JPH11270920A - Multifunctional heat pump system and method of its operation control - Google Patents

Multifunctional heat pump system and method of its operation control

Info

Publication number
JPH11270920A
JPH11270920A JP7197098A JP7197098A JPH11270920A JP H11270920 A JPH11270920 A JP H11270920A JP 7197098 A JP7197098 A JP 7197098A JP 7197098 A JP7197098 A JP 7197098A JP H11270920 A JPH11270920 A JP H11270920A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
heat exchanger
hot water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7197098A
Other languages
Japanese (ja)
Inventor
Masaki Toyoshima
正樹 豊島
Hitoshi Iijima
等 飯島
Tetsuji Nanatane
哲二 七種
Keiji Kurokawa
惠兒 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kyushu Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kyushu Electric Power Co Inc
Priority to JP7197098A priority Critical patent/JPH11270920A/en
Publication of JPH11270920A publication Critical patent/JPH11270920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a multifunctional heat pump system capable of performing a cooling and heating operation, a hot water supply operation, a heat storage operation, a cold heat storage operation and multifunctional operations thereof. SOLUTION: A refrigerating cycle is composed of a compressor 1, an outdoor heat exchanger 2, an indoor heat exchanger 3, a cold heat storage tank 4 and a hot water supply heat exchanger 5. The outlet piping of the compressor is divided into two directions. One pipeline is connected to a four-way valve 8 through an evaporation pressure regulating valve 9 and a sixth valve SV6 in parallel therewith via a first valve SV1, a four-way valve 8, the outdoor heat exchanger 2, a second valve SV2, regulating valves V1 and V2 and the indoor heat exchanger 3 to form a circuit 35. The other pipeline includes a circuit 36 combined with the second valve SV2 through a regulating valve V3 for the hot water supply heat exchanger via a fourth valve SV4 and the hot water supply heat exchanger 5, a circuit 37 combined with the second valve SV2 through a regulating valve V4 via a third valve SV3 and the cold heat storage tank 4 by branching from the upstream side of the fourth valve SV4 and a circuit 38 combined with an inlet side through a valve SV5 by branching from the downstream side of the third valve SV3. Thus, before the start of an operation mode in which the shortage of refrigerant is anticipated, the refrigerant is recovered to the heat exchanger of a condensation side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷暖房・給湯・蓄
熱・蓄冷の単独運転およびそれらの重複運転を可能とし
た多機能ヒートポンプシステムおよびその運転制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multifunctional heat pump system capable of independent operation of heating and cooling, hot water supply, heat storage, and cold storage, and an overlap operation thereof, and a method of controlling the operation thereof.

【0002】[0002]

【従来の技術】近年の夏期電力ピーク時の電力消費量増
大は、電力安定供給の妨げ、設備投資費の高騰などを招
き、ピーク時の電力消費量低減は社会的要請事項となっ
ている。従来、電力負荷平準策として、夜間にヒートポ
ンプを用いた蓄冷・蓄熱運転を行い、昼間のピーク時に
蓄冷・蓄熱源を利用した冷暖房負荷低減が行われてい
る。また、夜間電力を利用した給湯運転は、夜間の割安
な電力料金制度の適用を受けることが可能となりランニ
ングコストの低減が可能となる。
2. Description of the Related Art In recent years, an increase in power consumption at the peak of summer power has hindered a stable supply of power and caused a rise in capital investment costs, and reduction of power consumption during peak times has become a social requirement. Conventionally, as a power load leveling measure, a cool storage / heat storage operation using a heat pump is performed at night and a cooling / heating load reduction using a cool storage / heat storage source is performed at a peak in the daytime. In addition, the hot water supply operation using nighttime electric power can be applied to a low-cost nighttime electric power rate system, and the running cost can be reduced.

【0003】従来は、蓄冷・蓄熱機能を備えた空調シス
テムと給湯システムとは別の装置である場合が多く、別
々の熱源を必要とするため熱の有効利用ができず、装置
全体も大型化するという問題点があった。ひとつのヒー
トポンプシステムにて冷暖房・給湯・蓄熱・蓄冷などの
運転が可能なシステムとしては、特許第2665310
号公報、特開平5−172436号公報などの例が知ら
れている。図18に特許第2665310号公報に示さ
れたヒートポンプシステムを示す。図18において、4
0はヒートポンプ、41は冷暖房用熱交換器、42は給
湯用熱交換器、43は冷暖房負荷、44は負荷用熱交換
器、45は蓄冷熱槽、46は貯湯槽、47は浴槽、48
は加熱用熱交換器で、またSV1〜SV6およびP1〜
P4はそれぞれ冷媒回路中に設けられた電磁弁とポンプ
である。図18のシステムは、冷暖房、蓄冷運転時にヒ
ートポンプ40と熱交換を行った熱媒体をポンプP1、
P2にて循環させる方式であり、熱搬送ロス、ポンプ動
力ロスなどのエネルギーロスが生じて熱利用効率が低下
するという問題点があった。また、冷房と蓄冷の同時運
転ができないなど複合運転を行う上での制約があった。
Conventionally, an air conditioning system having a cold storage / heat storage function and a hot water supply system are often separate devices, and since separate heat sources are required, heat cannot be effectively used, and the entire device becomes larger. There was a problem of doing. Japanese Patent No. 2665310 discloses a system capable of performing operations such as cooling and heating, hot water supply, heat storage, and cold storage with one heat pump system.
And Japanese Patent Application Laid-Open No. 5-172436 are known. FIG. 18 shows a heat pump system disclosed in Japanese Patent No. 2665310. In FIG. 18, 4
0 is a heat pump, 41 is a cooling / heating heat exchanger, 42 is a hot water supply heat exchanger, 43 is a cooling / heating load, 44 is a load heat exchanger, 45 is a cold storage heat tank, 46 is a hot water storage tank, 47 is a bathtub, 48
Is a heat exchanger for heating, and SV1 to SV6 and P1 to
P4 is an electromagnetic valve and a pump provided in the refrigerant circuit, respectively. The system shown in FIG. 18 uses the heat medium that has exchanged heat with the heat pump 40 during the cooling / heating operation and the cold storage operation to pump P1,
This is a method of circulating at P2, and there is a problem that energy loss such as heat transfer loss and pump power loss occurs, and heat utilization efficiency is reduced. In addition, there is a restriction in performing combined operation, such as simultaneous operation of cooling and cold storage cannot be performed.

【0004】図19に特開平5−172436号公報に
示されたヒートポンプシステムを示す。図19におい
て、50a、50bは圧縮機、51は室外熱交換器、5
2は室内熱交換器、53は蓄冷熱槽、54は給湯熱交換
器、55a、55bは油分離器、56a、56bは毛細
管、57a、57bは圧縮機の容量制御を行うインバー
タ、58a、58bはアキュムレータ、EV1〜EV3
は膨張弁、SV1〜SV9は電磁弁、CV1、CV2は
逆止弁である。図19のシステムでは、蒸発温度の大き
く異なる蓄冷(蒸発温度約0℃〜約30℃)と冷房(蒸
発温度約10℃)の同時運転、凝縮温度の大きく異なる
蓄熱(凝縮温度約5℃〜約40℃)と暖房(凝縮温度約
45℃)の同時運転など2蒸発温度、2凝縮温度を生成
する必要がある複合運転においても2つの圧縮機50
a、50bを稼動させることにより運転可能としている
が、圧縮機が2台以上必要であり、また2台の圧縮機へ
の均等返油制御などやや複雑な制御を必要とした。
FIG. 19 shows a heat pump system disclosed in Japanese Patent Application Laid-Open No. 5-172436. In FIG. 19, 50a and 50b are compressors, 51 is an outdoor heat exchanger, 5
2 is an indoor heat exchanger, 53 is a cold storage heat tank, 54 is a hot water supply heat exchanger, 55a and 55b are oil separators, 56a and 56b are capillary tubes, 57a and 57b are inverters for controlling the capacity of the compressor, 58a and 58b. Is an accumulator, EV1 to EV3
Is an expansion valve, SV1 to SV9 are solenoid valves, and CV1 and CV2 are check valves. In the system of FIG. 19, simultaneous operation of cold storage (evaporation temperature of about 0 ° C. to about 30 ° C.) and cooling (evaporation temperature of about 10 ° C.) of greatly different evaporation temperatures, and heat storage (condensation temperature of about 5 ° C. to about (40 ° C.) and heating (condensing temperature of about 45 ° C.).
Although it is possible to operate by operating a and 50b, two or more compressors are required, and a somewhat complicated control such as equal oil return control to the two compressors is required.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な課題を解決するためになされたもので、一つの冷凍サ
イクルシステムにて、冷暖房、給湯、蓄熱、蓄冷および
それらの重複運転を可能とする多機能ヒートポンプシス
テムを提供することを目的とする。また、本発明の他の
目的は、多機能ヒートポンプシステムの運転モードの実
施に必要な冷媒量および冷凍機油を確保するために、冷
媒が溜まり込んでいる他の熱交換器からその運転モード
で使用される熱交換器に安全かつ確実に冷媒を回収する
ことを可能とする多機能ヒートポンプシステムの運転制
御方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and enables a single refrigeration cycle system to perform heating and cooling, hot water supply, heat storage, cold storage and their overlapping operation. It is an object of the present invention to provide a multifunctional heat pump system. Further, another object of the present invention is to use the multi-function heat pump system in the operation mode from another heat exchanger in which the refrigerant is accumulated in order to secure the amount of refrigerant and the refrigerating machine oil necessary for performing the operation mode. It is an object of the present invention to provide an operation control method of a multifunctional heat pump system that enables safe and reliable recovery of a refrigerant to a heat exchanger to be performed.

