CN1840992A - Cooling and heating system - Google Patents

Cooling and heating system Download PDF

Info

Publication number
CN1840992A
CN1840992A CN 200610068101 CN200610068101A CN1840992A CN 1840992 A CN1840992 A CN 1840992A CN 200610068101 CN200610068101 CN 200610068101 CN 200610068101 A CN200610068101 A CN 200610068101A CN 1840992 A CN1840992 A CN 1840992A
Authority
CN
China
Prior art keywords
refrigerant
heat exchanger
pipe
temperature
indoor
Prior art date
Application number
CN 200610068101
Other languages
Chinese (zh)
Inventor
大竹雅久
上村一朗
向山洋
佐藤晃司
Original Assignee
三洋电机株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005100368A priority Critical patent/JP2006283989A/en
Application filed by 三洋电机株式会社 filed Critical 三洋电机株式会社
Publication of CN1840992A publication Critical patent/CN1840992A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B13/00Compression machines, plant or systems with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B9/00Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plant or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plant or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2313/00Compression machines, plant, or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plant, or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plant, or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2313/00Compression machines, plant, or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plant, or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plant, or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2313/00Compression machines, plant, or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2313/00Compression machines, plant, or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies
    • Y02B30/74Technologies based on motor control
    • Y02B30/741Speed regulation of the compressor

Abstract

A cooling and heating system includes: an outdoor unit 101; a plurality of indoor units 105; a high pressure tube 111 ; a low pressure tube 112 ; and an intermediate tube 113 . The system includes: a refrigerant pressure detection unit P<SUB>C01 </SUB>for measuring a pressure of the refrigerant discharged from the compressor 102 ; a first refrigerant temperature detection unit T<SUB>C03 </SUB>which measures an outlet temperature of the refrigerant in a case where the outdoor heat exchanger 103 functions as a gas cooler and which measures an inlet temperature of the refrigerant in a case where the outdoor heat exchanger 103 functions as an evaporator; and a second refrigerant temperature detection unit T<SUB>CO8 </SUB>which measures an outlet temperature of the refrigerant in a case where the indoor heat exchanger 106 functions as a gas cooler and which measures an inlet temperature of the refrigerant in a case where the indoor heat exchanger 106 functions as an evaporator.

Description

冷暖气系统 Heating and cooling systems

技术领域 FIELD

本发明涉及冷暖气系统,具体涉及在以超临界的状态使用制冷剂的冷暖气系统中,能够以成绩系数达到最大的方式进行运转能力的控制的冷暖气系统。 The present invention relates to a heating and cooling system, particularly relates to a system for heating and cooling a supercritical state refrigerant is used, it is possible to achieve the maximum coefficient of performance for heating and cooling mode operation of the system control capabilities.

背景技术 Background technique

在以超临界的状态使用二氧化碳制冷剂的冷暖气系统中,作为具有室外单元和多个室内单元,能够同时冷气运转或暖气运转多台室内单元,并且,能够混合进行冷气运转和暖气运转的冷暖气系统,已知有专利文献1所述的装置。 In the heating and cooling systems using a supercritical state of carbon dioxide refrigerant, having a plurality of indoor unit and an outdoor unit capable of cooling operation or heating operation while plural indoor units, and can be mixed cold in the cooling operation and heating operation heating system, there is known an apparatus according to patent document. 此处,所谓冷气,指的是在室内单元的设定温度低于室内温度时进行的运转,所谓暖气,指的是在室内单元的设定温度高于室内温度时进行的运转。 Here, the cool air, referring to the operation performed when the setting temperature of the indoor unit is lower than room temperature, heating the so-called, referring to the operation performed when the setting temperature of the indoor unit is higher than room temperature.

专利文献1:特开2004-226018号公报如果是使用碳氟化合物制冷剂的冷暖气系统,检测蒸发温度(或蒸发压力)和凝缩温度(或凝缩压力),把握制冷剂的状态,为使该检测值接近目标值(成绩系数达到最大),通过控制室外单元的热交换器及压缩机的容量,来控制运转能力。 Patent Document 1: Laid-Open Patent Publication No. 2004-226018 If fluorocarbon refrigerant heating and cooling system, the evaporation temperature detected (or evaporation pressure) and the condensation temperature (condensation or pressure), to grasp the state of the refrigerant, is the detected value approaches the target value (maximum coefficient of performance) by the heat exchanger and the compressor capacity control of the outdoor unit to control the driving capacity. 此处,所谓室外单元内的热交换器的容量控制,是根据室内侧的冷气负荷和暖气负荷的热收支,连接大小不同的多个热交换器,分别设置切换阀,变更运转的热交换器的数量,或调整在各热交换器中循环的制冷剂的循环量,或调整设在各热交换器上的送风机的旋转数,进行控制,以达到作为目标的蒸发温度或凝缩温度。 Here, the capacity control of the heat exchanger in the so-called outdoor unit, based on the heat balance of the cooling load and the heating load of the indoor side heat exchangers connected to a plurality of different sizes, are provided a switching valve, the heat exchange operation is changed the number of devices, or to adjust the circulation amount of the circulating refrigerant in the heat exchangers or rotational adjustment of the blower is provided on each of the heat exchanger, is controlled to achieve the target evaporation temperature or condensation temperature.

对此,以超临界状态使用二氧化碳这样的制冷剂的冷暖气系统,由于高压侧达到超临界状态,所以与碳氟化合物制冷剂不同,不能一义地从凝缩温度(由于实际上不引起凝缩,所以称为高压侧的状态。)求出凝缩压力(高压压力),为了把握制冷剂的状态,存在必须检测凝缩温度和凝缩压力双方的问题。 In this regard, in a supercritical state heating and cooling systems using such a carbon dioxide refrigerant, because the high pressure side reaches the supercritical state, and various fluorocarbon refrigerants, can not be unambiguously from a condensation temperature (due to the fact does not cause coagulation reduction, so called high pressure side of the state) is obtained condensation pressure (high pressure), in order to grasp the state of the refrigerant, there is a need to both problems of temperature and the compression pressure detecting condensation. 因此,难通过热交换器及压缩机的容量控制,使成绩系数达到最大。 Thus, the capacity of the heat exchanger and the compressor is difficult by controlling the coefficient of performance is maximized.

发明内容 SUMMARY

因此,本发明的目的是提供一种冷暖气系统,其能够以成绩系数达到最大的方式进行运转能力的控制,能够以超临界的状态使用制冷剂。 Accordingly, an object of the present invention is to provide a heating and cooling system, which can achieve the maximum coefficient of performance is the ability to perform control operation, it is possible to use a supercritical state of the refrigerant.

