan 23a, 23b is disposed close to each of the indoor heat exchangers 6a, 6b, and sends air to each of the indoor heat exchangers 6a, 6b. Each remote controller is connected to each of the indoor units 5a and 5b, and outputs a cooling or heating operation command, a stop command or the like to each indoor control device of each indoor unit 5a and 5b.

貯湯ユニット50では、ガスクーラ41の一端が高圧ガス管11に接続され、ガスクーラ41の他端が膨張弁47を介して液管13に接続される。このガスクーラ41には、水配管46が接続され、この水配管46に、循環ポンプ45を介して、貯湯タンク43が接続される。   In the hot water storage unit 50, one end of the gas cooler 41 is connected to the high pressure gas pipe 11, and the other end of the gas cooler 41 is connected to the liquid pipe 13 via the expansion valve 47. A water pipe 46 is connected to the gas cooler 41, and a hot water storage tank 43 is connected to the water pipe 46 via a circulation pump 45.

本実施形態では、室外ユニット1、室内ユニット5a、5b、貯湯ユニット50並びにユニット間配管10に二酸化炭素冷媒が封入される。二酸化炭素冷媒が封入された場合、図2のエンタルピ−圧力(Ph)線図に示すように、高圧ガス管11内は運転中に超臨界圧力で運転される。高圧ガス管11内が、超臨界圧力で運転される冷媒には、二酸化炭素冷媒のほかに、例えばエチレン、ディボラン、エタン、酸化窒素等が挙げられる。これらの場合、液管13には液体が流通しないことになる。   In the present embodiment, carbon dioxide refrigerant is sealed in the outdoor unit 1, the indoor units 5 a and 5 b, the hot water storage unit 50, and the inter-unit pipe 10. When the carbon dioxide refrigerant is sealed, as shown in the enthalpy-pressure (Ph) diagram of FIG. 2, the high-pressure gas pipe 11 is operated at a supercritical pressure during operation. In addition to the carbon dioxide refrigerant, for example, ethylene, diborane, ethane, nitric oxide and the like can be cited as the refrigerant in which the high pressure gas pipe 11 is operated at a supercritical pressure. In these cases, no liquid flows through the liquid pipe 13.

図2において、圧縮機2出口は状態aで示される。冷媒は、熱交換器(放熱器)を通って循環し、熱を放出して状態bまで冷却される。ついで、冷媒は膨張弁(減圧装置)での圧力低下により状態cに至り、ここでは気体と液体との2相混合体が形成される。熱交換器(吸熱器)において、液相の蒸発により熱を吸収し、吸熱器出口では状態dとなる。そして、圧縮機2の吸込管8に向かう。本実施形態では、圧縮機2に二段圧縮コンプレッサを用いているので、図2に示すように、状態dから状態aの間は折れ線となる。   In FIG. 2, the compressor 2 outlet is shown in state a. The refrigerant circulates through the heat exchanger (heat radiator), releases heat, and is cooled to the state b. The refrigerant then reaches state c due to a pressure drop at the expansion valve (decompression device), where a two-phase mixture of gas and liquid is formed. In the heat exchanger (heat absorber), heat is absorbed by evaporation of the liquid phase, and the state d is reached at the outlet of the heat absorber. And it goes to the suction pipe 8 of the compressor 2. In this embodiment, since the two-stage compression compressor is used for the compressor 2, as shown in FIG. 2, it becomes a broken line from the state d to the state a.

つぎに、冷暖房システム30の動作を説明する。   Next, the operation of the air conditioning system 30 will be described.

この冷暖房システム30では、圧縮機2の吐出冷媒が、高圧ガス管11を通じてガスクーラ41に導かれ、このガスクーラ41で、水配管46を通る水が加熱されて、高温となった水が貯湯タンク43に貯えられる。二酸化炭素冷媒が使用され、高圧の高い超臨界サイクルとなるため、ここに貯えられた湯は約80℃以上の高温になる。この貯湯タンク43に貯えられた湯は(図示しない)配管を介してお風呂、台所、床暖房など各種給湯設備へ送られる(貯湯運転)。   In the cooling / heating system 30, the refrigerant discharged from the compressor 2 is guided to the gas cooler 41 through the high-pressure gas pipe 11, and the water that has passed through the water pipe 46 is heated by the gas cooler 41, so that the hot water is stored in the hot water storage tank 43. Stored in. Since carbon dioxide refrigerant is used and a supercritical cycle with high pressure is achieved, the hot water stored here becomes a high temperature of about 80 ° C. or more. Hot water stored in the hot water storage tank 43 is sent to various hot water supply facilities such as a bath, a kitchen, and a floor heater via a pipe (not shown) (hot water storage operation).