【0006】[0006]

【課題を解決するための手段】本発明においては、以下
のように多機能ヒートポンプシステムを構成することに
より前記課題を解決したものである。 (請求項1)1台の圧縮機を備え、該圧縮機と、室外熱
交換器、室内熱交換器、蓄冷熱槽および給湯熱交換器と
を接続した冷媒回路により構成され、それぞれの熱交換
器への冷媒の流れを切り換えることにより、冷暖房・給
湯・蓄熱・蓄冷の単独運転およびそれらの複合運転を可
能とする冷凍サイクルを構成する。 (請求項2)1台の圧縮機と、室外熱交換器、室内熱交
換器、蓄冷熱槽および給湯熱交換器とを接続して冷凍サ
イクルを構成し、圧縮機吐出側配管を二方向に分岐し
て、一方は第1の弁、切換弁、室外熱交換器、第2の
弁、流量調整弁、室内熱交換器を経て、蒸発圧力調整弁
と並列に設けられた第6の弁を介して前記切換弁に接続
し、さらに該切換弁と圧縮機吸入側配管を接続してなる
冷媒回路と、他方は第4の弁、給湯熱交換器を経て、室
内熱交換器用流量調整弁と並列に設けられた給湯熱交換
器用流量調整弁を介して前記第2の弁に合流接続される
冷媒回路と、前記第4の弁の上流より分岐して第3の
弁、蓄冷熱槽を経て、前記室内熱交換器用流量調整弁と
並列に設けられた蓄冷熱槽用流量調整弁を介して前記第
2の弁に合流接続される冷媒回路と、前記第3の弁の下
流より分岐して第5の弁を介して前記圧縮機吸入側配管
に合流接続される冷媒吸入回路と、を備えた構成とす
る。 (請求項3)請求項2の発明において、室外ユニット、
分岐ユニット、室内機、蓄冷熱槽、給湯タンクの各ユニ
ットにて構成され、前記分岐ユニット内に給湯熱交換器
と少なくとも流量調整弁を備え、前記室外ユニット、前
記室内機、前記蓄冷熱槽、前記給湯タンクにそれぞれ接
続される配管部分を備えた構成とする。 (請求項4)請求項2または請求項3の発明において、
蓄冷熱槽側の冷媒回路に設けられた前記第3の弁に対し
て並列にキャピラリーチューブと第7の弁を設けること
により、蓄熱と暖房、あるいは蓄熱と給湯の同時運転が
可能な構成とする。
In the present invention, the above-mentioned problems have been solved by constructing a multifunctional heat pump system as follows. (Claim 1) A refrigerant circuit comprising one compressor and connecting the compressor with an outdoor heat exchanger, an indoor heat exchanger, a cold storage heat tank and a hot water supply heat exchanger, each of which is a heat exchanger. By switching the flow of the refrigerant to the vessel, a refrigeration cycle that enables independent operation of cooling / heating, hot water supply, heat storage, and cold storage and a combined operation thereof is configured. (Claim 2) One refrigerator is connected to an outdoor heat exchanger, an indoor heat exchanger, a cold storage heat tank and a hot water supply heat exchanger to form a refrigeration cycle, and the compressor discharge side pipes are connected in two directions. After branching, one is provided with a sixth valve provided in parallel with the evaporating pressure regulating valve via a first valve, a switching valve, an outdoor heat exchanger, a second valve, a flow regulating valve, and an indoor heat exchanger. A refrigerant circuit connected to the switching valve via the switching valve, and further connected to the switching valve and a compressor suction side pipe, and a fourth valve, a hot water supply heat exchanger, and a flow control valve for an indoor heat exchanger. A refrigerant circuit joined to the second valve via a flow control valve for a hot water supply heat exchanger provided in parallel, a third valve branched from an upstream of the fourth valve and a cold storage tank Is connected to the second valve via a flow control valve for a regenerator provided in parallel with the flow control valve for the indoor heat exchanger. And medium circuit, a structure in which and a refrigerant suction circuit that is merged connected to the compressor intake piping via a fifth valve branches downstream of said third valve. (Claim 3) In the invention of claim 2, an outdoor unit,
A branch unit, an indoor unit, a regenerative heat storage tank, each unit of a hot water supply tank, including a hot water supply heat exchanger and at least a flow control valve in the branch unit, the outdoor unit, the indoor unit, the regenerative heat storage tank, It is configured to include a pipe portion connected to each of the hot water supply tanks. (Claim 4) In the invention of claim 2 or claim 3,
By providing a capillary tube and a seventh valve in parallel with the third valve provided in the refrigerant circuit on the cold storage heat tank side, heat storage and heating or heat storage and hot water supply can be operated simultaneously. .

【0007】また、本発明に係る多機能ヒートポンプシ
ステムの運転制御方法は、以下のように構成することに
より前記課題を解決したものである。 (請求項5)請求項1〜4のいずれかに記載の多機能ヒ
ートポンプシステムの運転方法において、冷媒不足が予
想される特定の運転モード開始前に、冷媒回収運転時と
冷媒回収後に四方弁または同等の機能を有する切換弁の
切り換えを行うことなく、その運転モードで利用される
凝縮側熱交換器に冷媒回収を行う。 (請求項6)請求項5の発明において、冷媒回収を行う
場合に、一定時間だけ回収運転を行う。 (請求項7)請求項5の発明において、冷媒回収を行う
場合に、圧縮機吸入側配管に取り付けられた圧力センサ
が、所定の圧力に達するまで回収運転を行う。
[0007] Further, an operation control method for a multifunctional heat pump system according to the present invention solves the above-mentioned problem by being configured as follows. (Claim 5) In the operation method of the multifunctional heat pump system according to any one of claims 1 to 4, before starting a specific operation mode in which refrigerant shortage is expected, during a refrigerant recovery operation and after refrigerant recovery, a four-way valve or The refrigerant is recovered in the condensing-side heat exchanger used in the operation mode without switching the switching valve having the same function. (Claim 6) In the invention of claim 5, when recovering the refrigerant, the recovery operation is performed for a fixed time. (Claim 7) In the invention of claim 5, when recovering the refrigerant, the pressure sensor attached to the compressor suction side pipe performs the recovery operation until the pressure reaches a predetermined pressure.

【0008】[0008]

【発明の実施の形態】実施形態1.図1は本発明の多機
能ポンプシステムの全体構成を示す回路図である。本発
明の多機能ポンプシステムは、圧縮機1、室外熱交換器
2、四方弁8、第1の電磁弁SV1および冷媒回路の接
続端15〜18を備えた室外ユニット13と、給湯熱交
器5、第2から第6の電磁弁SV2〜SV6、第1から
第4の流量調整弁V1〜V4、蒸発圧力調整弁9、水用
流量調整弁10、水用ポンプ11および冷媒回路の接続
端19〜22と23〜28、および給湯回路の接続端2
9、30を備えた分岐ユニット14と、この分岐ユニッ
ト14の接続端23〜30にそれぞれ接続される室内機
(または室内熱交換器ともいう)3、蓄冷熱槽4および
給湯タンク6とから構成されている。7は給湯タンク6
内の水を加熱する給湯ヒータである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. FIG. 1 is a circuit diagram showing the overall configuration of the multifunctional pump system of the present invention. The multifunctional pump system of the present invention includes an outdoor unit 13 including a compressor 1, an outdoor heat exchanger 2, a four-way valve 8, a first solenoid valve SV1, and connection terminals 15 to 18 of a refrigerant circuit, and a hot water supply heat exchanger. 5, connection terminals of second to sixth solenoid valves SV2 to SV6, first to fourth flow control valves V1 to V4, evaporation pressure control valve 9, water flow control valve 10, water pump 11, and refrigerant circuit 19-22 and 23-28, and connection end 2 of hot water supply circuit
A branch unit 14 including the branch units 9 and 30; an indoor unit (also referred to as an indoor heat exchanger) 3 connected to each of the connection ends 23 to 30 of the branch unit 14; a cold storage heat tank 4 and a hot water supply tank 6 Have been. 7 is a hot water tank 6
It is a hot water heater that heats the water inside.

【0009】室外ユニット13は、1台の圧縮機1を備
え、その吐出側配管は二方向に分岐され、分岐部31か
らの一方の分岐配管は第1の電磁弁SV1および四方弁
8を介して室外熱交換器2に接続され、他方の分岐配管
は接続端18に接続され、接続端15は室外熱交換器2
の他方側に接続され、接続端17は圧縮機1の吸入側配
管に接続され、接続端16は四方弁8を介して圧縮機1
の吸入側に接続される回路構成となっている。なお、1
2は圧縮機1の吸入配管に設けられた圧力センサであ
る。
The outdoor unit 13 has one compressor 1, and its discharge-side pipe is branched in two directions. One branch pipe from the branch part 31 is connected via the first solenoid valve SV 1 and the four-way valve 8. To the outdoor heat exchanger 2, the other branch pipe is connected to the connection end 18, and the connection end 15 is connected to the outdoor heat exchanger 2.
The other end of the compressor 1 is connected to a suction pipe of the compressor 1, and the connection end 16 is connected to the compressor 1 via a four-way valve 8.
The circuit configuration is connected to the suction side. In addition, 1
Reference numeral 2 denotes a pressure sensor provided in a suction pipe of the compressor 1.

【0010】分岐ユニット14は、室外ユニット13の
接続端15〜18にそれぞれ接続される接続端19〜2
2を有し、接続端15に接続される接続端19は第2の
電磁弁SV2および分岐部32において第1から第4の
流量調整弁V1〜V4が並列に接続されており、第1、
第2の流量調整弁V1、V2はそれぞれ接続端23、2
4に接続され、第3の流量調整弁V3は給湯熱交換器5
の一方側に接続され、第4の流量調整弁V4は接続端2
7に接続され、接続端18に接続される接続端22は第
4の電磁弁SV4を介して給湯熱交換器5の他方側に接
続され、接続端17に接続される接続端21は第5の電
磁弁SV5、分岐部34を介して接続端28に接続する
とともに、分岐部34と第4の電磁弁SV4より上流側
の分岐部33との間に第3の電磁弁SV3を接続し、接
続端16に接続される接続端20は蒸発圧力調整弁9と
並列に接続された第6の電磁弁SV6を介して接続端2
5と接続端26にそれぞれ接続され、接続端29、30
はそれぞれ給湯タンク6の配管に接続される回路構成と
なっている。そして、この分岐ユニット14の上記4つ
の接続端23〜26は、ここでは2台の室内機3をそれ
ぞれ並列に接続するために使用され、また接続端27と
28は蓄冷熱槽4に接続されている。
The branch unit 14 has connection ends 19 to 2 connected to connection ends 15 to 18 of the outdoor unit 13, respectively.
2 and a connection end 19 connected to the connection end 15 is configured such that the first to fourth flow control valves V1 to V4 are connected in parallel at the second solenoid valve SV2 and the branch portion 32,
The second flow control valves V1 and V2 are connected to connection ends 23 and 2 respectively.
4 and the third flow control valve V3 is connected to the hot water supply heat exchanger 5
And the fourth flow control valve V4 is connected to the connection end 2
7 is connected to the other end of the hot water supply heat exchanger 5 via a fourth solenoid valve SV4, and the connection end 21 connected to the connection end 17 is connected to the fifth end. And the third solenoid valve SV3 is connected between the branch portion 34 and the branch portion 33 on the upstream side of the fourth solenoid valve SV4, while the solenoid valve SV5 is connected to the connection end 28 via the branch portion 34, The connection end 20 connected to the connection end 16 is connected to the connection end 2 via a sixth solenoid valve SV6 connected in parallel with the evaporation pressure regulating valve 9.
5 and a connection end 26, respectively, and connection ends 29 and 30
Have a circuit configuration connected to the piping of the hot water supply tank 6, respectively. The four connection ends 23 to 26 of the branch unit 14 are used here to connect the two indoor units 3 in parallel, and the connection ends 27 and 28 are connected to the cold storage heat tank 4. ing.