本发明是为达到上述目的而提出的,第1发明所述的发明是一种冷暖气系统,其利用单元间配管连接具备压缩机和室外热交换器的室外单元、和具备室内热交换器的多个室内单元,所述室外热交换器的一端,择一地与所述压缩机的制冷剂排出管和制冷剂吸入管连接,所述单元间配管,构成具有与所述制冷剂排出管连接的高压管、与所述制冷剂吸入管连接的低压管、和与所述室外热交换器的另一端连接的中压管,所述各室内单元,形成所述室内热交换器的一端择一地与所述高压管和所述低压管连接,其另一端与所述中压管连接,能够同时冷气运转或暖气运转所述多个室内单元,或者,混合冷气运转和暖气运转地同时运转所述多个室内单元,其特征是,具备:制冷剂压力检测机构,用于检测由所述压缩机排出的制冷剂的压力;第1制冷剂温度检测机构, The present invention is made to achieve the above object, the invention of the first invention is a heating and cooling system, the pipe connecting the outdoor unit includes a compressor and an outdoor heat exchanger that utilizes inter-unit, and includes an indoor heat exchanger a plurality of indoor units, the outdoor heat exchanger at one end, with a selection of the compressor refrigerant discharge pipe and a refrigerant suction pipe connected to the inter-unit pipe constituting the refrigerant having a discharge tube connector the high-pressure pipe, a low-pressure pipe connected to the refrigerant suction pipe and pressure pipe connected to the other end of the outdoor heat exchanger of the indoor unit formed at one end of the indoor heat exchanger alternatively with the high-pressure pipe and the low pressure pipe is connected, the other end of the pressure tube is connected, capable of simultaneously cooling operation or heating operation of the plurality of indoor units, or hybrid cooling operation and heating operation are simultaneously operated said plurality of indoor units, characterized by comprising: a refrigerant pressure detecting means for detecting the refrigerant discharged by the pressure of the compressor; first refrigerant temperature detecting means, 设在所述室外单元中,用于在所述室外热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室外热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度;第2制冷剂温度检测机构,其设在所述室内单元中,用于在室内热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室内热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度。 Provided in the outdoor unit, the play for detecting the refrigerant temperature at the outlet of the radiator as a function of the outdoor heat exchanger, while heat exchanger functions as a heat sink is detected in the outdoor function the inlet temperature of the refrigerant; second refrigerant temperature detecting means, which is provided in the indoor unit, in the interior heat exchanger for detecting the refrigerant temperature at the outlet of the radiator as a function, at the same time the interior heat exchanger inlet temperature of the refrigerant detected as a heat sink function.

此外,第2发明所述的发明是一种冷暖气系统,其利用单元间配管连接具备压缩机和室外热交换器的室外单元、和具备室内热交换器的多个室内单元,所述室外热交换器的一端,择一地与所述压缩机的制冷剂排出管和制冷剂吸入管连接,所述单元间配管,构成具有与所述制冷剂排出管连接的高压管、与所述制冷剂吸入管连接的低压管、和与所述室外热交换器的另一端连接的中压管,所述各室内单元,形成所述室内热交换器的一端择一地与所述高压管和所述低压管连接,其另一端与所述中压管连接,能够同时冷气运转或暖气运转所述多个室内单元,或者,混合冷气运转和暖气运转地同时运转所述多个室内单元,其特征是,具备:排出温度检测机构,用于检测由所述压缩机排出的制冷剂的温度;第1制冷剂温度检测机构,其设在所述室外单元中,用于在 Further, the invention according to the second invention is a heating and cooling system, the pipe connecting the outdoor unit includes a compressor and an outdoor heat exchanger that utilizes inter-unit, and a plurality of indoor units includes an indoor heat exchanger, the outdoor heat one end of the exchanger, with a selection of the compressor refrigerant discharge pipe and a refrigerant suction pipe connected to the inter-unit pipe constituting the high-pressure pipe having a pipe connected to the refrigerant discharged from the refrigerant a suction pipe connected to the low-pressure pipe, the pressure pipe and the other end connected to the outdoor heat exchanger, the indoor unit, formed at one end of the indoor heat exchanger alternatively with the high pressure tube and the a low pressure connection pipe, the other end of the pressure tube is connected, capable of simultaneously cooling operation or heating operation of the plurality of indoor units, or hybrid cooling operation and heating operation simultaneously operation of the plurality of indoor units, wherein comprising: a discharge temperature detection means for detecting the refrigerant discharged by the compressor temperature; first refrigerant temperature detecting means, which is disposed in the outdoor unit, configured to 述室外热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室外热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度;第2制冷剂温度检测机构,其设在所述室内单元中,用于在室内热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室内热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度。 Detecting the play of said outdoor heat exchanger outlet refrigerant temperature as a function of the heat sink, while playing an inlet temperature of the refrigerant detected as a function of a heat sink in the outdoor heat exchanger; second refrigerant temperature detecting means provided in said indoor unit, in the interior heat exchanger for detecting the refrigerant outlet temperature of the radiator as a function of time, while playing in the indoor heat exchanger as a heat sink detecting an inlet temperature of the refrigerant during the function.

此外,第3发明所述的发明,是如第1发明或第2发明所述的冷暖气系统,其特征是:与所述制冷剂排出管连接的高压管内,在所述冷暖气系统的运转中以超临界压力运转。 Further, the invention according to the third invention, as a heating and cooling system according to the first invention or second invention, wherein: the refrigerant discharge pipe connected to the high-pressure pipe, the operation of the heating and cooling system in operating supercritical pressure. 第4发明所述的发明,是如第3发明所述的冷暖气系统,其特征是:作为所述制冷剂采用二氧化碳。 The fourth aspect of the invention, are as heating and cooling system according to the third invention, wherein: carbon dioxide is used as the refrigerant.

本发明在以超临界状态使用制冷剂的冷暖气系统中,能够以成绩系数达到最大的方式进行运转能力的控制。 In the present invention, heating and cooling systems in a supercritical state refrigerant is used, it is possible to achieve the maximum coefficient of performance for controlling the operation mode capability.

附图说明 BRIEF DESCRIPTION

图1是表示本发明的冷暖气系统的制冷剂线路图。 FIG 1 is a refrigerant circuit diagram of the air-conditioning system of the present invention.

图2是表示本发明的冷暖气系统的冷冻循环的Ph线图。 FIG 2 is a Ph diagram showing the refrigeration cycle of the air-conditioning system of the present invention.

图3是决定本发明的冷暖气系统的室外热交换器的运转模式的控制流程图。 FIG 3 is a control flowchart of the operation mode of the outdoor heat exchanger of the heating and cooling system of the present invention is determined.

图4是本发明的实施例1中的热负荷平衡控制的控制流程图。 FIG 4 is a control flowchart of the heat load in Embodiment 1 of the present invention, balance control.

图5是表示本发明的实施例1中的冷暖气系统的制冷剂线路图。 FIG 5 is a circuit diagram showing a refrigerant heating and cooling system in the embodiment of the present invention.

图6是在本发明的实施例1中室外热交换器为吸热器时的控制图。 FIG 6 is a view of a control in the embodiment 1, the outdoor heat exchanger of the present invention is a heat sink.

图7是在本发明的实施例1中室外热交换器为散热器时的控制图。 FIG 7 is a view of a control in the embodiment of the present invention, the outdoor heat exchanger is a radiator.

图8是本发明的实施例2中的热负荷平衡控制的控制流程图。 FIG 8 is a control flowchart of the heat load embodiment of the present invention will balance control.

图9是表示本发明的实施例2中的冷暖气系统的制冷剂线路图。 9 is a circuit diagram showing a refrigerant heating and cooling system in Example 2 of the present invention.

图10是在本发明的实施例2中室外热交换器为吸热器时的控制图。 FIG 10 is a view of a control in the embodiment of the present invention the outdoor heat exchanger 2 as the heat sink.

图11是在本发明的实施例2中室外热交换器为散热器时的控制图。 FIG 11 is a view of a control in the embodiment 2 of the present invention, the outdoor heat exchanger is a radiator.