全室内ユニット5a、5bを同時に冷房する場合は、室外熱交換器3a、3bの切換弁9a、9bを開くとともに切換弁19a、19bを閉じ、且つ、吐出側弁16a、16bを閉じるとともに吸込側弁17a、17bを開く。これにより、圧縮機2から吐出された冷媒は、吐出管7、切換弁9a、9b、室外熱交換器3a、3bへと順次流れ、この室外熱交換器3a、3bで熱交換(放熱)した後、液管13を経て各室ユニット5a、5bの室内膨張弁18a、18bに分配され、ここで減圧される。そして、冷媒は、各室内熱交換器6a、6bで蒸発気化(吸熱)し、それぞれ吸込側弁17a、17bを流れた後、低圧ガス管12、吸込管8、アキュムレータ4を順次経て圧縮機2に吸入される。このように、吸熱器として機能する各室内熱交換器6a、6bの作用で全室内ユニット5a、5bが同時に冷房される(冷房運転)。   When all the indoor units 5a and 5b are simultaneously cooled, the switching valves 9a and 9b of the outdoor heat exchangers 3a and 3b are opened, the switching valves 19a and 19b are closed, the discharge valves 16a and 16b are closed, and the suction side The valves 17a and 17b are opened. As a result, the refrigerant discharged from the compressor 2 sequentially flows to the discharge pipe 7, the switching valves 9a and 9b, and the outdoor heat exchangers 3a and 3b, and exchanges heat (dissipates heat) in the outdoor heat exchangers 3a and 3b. Then, it distributes to the indoor expansion valves 18a and 18b of the chamber units 5a and 5b via the liquid pipe 13, and is decompressed here. The refrigerant evaporates (heat absorption) in the indoor heat exchangers 6a and 6b, flows through the suction side valves 17a and 17b, respectively, and then passes through the low pressure gas pipe 12, the suction pipe 8, and the accumulator 4 in order. Inhaled. Thus, all the indoor units 5a and 5b are simultaneously cooled by the action of the indoor heat exchangers 6a and 6b functioning as heat sinks (cooling operation).

逆に、全室内ユニット5a、5bを同時に暖房する場合、室外熱交換器3a、3bの切換弁9a、9bを閉じるとともに切換弁19a、19bを開き、且つ、吐出側弁16a、16bを開くとともに吸込側弁17a、17bを閉じる。これにより、圧縮機2から吐出された冷媒は、吐出管7、高圧ガス管11を順次経て吐出側弁16a、16b、室内熱交換器6a、6bへと流れ、ここでそれぞれ熱交換(放熱)した後、液管13で合流される。そして、室外膨張弁27a、27bで減圧され、各室外熱交換器3a、3bで蒸発気化(吸熱)した後、切換弁9a、9b、吸込管8、アキュムレータ4を順次経て圧縮機2に吸入される。このように放熱器として機能する各室内熱交換器6a、6bの作用で全室内ユニット5a、5bが同時に暖房される(暖房運転)。   Conversely, when all the indoor units 5a and 5b are heated simultaneously, the switching valves 9a and 9b of the outdoor heat exchangers 3a and 3b are closed, the switching valves 19a and 19b are opened, and the discharge-side valves 16a and 16b are opened. The suction side valves 17a and 17b are closed. Thus, the refrigerant discharged from the compressor 2 sequentially flows through the discharge pipe 7 and the high-pressure gas pipe 11 to the discharge side valves 16a and 16b and the indoor heat exchangers 6a and 6b, where heat exchange (radiation) is performed. After that, the liquid pipe 13 joins. Then, the pressure is reduced by the outdoor expansion valves 27a and 27b and evaporated (heat absorption) by the outdoor heat exchangers 3a and 3b. The Thus, all the indoor units 5a and 5b are simultaneously heated by the action of the indoor heat exchangers 6a and 6b functioning as radiators (heating operation).

また、同時に、例えば室内ユニット5aを冷房し、室内ユニット5bを暖房するような冷暖房混在運転の場合には、図3に示すような室外ユニット運転モードの制御フロー(A1)に従って、各室内ユニットでの要求負荷を算出し(S14)、総負荷の値(S15)により室外熱交換器3を放熱器とするか吸熱器とするかを決定する(S16)。   At the same time, for example, in the case of a cooling / heating mixed operation in which the indoor unit 5a is cooled and the indoor unit 5b is heated, the indoor unit 5a Is calculated (S14), and it is determined whether the outdoor heat exchanger 3 is a radiator or a heat absorber (S16) based on the total load value (S15).

室外熱交換器3を放熱器とする(S16N)場合は、室外熱交換器3の切換弁9を開くとともに切換弁19閉じ、且つ、室内ユニット5aの吐出側弁16aと室内ユニット5bの吸込側弁17bとを閉じるとともに室内ユニット5aの吸込側弁17aと室内ユニット5bの吐出側弁16bを開く。これにより、圧縮機2から吐出された冷媒は、吐出管7、切換弁9と室内ユニット5bの吐出側弁16b、室外熱交換器3と室内熱交換器6bへと順次流れ、この室外熱交換器3と室内熱交換器6bで熱交換(放熱)した後、液管13で合流して室内膨張弁18aに入り、ここで減圧される。そして、冷媒は、室内熱交換器6aで蒸発気化(吸熱)し、それぞれ吸込側弁17aを流れた後、低圧ガス管12、吸込管8、アキュムレータ4を順次経て圧縮機2に吸入される。   When the outdoor heat exchanger 3 is a radiator (S16N), the switching valve 9 of the outdoor heat exchanger 3 is opened and the switching valve 19 is closed, and the discharge side valve 16a of the indoor unit 5a and the suction side of the indoor unit 5b The valve 17b is closed and the suction side valve 17a of the indoor unit 5a and the discharge side valve 16b of the indoor unit 5b are opened. Thereby, the refrigerant discharged from the compressor 2 sequentially flows to the discharge pipe 7, the switching valve 9, the discharge side valve 16b of the indoor unit 5b, the outdoor heat exchanger 3 and the indoor heat exchanger 6b, and this outdoor heat exchange. After exchanging heat (dissipating heat) between the container 3 and the indoor heat exchanger 6b, the liquid pipe 13 joins and enters the indoor expansion valve 18a, where the pressure is reduced. The refrigerant evaporates (heat absorption) in the indoor heat exchanger 6a, flows through the suction side valve 17a, and then is sucked into the compressor 2 through the low pressure gas pipe 12, the suction pipe 8, and the accumulator 4 sequentially.