【0011】したがって、この多機能ヒートポンプシス
テムは、圧縮機吐出側配管を分岐部31にて二方向に分
岐し、一方は第1の電磁弁SV1、四方弁8、室外熱交
換器2、第2の電磁弁SV2、室内熱交換器用の第1、
第2の流量調整弁V1、V2、室内熱交換器3を経て、
蒸発圧力調整弁9と並列に設けられた第6の電磁弁SV
6を介して四方弁8に接続し、さらに四方弁8と圧縮機
吸入側配管を接続してなる室内熱交換器側冷媒回路35
と、他方は第4の電磁弁SV4、給湯熱交換器5を経
て、室内熱交換器用流量調整弁V1、V2と並列に設け
られた給湯熱交換器用の第3の流量調整弁V3を介して
第2の電磁弁SV2に分岐部32にて合流接続される給
湯熱交換器側冷媒回路36と、第4の電磁弁SV4の上
流より分岐(分岐部33)して第3の電磁弁SV3、蓄
冷熱槽4を経て、室内熱交換器用流量調整弁V1、V2
と並列に設けられた蓄冷熱槽用の第4の流量調整弁V4
を介して第2の電磁弁SV2に合流接続される蓄冷熱槽
側冷媒回路37と、第3の電磁弁SV3の下流より分岐
(分岐部34)して第5の電磁弁SV5を介して圧縮機
吸入側配管に合流接続される冷媒吸入回路38とを備え
た構成となっている。
Therefore, in this multifunctional heat pump system, the compressor discharge side pipe is branched in two directions at the branch part 31, one of which is the first solenoid valve SV1, the four-way valve 8, the outdoor heat exchanger 2, the second Solenoid valve SV2, the first for indoor heat exchanger,
Through the second flow control valves V1, V2 and the indoor heat exchanger 3,
Sixth solenoid valve SV provided in parallel with evaporation pressure regulating valve 9
6, the indoor heat exchanger side refrigerant circuit 35 which is connected to the four-way valve 8 and further connects the four-way valve 8 to the compressor suction side pipe.
And the other via a fourth solenoid valve SV4 and a hot water supply heat exchanger 5, via a third flow control valve V3 for the hot water supply heat exchanger provided in parallel with the flow control valves V1 and V2 for the indoor heat exchanger. A hot water supply heat exchanger side refrigerant circuit 36 that is connected to the second solenoid valve SV2 at the branch portion 32; and a third solenoid valve SV3 that branches off (branch portion 33) from upstream of the fourth solenoid valve SV4. After passing through the cold storage heat tank 4, the flow rate regulating valves V1, V2 for the indoor heat exchanger
Flow control valve V4 for regenerative heat storage tank provided in parallel with
And the refrigerant circuit 37 connected to the second regenerative valve SV2 via the second solenoid valve SV2, and branches (branch 34) from the downstream of the third solenoid valve SV3 and is compressed via the fifth solenoid valve SV5. The refrigerant suction circuit 38 is connected to the machine suction side pipe.

【0012】以上のように多機能ヒートポンプシステム
を構成することにより、通常の冷房・暖房運転に加え
て、放冷冷房、放熱暖房、蓄冷、蓄熱、給湯、冷房・給
湯同時、蓄冷・冷房同時、蓄冷・給湯同時、蓄冷・冷房
・給湯同時、給湯・暖房同時などの各運転が可能とな
る。また、上記のように、冷媒の分岐回路部分、給湯熱
交換器およびポンプなどを分岐ユニット14内に収めて
ひとつのユニット構成とすることにより、図17に示す
ように既存の室外ユニット13、室内機3、蓄冷熱槽
4、給湯タンク6にほとんど改造を加えることなく、本
発明の多機能ヒートポンプシステムを構成することが可
能となる。
By configuring the multifunctional heat pump system as described above, in addition to normal cooling / heating operation, cooling / cooling, radiation / heating, cold storage, heat storage, hot water supply, simultaneous cooling / hot water supply, simultaneous cold storage / cooling, Each operation such as simultaneous cold storage / hot water supply, simultaneous cold storage / cooling / hot water supply, and simultaneous hot water supply / heating can be performed. In addition, as described above, the branch circuit portion of the refrigerant, the hot water supply heat exchanger, the pump, and the like are housed in the branch unit 14 to form a single unit configuration. As shown in FIG. The multifunctional heat pump system of the present invention can be configured with little modification to the machine 3, the cold storage tank 4, and the hot water tank 6.

【0013】表1に各運転モードごとの電磁弁SV1〜
SV6、流量調整弁V1〜V4の開閉状態を示す。な
お、図または表中、電磁弁SVと記されている弁につい
ては、開閉の機能を有した弁、例えば流量調整弁に置き
換えることも可能である。
Table 1 shows the solenoid valves SV1 to SV1 for each operation mode.
SV6 shows the open / close state of the flow control valves V1 to V4. In the figures and tables, the valve described as the solenoid valve SV can be replaced with a valve having an opening / closing function, for example, a flow regulating valve.

【0014】[0014]

【表1】 [Table 1]

【0015】以下、図2〜図8により各運転モードの具
体的な冷媒の流れについて説明する。各図中、冷媒の流
れを実線の矢印で示す。
Hereinafter, the specific flow of the refrigerant in each operation mode will be described with reference to FIGS. In each figure, the flow of the refrigerant is indicated by solid arrows.

【0016】(1)放冷冷房運転 図2は放冷冷房運転時の冷媒の流れを表す図である。こ
の場合には、第3と第6の電磁弁を開き、第1、第2、
第4、第5の電磁弁は閉じおく。また、第1、第2の流
量調整弁は絞り状態に開き、第4の流量調整弁は全開に
し、第3の流量調整弁は閉じておく。蒸発圧力調整弁9
は閉じておく。また、四方弁8は接続端16が圧縮機1
の冷媒吸入側に連通するように切り換えておく。上記の
各弁の開・閉状態の場合、圧縮機1より吐出された高圧
冷媒は、分岐部31より接続端18、22を経て第3の
電磁弁SV3を通り、さらに接続端28を経て蓄冷熱槽
4に入り、この蓄冷熱槽4にて、夜間電力で作られた氷
と熱交換を行い凝縮して液冷媒となったのち、接続端2
7より第4の流量調整弁(全開)V4を経てそれぞれ第
1、2の流量調整弁V1、V2にて分流しつつ絞られ、
低圧二相冷媒となったのち、接続端23、24より各室
内機3に入り、各室内機3にて蒸発、ガス冷媒となり、
さらにそれぞれ接続端25、26を通り合流して第6の
電磁弁SV6、接続端20、16、四方弁8を経て再び
圧縮機1へ吸入される。なお、第1または第2の流量調
整弁を閉じて室内機1台のみの運転も可能である。
(1) Cooling / cooling operation FIG. 2 is a diagram showing the flow of refrigerant during cooling / cooling operation. In this case, the third and sixth solenoid valves are opened, and the first, second,
The fourth and fifth solenoid valves are closed. Further, the first and second flow control valves are opened in a throttled state, the fourth flow control valve is fully opened, and the third flow control valve is closed. Evaporation pressure control valve 9
Is closed. The four-way valve 8 has a connection end 16 at the compressor 1.
In order to communicate with the refrigerant suction side. In the open / closed state of each of the above valves, the high-pressure refrigerant discharged from the compressor 1 passes through the third solenoid valve SV3 from the branch portion 31 through the connection ends 18 and 22, and further cools through the connection end 28. After entering the heat tank 4, in the cold storage heat tank 4, heat exchange is performed with ice produced by night power and condensed to become a liquid refrigerant.
7 through a fourth flow control valve (fully open) V4, and are throttled while being diverted by the first and second flow control valves V1 and V2, respectively.
After becoming a low-pressure two-phase refrigerant, it enters each indoor unit 3 from the connection ends 23 and 24, evaporates and becomes a gas refrigerant in each indoor unit 3,
Further, they are merged through the connection ends 25 and 26, respectively, and are sucked into the compressor 1 again through the sixth solenoid valve SV6, the connection ends 20 and 16, and the four-way valve 8. In addition, it is also possible to operate only one indoor unit by closing the first or second flow control valve.

【0017】この冷凍サイクルでは、蓄冷熱槽4内の氷
または冷水を利用して冷媒の凝縮を行わせるため、通常
の冷房運転のように外気と熱交換を行わせる場合に比べ
て、冷房能力が向上し、かつ効率の良い運転が可能とな
る。また安価な深夜電力を利用して蓄冷を行うので、ラ
ンニングコストの低減や昼間の電力ピークカットが実現
できる。この運転モードは、夏期昼間の電力ピーク時間
帯に蓄冷熱源が利用可能であり、かつユーザーからの冷
房要求がある場合に運転される。
In this refrigeration cycle, since the refrigerant is condensed by using ice or cold water in the cold storage heat tank 4, the cooling capacity is lower than that in the case of performing heat exchange with the outside air as in a normal cooling operation. , And efficient operation becomes possible. In addition, since cold storage is performed using inexpensive late-night power, running costs can be reduced and peak power during the day can be reduced. This operation mode is operated when the cold storage heat source is available and there is a cooling request from the user during the peak power hours during the daytime in summer.

【0018】(2)放熱暖房運転 図3は放熱暖房運転時の冷媒の流れを表す図である。こ
の場合には、第1、第5、第6の電磁弁を開き、第2、
第3、第4の電磁弁は閉じておく。また、第1、第2の
流量調整弁は絞り状態に開き、第4の流量調整弁は全開
にし、第3の流量調整弁は閉じておく。蒸発圧力調整弁
9も閉じておく。また、四方弁8は接続端16が圧縮機
1の冷媒吐出側に連通するように切り換えておく。上記
の各弁の開・閉状態の場合、圧縮機1より吐出された高
圧冷媒は、分岐部31より第1の電磁弁SV1、四方弁
8、接続端16、20を経て第6の電磁弁SV6を通
り、接続端25、26より各室内機3に入り、各室内機
3にて熱交換を行い凝縮して液冷媒となったのち、それ
ぞれ接続端23、24を経て第1、2流量調整弁V1、
V2にて絞られ低圧二相冷媒となり、第4の流量調整弁
(全開)V4を経て、接続端27より蓄冷熱槽4に入
り、蓄冷熱槽4にて高温の温水と熱交換し蒸発、ガス冷
媒となり、接続端28、第5の電磁弁SV5、接続端2
1、17を経て再び圧縮機1へ吸入される。なお、この
場合においても第1または第2の流量調整弁を閉じて室
内機1台の運転も可能である。
(2) Radiation and heating operation FIG. 3 is a diagram showing the flow of refrigerant during the radiation and heating operation. In this case, the first, fifth and sixth solenoid valves are opened and the second and fifth solenoid valves are opened.
The third and fourth solenoid valves are closed. Further, the first and second flow control valves are opened in a throttled state, the fourth flow control valve is fully opened, and the third flow control valve is closed. The evaporation pressure regulating valve 9 is also closed. The four-way valve 8 is switched so that the connection end 16 communicates with the refrigerant discharge side of the compressor 1. In the open / closed state of each of the above valves, the high-pressure refrigerant discharged from the compressor 1 passes through the first solenoid valve SV 1, the four-way valve 8, and the connection terminals 16 and 20 from the branch portion 31 to the sixth solenoid valve. After passing through the SV 6, each of the indoor units 3 enters the indoor unit 3 from the connection end 25, 26, exchanges heat in each indoor unit 3, condenses into a liquid refrigerant, and then flows through the connection end 23, 24 to the first and second flow rates. Regulating valve V1,
The refrigerant is throttled at V2, becomes a low-pressure two-phase refrigerant, passes through a fourth flow control valve (fully opened) V4, enters the cold storage heat tank 4 from the connection end 27, exchanges heat with high-temperature hot water in the cold storage heat tank 4, and evaporates. It becomes a gas refrigerant, the connection end 28, the fifth solenoid valve SV5, the connection end 2
The refrigerant is sucked into the compressor 1 again via the compressors 1 and 17. In this case, it is also possible to operate one indoor unit by closing the first or second flow control valve.