图中:1、101、201-室外单元,2、102、202-压缩机,3、103、203-室外热交换器,4、104、204-储能器,5、105、205-室内单元,6、106、206-室内热交换器,7、107、207-排出管,8、108、208-吸入管,9、109、209-切换阀,10、110、210-单元间配管,11、111、211-高压气管,12、112、212-低压气管,13、113、213-液管,16、116、216-排出侧阀,17、117、217-吸入侧阀,18、118、218-室内膨胀阀,19、119、219-切换阀,23、123、223-室内风扇,27、127、227-室外膨胀阀,30、130、230-冷暖气系统,41、141、241-气体冷却器,43、i43、243-储热水罐,45、145、245-循环泵,46、146、246-水配管,47、147、247-膨胀阀,50、150、250-供热水装置,Tc-温度传感器,Pc-压力传感器具体实施方式图1是表示本发明的冷暖气系统的制冷剂线路构成的制冷剂线路图。 FIG: 1,101,201- outdoor unit, 2,102,202- a compressor, an outdoor heat exchanger 3,103,203-, 4,104,204- accumulator, the indoor unit 5,105,205- , 6,106,206- indoor heat exchanger 7,107,207- discharge pipe, the suction pipe 8,108,208-, 9,109,209- switch valve unit between 10,110,210- pipe 11 , 111,211- high pressure gas pipe, a low pressure pipe 12,112,212-, 13,113,213- liquid pipe, 16,116,216- discharge valve, a suction-side valve 17,117,217-, 18, 118, 218- indoor expansion valve, the switching valve 19,119,219-, 23,123,223- indoor fan, an outdoor expansion valve 27,127,227-, 30,130,230- heating and cooling systems, 41,141,241- a gas cooler, 43, i43,243- hot water tank, the circulation pump 45,145,245-, 46,146,246- water pipe, 47,147,247- expansion valve, heating 50,150,250- means water, Tc- temperature sensor, Pc- pressure sensor DESCRIPTION oF eMBODIMENTS FIG 1 is a refrigerant circuit diagram showing a refrigerant circuit of the air-conditioning system of the present invention is constituted.

该冷暖气系统30,其构成具有:室外单元1,其包括压缩机2、室外热交换器3a、3b及室外膨胀阀27a、27b;室内单元5a,其具备室内热交换器6a及室内膨胀阀18a;室内单元5b,其具备室内热交换器6b及室内膨胀阀18b;供热水装置50,其具备气体冷却器41、储热水罐43、循环泵45及膨胀阀47。 The heating and cooling system 30, which is configured with: an outdoor unit including a compressor 2, outdoor heat exchangers 3a, 3b and outdoor expansion valves 27a, 27b; indoor unit 5a, which is provided with an indoor heat exchanger 6a and an indoor expansion valve 18a; indoor unit 5b, which includes an indoor heat exchanger 6b and an indoor expansion valve 18b; hot water supply means 50, which includes a gas cooler 41, the hot water storage tank 43, circulation pump 45 and an expansion valve 47. 另外,这些室外单元1、室内单元5a、5b和供热水装置50,通过单元间配管10连接,冷暖气系统30,能一边运转供热水装置50,一边同时冷气运转或暖气运转室内单元5a、5b,或者,混合实施上述冷气运转和暖气运转。 Further, the outdoor unit 1, the indoor units 5a, 5b and the hot water supply apparatus 50, through the inter-unit pipe 10 is connected, heating and cooling systems 30, can be operated while the hot water supply means 50, while simultaneously cooling operation or heating operation of the indoor unit 5a , 5b, or mixing the above-described embodiment the cooling operation and heating operation.

在上述室外单元1中,室外热交换器3a、3b的一端,分别通过切换阀9a、9b和19a、19b,择一地与压缩机2的排出管7和吸入管8连接。 In the outdoor unit 1, the outdoor heat exchanger 3a, 3b at one end of, respectively, by the switching valve 9a, 9b and 19a, 19b, alternatively the discharge pipe 2 of the compressor 7 and the intake pipe 8 is connected. 此外,在吸入管8上配置储能器4。 Further, the intake pipe 8 is disposed in the accumulator 4. 室外单元1具备室外控制装置(未图示),该室外控制装置,控制室外单元1内的压缩机2、室外膨胀阀27a、27b、切换阀9a、9b、19a、19b、及冷暖气系统30全部。 The outdoor unit 1 includes an outdoor control device (not shown), the outdoor control means for controlling the compressor in the outdoor unit 12, the outdoor expansion valves 27a, 27b, the switching valves 9a, 9b, 19a, 19b, and heating and cooling systems 30 all. 上述单元间配管10,具备高压气管11、低压气管12及液管13。 The inter-unit pipe 10 includes a high pressure gas pipe 11, low pressure gas pipe 12 and liquid pipe 13. 高压气管11与排出管7连接,低压气管12与吸入管8连接。 High pressure gas pipe 11 is connected to the discharge pipe 7, a low-pressure pipe 12 and the suction pipe 8 is connected. 上述液管13,经由室外膨胀阀27a、27b,分别与室外热交换器3a、3b的另一端连接。 The liquid pipe 13 via the outdoor expansion valve 27a, 27b, respectively, the outdoor heat exchanger 3a, 3b is connected to the other end.

室内单元5a、5b的室内热交换器6a、6b,其一端,经由排出侧阀16a、16b与高压气管11连接,经由吸入侧阀17a、17b与低压气管12连接。 Indoor Unit The indoor heat exchanger 6a 5a, 5b of, 6b, one end of which, 16a, 16b are connected via the discharge valve and the high pressure pipe 11, 17a, 17b connected to the suction side of the low pressure gas pipe 12 via a valve. 此外,它们的另一端,经由室内膨胀阀18a、18b与液管13连接。 In addition, the other end thereof, via the indoor expansion valves 18a, 18b to the liquid pipe 13 is connected. 排出侧阀16a和吸入侧阀17a,在一方打开时,另一方关闭。 Discharge-side valve 16a and the suction side valve 17a, when one is opened, the other closes. 排出侧阀16b和吸入侧阀17b也同样,在一方打开时,另一方关闭。 The discharge valve 16b and the suction side valve 17b is also, at one open, the other closed. 由此,各室内热交换器6a、6b的一端,择一地与单元间配管10的高压气管11和低压气管12连接。 Thereby, the indoor heat exchangers 6a, 6b between the one end, a selection unit with the pipe 10 and the high pressure gas pipe 11 is connected to the low-pressure pipe 12 室内单元5a、5b,另外具有室内风扇23a、23b、遥控器(未图示)及室内控制装置。 The indoor units 5a, 5b, additionally having an indoor fan 23a, 23b, a remote controller (not shown) and the indoor control means. 各室内风扇23a、23b,分别接近室内热交换器6a、6b地配置,向各室内热交换器6a、6b送风。 The indoor fans 23a, 23b, respectively, close to the indoor heat exchanger 6a, 6b are disposed to each indoor heat exchanger 6a, 6b blowing. 此外,各遥控器,分别与室内单元5a、5b连接,用于向各室内单元5a、5b的各室内控制装置输出冷气或暖气运转指令,或停止指令等。 Further, each remote control, respectively, the indoor units 5a, 5b are connected for each indoor unit 5a, 5b of the indoor air-conditioning or heating control means outputs an operation command, a stop command, or the like.