一方、室外熱交換器3を吸熱器とする(S16Y)場合は、室外熱交換器3の切換弁9を閉じるとともに切換弁19開き、且つ、室内ユニット5aの吐出側弁16aと室内ユニット5bの吸込側弁17bとを閉じるとともに室内ユニット5aの吸込側弁17aと室内ユニット5bの吐出側弁16bを開く。これにより、圧縮機2から吐出された冷媒は、吐出管7、室内ユニット5bの吐出側弁16b、室内熱交換器6bへと順次流れ、この室内熱交換器6bで熱交換(放熱)した後、液管13を経て、室外膨張弁27と室内膨張弁18aとに分配され、ここで減圧される。そして、冷媒は、室外熱交換器3と室内熱交換器6aとで蒸発気化(吸熱)し、それぞれ切換弁19と吸込側弁17aとを流れた後、低圧ガス管12、吸込管8、アキュムレータ4を順次経て圧縮機2に吸入される。   On the other hand, when the outdoor heat exchanger 3 is a heat absorber (S16Y), the switching valve 9 of the outdoor heat exchanger 3 is closed and the switching valve 19 is opened, and the discharge side valve 16a and the indoor unit 5b of the indoor unit 5a are opened. While closing the suction side valve 17b, the suction side valve 17a of the indoor unit 5a and the discharge side valve 16b of the indoor unit 5b are opened. Thereby, the refrigerant discharged from the compressor 2 sequentially flows to the discharge pipe 7, the discharge side valve 16b of the indoor unit 5b, and the indoor heat exchanger 6b, and after heat exchange (heat radiation) in the indoor heat exchanger 6b. Through the liquid pipe 13, the liquid is distributed to the outdoor expansion valve 27 and the indoor expansion valve 18a, where the pressure is reduced. The refrigerant evaporates (heat absorption) in the outdoor heat exchanger 3 and the indoor heat exchanger 6a and flows through the switching valve 19 and the suction side valve 17a, respectively, and then the low pressure gas pipe 12, the suction pipe 8, and the accumulator. 4 is sequentially sucked into the compressor 2.

また、貯湯運転も同時に必要となる場合には、貯湯ユニット50を室内ユニット5の暖房運転と同様の負荷とみなして、総負荷の値を算出すればよい。   If hot water storage operation is also required, the hot water storage unit 50 may be regarded as a load similar to the heating operation of the indoor unit 5 and the total load value may be calculated.

上記のように、冷暖房混在運転する場合、あるいは貯湯運転する場合、冷媒は室内熱交換器、室外熱交換器、ガスクーラ同士がいわゆる熱バランスするように循環する。これによれば、室内、室外の熱を効率的に利用した運転が可能となる。特に、室内ユニットによる冷房運転と、貯湯運転との混在運転時には、室内の熱によって貯湯(給湯)を行うことができるので、極めて有効な熱の利用となり、室外ユニットの放熱によるヒートアイランド現象の発生を少なく抑えることができる等の効果が得られる。また、冷媒に二酸化炭素を使用して超臨界サイクルとした場合、圧縮機2から吐出される高圧単相冷媒蒸気は、高圧ガス管11内で凝縮することがないため、フロン冷媒のように、液化して、高圧ガス管11内に寝込むといった不都合が解消される。従って、寝込み冷媒の回収用として必要であった、高圧ガス管11と低圧ガス管12との間のバイパス管等が不要となり、配管構造を複雑化させることなく、高圧ガス管11内の冷媒寝込みを防止することができる。更に、バイパス管等が不要になるため、そこに使用された電磁弁等が不要になり、その制御も不要になり、コストダウンが図られる。   As described above, when the cooling / heating mixed operation is performed or the hot water storage operation is performed, the refrigerant circulates so that the indoor heat exchanger, the outdoor heat exchanger, and the gas cooler are so-called heat balanced. According to this, the operation | movement which utilized the indoor and outdoor heat efficiently is attained. In particular, during mixed operation of cooling operation and hot water storage operation by indoor units, hot water storage (hot water supply) can be performed by indoor heat, so it becomes extremely effective use of heat and the occurrence of heat island phenomenon due to heat dissipation of outdoor units. The effect of being able to suppress it little is acquired. In addition, when carbon dioxide is used as the refrigerant to form a supercritical cycle, the high-pressure single-phase refrigerant vapor discharged from the compressor 2 does not condense in the high-pressure gas pipe 11, so The problem of liquefying and sleeping in the high-pressure gas pipe 11 is eliminated. Therefore, the bypass pipe between the high-pressure gas pipe 11 and the low-pressure gas pipe 12, which is necessary for collecting the stagnant refrigerant, becomes unnecessary, and the refrigerant is stagnated in the high-pressure gas pipe 11 without complicating the piping structure. Can be prevented. Furthermore, since a bypass pipe or the like is not required, the solenoid valve or the like used therein is not required, and the control thereof is also unnecessary, thereby reducing the cost.