【0019】この冷凍サイクルでは、蓄冷熱槽4内の温
水を利用して冷媒の蒸発を行わせるため、通常の暖房運
転のように外気と熱交換を行わせる場合に比べて、暖房
能力が向上し、かつ効率の良い運転が可能となり、暖房
能力の立上がりも早くなる。また安価な深夜電力を利用
して蓄熱を行うので、昼間の暖房電力ピークカットが実
現できる。この運転モードは、冬期に蓄冷熱槽の温水熱
源が使用可能であり、かつユーザーからの暖房要求があ
る場合に運転される。
In this refrigeration cycle, the refrigerant is evaporated using hot water in the cold storage heat tank 4, so that the heating capacity is improved as compared with a case where heat exchange is performed with the outside air as in a normal heating operation. In addition, efficient operation becomes possible, and the rise of the heating capacity is quickened. In addition, since heat is stored using inexpensive late-night power, peak heating power during the day can be cut. This operation mode is operated when the hot water heat source of the cold storage heat tank can be used in winter and there is a heating request from the user.

【0020】(3)冷房・給湯同時運転 図4は冷房・給湯同時運転時の冷媒の流れを表す図であ
る。この場合には、第4、第6の電磁弁を開き、第1、
第2、第3、第5の電磁弁は閉じておく。また、第1、
第2の流量調整弁は絞り状態に開き、第3の流量調整弁
は全開にし、第4の流量調整弁は閉じておく。蒸発圧力
調整弁9も閉じておく。また、四方弁8は接続端16が
圧縮機1の冷媒吸入側に連通するように切り換えてお
く。上記の各弁の開・閉状態の場合、圧縮機1より吐出
された高圧冷媒は、分岐部31より接続端18、22を
経て第4の電磁弁SV4を通り、給湯熱交換器5に入
り、給湯熱交換器4にて給湯タンク6の水と熱交換を行
うことにより凝縮して液冷媒となったのち、第3の流量
調整弁(全開)V3を経てそれぞれ第1、2の流量調整
弁V1、V2にて分流しつつ絞られ、低圧二相冷媒とな
ったのち、接続端23、24より各室内機3に入り、各
室内機3にて蒸発、ガス冷媒となり、接続端24、25
を経て第6の電磁弁SV6、接続端20、16、四方弁
8を経て再び圧縮機1へ吸入される。また、給湯タンク
6内の水の流れは、水用ポンプ11により給湯タンク6
の下部から接続端29を経て給湯熱交換器5に入り、さ
らに接続端30より給湯タンク6の上部へ循環されてい
る。
(3) Simultaneous Cooling / Hot Water Supply Operation FIG. 4 is a diagram showing the flow of refrigerant during simultaneous cooling / hot water supply operation. In this case, the fourth and sixth solenoid valves are opened, and the first and second solenoid valves are opened.
The second, third, and fifth solenoid valves are closed. First,
The second flow control valve is opened to the throttle state, the third flow control valve is fully opened, and the fourth flow control valve is closed. The evaporation pressure regulating valve 9 is also closed. The four-way valve 8 is switched so that the connection end 16 communicates with the refrigerant suction side of the compressor 1. In the open / closed state of each of the above valves, the high-pressure refrigerant discharged from the compressor 1 enters the hot water supply heat exchanger 5 from the branch portion 31 through the connection ends 18 and 22 and the fourth solenoid valve SV4. After the heat exchange with the water in the hot water supply tank 6 in the hot water supply heat exchanger 4, the refrigerant is condensed to become a liquid refrigerant, and then the first and second flow rates are respectively adjusted through the third flow rate control valve (fully opened) V3. After being shunted while being diverted by the valves V1 and V2, the refrigerant becomes a low-pressure two-phase refrigerant, enters the indoor units 3 from the connection terminals 23 and 24, evaporates and becomes a gas refrigerant in each indoor unit 3, and becomes a gas refrigerant. 25
Through the sixth solenoid valve SV6, the connection ends 20, 16 and the four-way valve 8 to be sucked into the compressor 1 again. The flow of water in the hot water supply tank 6 is controlled by the water pump 11.
Of the hot water supply heat exchanger 5 through the connection end 29 from the lower part of the hot water supply, and further circulates from the connection end 30 to the upper part of the hot water supply tank 6.

【0021】この冷凍サイクルでは、通常の冷房運転に
おいて外気に捨てる排熱を利用した給湯が可能となるた
めに、経済的な冷房・給湯同時運転が可能となる。この
運転モードは夏期に給湯タンク内の湯量が減少し、かつ
ユーザーからの冷房要求がある場合に運転される。
In this refrigeration cycle, hot water can be supplied using waste heat discarded to the outside air during normal cooling operation, so that simultaneous cooling and hot water supply can be performed economically. This operation mode is operated when the amount of hot water in the hot water supply tank decreases in summer and there is a cooling request from the user.

【0022】(4)蓄冷・冷房同時運転 図5は蓄冷・冷房同時運転時の冷媒の流れを表す図であ
る。この場合には、第1、第2、第5の電磁弁を開き、
第3、第4、第6の電磁弁は閉じておく。また、第1、
第2、第4の流量調整弁は絞り状態に開き、第3の流量
調整弁は閉じておく。蒸発圧力調整弁9は開いておく。
また、四方弁8は接続端16が圧縮機1の冷媒吸入側に
連通するように切り換えておく。上記の各弁の開・閉状
態の場合、圧縮機1より吐出された高圧冷媒は、分岐部
31より第1の電磁弁SV1、四方弁8を通り、室外機
2にて外気と熱交換を行い凝縮して液冷媒となったのち
に、接続端15、19、第2の電磁弁SV2を経て分岐
部32にて室内機3側と蓄冷熱槽4側に分岐され、室内
機3側はそれぞれ第1、2流量調整弁V1、V2にて絞
られ低圧二相冷媒となり、接続端23、24より各室内
機3に入り、各室内機3にて外気と熱交換し蒸発、ガス
冷媒となり、接続端24、25より蒸発圧力調整弁9、
接続端20、16、四方弁8を経て圧縮機1へと戻る。
一方、蓄冷熱槽4側は第4の流量調整弁V4にて絞られ
低圧二相冷媒となり、接続端27より蓄冷熱槽4に入
り、蓄冷熱槽4にて水または氷と熱交換し蒸発、ガス冷
媒となり、接続端28より第5の電磁弁SV5、接続端
21、17を経て圧縮機1へ吸入される。
(4) Simultaneous operation of cold storage and cooling FIG. 5 is a diagram showing the flow of refrigerant during simultaneous operation of cold storage and cooling. In this case, the first, second and fifth solenoid valves are opened,
The third, fourth, and sixth solenoid valves are closed. First,
The second and fourth flow control valves are opened in a throttled state, and the third flow control valve is closed. The evaporation pressure regulating valve 9 is kept open.
The four-way valve 8 is switched so that the connection end 16 communicates with the refrigerant suction side of the compressor 1. In the open / closed state of each of the above valves, the high-pressure refrigerant discharged from the compressor 1 passes through the first solenoid valve SV1 and the four-way valve 8 from the branch portion 31 and exchanges heat with the outside air in the outdoor unit 2. After being condensed to become a liquid refrigerant, the refrigerant is branched to the indoor unit 3 side and the cold storage heat tank 4 side at the branch part 32 through the connection ends 15 and 19 and the second solenoid valve SV2. Each of the first and second flow control valves V1 and V2 is throttled by the first and second flow control valves V1 and V2 to form a low-pressure two-phase refrigerant. , From the connection terminals 24 and 25, the evaporation pressure regulating valve 9,
It returns to the compressor 1 via the connection ends 20, 16 and the four-way valve 8.
On the other hand, the cold storage heat tank 4 side is throttled by the fourth flow control valve V4 to become a low-pressure two-phase refrigerant, enters the cold storage heat tank 4 from the connection end 27, exchanges heat with water or ice in the cold storage heat tank 4, and evaporates. , And is sucked into the compressor 1 from the connection end 28 via the fifth solenoid valve SV5 and the connection ends 21 and 17.

【0023】この蓄冷・冷房同時運転では、冷媒の蒸発
を行う蓄冷熱槽4と室内機3との間に蒸発圧力の差がで
きて、蒸発圧力の低い蓄冷熱槽4側に冷媒が多く流れ込
んでしまい、室内機3側の能力が出なくなってしまうこ
とがあるために、室内機3側に蒸発圧力調整弁9を設け
て室内機3側の蒸発圧力を調整している。ここで、蒸発
圧力調整弁とは、内部に圧力調整用スプリングと圧力制
御弁を有し、入口側圧力とスプリングの反発力を常にバ
ランスさせるように圧力制御弁が作動することにより、
入口圧力を一定に保つ仕組みの弁である。
In the cold storage / cooling simultaneous operation, a difference in evaporation pressure is generated between the cold storage heat tank 4 for evaporating the refrigerant and the indoor unit 3, and a large amount of refrigerant flows into the cold storage heat tank 4 having a low evaporation pressure. Therefore, since the capacity of the indoor unit 3 may not be achieved, the evaporation pressure adjusting valve 9 is provided on the indoor unit 3 side to adjust the evaporation pressure on the indoor unit 3 side. Here, the evaporation pressure adjustment valve has a pressure adjustment spring and a pressure control valve inside, and the pressure control valve operates so as to always balance the inlet side pressure and the repulsive force of the spring,
This is a valve that keeps the inlet pressure constant.