在供热水装置50中,气体冷却器41的一端连接在高压气管11上,气体冷却器41的另一端连接在液管13上。 In the hot water supply means 50, one end of the gas cooler 41 is connected to the high pressure gas pipe 11, the other end of the gas cooler 41 is connected to the liquid pipe 13. 在该气体冷却器41上,连接水配管46,在该水配管46上,经由循环泵45连接储热水罐43。 In the gas cooler 41, connected to the water pipe 46, the water pipe 46, 45 connected to the hot water tank 43 via a circulation pump.

在本实施方式中,在室外单元1、室内单元5a、5b、储热水装置50及单元间配管10中封入二氧化碳制冷剂。 In the present embodiment, the outdoor unit 1, the indoor unit 5a, 5b, between the device 50 and the hot water pipe 10 is sealed unit carbon dioxide refrigerant. 在封入该二氧化碳制冷剂的时候,如图2的焓压力(Ph)线图所示,高压气管11内在运转中以超临界压力运转。 When the carbon dioxide refrigerant is filled, the pressure of the enthalpy (Ph) diagram as shown in FIG, 11 in internal operation is operated in the high pressure gas pipe supercritical pressure. 对于在高压气管11内以超临界压力运转的制冷剂,除二氧化碳制冷剂以外,例如还可列举乙烯、乙硼烷、乙烷、氧化氮等。 For the refrigerant in the high pressure gas pipe 11 to the supercritical pressure during operation, in addition to carbon dioxide refrigerant, for example, may include ethylene, diborane, ethane, nitrogen oxide. 在采用上述制冷剂的情况下,不向液管13内流通液体。 In the case where the refrigerant, the liquid does not flow into the catheter 13.

图2以状态a表示压缩机2出口。 Figure 2 indicates a state 2 the compressor outlet. 制冷剂,经过热交换器(散热器)进行循环,散热,被冷却到状态b。 Refrigerant through the heat exchanger (radiator) to circulate, heat, is cooled to state b. 接着,制冷剂通过在膨胀阀(减压装置)的减压达到状态c,此处形成气体和液体的2相混合体。 Then, the refrigerant under reduced pressure by the expansion valve (pressure reducing device) is going to state C, forming 2 mixed gas and liquid laminate herein. 在热交换器(吸热器)中,通过液相的蒸发吸收热,在吸热器出口成为状态d。 A heat exchanger (heat absorber), the heat absorbed by evaporation of the liquid phase, in the heat absorber outlet in a state d. 然后,朝向压缩机2的吸入管8。 Then, towards the suction pipe 8 of the compressor 2. 在本实施方式中,由于在压缩机2中采用二段压缩型的压缩机,所以,如图2所示,从状态d到状态a的之间形成折线。 In the present embodiment, since two-stage compression-type compressor in the compressor 2, so that, as shown in FIG. 2, from the state d to the state a is formed between the fold line.

下面,说明冷暖气系统30的工作。 Next, an operation of heating and cooling systems 30.

在该冷暖气系统30中,压缩机2的排出制冷剂,通过高压气管11,导入气体冷却器41,用该气体冷却器41加热通过水配管46的水,达到高温的水存储在储热水罐43中。 In the heating and cooling system 30, the refrigerant discharged from the compressor 2, 11, introduced into the gas cooler 41, the water is heated by the gas cooler 46 through a water pipe 41 through the high pressure gas pipe, high temperature hot water stored in the reservoir tank 43. 由于使用二氧化碳制冷剂,所以此处存储的热水达到80℃以上的高温。 Since the use of carbon dioxide refrigerant, so that the hot water stored here reach a high temperature of 80 deg.] C. 在该储热水罐43中存储的热水经由配管(未图示),送给洗澡池、厨房、地下采暖设备等各种供热水设备(存储热水运转)。 In the hot water tank 43 of the hot water stored through a pipe (not shown), to the bathing pool, kitchen, heating equipment and other underground hot water supply apparatus (hot-water storage operation).

在使全部室内单元5a、5b同时放冷气的时候,打开室外热交换器3a、3b的切换阀9a、9b,同时关闭切换阀19a、19b,并且,关闭排出侧阀16a、16b,同时打开吸入侧阀17a、17b。 In all the indoor units 5a, 5b at the same time when the air-cooling, to open the outdoor heat exchanger 3a, 3b of the switching valve 9a, 9b, while closing the switching valve 19a, 19b, and closing the discharge valve 16a, 16b, while opening the suction side valves 17a, 17b. 由此,从压缩机2排出的制冷剂,依次向排出管7、切换阀9a、9b、室外热交换器3a、3b流动,在用该室外热交换器3a、3b热交换(散热)后,分配给各室内单元5a、5b的室内膨胀阀18a、18b,在此被减压。 Accordingly, the refrigerant discharged from the compressor 2 sequentially to the discharge pipe 7, the switching valves 9a, 9b, the outdoor heat exchanger 3a, 3b flows, 3a, 3b after heat exchange (cooling) with the outdoor heat exchanger, assigned to each of the indoor units 5a, 5b of the indoor expansion valves 18a, 18b, where it is reduced. 然后,制冷剂,在各室内热交换器6a、6b蒸发气化(吸热),在分别沿吸入侧阀17a、17b流过后,依次经由低压气管12、吸入管8、储能器4,吸入压缩机2。 Then, the refrigerant in the indoor heat exchangers 6a, 6b vaporized evaporation (heat absorption), respectively along the suction side valves 17a, 17b after the stream sequentially through the low pressure pipe 12, the suction pipe 8, the accumulator 4, inhalation compressor 2. 如此,利用具有作为吸热器的功能的各室内热交换器6a、6b的作用,能够同时使各室内单元5a、5b放冷气(冷气运转)。 Thus, using each having an indoor heat exchanger 6a functions as a heat sink, 6b effect, it is possible while the indoor units 5a, 5b air-cooling (cooling operation).

相反,在使全部室内单元5a、5b同时放暖气的时候,关闭室外热交换器3a、3b的切换阀9a、9b,同时打开切换阀19a、19b,并且,打开排出侧阀16a、16b,同时关闭吸入侧阀17a、17b。 In contrast, in all the indoor units 5a, 5b at the same time put the heating time, closing the outdoor heat exchanger 3a, 3b of the switching valve 9a, 9b, while opening the switching valves 19a, 19b, and, opening the discharge side valve 16a, 16b, while Close the suction side valves 17a, 17b. 由此,从压缩机2排出的制冷剂,依次经由排出管7、高压气管11,向排出侧阀16a、16b、室内热交换器6a、6b流动,在此处分别热交换(散热)后,用液管13合流。 Accordingly, the refrigerant discharged from the compressor 2 sequentially through the discharge pipe 7, the high-pressure pipe 11, to 16a, 16b, the indoor heat exchanger 6a, 6b side of the flow of the discharge valve, respectively, where the heat exchange (heat dissipation), 13 merging with a pipette. 然后,在由各室外膨胀阀27a、27b减压,由各室外热交换器3a、3b蒸发气化后(吸热)后,依次经由切换阀9a、9b、吸入管8、储能器4,吸入压缩机2。 Then, by the outdoor expansion valve 27a, 27b under reduced pressure, of the outdoor heat exchanger 3a, 3b after evaporation gasification (endothermic) after sequentially via the switching valves 9a, 9b, the suction pipe 8, the accumulator 4, sucked into the compressor 2. 如此,利用具有作为吸热器的功能的各室内热交换器6a、6b的作用,能够同时使各室内单元5a、5b放暖气(暖气运转)。 Thus, using each having an indoor heat exchanger 6a functions as a heat sink, 6b effect, it is possible while the indoor units 5a, 5b discharge heating (heating operation).