以上のような冷暖房システム30の運転の制御を、成績係数が最大となるように行うための実施例を以下に説明する。   An embodiment for controlling the operation of the cooling / heating system 30 as described above so as to maximize the coefficient of performance will be described below.

本実施例では、高圧圧力と蒸発温度による運転制御について、図4、5、6および7を用いて説明する。   In the present embodiment, the operation control based on the high pressure and the evaporation temperature will be described with reference to FIGS.

本実施例ではまず、図4の熱負荷バランス制御の制御フロー(B1)に示すように、蒸発温度TEVAを検出する(S150)。検出する場所は冷暖房システム130の運転状態によって異なるが、図2に示した状態cから状態dへ向かう際に、冷媒(二酸化炭素)が液体から気体へと相変化するときの温度が蒸発温度TEVAである。このとき、蒸発温度TEVAと蒸発圧力PEVAとは一意に決まるので、検出する対象は蒸発圧力PEVAでもよい。 In this embodiment, first, as shown in the control flow (B1) of the thermal load balance control in FIG. 4, the evaporation temperature T EVA is detected (S150). The location to be detected varies depending on the operating state of the cooling / heating system 130, but the temperature at which the refrigerant (carbon dioxide) undergoes a phase change from liquid to gas when changing from state c to state d shown in FIG. It is EVA . At this time, since the evaporation temperature T EVA and the evaporation pressure P EVA are uniquely determined, the object to be detected may be the evaporation pressure P EVA .

次に、放熱器の出口冷媒温度TGCを検出する(S152)。ここで、図5における室内ユニット105aにおいて暖房運転を行っているならば(S151)、室内熱交換器106aの出口冷媒温度を温度センサTC08により検出してTGC(S152Y)とし、室内ユニット105a、105b共に暖房運転を行っていないならば(S151)、室外熱交換器103a(室外熱交換器103bよりも室外熱交換器103aを優先的に使用するものとする)の出口冷媒温度を温度センサTC03により検出してTGC(S152N)とする。ここで、室内熱交換器の出口冷媒温度や室外熱交換器の出口冷媒温度は、その熱交換器が設置された場所での環境の温度(室内温度や外気温)でも代用可能である。 Next, the outlet refrigerant temperature TGC of the radiator is detected (S152). Here, if heating operation is performed in the indoor unit 105a in FIG. 5 (S151), the outlet refrigerant temperature of the indoor heat exchanger 106a is detected by the temperature sensor T C08 to be T GC (S152Y), and the indoor unit 105a , 105b are not performing heating operation (S151), the temperature of the outlet refrigerant temperature of the outdoor heat exchanger 103a (the outdoor heat exchanger 103a is used preferentially over the outdoor heat exchanger 103b) is a temperature sensor. Detected by T C03 and set to T GC (S152N). Here, the outlet refrigerant temperature of the indoor heat exchanger and the outlet refrigerant temperature of the outdoor heat exchanger can be substituted by the environmental temperature (indoor temperature or outside temperature) at the place where the heat exchanger is installed.

そして、検出された蒸発温度TEVAと放熱器の出口冷媒温度TGCより、目標高圧PH.OPTを設定する(S153)と共に、高圧圧力PHを検出する(S154)。高圧圧力PHは、圧縮機102の出口近傍に圧力センサPC01を配して測定する。 Then, the outlet refrigerant temperature T GC of the radiator and the detected evaporating temperature T EVA, and sets the target high pressure PH.OPT (S153), detects a high pressure P H (S154). The high pressure P H is measured by placing a pressure sensor P C01 near the outlet of the compressor 102.

検出された蒸発温度TEVAと高圧圧力PHとが、それぞれ、予め定められた基準温度TSと上記の目標高圧PH.OPTとに対して、どのような状態にあるかによって、制御動作を決定する。その際、室外熱交換器103が吸熱器(蒸発器)として運転されている(S155)場合には、図6に示すような熱負荷バランス制御マップ(B2)に従って(S156Y)、圧縮機102や室外熱交換器103を制御し(S157、S158)、室外熱交換器103が吸熱器(蒸発器)としては運転されていない(S155)場合には、図7に示すような熱負荷バランス制御マップ(B3)に従って(S156N)、圧縮機102や室外熱交換器103を制御する(S157、S158)。 Depending on the state of the detected evaporation temperature T EVA and the high pressure P H relative to the predetermined reference temperature T S and the target high pressure P H.OPT , the control operation is performed. To decide. At that time, when the outdoor heat exchanger 103 is operated as a heat absorber (evaporator) (S155), according to the heat load balance control map (B2) as shown in FIG. 6 (S156Y), the compressor 102 and When the outdoor heat exchanger 103 is controlled (S157, S158) and the outdoor heat exchanger 103 is not operated as a heat absorber (evaporator) (S155), a heat load balance control map as shown in FIG. According to (B3) (S156N), the compressor 102 and the outdoor heat exchanger 103 are controlled (S157, S158).

本実施例では、吐出温度と蒸発温度による運転制御について、図8、9、10および11を用いて説明する。   In the present embodiment, the operation control based on the discharge temperature and the evaporation temperature will be described with reference to FIGS.