【0024】この運転モードは、夜間に蓄冷を行ってい
る際にユーザーからの冷房要求があった場合に運転を行
い、冷房と蓄冷の同時運転が可能となるため、蓄冷量の
安定確保が可能となる。
In this operation mode, operation is performed when there is a cooling request from a user during cold storage at night, and simultaneous operation of cooling and cold storage is possible, so that a stable amount of cold storage can be ensured. Becomes

【0025】(5)蓄冷・給湯同時運転 図6は蓄冷・給湯同時運転時の冷媒の流れを表す図であ
る。この場合には、第4、第5の電磁弁を開き、第1、
第2、第3、第6の電磁弁は閉じておく。また、第1、
第2の流量調整弁は閉じ、第3の流量調整弁は全開に
し、第4の流量制御弁は絞り状態に開いておく。蒸発圧
力調整弁9は閉じておく。また、四方弁8はどちらの方
向に切り換えておいてもよい。上記の各弁の開・閉状態
の場合、圧縮機1より吐出された高圧冷媒は、分岐部3
1より接続端18、22を経て第4の電磁弁SV4を通
り、給湯熱交換器5に入り、給湯熱交換器5にて給湯タ
ンク6の水と熱交換を行うことにより凝縮して液冷媒と
なったのち、第3の流量調整弁(全開)V3を経て第4
の流量調整弁V4にて絞られ、低圧二相冷媒となったの
ち、接続端27より蓄冷熱槽4に入り、蓄冷熱槽4にて
蒸発、ガス冷媒となり、接続端28より第5の電磁弁S
V5、接続端21、17を経て圧縮機1へ吸入される。
また、給湯タンク6内の水の流れは、水用ポンプ11に
より給湯タンク6の下部から接続端29を経て給湯熱交
換器5に入り、さらに接続端30より給湯タンク6の上
部へ循環されている。
(5) Simultaneous operation of cold storage and hot water supply FIG. 6 is a diagram showing the flow of refrigerant during simultaneous operation of cold storage and hot water supply. In this case, the fourth and fifth solenoid valves are opened, and the first and fifth solenoid valves are opened.
The second, third, and sixth solenoid valves are closed. First,
The second flow control valve is closed, the third flow control valve is fully opened, and the fourth flow control valve is open in a throttled state. The evaporation pressure regulating valve 9 is closed. The four-way valve 8 may be switched in either direction. When the valves are in the open / closed state, the high-pressure refrigerant discharged from the compressor 1
1 through the connection terminals 18 and 22 and the fourth solenoid valve SV4, enters the hot water supply heat exchanger 5, and performs heat exchange with the water in the hot water supply tank 6 in the hot water supply heat exchanger 5 to condense the liquid refrigerant. After that, through the third flow control valve (fully open) V3, the fourth
After being throttled by the flow control valve V4 to become a low-pressure two-phase refrigerant, enters the cold storage heat tank 4 from the connection end 27, evaporates and becomes a gas refrigerant in the cold storage heat tank 4, and the fifth electromagnetic wave from the connection end 28. Valve S
V5, and is sucked into the compressor 1 via the connection ends 21 and 17.
The flow of water in the hot water supply tank 6 enters the hot water supply heat exchanger 5 from the lower part of the hot water supply tank 6 through the connection end 29 by the water pump 11, and is further circulated from the connection end 30 to the upper part of the hot water supply tank 6. I have.

【0026】この冷凍サイクルでは、通常の蓄冷運転に
おいて外気に捨てる排熱を有効に利用した給湯運転が可
能となり、経済的に蓄冷・給湯の同時運転が実現でき
る。また、夜間電力利用が可能のため、ランニングコス
トを安く抑えることも可能となる。この運転モードは夏
期の夜間、蓄冷熱槽4に氷がなく蓄冷運転を行う必要が
あり、かつ貯湯タンク6の湯量が不足している場合に運
転される。
In this refrigeration cycle, a hot water supply operation that effectively utilizes waste heat discarded to the outside air in a normal cold storage operation can be performed, and economical simultaneous operation of cold storage and hot water supply can be realized. In addition, since nighttime power can be used, running costs can be reduced. This operation mode is operated during the summer night when the cold storage heat tank 4 has no ice and the cold storage operation needs to be performed, and the amount of hot water in the hot water storage tank 6 is insufficient.

【0027】(6)蓄冷・冷房・給湯同時運転 図7は蓄冷・冷房・給湯同時運転時の冷媒の流れを表す
図である。この場合には、第4、第5の電磁弁を開き、
第1、第2、第3、第6の電磁弁は閉じておく。また、
第1、第2、第4の流量調整弁は絞り状態に開き、第3
の流量調整弁は全開にしておく。蒸発圧力調整弁9は開
いておく。また、四方弁8は接続端16が圧縮機1の吸
入側に連通するように切り換えておく。上記の各弁の開
・閉状態の場合、圧縮機1より吐出された高圧冷媒は、
分岐部31より接続端18、22を経て第4の電磁弁S
V4を通り、給湯熱交換器5に入り、給湯熱交換器5に
て給湯タンク6の水と熱交換を行うことにより凝縮して
液冷媒となったのち、第3の流量調整弁V3を経て室内
機3側と蓄冷熱槽4側に分岐され、室内機3側はそれぞ
れ第1、2流量調整弁V1、V2にて絞られ低圧二相冷
媒となり、それぞれ接続端23、24を経て各室内機3
に入り、各室内機3にて外気と熱交換し蒸発、ガス冷媒
となり、接続端25、26より蒸発圧力調整弁9、接続
端20、16、四方弁8を経て圧縮機1へと戻る。一
方、蓄冷熱槽4側は第4の流量調整弁V4にて絞られ低
圧二相冷媒となり、接続端27より蓄冷熱槽4に入り、
蓄冷熱槽4にて水または氷と熱交換し蒸発、ガス冷媒と
なり、接続端28より第5の電磁弁SV5、接続端2
1、17を経て圧縮機1へ吸入される。なお、この蓄冷
・冷房・給湯同時運転では、冷媒の蒸発を行う蓄冷熱槽
4と室内機3との間に蒸発圧力の差ができて、蒸発圧力
の低い蓄冷熱槽4側に冷媒が多く流れ込んでしまい、室
内機3側の能力が出なくなってしまうことがあるため
に、室内機3側に蒸発圧力調整弁9を設けて室内機3側
の蒸発圧力を調整している。
(6) Simultaneous operation of cold storage / cooling / hot water supply FIG. 7 is a diagram showing the flow of refrigerant during simultaneous operation of cold storage / cooling / hot water supply. In this case, open the fourth and fifth solenoid valves,
The first, second, third, and sixth solenoid valves are closed. Also,
The first, second, and fourth flow control valves are opened in the throttle state, and the third
The flow control valve of is fully opened. The evaporation pressure regulating valve 9 is kept open. The four-way valve 8 is switched so that the connection end 16 communicates with the suction side of the compressor 1. In the open / closed state of each of the above valves, the high-pressure refrigerant discharged from the compressor 1 is:
The fourth solenoid valve S from the branch portion 31 through the connection ends 18 and 22
After passing through V4, it enters the hot water supply heat exchanger 5, where it exchanges heat with the water in the hot water supply tank 6 in the hot water supply heat exchanger 5 to be condensed into a liquid refrigerant, and then through the third flow control valve V3. The indoor unit 3 is branched to the side of the indoor unit 3 and the side of the cold storage heat tank 4, and the indoor unit 3 side is throttled by the first and second flow control valves V1 and V2 to become low-pressure two-phase refrigerant. Machine 3
Then, each indoor unit 3 exchanges heat with the outside air and evaporates to become a gas refrigerant, and returns to the compressor 1 from the connection ends 25 and 26 via the evaporation pressure regulating valve 9, the connection ends 20, 16 and the four-way valve 8. On the other hand, the cold storage heat tank 4 side is throttled by the fourth flow control valve V4 to become a low-pressure two-phase refrigerant, and enters the cold storage heat tank 4 from the connection end 27.
The heat exchange with water or ice in the cold storage heat tank 4 evaporates and turns into a gaseous refrigerant. From the connection end 28, the fifth solenoid valve SV5 and the connection end 2
The refrigerant is sucked into the compressor 1 through the compressors 1 and 17. In the simultaneous operation of cold storage / cooling / hot water supply, a difference in evaporation pressure is generated between the cold storage heat tank 4 for evaporating the refrigerant and the indoor unit 3, and a large amount of refrigerant is present on the cold storage heat tank 4 having a low evaporation pressure. Since the flow may flow and the capacity on the indoor unit 3 side may not be exhibited, the evaporation pressure adjusting valve 9 is provided on the indoor unit 3 side to adjust the evaporation pressure on the indoor unit 3 side.

【0028】この冷凍サイクルでは、電気料金の安い夜
間に蓄冷と給湯を行いながら、冷房も同時運転が可能と
なるため、蓄冷量と湯量の安定確保と冷房、蓄冷の排熱
による給湯が同時に運転可能となり経済的である。この
運転モードは夏期の夜間、蓄冷熱槽4に氷がなく蓄冷運
転を行う必要があり、かつ貯湯タンク6の湯量が不足
し、かつユーザーからの冷房要求がある場合に運転され
る。
In this refrigeration cycle, cooling and hot water supply can be performed at the same time while cold storage and hot water supply are performed at night when the electricity rate is low. Therefore, stable cold storage and hot water supply can be ensured, and hot water supply by cooling and exhaustion of cold storage can be operated simultaneously. It is possible and economical. This operation mode is operated during the summer night when there is no ice in the cold storage tank 4 and it is necessary to perform the cold storage operation, and when the amount of hot water in the hot water storage tank 6 is insufficient and there is a cooling request from the user.

【0029】(7)給湯・暖房同時運転 図8は給湯・暖房同時運転時の冷媒の流れを表す図であ
る。この場合には、第1、第2、第4、第6の電磁弁を
開き、第3、第5の電磁弁は閉じておく。また、第1、
第2、第3の流量調整弁は絞り状態に開き、第4の流量
制御弁は閉じておく。蒸発圧力調整弁9も閉じておく。
また、四方弁8は接続端16が圧縮機1の吸入側に連通
するように切り換えておく。上記の各弁の開・閉状態の
場合、圧縮機1より吐出された高圧冷媒は、分岐部31
にて2方向に分岐され、給湯熱交換器5側は接続端1
8、22を経て第4の電磁弁SV4を通り、給湯熱交換
器5にて給湯タンク6の水と熱交換を行うことにより凝
縮して液冷媒となったのち、第3の流量調整弁V3にて
絞られ低圧二相冷媒となり、他方の室内機3側は、第1
の電磁弁SV1、四方弁8、接続端16、20を経て第
6の電磁弁SV6を通り、接続端25、26より各室内
機3に入り、各室内機3にて熱交換を行い凝縮して液冷
媒となったのちに、それぞれ接続端23、24を経て第
1、2流量調整弁V1、V2にて絞られ低圧二相冷媒と
なる。そして、双方の低圧二相冷媒は分岐部32にて合
流し、第2の電磁弁SV2、接続端19、15を経て室
外熱交換器2にて外気と熱交換し蒸発、ガス冷媒となり
四方弁8を経て圧縮機1へ吸入される。
(7) Simultaneous operation of hot water supply and heating FIG. 8 is a diagram showing the flow of refrigerant during simultaneous operation of hot water supply and heating. In this case, the first, second, fourth, and sixth solenoid valves are opened, and the third and fifth solenoid valves are closed. First,
The second and third flow control valves are opened in a throttled state, and the fourth flow control valve is closed. The evaporation pressure regulating valve 9 is also closed.
The four-way valve 8 is switched so that the connection end 16 communicates with the suction side of the compressor 1. When the valves are in the open / closed state, the high-pressure refrigerant discharged from the compressor 1 flows into the branch portion 31.
, And the hot water supply heat exchanger 5 side is connected to the connection end 1.
After passing through the fourth solenoid valve SV4 via the heaters 8 and 22, the heat exchanger 5 performs heat exchange with water in the hot water supply tank 6 to condense into a liquid refrigerant, and then the third flow control valve V3 , And becomes a low-pressure two-phase refrigerant.
Through the sixth solenoid valve SV6 through the solenoid valve SV1, the four-way valve 8, and the connection terminals 16 and 20, and enters each indoor unit 3 from the connection terminals 25 and 26, and performs heat exchange at each indoor unit 3 to condense. After being turned into a liquid refrigerant, the refrigerant is throttled by the first and second flow control valves V1 and V2 via the connection ends 23 and 24, respectively, to become a low-pressure two-phase refrigerant. The two low-pressure two-phase refrigerants merge at the branch portion 32, exchange heat with the outside air in the outdoor heat exchanger 2 via the second solenoid valve SV2 and the connection ends 19 and 15, evaporate, become a gas refrigerant, and become a four-way valve. After that, it is sucked into the compressor 1.