此外,在同时例如使室内单元5a放冷气,使室内单元5b放暖气的冷暖混合运转的情况下,按照图3所示的室外单元运转模式的控制流程(A1),计算在各室内单元的要求负荷(S14),根据总负荷的值(S15)决定是将室外热交换器3作为散热器还是作为吸热器(S16)。 In addition, for example while the air-cooling of the indoor unit 5a, 5b of the indoor unit case of mixing warm and cold discharge of the heating operation, in accordance with the control flow (A1) of the outdoor unit operation mode shown in Figure 3, the computational requirements of the indoor units load (S14), based on the value of the total load (S15) to decide whether the outdoor heat exchanger 3 functions as a radiator or a heat absorber (S16).

在将室外热交换器3作为散热器(S16N)的时候,打开室外热交换器3的切换阀9,同时关闭切换阀19,并且关闭室内单元5a的排出侧阀16a和室内单元5b的吸入侧阀17b,同时打开室内单元5a的吸入侧阀17a和室内单元5b的排出侧阀16b。 In the outdoor heat exchanger 3 functions as a radiator (S16N), when the outdoor heat exchanger opening of the switching valve 93, while closing the switching valve 19, and closing the discharge side valve 16a of the indoor unit 5b and the suction side of the indoor unit 5a valve 17b, while opening the discharge valve 16b of the indoor unit 5a and the suction side valve 17a of the indoor unit 5b. 由此,从压缩机2排出的制冷剂,依次向排出管7、切换阀9和室内单元5b的排出侧阀16b、室外热交换器3和室内热交换器6b流动,在由该室外热交换器3和室内热交换器6b热交换(散热)后,用液管13合流,进入室内膨胀阀18a,在此被减压。 Accordingly, the refrigerant discharged from the compressor 2 sequentially to the discharge pipe 7, the switching valve 9 and the discharge side of the indoor unit 5b valve 16b, the outdoor heat exchanger 3 and the indoor heat exchanger 6b to flow, by the outdoor heat exchanger 3 after the indoor heat exchanger 6b and the heat exchange (heat dissipation), merged with the liquid pipe 13 into the indoor expansion valves 18a, where it is reduced. 然后,制冷剂,由室内热交换器6a蒸发气化(吸热),在分别流过吸入侧阀17a后,依次经由低压气管12、吸入管8、储能器4,吸入压缩机2。 Then, the refrigerant evaporated and gasified in the indoor heat exchanger 6a (endothermic), respectively stream through the suction side valves 17a, sequentially through the low pressure pipe 12, the suction pipe 8, the accumulator 4, the suction of the compressor 2.

另外,在将室外热交换器3作为吸热器(S16Y)的时候,关闭室外热交换器3的切换阀9,同时打开切换阀19,并且关闭室内单元5a的排出侧阀16a和室内单元5b的吸入侧阀17b,同时打开室内单元5a的吸入侧阀17a和室内单元5b的排出侧阀16b。 Further, when the outdoor heat exchanger 3 as a heat sink (S16Y), the changeover valve 3 to close the outdoor heat exchanger 9 while opening the switching valve 19, and closing the discharge valve 16a of the indoor unit and the indoor unit 5b 5a the suction side valve 17b, the indoor unit 5a while opening the discharge valve 16b of the intake-side valve 17a and the indoor unit 5b. 由此,从压缩机2排出的制冷剂,依次向排出管7、室内单元5b的排出侧阀16b、室内热交换器6b流动,在由该室内热交换器6b热交换(散热)后,经由液管13,分配给室外膨胀阀27和室内膨胀阀18a,在此被减压。 Accordingly, the refrigerant discharged from the compressor 2 sequentially to the discharge pipe 7, the indoor unit 5b of the discharge valve 16b, the indoor heat exchanger 6b to flow, after the heat of the indoor heat exchanger 6b (heat), via liquid pipe 13, is assigned to the outdoor expansion valve 27 and indoor expansion valves 18a, where it is reduced. 然后,制冷剂,在由室外热交换器3和室内热交换器6a蒸发气化(吸热),分别流过切换阀19和吸入侧阀17a后,依次经由低压气管12、吸入管8、储能器4,吸入压缩机2。 Then, the refrigerant evaporated and gasified in the outdoor heat exchanger 6a and an indoor heat exchanger 3 (endothermic), after flowing through the switching valve 19 and the suction side valves 17a, sequentially through the low pressure pipe 12, the suction pipe 8, the reservoir transducer 4, the suction of the compressor 2.

此外,在也需要同时储热水运转的情况下,将储热水装置50看作与室内单元5的暖气运转相同的负荷,只要算出总负荷的值就可以。 Further, in the case where the hot water storage also need to operate the hot water heating device 50 is considered identical to the operation load of the indoor unit 5, as long as the value of the total load can be calculated.

如上所述,在是冷暖混合运转的时候,或储热水运转的时候,制冷剂以室内热交换器、室外热交换器、气体冷却器相互间所谓热平衡的方式循环。 As described above, when heating and cooling in a mixed operation, or when the hot water storage operation, the refrigerant circulating in the indoor heat exchanger to each other, an outdoor heat exchanger, called hot gas cooler in a balanced manner. 据此,能够进行有效利用室内、室外的热的运转。 This makes it possible to effectively make use of the indoor, outdoor hot operation. 尤其,在利用室内单元的冷气运转和储热水运转的混合运转时,由于能够利用室内的热进行储热水(供热水),所以可得到非常有效地利用热,尽可能抑制室外单元的散热导致的热岛现象的发生等效果。 In particular, when the cooling operation of the indoor unit and operation of the mixed hot water storage operation, since the indoor heat can be utilized will be hot water (hot water), it results in a very efficient use of heat, as much as possible to suppress the outdoor unit the effect of heat island phenomenon occurs due to the heat and so on. 此外,在制冷剂使用二氧化碳,进行超临界循环的时候,从压缩机2排出的高压单相制冷剂蒸气,由于不在高压气管内凝缩,所以如氟里昂制冷剂被液化,可解决在高压气管11内酣睡的问题。 Further, the use of carbon dioxide in the refrigerant, the supercritical cycle time, from the high-pressure single-phase refrigerant vapor discharged from the compressor 2, since the high pressure gas pipe is not condensed, so as Freon refrigerant is liquefied in the high pressure gas pipe solve 11 sleeping problems. 因此,不需要作为酣睡制冷剂的回收用必需的、高压气管11和低压气管12之间的旁通管等,能够不使配管结构复杂化地,防止在高压气管11内的制冷剂酣睡。 Therefore, no recovery sleep as necessary with the refrigerant, high pressure gas pipe 11 and the bypass pipe 12 between the low pressure gas pipe and the like, it is possible without complicating the structure of the pipe to prevent the refrigerant in the high pressure pipe 11 of sleep. 另外,由于不需要旁通管,因此也不需要在此使用的电磁阀等,其控制也不需要,可谋求降低成本。 Furthermore, since no bypass pipe, thus not required in an electromagnetic valve used for this, which does not need the control, the cost can be reduced.