本実施例ではまず、図8の熱負荷バランス制御の制御フロー(C1)に示すように、蒸発温度TEVAを検出する(S250)。検出する場所は冷暖房システム230の運転状態によって異なるが、図2に示した状態cから状態dへ向かう際に、冷媒(二酸化炭素)が液体から気体へと相変化するときの温度が蒸発温度TEVAである。このとき、蒸発温度TEVAと蒸発圧力PEVAとは一意に決まるので、検出する対象は蒸発圧力PEVAでもよい。 In this embodiment, first, as shown in the control flow (C1) of the thermal load balance control in FIG. 8, the evaporation temperature T EVA is detected (S250). The location to be detected varies depending on the operating state of the cooling / heating system 230, but the temperature at which the refrigerant (carbon dioxide) undergoes a phase change from liquid to gas when moving from state c to state d shown in FIG. It is EVA . At this time, since the evaporation temperature T EVA and the evaporation pressure P EVA are uniquely determined, the object to be detected may be the evaporation pressure P EVA .

次に、放熱器の出口冷媒温度TGCを検出する(S252)。ここで、図9における室内ユニット205aにおいて暖房運転を行っているならば(S251)、室内熱交換器206aの出口冷媒温度を温度センサTC28により検出してTGC(S252Y)とし、室内ユニット205a、205b共に暖房運転を行っていないならば(S251)、室外熱交換器203a(室外熱交換器203bよりも室外熱交換器203aを優先的に使用するものとする)の出口冷媒温度を温度センサTC23により検出してTGC(S252N)とする。ここで、室内熱交換器の出口冷媒温度や室外熱交換器の出口冷媒温度は、その熱交換器が設置された場所での環境の温度(室内温度や外気温)でも代用可能である。 Next, the outlet refrigerant temperature T GC of the radiator is detected (S252). If the heating operation is performed in the indoor unit 205a in FIG. 9 (S251), the outlet refrigerant temperature of the indoor heat exchanger 206a is detected by the temperature sensor T C28 to be T GC (S252Y), and the indoor unit 205a , 205b are not performing the heating operation (S251), the temperature of the outlet refrigerant temperature of the outdoor heat exchanger 203a (the outdoor heat exchanger 203a is preferentially used over the outdoor heat exchanger 203b) is set as a temperature sensor. Detected by T C23 to obtain T GC (S252N). Here, the outlet refrigerant temperature of the indoor heat exchanger and the outlet refrigerant temperature of the outdoor heat exchanger can be substituted by the environmental temperature (indoor temperature or outside temperature) at the place where the heat exchanger is installed.

そして、検出された蒸発温度TEVAと放熱器の出口冷媒温度TGCより、最適高圧PH.OPTを算出し、算出された最適高圧PH.OPTと圧縮機202の特性あるいは吸込状態から目標吐出温度TDIS.OPTを設定する(S253)と共に、吐出温度TDISを検出する(S254)。吐出温度TDISは、圧縮機202の出口近傍に圧力センサTC21を配して測定する。 Then, the optimum high pressure P H.OPT is calculated from the detected evaporation temperature T EVA and the outlet refrigerant temperature T GC of the radiator, and the target is determined from the calculated optimum high pressure P H.OPT and the characteristics of the compressor 202 or the suction state. The discharge temperature T DIS.OPT is set (S253), and the discharge temperature T DIS is detected (S254). The discharge temperature T DIS is measured by placing a pressure sensor T C21 in the vicinity of the outlet of the compressor 202.

検出された蒸発温度TEVAと吐出温度TDISとが、それぞれ、予め定められた基準温度TSと上記の目標吐出温度TDIS.OPTとに対して、どのような状態にあるかによって、制御動作を決定する。その際、室外熱交換器203が吸熱器(蒸発器)として運転されている(S255)場合には、図10に示すような熱負荷バランス制御マップ(C2)に従って(S256Y)、圧縮機202や室外熱交換器203を制御し(S257、S258)、室外熱交換器203が吸熱器(蒸発器)としては運転されていない(S255)場合には、図11に示すような熱負荷バランス制御マップ(C3)に従って(S256N)、圧縮機202や室外熱交換器203を制御する(S257、S258)。 The detected evaporation temperature T EVA and the discharge temperature T DIS are controlled according to the state of the reference temperature T S and the target discharge temperature T DIS.OPT described above, respectively. Determine the behavior. At that time, when the outdoor heat exchanger 203 is operated as a heat absorber (evaporator) (S255), according to the heat load balance control map (C2) as shown in FIG. 10 (S256Y), the compressor 202 or When the outdoor heat exchanger 203 is controlled (S257, S258) and the outdoor heat exchanger 203 is not operated as a heat absorber (evaporator) (S255), a heat load balance control map as shown in FIG. According to (C3) (S256N), the compressor 202 and the outdoor heat exchanger 203 are controlled (S257, S258).

ビルなどの業務用冷暖房システムのみならず、家庭用の給湯システムあるいは床暖房システムを有する冷暖房システムなどにも利用可能である。   The present invention can be used not only for commercial air conditioning systems such as buildings but also for domestic hot water supply systems or floor heating systems.