【0030】この運転モードは、夜間に給湯タンク6の
湯量が不足し、かつユーザーからの暖房要求があった場
合に運転を行い、暖房と給湯の同時運転が可能となるた
め、暖房運転を行いながら高効率給湯が可能となる。
In this operation mode, the operation is performed when the amount of hot water in the hot water supply tank 6 is insufficient at night and a heating request is made by a user, and simultaneous operation of heating and hot water supply is possible. Highly efficient hot water supply is possible.

【0031】図1のような多機能ヒートポンプシステム
では、室内・外気温度、停止時間によっては、冷媒回路
中の冷媒が圧縮機1、室外熱交換器2、室内機3、蓄冷
熱槽4、給湯熱交換器5に冷凍機油とともに分散して溜
まってしまうため、各運転モードの運転を行う際に圧縮
機1への冷媒や冷凍機油の不足が生じ、圧縮機の加熱や
正常な運転が不能になるなどの不都合が生じる場合があ
る。
In the multifunctional heat pump system as shown in FIG. 1, the refrigerant in the refrigerant circuit depends on the temperature of the indoor / outdoor air and the stop time, and the compressor 1, the outdoor heat exchanger 2, the indoor unit 3, the cold storage tank 4, the hot water supply Since the refrigerant is dispersed and accumulated in the heat exchanger 5 together with the refrigerating machine oil, a shortage of the refrigerant or the refrigerating machine oil to the compressor 1 occurs during the operation in each operation mode, and the heating or the normal operation of the compressor becomes impossible. Inconveniences such as becoming inconsistent may occur.

【0032】本発明は、運転開始の際に冷媒をその運転
モードで使用される凝縮器側熱交換器へ回収運転を行
い、その運転モードに必要とされる冷媒量と冷凍機油を
確保し、正常な運転を可能とするものである。表2に冷
媒回収運転時の電磁弁SV1〜SV6、流量調整弁V1
〜V4の開閉状態を示す。
According to the present invention, when the operation is started, the refrigerant is recovered to the condenser-side heat exchanger used in the operation mode, and the refrigerant amount and the refrigerating machine oil required for the operation mode are secured. This enables normal operation. Table 2 shows the solenoid valves SV1 to SV6 and the flow control valve V1 during the refrigerant recovery operation.
To V4.

【0033】[0033]

【表2】 [Table 2]

【0034】冷媒回収を行い、その後に継続して運転を
行う場合には、冷媒回収後に四方弁8の反転が行われる
と高低圧が急激にバランスするため、大きな音が発生し
たり、高圧液冷媒が急激に圧縮機1へ戻り、圧縮機の破
損を招く危険性があった。このため、本発明では冷媒回
収とそれに続く運転において四方弁8を切り換えること
なく冷媒を回収することにより、上記のような現象を防
ぎ、また、冷媒回収をその運転モードにて使用される熱
交換器へ行うため、冷媒回収に続く運転をスムーズに継
続して行うことが可能となる。
When the refrigerant is recovered and the operation is continued thereafter, if the four-way valve 8 is inverted after the recovery of the refrigerant, the high and low pressures are suddenly balanced, so that a loud noise is generated or the high-pressure liquid is generated. There is a danger that the refrigerant will suddenly return to the compressor 1 and damage the compressor. Therefore, in the present invention, the above-described phenomenon is prevented by recovering the refrigerant without switching the four-way valve 8 in the refrigerant recovery and the subsequent operation, and the refrigerant recovery is performed by the heat exchange used in the operation mode. Therefore, the operation following the refrigerant recovery can be smoothly and continuously performed.

【0035】冷媒回収の運転時間は、圧縮機運転開始後
一定時間、例えば1分など、または圧縮機吸入配管に取
付けられた圧力センサ12が一定の圧力値となるまで、
例えば0 kgf/cm2 ・Gとなるまでなどである。また、冷媒
回収運転はすべての条件にて行うのではなく、各熱交換
器に取付けられた温度センサー(図示せず)の情報から
運転に必要とされない熱交換器の温度が、運転に必要と
される熱交換器の温度よりも低い場合などに行う。な
お、表2に記載のない、この他の運転モードについて冷
媒回収を行う場合においても、同様に四方弁8を切換え
ることなく、凝縮器側熱交換器へ回収運転を行うものと
する。
The operation time of the refrigerant recovery is a certain time after the start of the compressor operation, for example, one minute, or until the pressure sensor 12 attached to the compressor suction pipe reaches a certain pressure value.
For example, until it reaches 0 kgf / cm 2 · G. In addition, the refrigerant recovery operation is not performed under all conditions, and the temperature of the heat exchanger that is not required for the operation is required from the information of the temperature sensor (not shown) attached to each heat exchanger. This is performed when the temperature is lower than the temperature of the heat exchanger to be performed. In the case where the refrigerant recovery is performed in other operation modes not described in Table 2, the recovery operation is performed to the condenser-side heat exchanger without switching the four-way valve 8 in the same manner.

【0036】以下、各冷媒回収運転時のサイクル回路構
成の説明を、図9〜図14を参照して行う。
The configuration of the cycle circuit during each refrigerant recovery operation will be described below with reference to FIGS.

【0037】(1)冷房運転前冷媒回収運転 図9に冷房運転開始前における冷媒回収運転時の回路構
成を示す。図9は冷房運転時に高圧の凝縮器となる室外
熱交換器2に冷媒回収を行う回路構成となっている。こ
の場合には、第2、第3、第4の電磁弁を閉じ、第1、
第5、第6の電磁弁は開いておく。また、第1、第2、
第3の流量調整弁を開き、第4の流量調整弁は閉じてお
く。圧縮機1を運転することにより、蓄冷熱槽4に溜ま
り込んだ冷媒は、第4の流量調節弁V4が閉じられてい
るため、第5の電磁弁SV5を経由して圧縮機1へと吸
入される。また、給湯熱交換器5に溜まり込んだ冷媒は
第4の電磁弁SV4が閉じられているため、第3の流量
調節弁V3と第1の流量調節弁V1または第2の流量調
節弁V2を経由して室内熱交換器3を通り、さらに第6
の電磁弁SV5と四方弁8を経て圧縮機1へ吸入され
る。このとき室内熱交換器3に溜まり込んだ冷媒も同時
に吸引される。このようにして圧縮機1へ吸入された冷
媒は、出口側を第2の電磁弁SV2にて閉じられた室外
熱交換器2に溜めることにより回収される。
(1) Refrigerant recovery operation before cooling operation FIG. 9 shows a circuit configuration at the time of refrigerant recovery operation before starting the cooling operation. FIG. 9 shows a circuit configuration in which the refrigerant is recovered in the outdoor heat exchanger 2 serving as a high-pressure condenser during the cooling operation. In this case, the second, third and fourth solenoid valves are closed and the first,
The fifth and sixth solenoid valves are kept open. Also, the first, second,
The third flow control valve is opened and the fourth flow control valve is closed. By operating the compressor 1, the refrigerant accumulated in the cold storage heat tank 4 is sucked into the compressor 1 via the fifth solenoid valve SV5 because the fourth flow control valve V4 is closed. Is done. In addition, since the fourth solenoid valve SV4 is closed, the refrigerant accumulated in the hot water supply heat exchanger 5 switches the third flow control valve V3 and the first flow control valve V1 or the second flow control valve V2. Via the indoor heat exchanger 3 via
Is sucked into the compressor 1 through the solenoid valve SV5 and the four-way valve 8. At this time, the refrigerant accumulated in the indoor heat exchanger 3 is also sucked at the same time. The refrigerant thus sucked into the compressor 1 is recovered by storing the outlet side in the outdoor heat exchanger 2 closed by the second solenoid valve SV2.

【0038】この冷媒回収方法では、回収中、回収後に
四方弁8を切り換えることなく冷媒を回収して冷房運転
モードを実施できるため、四方弁8の反転にともなう音
の発生を防ぎ、圧縮機1への急激な液冷媒の戻りによる
圧縮機故障を防ぐことが可能となる。
In this refrigerant recovery method, the refrigerant can be recovered and the cooling operation mode can be performed without switching the four-way valve 8 during and after the recovery, so that the generation of noise due to the inversion of the four-way valve 8 can be prevented, and the compressor 1 It is possible to prevent a compressor failure due to a sudden return of the liquid refrigerant to the compressor.

【0039】(2)暖房運転前冷媒回収運転 図10に暖房運転開始前における冷媒回収運転時の回路
構成を示す。図10は暖房運転時に高圧の凝縮器となる
室内熱交換器3に冷媒回収を行う回路構成となってい
る。この場合には、第3、第4の電磁弁を閉じ、第1、
第2、第5、第6の電磁弁は開いておく。また、第3の
流量調整弁を開き、第1、第2、第4の流量調整弁は閉
じておく。圧縮機1を運転することにより、蓄冷熱槽4
に溜まり込んだ冷媒は、第4の流量調節弁V4が閉じら
れているため、第5の電磁弁SV5を経由して圧縮機1
へと吸入される。また、給湯熱交換器5に溜まり込んだ
冷媒は第4の電磁弁SV4が閉じられているため、第3
の流量調節弁V3と第2の電磁弁SV2を経由して、室
外熱交換器2、四方弁8を通り、圧縮機1へ吸入され
る。このとき室外熱交換器2に溜まり込んだ冷媒も同時
に吸引される。このようにして圧縮機1へ吸入された冷
媒は、出口側を第1の流量調節弁V1と第2の流量調節
弁V2にて閉じられた室内熱交換器3に溜めることによ
り回収される。
(2) Refrigerant Recovery Operation Before Heating Operation FIG. 10 shows a circuit configuration during the refrigerant recovery operation before the heating operation is started. FIG. 10 shows a circuit configuration for recovering the refrigerant in the indoor heat exchanger 3 that becomes a high-pressure condenser during the heating operation. In this case, the third and fourth solenoid valves are closed and the first and fourth solenoid valves are closed.
The second, fifth, and sixth solenoid valves are kept open. The third flow control valve is opened, and the first, second, and fourth flow control valves are closed. By operating the compressor 1, the cold storage heat tank 4
The refrigerant accumulated in the compressor 1 passes through the fifth solenoid valve SV5 because the fourth flow control valve V4 is closed.
Inhaled to. In addition, the refrigerant accumulated in the hot water supply heat exchanger 5 has the third solenoid valve SV4 closed, so that the third
Through the outdoor heat exchanger 2 and the four-way valve 8 via the flow control valve V3 and the second solenoid valve SV2. At this time, the refrigerant accumulated in the outdoor heat exchanger 2 is also sucked at the same time. The refrigerant thus sucked into the compressor 1 is recovered by storing the outlet side in the indoor heat exchanger 3 closed by the first flow control valve V1 and the second flow control valve V2.