以下,说明以成绩系数达到最大的方式进行上述冷暖气系统30的运转控制的实施例。 Hereinafter, in order to achieve the maximum coefficient of performance of the way the embodiment of the operation control of heating and cooling systems 30.

实施例1在本实施例中,参照图4、5、6及7说明利用高压压力和蒸发温度的运转控制。 Example 1 In the present embodiment, with reference to FIGS. 5, 6 and 7 illustrate the operation of a control using high pressure and evaporating temperature.

在本实施例中,首先,如图4的热负荷平衡控制流程(B1)所示,检测蒸发温度TEVA(S150)。 In the present embodiment, first, as the thermal load balancing control flow (B1) in FIG. 4, the evaporation temperature detected TEVA (S150). 检测的部位因冷暖气系统130的运转状态而异,但在从图2所示的状态c朝向状态d的时候,制冷剂(二氧化碳)从液体向气体相变化时的温度为蒸发温度TEVA。 Operating state detecting portion due to heating and cooling system 130, however, it in the state shown in FIG. 2 c d orientation state when a refrigerant (carbon dioxide) from the temperature at which the phase change liquid to the evaporation temperature of the gas TEVA. 此时,由于一意决定蒸发温度TEVA和蒸发压力PEVA,因此检测的对象也可以是蒸发压力PEVA。 In this case, a decision is intended to evaporating pressure and evaporating temperature TEVA PEVA, and therefore an object may be detected evaporating pressure PEVA.

接着,检测散热器的出口制冷剂温度TGC(S152)。 Subsequently, the outlet refrigerant temperature detecting radiator TGC (S152). 此处,如果在图5中的室内单元105a中进行暖气运转(S151),就利用温度传感器TCO8检测室内热交换器106a的出口制冷剂温度,作为TGC(S152Y),如果不与室内单元105a、105b一同进行暖气运转(S151),就利用温度传感器TCO3检测室外热交换器103a(规定与室外热交换器103b相比优先使用室外热交换器103a)的出口制冷剂温度,作为TGC(S152N)。 Here, if the heating operation (S151) in the indoor unit 105a in FIG. 5, on the use of the temperature sensor detects the outlet refrigerant temperature TCO8 indoor heat exchanger 106a, and a TGC (S152Y), if not the indoor unit 105a, 105b together in a heating operation (S151), on the use of the outlet refrigerant temperature of the outdoor heat exchanger 103a is detected TCO3 (predetermined outdoor heat exchanger 103b preferably used compared to the outdoor heat exchanger 103a) a temperature sensor, a TGC (S152N). 此处,室内热交换器的出口制冷剂温度或室外热交换器的出口制冷剂温度,也可以用设置该热交换器的地方的环境温度(室内温度或室外温度)代替。 Here, the outlet refrigerant temperature of the outdoor heat exchanger outlet refrigerant temperature of the indoor heat exchanger, may be provided with a heat exchanger where the ambient temperature (room temperature or the outdoor temperature) instead.

然后,由检测的蒸发温度TEVA和散热器的出口制冷剂温度TGC,设定目标高压PH.OPT(S153),同时检测高压压力PH(S154)。 Then, the outlet refrigerant temperature of the heat sink and TEVA TGC evaporation temperature detected, setting the target high pressure PH.OPT (S153), the simultaneous detection of the high-pressure PH (S154). 高压压力PH,通过在压缩机102的出口附近配置压力传感器PCO1来测定。 High pressure PH, measured by a pressure sensor disposed in the vicinity of the outlet of the compressor PCO1 102.

检测的蒸发温度TEVA和高压压力PH,分别相对于预先设定的基准温度TS和上述的目标高压PH.OPT,根据处于哪种状态决定控制工作。 TEVA evaporating temperature and high pressure PH detected, with respect to a preset reference temperature TS and said target high pressure PH.OPT, determined according to which state control operation. 此时,在作为吸热器(蒸发器)运转室外热交换器103的情况下(S155),按照图6所示的热负荷平衡控制图(B2)(S156Y),控制压缩机102或室外热交换器103(S157、S158),在不作为吸热器(蒸发器)运转室外热交换器103的情况下(S155),按照图7所示的热负荷平衡控制图(B3)(S156N),控制压缩机102或室外热交换器103(S157、S158),实施例2在本实施例中,参照图8、9、10及11说明根据排出温度和蒸发温度的运转控制。 In this case, as in the case where a heat sink (evaporator) the operation of the outdoor heat exchanger 103 (S155), according to FIG. 6 FIG heat load balancing control (B2) (S156Y) the figure, the compressor 102 or the outdoor heat switch 103 (S157, S158), without a heat sink (evaporator) the operation of the outdoor heat exchanger 103 (S155), in accordance with the thermal load balancing control shown in FIG. 7 (B3) (S156N), controls the compressor 102 or the outdoor heat exchanger 103 (S157, S158), Example 2 in the present embodiment, FIGS. 9, 10 and 11 illustrate the operation control according to the discharge temperature and the evaporation temperature reference.

在本实施例中,首先,如图8的热负荷平衡控制流程(C1)所示,检测蒸发温度TEVA(S250)。 In the present embodiment, first, the thermal load balancing control flow shown in FIG. 8 (C1), the evaporation temperature detected TEVA (S250). 检测的部位因冷暖气系统230的运转状态而异,但在从图2所示的状态c朝向状态d的时候,制冷剂(二氧化碳)从液体向气体相变化时的温度为蒸发温度TEVA。 Operating state detecting portion due to heating and cooling system 230, however, it in the state shown in FIG. 2 c d orientation state when a refrigerant (carbon dioxide) from the temperature at which the phase change liquid to the evaporation temperature of the gas TEVA. 此时,由于一意决定蒸发温度TEVA和蒸发压力PEVA,因此检测的对象也可以是蒸发压力PEVA。 In this case, a decision is intended to evaporating pressure and evaporating temperature TEVA PEVA, and therefore an object may be detected evaporating pressure PEVA.

接着,检测散热器的出口制冷剂温度TGC(S252)。 Subsequently, the outlet refrigerant temperature detecting radiator TGC (S252). 此处,如果在图9中的室内单元205a中进行暖气运转(S251),就利用温度传感器TC28检测室内热交换器206a的出口制冷剂温度,作为TGC(S252Y),如果不与室内单元205a、205b一同进行暖气运转(S251),就利用温度传感器TC23检测室外热交换器203a(规定与室外热交换器203b相比优先使用室外热交换器203a)的出口制冷剂温度,作为TGC(S252N)。 Here, if the heating operation (S251) in the indoor unit 205a in FIG. 9, on the use of the temperature sensor detects the outlet refrigerant temperature TC28 indoor heat exchanger 206a as TGC (S252Y), if not the indoor units 205a, 205b together in a heating operation (S251), on the use of the outlet refrigerant temperature (a predetermined priority as compared with the outdoor heat exchanger 203b outdoor heat exchanger 203a) TC23 temperature sensor detecting the outdoor heat exchanger 203a, as TGC (S252N). 此处,室内热交换器的出口制冷剂温度或室外热交换器的出口制冷剂温度,也可以用设置该热交换器的地方的环境温度(室内温度或室外温度)代替。 Here, the outlet refrigerant temperature of the outdoor heat exchanger outlet refrigerant temperature of the indoor heat exchanger, may be provided with a heat exchanger where the ambient temperature (room temperature or the outdoor temperature) instead.