本発明の冷暖房システムを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the air conditioning system of this invention. 本発明の冷暖房システムの冷凍サイクルを示すP−h線図である。It is a Ph diagram which shows the refrigerating cycle of the air conditioning system of this invention. 本発明の冷暖房システムの室外熱交換器の運転モードを決定する制御フロー図である。It is a control flowchart which determines the operation mode of the outdoor heat exchanger of the air conditioning system of this invention. 本発明の実施例1における熱負荷バランス制御の制御フロー図である。It is a control flow figure of thermal load balance control in Example 1 of the present invention. 本発明の実施例1における冷暖房システムを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the air conditioning system in Example 1 of this invention. 本発明の実施例1において室外熱交換器が吸熱器のときの制御マップ図である。It is a control map figure when the outdoor heat exchanger is a heat absorber in Example 1 of the present invention. 本発明の実施例1において室外熱交換器が放熱器のときの制御マップ図である。It is a control map figure when an outdoor heat exchanger is a radiator in Example 1 of this invention. 本発明の実施例2における熱負荷バランス制御の制御フロー図である。It is a control flow figure of thermal load balance control in Example 2 of the present invention. 本発明の実施例2における冷暖房システムを示す冷媒回路図である。It is a refrigerant circuit figure which shows the air conditioning system in Example 2 of this invention. 本発明の実施例2において室外熱交換器が吸熱器のときの制御マップ図である。It is a control map figure when the outdoor heat exchanger is a heat absorber in Example 2 of the present invention. 本発明の実施例2において室外熱交換器が放熱器のときの制御マップ図である。In Example 2 of this invention, it is a control map figure when an outdoor heat exchanger is a heat radiator.

符号の説明Explanation of symbols

1、101、201 室外ユニット
2、102、202 圧縮機
3、103、203 室外熱交換器
4、104、204 アキュムレータ
5、105、205 室内ユニット
6、106、206 室内熱交換器
7、107、207 吐出管
8、108、208 吸込管
9、109、209 切換弁
10、110、210 ユニット間配管
11、111、211 高圧ガス管
12、112、212 低圧ガス管
13、113、213 液管
16、116、216 吐出側弁
17、117、217 吸込側弁
18、118、218 室内膨張弁
19、119、219 切換弁
23、123、223 室内ファン
27、127、227 室外膨張弁
30、130、230 冷暖房システム
41、141、241 ガスクーラ
43、143、243 貯湯タンク
45、145、245 循環ポンプ
46、146、246 水配管
47、147、247 膨張弁
50、150、250 給湯ユニット
C 温度センサ
C 圧力センサ



1, 101, 201 Outdoor unit 2, 102, 202 Compressor 3, 103, 203 Outdoor heat exchanger 4, 104, 204 Accumulator 5, 105, 205 Indoor unit 6, 106, 206 Indoor heat exchanger 7, 107, 207 Discharge pipe 8, 108, 208 Suction pipe 9, 109, 209 Switching valve 10, 110, 210 Inter-unit piping 11, 111, 211 High pressure gas pipe 12, 112, 212 Low pressure gas pipe 13, 113, 213 Liquid pipe 16, 116 216 Discharge side valve 17, 117, 217 Suction side valve 18, 118, 218 Indoor expansion valve 19, 119, 219 Switching valve 23, 123, 223 Indoor fan 27, 127, 227 Outdoor expansion valve 30, 130, 230 Air conditioning system 41, 141, 241 Gas cooler 43, 143, 243 Hot water storage tank 45 145, 245 circulation pump 46,146,246 water pipe 47,147,247 expansion valve 50, 150, 250 hot water supply unit T C Temperature sensor P C pressure sensor



Claims (4)

圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える複数の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、前記圧縮機の冷媒吐出管と冷媒吸込管とに択一的に接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧管と、前記冷媒吸込管に接続された低圧管と、前記室外熱交換器の他端に接続された中圧管とを有して構成され、前記各室内ユニットは、前記室内熱交換器の一端が前記高圧管と前記低圧ガス管に択一的に接続され、他端が前記中圧管に接続され、前記複数の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、前記複数の室内ユニットを同時に冷房運転と暖房運転とを混在して運転可能とするよう構成される冷暖房システムにおいて、
前記圧縮機より吐出される冷媒の圧力を検出する冷媒圧力検出手段と、
前記室外ユニットに設けられ、前記室外熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室外熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第1の冷媒温度検出手段と、
前記室内ユニットに設けられ、前記室内熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室内熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第2の冷媒温度検出手段と、
を備えることを特徴とする冷暖房システム。
An outdoor unit including a compressor and an outdoor heat exchanger and a plurality of indoor units including an indoor heat exchanger are connected by inter-unit piping, and one end of the outdoor heat exchanger is connected to a refrigerant discharge pipe of the compressor. Alternatively connected to a refrigerant suction pipe, the inter-unit pipe being a high pressure pipe connected to the refrigerant discharge pipe, a low pressure pipe connected to the refrigerant suction pipe, and the other end of the outdoor heat exchanger Each indoor unit is configured such that one end of the indoor heat exchanger is alternatively connected to the high-pressure pipe and the low-pressure gas pipe, and the other end is the intermediate-pressure pipe. In the cooling and heating system configured to enable the cooling operation or heating operation of the plurality of indoor units at the same time, or to simultaneously operate the cooling operation and heating operation of the plurality of indoor units,
Refrigerant pressure detection means for detecting the pressure of the refrigerant discharged from the compressor;
When the outdoor heat exchanger functions as a radiator, the outlet temperature of the refrigerant is detected when the outdoor heat exchanger functions as a heat sink, and when the outdoor heat exchanger functions as a heat absorber, the refrigerant inlet temperature is detected. First refrigerant temperature detecting means for
Provided in the indoor unit, when the indoor heat exchanger functions as a radiator, the refrigerant outlet temperature is detected, and when the indoor heat exchanger functions as a heat absorber, the refrigerant inlet temperature is detected. Second refrigerant temperature detecting means for
An air conditioning system comprising:
圧縮機と室外熱交換器とを備える室外ユニットと、室内熱交換器を備える複数の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、前記圧縮機の冷媒吐出管と冷媒吸込管とに択一的に接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧管と、前記冷媒吸込管に接続された低圧管と、前記室外熱交換器の他端に接続された中圧管とを有して構成され、前記各室内ユニットは、前記室内熱交換器の一端が前記高圧管と前記低圧ガス管に択一的に接続され、他端が前記中圧管に接続され、前記複数の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、前記複数の室内ユニットを同時に冷房運転と暖房運転とを混在して運転可能とするよう構成される冷暖房システムにおいて、
前記圧縮機より吐出される冷媒の温度を検出する吐出温度検出手段と、
前記室外ユニットに設けられ、前記室外熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室外熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第1の冷媒温度検出手段と、
前記室内ユニットに設けられ、前記室内熱交換器が放熱器として機能するときは前記冷媒の出口温度を検出すると共に、前記室内熱交換器が吸熱器として機能するときは前記冷媒の入口温度を検出する第2の冷媒温度検出手段と、
を備えることを特徴とする冷暖房システム。
An outdoor unit including a compressor and an outdoor heat exchanger and a plurality of indoor units including an indoor heat exchanger are connected by inter-unit piping, and one end of the outdoor heat exchanger is connected to a refrigerant discharge pipe of the compressor. Alternatively connected to a refrigerant suction pipe, the inter-unit pipe being a high pressure pipe connected to the refrigerant discharge pipe, a low pressure pipe connected to the refrigerant suction pipe, and the other end of the outdoor heat exchanger Each indoor unit is configured such that one end of the indoor heat exchanger is alternatively connected to the high-pressure pipe and the low-pressure gas pipe, and the other end is the intermediate-pressure pipe. In the cooling and heating system configured to enable the cooling operation or heating operation of the plurality of indoor units at the same time, or to simultaneously operate the cooling operation and heating operation of the plurality of indoor units,
Discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the compressor;
When the outdoor heat exchanger functions as a radiator, the outlet temperature of the refrigerant is detected when the outdoor heat exchanger functions as a heat sink, and when the outdoor heat exchanger functions as a heat absorber, the refrigerant inlet temperature is detected. First refrigerant temperature detecting means for
Provided in the indoor unit, when the indoor heat exchanger functions as a radiator, the refrigerant outlet temperature is detected, and when the indoor heat exchanger functions as a heat absorber, the refrigerant inlet temperature is detected. Second refrigerant temperature detecting means for
An air conditioning system comprising:
請求項1または請求項2記載の冷暖房システムにおいて、
前記冷媒吐出管に接続された高圧管内が前記冷暖房システムの運転中に超臨界圧力で運転されることを特徴とする冷暖房システム。
In the air conditioning system of Claim 1 or Claim 2,
The air conditioning system is characterized in that the inside of the high pressure pipe connected to the refrigerant discharge pipe is operated at a supercritical pressure during the operation of the air conditioning system.
請求項3記載の冷暖房システムにおいて、
前記冷媒として二酸化炭素を用いることを特徴とする冷暖房システム。

In the air conditioning system of Claim 3,
An air conditioning system using carbon dioxide as the refrigerant.

JP2005100368A 2005-03-31 2005-03-31 Cooling/heating system Pending JP2006283989A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005100368A JP2006283989A (en) 2005-03-31 2005-03-31 Cooling/heating system
CNA2006100681018A CN1840992A (en) 2005-03-31 2006-03-21 Cooling and heating system
US11/392,772 US20060218948A1 (en) 2005-03-31 2006-03-30 Cooling and heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100368A JP2006283989A (en) 2005-03-31 2005-03-31 Cooling/heating system

Publications (1)

Publication Number Publication Date
JP2006283989A true JP2006283989A (en) 2006-10-19

Family

ID=37030116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100368A Pending JP2006283989A (en) 2005-03-31 2005-03-31 Cooling/heating system

Country Status (3)