【0040】この冷媒回収方法では、回収中、回収後に
て四方弁8を切換えることなく冷媒を回収して暖房運転
モードを実施できるため、四方弁8の反転にともなう音
の発生を防ぎ、圧縮機1への急激な液冷媒の戻りによる
圧縮機故障を防ぐことが可能となる。また、室内熱交換
器3に圧縮機1より吐出された高温冷媒を溜め込むこと
により、室内熱交換器3の温度が上昇するため、冷媒回
収終了後の暖房運転の立上がりが早くなる。
In this refrigerant recovery method, since the refrigerant can be recovered and the heating operation mode can be performed without switching the four-way valve 8 during and after the recovery, the generation of the sound accompanying the inversion of the four-way valve 8 can be prevented, It is possible to prevent a compressor failure due to a sudden return of the liquid refrigerant to 1. In addition, since the high-temperature refrigerant discharged from the compressor 1 is stored in the indoor heat exchanger 3, the temperature of the indoor heat exchanger 3 rises, so that the heating operation after the completion of the refrigerant recovery is quickly started.

【0041】(3)冷房・給湯同時運転前冷媒回収運転 図11に冷房・給湯同時運転開始前における冷媒回収運
転時の回路構成を示す。図11は冷房・給湯同時運転時
に高圧の凝縮器となる給湯熱交換器5に冷媒回収を行う
回路構成となっている。この場合には、第1、第3の電
磁弁を閉じ、第2、第4、第5、第6の電磁弁は開いて
おく。また、第1、第2の流量調整弁は開き、第3、第
4の流量調整弁は閉じておく。圧縮機1を運転すること
により、蓄冷熱槽4に溜まり込んだ冷媒は、第4の流量
調節弁V4が閉じられているため、第5の電磁弁SV5
を経由して圧縮機1へと吸入される。また、室外熱交換
器2に溜まり込んだ冷媒は第1の電磁弁SV1が閉じら
れているため、第2の電磁弁SV2を経由して、第1の
流量調節弁V1と第2の流量調節弁V2、室内熱交換器
3、第6の電磁弁SV6、四方弁8を通り圧縮機1へ吸
入される。このとき室内熱交換器3に溜まり込んだ冷媒
も同時に吸引される。このようにして圧縮機1へ吸入さ
れた冷媒は、出口側を第3の流量調節弁V3にて閉じら
れた給湯熱交換器5に溜めることにより回収される。
(3) Refrigerant Recovery Operation Before Simultaneous Cooling / Hot Water Supply Operation FIG. 11 shows a circuit configuration at the time of refrigerant recovery operation before starting simultaneous cooling / hot water supply operation. FIG. 11 shows a circuit configuration for recovering the refrigerant in the hot water supply heat exchanger 5 which becomes a high-pressure condenser during the simultaneous cooling and hot water supply operation. In this case, the first and third solenoid valves are closed, and the second, fourth, fifth, and sixth solenoid valves are opened. In addition, the first and second flow control valves are opened, and the third and fourth flow control valves are closed. By operating the compressor 1, the refrigerant accumulated in the cold storage heat tank 4 loses the fifth solenoid valve SV5 because the fourth flow control valve V4 is closed.
And is sucked into the compressor 1 through the compressor. Further, since the first solenoid valve SV1 is closed, the refrigerant accumulated in the outdoor heat exchanger 2 passes through the second solenoid valve SV2 and the first flow control valve V1 and the second flow control. It is sucked into the compressor 1 through the valve V2, the indoor heat exchanger 3, the sixth solenoid valve SV6, and the four-way valve 8. At this time, the refrigerant accumulated in the indoor heat exchanger 3 is also sucked at the same time. The refrigerant thus sucked into the compressor 1 is recovered by storing the outlet side in the hot water supply heat exchanger 5 closed by the third flow control valve V3.

【0042】この冷媒回収方法では、回収中、回収後に
て四方弁8を切換えることなく冷媒を回収して冷房・給
湯同時運転モードを実施できるため、四方弁8の反転に
ともなう音の発生を防ぎ、圧縮機1への急激な液冷媒の
戻りによる圧縮機故障を防ぐことが可能となる。また、
給湯熱交換器5に圧縮機1より吐出された高温冷媒を溜
め込むことにより、給湯熱交換器5の温度が上昇するた
め、冷媒回収終了後の給湯運転の立上がりが早くなる。
In this refrigerant recovery method, since the refrigerant can be recovered and the cooling / hot water supply simultaneous operation mode can be performed without switching the four-way valve 8 during and after the recovery, the generation of the sound accompanying the reversal of the four-way valve 8 can be prevented. In addition, it is possible to prevent compressor failure due to sudden return of the liquid refrigerant to the compressor 1. Also,
By storing the high-temperature refrigerant discharged from the compressor 1 in the hot-water supply heat exchanger 5, the temperature of the hot-water supply heat exchanger 5 rises, so that the rise of the hot-water supply operation after the completion of the refrigerant recovery is accelerated.

【0043】(4)蓄熱運転前冷媒回収運転 図12に蓄熱運転開始前における冷媒回収運転時の回路
構成を示す。図12は蓄熱運転時に高圧の凝縮器となる
蓄冷熱槽4に冷媒回収を行う回路構成となっている。こ
の場合には、第1、第4、第5の電磁弁を閉じ、第2、
第3、第6の電磁弁は開いておく。また、第1、第2、
第3の流量調整弁は開き、第4の流量調整弁は閉じてお
く。圧縮機1を運転することにより、給湯熱交換器5に
溜まり込んだ冷媒は、第4の電磁弁SV4が閉じられて
いるため、第3の流量調整弁V3、第2の電磁弁SV
2、室外熱交換器2、四方弁8を経て圧縮機1へと吸入
される。また、室内熱交換器3に溜まり込んだ冷媒は第
1の電磁弁SV1が閉じられているため、第1の流量調
節弁V1と第2の流量調節弁V2を通り、第2の電磁弁
SV2の手前の分岐部32にて給湯熱交換器5からの回
収冷媒と合流して圧縮機1へ吸入される。このとき室外
熱交換器2に溜まり込んだ冷媒も同時に吸引される。こ
のようにして圧縮機1へ吸入された冷媒は、出口側を第
4の流量調節弁V4にて閉じられた蓄冷熱槽4に溜める
ことにより回収される。
(4) Refrigerant Recovery Operation Before Heat Storage Operation FIG. 12 shows a circuit configuration during the refrigerant recovery operation before the start of the heat storage operation. FIG. 12 shows a circuit configuration in which the refrigerant is recovered in the cold storage heat tank 4 serving as a high-pressure condenser during the heat storage operation. In this case, the first, fourth and fifth solenoid valves are closed, and the second, fourth and fifth solenoid valves are closed.
The third and sixth solenoid valves are kept open. Also, the first, second,
The third flow control valve is open and the fourth flow control valve is closed. By operating the compressor 1, the refrigerant accumulated in the hot water supply heat exchanger 5 receives the third flow rate control valve V3 and the second solenoid valve SV because the fourth solenoid valve SV4 is closed.
2. The air is sucked into the compressor 1 through the outdoor heat exchanger 2 and the four-way valve 8. Further, since the first solenoid valve SV1 is closed, the refrigerant accumulated in the indoor heat exchanger 3 passes through the first flow control valve V1 and the second flow control valve V2, and passes through the second solenoid valve SV2. At the branch portion 32 before the cooling water, the refrigerant is collected by the hot water supply heat exchanger 5 and merged into the compressor 1. At this time, the refrigerant accumulated in the outdoor heat exchanger 2 is also sucked at the same time. The refrigerant thus sucked into the compressor 1 is recovered by storing the outlet side in the cold storage tank 4 closed by the fourth flow control valve V4.

【0044】この冷媒回収方法では、回収中、回収後に
て四方弁8を切換えることなく冷媒を回収して蓄熱運転
モードを実施できるため、四方弁8の反転にともなう音
の発生を防ぎ、圧縮機1への急激な液冷媒の戻りによる
圧縮機故障を防ぐことが可能となる。また、蓄冷熱槽4
に圧縮機1より吐出された高温冷媒を溜め込むことによ
り、蓄冷熱槽4の温度が上昇するため、冷媒回収終了後
の蓄熱運転の立上がりが早くなる。
In this refrigerant recovery method, since the refrigerant can be recovered and the heat storage operation mode can be performed without switching the four-way valve 8 during and after the recovery, the generation of the sound accompanying the reversal of the four-way valve 8 can be prevented, It is possible to prevent a compressor failure due to a sudden return of the liquid refrigerant to 1. In addition, cold storage heat tank 4
The high-temperature refrigerant discharged from the compressor 1 is stored in the tank, so that the temperature of the cold storage heat tank 4 rises.

【0045】(5)給湯運転前冷媒回収運転 図13に給湯運転開始前における冷媒回収運転時の回路
構成を示す。図13は給湯運転時に高圧の凝縮器となる
給湯熱交換器5に冷媒回収を行う回路構成となってい
る。この場合には、第1、第3の電磁弁を閉じ、第2、
第4、第5、第6の電磁弁は開いておく。また、第1、
第2の流量調整弁は開き、第3、第4の流量調整弁は閉
じておく。圧縮機1を運転することにより、蓄冷熱槽4
に溜まり込んだ冷媒は、第4の流量調節弁V4が閉じら
れているため、第5の電磁弁SV5を経て圧縮機1へと
吸入される。また、室外熱交換器2に溜まり込んだ冷媒
は、第1の電磁弁SV1が閉じられているため、四方弁
8を通り圧縮機1へ吸入される。このとき室内熱交換器
3に溜まり込んだ冷媒も第1の流量調節弁V1と第2の
流量調節弁V2を通り、第2の電磁弁SV2、室外熱交
換器2、四方弁8を経て同時に吸引される。このように
して圧縮機1へ吸入された冷媒は、出口側を第3の流量
調節弁V3にて閉じられた給湯熱交換器5に溜めること
により回収される。
(5) Refrigerant Recovery Operation Before Hot Water Supply Operation FIG. 13 shows a circuit configuration during the refrigerant recovery operation before the start of the hot water supply operation. FIG. 13 shows a circuit configuration for recovering the refrigerant in the hot water supply heat exchanger 5 which becomes a high-pressure condenser during the hot water supply operation. In this case, the first and third solenoid valves are closed, and the second and third solenoid valves are closed.
The fourth, fifth, and sixth solenoid valves are kept open. First,
The second flow control valve is opened, and the third and fourth flow control valves are closed. By operating the compressor 1, the cold storage heat tank 4
The refrigerant accumulated in the compressor 1 is sucked into the compressor 1 via the fifth solenoid valve SV5 because the fourth flow control valve V4 is closed. Further, the refrigerant accumulated in the outdoor heat exchanger 2 is drawn into the compressor 1 through the four-way valve 8 because the first solenoid valve SV1 is closed. At this time, the refrigerant accumulated in the indoor heat exchanger 3 also passes through the first flow control valve V1 and the second flow control valve V2, and simultaneously passes through the second solenoid valve SV2, the outdoor heat exchanger 2, and the four-way valve 8. It is sucked. The refrigerant thus sucked into the compressor 1 is recovered by storing the outlet side in the hot water supply heat exchanger 5 closed by the third flow control valve V3.