然后,由检测的蒸发温度TEVA和散热器的出口制冷剂温度TGC,计算最佳高压PH.OPT,从算出的最佳高压PH.OPT和压缩机202的特性或吸入状态,设定目标排出温度TDIS.OPT(S253),同时检测排出温度TDIS(S254)。 Then, the outlet refrigerant temperature of the heat sink and TEVA TGC evaporation temperature detected, calculates the optimal high pressure PH.OPT, calculated from the best characteristics of the high-pressure compressor 202 and PH.OPT or suctioning state, sets a target discharge temperature TDIS.OPT (S253), while detecting the discharge temperature TDIS (S254). 排出温度TDIS,通过在压缩机202的出口附近配置压力传感器TC21来测定。 Discharge temperature TDIS, measured by a pressure sensor disposed in the vicinity of the outlet of the compressor TC21 202.

检测的蒸发温度TEVA和排出温度TDIS,分别相对于预先设定的基准温度TS和上述的目标排出温度TDIS.OPT,根据处于哪种状态决定控制工作。 TEVA discharge temperature and the evaporation temperature detected by TDIS, respectively TDIS.OPT discharge temperature to the reference temperature TS and said target set in advance, determines the control operates according to which state. 此时,在作为吸热器(蒸发器)运转室外热交换器203的情况下(S255),按照图10所示的热负荷平衡控制图(C2)(S256Y),控制压缩机202或室外热交换器203(S257、S258),在不作为吸热器(蒸发器)运转室外热交换器203的情况下(S255),按照图11所示的热负荷平衡控制图(C3)(S256N),控制压缩机202或室外热交换器203(S257、S258)。 In this case, as in the case where a heat sink (evaporator) the operation of the outdoor heat exchanger 203 (S255), in accordance with the thermal load balance control shown in Figure 10 in FIG. (C2) (S256Y), controls the compressor 202 or the outdoor heat switch 203 (S257, S258), without a heat sink (evaporator) the operation of the outdoor heat exchanger 203 (S255), in accordance with the thermal load balancing control shown in FIG. 11 (C3) (S256N), controls the compressor 202 or the outdoor heat exchanger 203 (S257, S258).

本发明不仅能够用于大厦等办公用冷暖气系统,而且也能够用于家庭用的供热水装置或具有地下采暖设备的冷暖气系统等。 The present invention can be used not only to office buildings, and other heating and cooling systems, and hot water supply apparatus can be used for home use or underground heating system with heating and cooling devices, and the like.

Claims (4)

1.一种冷暖气系统,利用单元间配管连接具备压缩机和室外热交换器的室外单元、和具备室内热交换器的多个室内单元,所述室外热交换器的一端择一地与所述压缩机的制冷剂排出管和制冷剂吸入管连接,所述单元间配管具备与所述制冷剂排出管连接的高压管、与所述制冷剂吸入管连接的低压管、和与所述室外热交换器的另一端连接的中压管而构成,所述各室内单元按照以下方式构成,即,所述室内热交换器的一端择一地与所述高压管和所述低压管连接,另一端与所述中压管连接,从而可对所述多个室内单元同时进行冷气运转或暖气运转,或者,可对所述多个室内单元同时混合进行冷气运转和暖气运转地,所述冷暖气系统的特征是,具备:制冷剂压力检测机构,其用于检测从所述压缩机排出的制冷剂的压力;第1制冷剂温度检测机构,其设在所述室 A heating and cooling system, using the inter-unit pipe connected to the outdoor unit includes a compressor and an outdoor heat exchanger, and a plurality of indoor units includes an indoor heat exchanger, one end of the outdoor heat exchanger and the alternatively said compressor refrigerant discharge pipe and a refrigerant suction pipe connected to the inter-unit pipe comprising a high-pressure pipe with the pipe connected to the refrigerant discharge pipe connected to a low-pressure pipe and the suction refrigerant, the outdoor and the other end of the heat exchanger connected to the pressure tube to form the respective indoor units configured in such a manner that one end of the indoor heat exchanger alternatively with the high pressure pipe and the low pressure pipe is connected, the other one end of the pressure tube is connected to the plurality of indoor units may be simultaneously cooling operation or heating operation, or may be a plurality of indoor units perform cooling operation and heating mixed operation simultaneously, the heating and cooling system is characterized by comprising: a refrigerant pressure detecting means for detecting a pressure of refrigerant discharged from the compressor; first refrigerant temperature detecting means, which is disposed in the chamber 单元中,在所述室外热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室外热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度;第2制冷剂温度检测机构,其设在所述室内单元中,用于在室内热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室内热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度。 Unit, the play detecting refrigerant outlet temperature of the radiator as a function of the outdoor heat exchanger, while heat exchanger functions as an inlet of the refrigerant temperature detected as a function of the heat sink outside ; second refrigerant temperature detecting means, which is provided in the indoor unit, in the interior heat exchanger for detecting the refrigerant temperature at the outlet of the radiator as a function while playing in the indoor heat exchanger as the inlet temperature of the refrigerant detected when the function of the heat sink.
2.一种冷暖气系统,利用单元间配管连接具备压缩机和室外热交换器的室外单元、和具备室内热交换器的多个室内单元,所述室外热交换器的一端择一地与所述压缩机的制冷剂排出管和制冷剂吸入管连接,所述单元间配管具备与所述制冷剂排出管连接的高压管、与所述制冷剂吸入管连接的低压管、和与所述室外热交换器的另一端连接的中压管而构成,所述各室内单元按照以下方式构成,即,所述室内热交换器的一端择一地与所述高压管和所述低压管连接,另一端与所述中压管连接,从而可对所述多个室内单元同时进行冷气运转或暖气运转,或者,可对所述多个室内单元同时混合进行冷气运转和暖气运转地,所述冷暖气系统的特征是,具备:排出温度检测机构,其用于检测由所述压缩机排出的制冷剂的温度;第1制冷剂温度检测机构,其设在所述室外 A heating and cooling system, using the inter-unit pipe connected to the outdoor unit includes a compressor and an outdoor heat exchanger, and a plurality of indoor units includes an indoor heat exchanger, one end of the outdoor heat exchanger and the alternatively said compressor refrigerant discharge pipe and a refrigerant suction pipe connected to the inter-unit pipe comprising a high-pressure pipe with the pipe connected to the refrigerant discharge pipe connected to a low-pressure pipe and the suction refrigerant, the outdoor and the other end of the heat exchanger connected to the pressure tube to form the respective indoor units configured in such a manner that one end of the indoor heat exchanger alternatively with the high pressure pipe and the low pressure pipe is connected, the other one end of the pressure tube is connected to the plurality of indoor units may be simultaneously cooling operation or heating operation, or may be a plurality of indoor units perform cooling operation and heating mixed operation simultaneously, the heating and cooling system is characterized by comprising: a discharge temperature detection means for detecting a temperature of the refrigerant discharged from the compressor; first refrigerant temperature detecting means, which is provided on the outside 元中,用于在所述室外热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室外热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度;第2制冷剂温度检测机构,其设在所述室内单元中,用于在室内热交换器发挥作为散热器的功能时检测所述制冷剂的出口温度,同时在所述室内热交换器发挥作为吸热器的功能时检测所述制冷剂的入口温度。 Element, the play for detecting an outlet temperature of the refrigerant as a function of a heat sink in the outdoor heat exchanger, while the refrigerant heat exchanger functions as detecting the function of the heat sink outside inlet temperature; a second refrigerant temperature detecting means, which is provided in the indoor unit, in the interior heat exchanger for detecting the refrigerant temperature at the outlet of the radiator as a function, while the indoor heat exchanger play an inlet temperature of the refrigerant detected as a heat sink function.
3.如权利要求1或2所述的冷暖气系统,其特征是:与所述制冷剂排出管连接的高压管内,在所述冷暖气系统的运转中,以超临界压力运转。 Heating and cooling system according to claim 12, wherein: the refrigerant discharge pipe connected to the high-pressure pipe, the operation of the heating and cooling system, supercritical pressure during operation.
4.如权利要求3所述的冷暖气系统,其特征是:作为所述制冷剂,使用二氧化碳。 4. The heating and cooling system according to claim 3, wherein: as a refrigerant, carbon dioxide is used.
CN 200610068101 2005-03-31 2006-03-21 Cooling and heating system CN1840992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100368A JP2006283989A (en) 2005-03-31 2005-03-31 Cooling/heating system