Country Link
US (1) US20060218948A1 (en)
JP (1) JP2006283989A (en)
CN (1) CN1840992A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170130A (en) * 2007-01-15 2008-07-24 Mitsubishi Electric Corp Air conditioner
JPWO2009123190A1 (en) * 2008-03-31 2011-07-28 三菱電機株式会社 Air conditioner
WO2012081052A1 (en) * 2010-12-15 2012-06-21 三菱電機株式会社 Combined air-conditioning and hot water supply system
WO2012085970A1 (en) * 2010-12-22 2012-06-28 三菱電機株式会社 Hot-water-supplying, air-conditioning composite device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055884B2 (en) * 2006-08-03 2012-10-24 ダイキン工業株式会社 Air conditioner
JP5055965B2 (en) * 2006-11-13 2012-10-24 ダイキン工業株式会社 Air conditioner
NO327832B1 (en) * 2007-06-29 2009-10-05 Sinvent As Steam circuit compression dress system with closed circuit as well as method for operating the system.
EP2233864B1 (en) * 2008-03-31 2018-02-21 Mitsubishi Electric Corporation Air-conditioning and hot water complex system
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
EP2416083B1 (en) * 2009-03-30 2017-05-31 Mitsubishi Electric Corporation Fluid heating system and method, and fluid heating control system, control device and control method
JP5253582B2 (en) * 2009-09-29 2013-07-31 三菱電機株式会社 Thermal storage hot water supply air conditioner
JP5404333B2 (en) * 2009-11-13 2014-01-29 三菱重工業株式会社 Heat source system
EP2503266B1 (en) * 2009-11-18 2018-10-24 Mitsubishi Electric Corporation Refrigeration cycle device and information propagation method adapted thereto
KR101153513B1 (en) * 2010-01-15 2012-06-11 엘지전자 주식회사 A refrigerant system and the method of controlling for the same
US9080778B2 (en) * 2010-01-22 2015-07-14 Mitsubishi Electric Corporation Air-conditioning hot-water supply combined system
KR20110099558A (en) * 2010-03-02 2011-09-08 삼성전자주식회사 Heat pump system and control method thereof
KR101155497B1 (en) * 2010-04-23 2012-06-15 엘지전자 주식회사 Heat pump type speed heating apparatus
KR101505856B1 (en) * 2010-09-08 2015-03-25 삼성전자 주식회사 Air conditioner and control method for the same
ES2648910T3 (en) * 2010-09-10 2018-01-08 Mitsubishi Electric Corporation Air conditioning device
KR101507454B1 (en) * 2011-06-23 2015-03-31 삼성전자 주식회사 Heat pump and method for controlling the same
WO2013051059A1 (en) 2011-10-04 2013-04-11 三菱電機株式会社 Refrigeration cycle device
WO2013136368A1 (en) 2012-03-15 2013-09-19 三菱電機株式会社 Refrigeration cycling device
ES2614924T3 (en) * 2012-10-18 2017-06-02 Daikin Industries, Ltd. Air conditioner
JP5802339B2 (en) * 2012-10-18 2015-10-28 ダイキン工業株式会社 Air conditioner
JP6301684B2 (en) * 2014-02-27 2018-03-28 株式会社前川製作所 CO2 water heater
US20180031282A1 (en) * 2016-07-26 2018-02-01 Lg Electronics Inc. Supercritical refrigeration cycle apparatus and method for controlling supercritical refrigeration cycle apparatus
KR20200134809A (en) * 2019-05-23 2020-12-02 엘지전자 주식회사 An air conditioning apparatus and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2230873B (en) * 1989-02-27 1993-10-06 Toshiba Kk Multi-system air conditioning machine
JP2723953B2 (en) * 1989-02-27 1998-03-09 株式会社日立製作所 Air conditioner
US5065588A (en) * 1989-08-17 1991-11-19 Hitachi, Ltd. Air-conditioner system
KR100473823B1 (en) * 2002-08-06 2005-03-08 삼성전자주식회사 Air conditioner having cold and hot water supplying apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170130A (en) * 2007-01-15 2008-07-24 Mitsubishi Electric Corp Air conditioner
JPWO2009123190A1 (en) * 2008-03-31 2011-07-28 三菱電機株式会社 Air conditioner
WO2012081052A1 (en) * 2010-12-15 2012-06-21 三菱電機株式会社 Combined air-conditioning and hot water supply system
CN103221761A (en) * 2010-12-15 2013-07-24 三菱电机株式会社 Combined air-conditioning and hot water supply system
JP5511983B2 (en) * 2010-12-15 2014-06-04 三菱電機株式会社 Air conditioning and hot water supply complex system
US9625187B2 (en) 2010-12-15 2017-04-18 Mitsubishi Electric Corporation Combined air-conditioning and hot-water supply system
WO2012085970A1 (en) * 2010-12-22 2012-06-28 三菱電機株式会社 Hot-water-supplying, air-conditioning composite device
CN103229006A (en) * 2010-12-22 2013-07-31 三菱电机株式会社 Hot-water-supplying, air-onditioning composite device
JP5615381B2 (en) * 2010-12-22 2014-10-29 三菱電機株式会社 Hot water supply and air conditioning complex equipment
CN103229006B (en) * 2010-12-22 2015-11-25 三菱电机株式会社 Supplying hot water air-conditioning set composite
US9528713B2 (en) 2010-12-22 2016-12-27 Mitsubishi Electric Corporation Combined hot water supply and air-conditioning device

Also Published As

Publication number Publication date
CN1840992A (en) 2006-10-04
US20060218948A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP2006283989A (en) Cooling/heating system
JP5774225B2 (en) Air conditioner
JP5791785B2 (en) Air conditioner
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
JP5762427B2 (en) Air conditioner
WO2013144994A1 (en) Air conditioning device
WO2012039153A1 (en) Air-cooling hot-water supply device and air-cooling hot-water supply method
JP5855279B2 (en) Air conditioner
JP5455521B2 (en) Air conditioning and hot water supply system
JP5689079B2 (en) Refrigeration cycle equipment
JP2011112233A (en) Air conditioning device
JP5908183B1 (en) Air conditioner
JP4399667B2 (en) Air conditioner
JPWO2012032580A1 (en) Air conditioner
JP2013015264A (en) Air conditioner
JP5629280B2 (en) Waste heat recovery system and operation method thereof
JP2017161182A (en) Heat pump device
JP6120943B2 (en) Air conditioner
JP2012052767A (en) Heat pump device
JP5955409B2 (en) Air conditioner
JP6576603B1 (en) Air conditioner
JP2009264717A (en) Heat pump hot water system
JP7224503B2 (en) refrigeration cycle equipment
JP2006003023A (en) Refrigerating unit
JP2016114319A (en) Heating system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819