Publications (1)

Publication Number Publication Date
CN1840992A true CN1840992A (en) 2006-10-04

Family

ID=37030116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610068101 CN1840992A (en) 2005-03-31 2006-03-21 Cooling and heating system

Country Status (3)

Country Link
US (1) US20060218948A1 (en)
JP (1) JP2006283989A (en)
CN (1) CN1840992A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401450A (en) * 2010-09-08 2012-04-04 三星电子株式会社 Air conditioner and control method thereof
CN102713451A (en) * 2010-01-22 2012-10-03 三菱电机株式会社 Air conditioning-hot water supply combined system
CN102840726A (en) * 2011-06-23 2012-12-26 三星电子株式会社 Heat pump and method for controlling the same
CN104718414A (en) * 2012-10-18 2015-06-17 大金工业株式会社 Air conditioner
CN104755849B (en) * 2012-10-18 2017-04-05 大金工业株式会社 Air-conditioning device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055884B2 (en) * 2006-08-03 2012-10-24 ダイキン工業株式会社 Air conditioner
JP5055965B2 (en) * 2006-11-13 2012-10-24 ダイキン工業株式会社 Air conditioner
JP4708371B2 (en) * 2007-01-15 2011-06-22 三菱電機株式会社 Air conditioner
NO327832B1 (en) * 2007-06-29 2009-10-05 Sinvent As Vapor compression cooling system with closed circuit and the process feed for the operation of the system.
WO2009122476A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system
WO2009122512A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air conditioning apparatus
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
EP2416083B1 (en) * 2009-03-30 2017-05-31 Mitsubishi Electric Corporation Fluid heating system and method, and fluid heating control system, control device and control method
JP5253582B2 (en) * 2009-09-29 2013-07-31 三菱電機株式会社 Thermal storage hot water supply air conditioner
JP5404333B2 (en) * 2009-11-13 2014-01-29 三菱重工業株式会社 Heat source system
US20120222440A1 (en) * 2009-11-18 2012-09-06 Mitsubishi Electric Corporation Regrigeration cycle apparatus and information transfer method used therein
KR101153513B1 (en) * 2010-01-15 2012-06-11 엘지전자 주식회사 A refrigerant system and the method of controlling for the same
KR20110099558A (en) * 2010-03-02 2011-09-08 삼성전자주식회사 Heat pump system and control method thereof
KR101155497B1 (en) * 2010-04-23 2012-06-15 엘지전자 주식회사 Heat pump type speed heating apparatus
CN103080668B (en) * 2010-09-10 2015-05-06 三菱电机株式会社 Air-conditioning device
WO2012081052A1 (en) * 2010-12-15 2012-06-21 三菱電機株式会社 Combined air-conditioning and hot water supply system
EP2657628A4 (en) * 2010-12-22 2014-07-02 Mitsubishi Electric Corp Hot-water-supplying, air-conditioning composite device
JP5745637B2 (en) 2011-10-04 2015-07-08 三菱電機株式会社 Refrigeration cycle equipment
US9644876B2 (en) 2012-03-15 2017-05-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6301684B2 (en) * 2014-02-27 2018-03-28 株式会社前川製作所 CO2 water heater
US20180031282A1 (en) * 2016-07-26 2018-02-01 Lg Electronics Inc. Supercritical refrigeration cycle apparatus and method for controlling supercritical refrigeration cycle apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723953B2 (en) * 1989-02-27 1998-03-09 株式会社日立製作所 Air conditioning apparatus
GB2230873B (en) * 1989-02-27 1993-10-06 Toshiba Kk Multi-system air conditioning machine
US5065588A (en) * 1989-08-17 1991-11-19 Hitachi, Ltd. Air-conditioner system
KR100473823B1 (en) * 2002-08-06 2005-03-08 삼성전자주식회사 Air conditioner having cold and hot water supplying apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713451A (en) * 2010-01-22 2012-10-03 三菱电机株式会社 Air conditioning-hot water supply combined system
CN102713451B (en) * 2010-01-22 2015-11-25 三菱电机株式会社 Air-conditioning and water-heating complex system
CN102401450A (en) * 2010-09-08 2012-04-04 三星电子株式会社 Air conditioner and control method thereof
CN102401450B (en) * 2010-09-08 2016-03-30 三星电子株式会社 Air-conditioning and control method thereof
CN102840726A (en) * 2011-06-23 2012-12-26 三星电子株式会社 Heat pump and method for controlling the same
CN104718414A (en) * 2012-10-18 2015-06-17 大金工业株式会社 Air conditioner
CN104718414B (en) * 2012-10-18 2016-08-17 大金工业株式会社 Air-conditioning device
CN104755849B (en) * 2012-10-18 2017-04-05 大金工业株式会社 Air-conditioning device

Also Published As

Publication number Publication date
JP2006283989A (en) 2006-10-19
US20060218948A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US9534807B2 (en) Air conditioning apparatus with primary and secondary heat exchange cycles
EP2711652B1 (en) Integral air conditioning system for heating and cooling
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
DE102009014607B4 (en) Refrigerant cycle device
US8991204B2 (en) Refrigerating apparatus
JP5121922B2 (en) Air conditioning and hot water supply complex system
TWI252904B (en) Refrigerator
JP4959800B2 (en) Operation control method of refrigeration cycle apparatus
JP5349686B2 (en) Refrigeration cycle equipment
US8752397B2 (en) Air-conditioning apparatus
JP4670329B2 (en) Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
JP4651627B2 (en) Refrigeration air conditioner
US6923016B2 (en) Refrigeration cycle apparatus
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP3972860B2 (en) Refrigeration equipment
EP3076094B1 (en) Refrigeration and air-conditioning apparatus
AU2006263260B2 (en) Hotwater supply device
EP2325577B1 (en) Heat pump
US8047011B2 (en) Refrigeration system
US9638447B2 (en) Air-conditioning apparatus
JP5306449B2 (en) Air conditioner
JPWO2009098751A1 (en) Air conditioning and hot water supply complex system
JP5855312B2 (en) Air conditioner
CN100453924C (en) Air conditioner

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)