【0046】この冷媒回収方法では、回収中、回収後に
て四方弁8を切換えることなく冷媒を回収して給湯運転
モードを実施できるため、四方弁8の反転にともなう音
の発生を防ぎ、圧縮機1への急激な液冷媒の戻りによる
圧縮機故障を防ぐことが可能となる。また、給湯熱交換
器5に圧縮機1より吐出された高温冷媒を溜め込むこと
により、給湯熱交換器5の温度が上昇するため、冷媒回
収終了後の給湯運転の立上がりが早くなる。
In this refrigerant recovery method, since the refrigerant can be recovered and the hot water supply operation mode can be performed without switching the four-way valve 8 during and after the recovery, the generation of the sound accompanying the inversion of the four-way valve 8 can be prevented, It is possible to prevent a compressor failure due to a sudden return of the liquid refrigerant to 1. In addition, since the temperature of the hot water supply heat exchanger 5 is increased by storing the high-temperature refrigerant discharged from the compressor 1 in the hot water supply heat exchanger 5, the rise of the hot water supply operation after the completion of the refrigerant recovery is accelerated.

【0047】(6)給湯・暖房同時運転前冷媒回収運転 図14に給湯・暖房同時運転開始前における冷媒回収運
転時の回路構成を示す。図14は給湯・暖房同時運転時
に高圧の凝縮器となる室内熱交換器3と給湯熱交換器5
に冷媒回収を行う回路構成となっている。この場合に
は、第3の電磁弁を閉じ、第1、第2、第4、第5、第
6の電磁弁は開いておく。また、第1から第4の流量調
整弁はすべて閉じておく。圧縮機1を運転することによ
り、蓄冷熱槽4に溜まり込んだ冷媒は、第4の流量調節
弁V4が閉じられているため、第5の電磁弁SV5を経
て圧縮機1へと吸入される。また、室外熱交換器2に溜
まり込んだ冷媒は、第1から第4の流量調節弁V1〜V
4が閉じられているため、四方弁8を通り圧縮機1へ吸
入される。このようにして圧縮機1へ吸入された冷媒
は、出口側を第1の流量調節弁V1と第2の流量調節弁
V2にて閉じられた室内熱交換器3と、出口側を第3の
流量調節弁V3にて閉じられた給湯熱交換器5に溜める
ことにより回収される。
(6) Refrigerant Recovery Operation Before Simultaneous Hot Water Supply / Heating Operation FIG. 14 shows a circuit configuration during the refrigerant recovery operation before the simultaneous hot water supply / heating operation starts. FIG. 14 shows an indoor heat exchanger 3 and a hot water supply heat exchanger 5 which become high-pressure condensers during simultaneous operation of hot water supply and heating.
It has a circuit configuration for recovering refrigerant. In this case, the third solenoid valve is closed, and the first, second, fourth, fifth, and sixth solenoid valves are opened. In addition, the first to fourth flow control valves are all closed. By operating the compressor 1, the refrigerant accumulated in the cold storage heat tank 4 is sucked into the compressor 1 via the fifth solenoid valve SV5 because the fourth flow control valve V4 is closed. . The refrigerant accumulated in the outdoor heat exchanger 2 is supplied to the first to fourth flow control valves V1 to V
Since 4 is closed, it is sucked into the compressor 1 through the four-way valve 8. The refrigerant sucked into the compressor 1 in this manner is connected to the indoor heat exchanger 3 whose outlet side is closed by the first flow control valve V1 and the second flow control valve V2, and to the third side by the outlet side. The hot water is collected in the hot water supply heat exchanger 5 closed by the flow control valve V3.

【0048】この冷媒回収方法では、回収中、回収後に
て四方弁8を切換えることなく冷媒を回収して給湯・暖
房同時運転モードを実施できるため、四方弁8の反転に
ともなう音の発生を防ぎ、圧縮機1への急激な液冷媒の
戻りによる圧縮機故障を防ぐことが可能となる。また、
室内熱交換器3、給湯熱交換器5に圧縮機1より吐出さ
れた高温冷媒を溜め込むことにより、室内熱交換器3、
給湯熱交換器5の温度が上昇するため、冷媒回収終了後
の暖房・給湯同時運転の立上がりが早くなる。
In this refrigerant recovery method, since the refrigerant can be recovered and the hot water supply / heating simultaneous operation mode can be performed without switching the four-way valve 8 during and after the recovery, the generation of the sound accompanying the reversal of the four-way valve 8 can be prevented. In addition, it is possible to prevent compressor failure due to sudden return of the liquid refrigerant to the compressor 1. Also,
By storing the high-temperature refrigerant discharged from the compressor 1 in the indoor heat exchanger 3 and the hot water supply heat exchanger 5, the indoor heat exchanger 3,
Since the temperature of the hot water supply heat exchanger 5 rises, the start-up of the simultaneous heating and hot water supply operation after the completion of the refrigerant recovery is accelerated.

【0049】実施形態2.図15、図16は、実施形態
1における多機能ヒートポンプシステムの第3の電磁弁
SV3に対して並列にキャピラリーチューブ39と第7
の電磁弁SV7を追加することにより、蓄熱・暖房同時
運転、蓄熱・給湯同時運転を可能とした多機能ヒートポ
ンプシステムの回路構成図である。
Embodiment 2 FIGS. 15 and 16 show the capillary tube 39 and the seventh solenoid valve in parallel with the third solenoid valve SV3 of the multifunctional heat pump system according to the first embodiment.
FIG. 3 is a circuit configuration diagram of a multifunctional heat pump system that enables simultaneous operation of heat storage and heating, and simultaneous operation of heat storage and hot water supply by adding an electromagnetic valve SV7.

【0050】実施形態1の回路構成では、蓄熱・暖房同
時、蓄熱・給湯同時など凝縮温度の大きく異なる運転は
困難であるが、本実施形態の回路構成では蓄冷熱槽4の
入口側にキャピラリーチューブ39を設けることによ
り、蓄冷熱槽4内の水温が低く凝縮圧力が低い条件とな
る場合においても、凝縮温度のより高い給湯、暖房との
同時運転が可能となる。なお、キャプラリーチューブ3
9と第7の電磁弁SV7は流量調節弁などの他の絞り機
構に置き換えることも可能である。
In the circuit configuration of the first embodiment, it is difficult to perform an operation in which the condensing temperatures differ greatly, such as simultaneous storage and heating, and simultaneous storage and supply of hot water. By providing 39, even when the water temperature in the cold storage heat tank 4 is low and the condensing pressure is low, simultaneous operation with hot water supply and heating with a higher condensing temperature becomes possible. In addition, the capillary tube 3
The ninth and seventh solenoid valves SV7 can be replaced with another throttle mechanism such as a flow control valve.

【0051】図15は蓄熱・暖房同時運転時の冷媒の流
れを表す図である。この場合には、第1、第2、第6、
第7の電磁弁を開き、第3、第4、第5の電磁弁は閉じ
ておく。また、第1、第2、第4の流量調整弁は絞り状
態に開き、第3の流量制御弁は閉じておく。蒸発圧力調
整弁9も閉じておく。また、四方弁8は接続端16が圧
縮機1の吐出側に連通するように切り換えておく。圧縮
機1より吐出された高圧冷媒は分岐部31にて二方向に
分岐され、蓄冷熱槽側4はキャピラリーチューブ39を
通り減圧され、第7の電磁弁SV7を通り、蓄冷熱槽4
にて水と熱交換を行うことにより凝縮して液冷媒となっ
たのちに、第4の流量調整弁V4にて絞られ低圧二相冷
媒となり、他方の室内機3側は、第1の電磁弁SV1、
四方弁8、第6の電磁弁SV6を通り、室内機3にて熱
交換を行い凝縮して液冷媒となったのちに、第1、2の
流量調整弁V1、V2にて絞られ低圧二相冷媒となる。
そして、双方の低圧二相冷媒は分岐部32にて合流し、
第2の電磁弁SV2を経て室外熱交換器2にて外気と熱
交換し蒸発、ガス冷媒となり、四方弁8を経て圧縮機1
へ吸入される。
FIG. 15 is a diagram showing the flow of the refrigerant during the simultaneous operation of heat storage and heating. In this case, the first, second, sixth,
The seventh solenoid valve is opened, and the third, fourth, and fifth solenoid valves are closed. Further, the first, second, and fourth flow control valves are opened in a throttled state, and the third flow control valve is closed. The evaporation pressure regulating valve 9 is also closed. Further, the four-way valve 8 is switched so that the connection end 16 communicates with the discharge side of the compressor 1. The high-pressure refrigerant discharged from the compressor 1 is branched in two directions at a branch portion 31, and the cold storage heat tank side 4 is depressurized through the capillary tube 39, passes through the seventh solenoid valve SV 7, and is cooled.
After performing heat exchange with water to condense into a liquid refrigerant, it is throttled by a fourth flow control valve V4 to become a low-pressure two-phase refrigerant, and the other indoor unit 3 side receives the first electromagnetic wave. Valve SV1,
After passing through the four-way valve 8 and the sixth solenoid valve SV6 and exchanging heat in the indoor unit 3 to condense into a liquid refrigerant, it is throttled by the first and second flow control valves V1 and V2 and the low-pressure valve It becomes a phase refrigerant.
Then, both low-pressure two-phase refrigerants join at the branch portion 32,
The heat is exchanged with the outside air in the outdoor heat exchanger 2 via the second solenoid valve SV2 to evaporate and become a gas refrigerant.
Inhaled to.

【0052】この冷凍サイクルでは、蓄冷熱槽4の水温
が低いために凝縮圧力が低くなり、暖房側凝縮圧力と蓄
冷熱槽側凝縮圧力との違いが大きく、同時運転が困難な
場合においても、蓄冷熱槽側の入口にキャピラリーチュ
ーブ39を設け、凝縮圧力を暖房側よりも下げることに
より蓄熱・暖房の同時運転が可能となる。この運転モー
ドは、夜間に蓄冷熱槽の水温が低く、かつユーザーから
の暖房要求があった場合に運転を行い、暖房と蓄熱の同
時運転が可能となるために、暖房運転を行いながら蓄熱
量の確保が可能となる。
In this refrigeration cycle, the condensing pressure is low because the water temperature of the regenerator 4 is low, and the difference between the condensing pressure on the heating side and the condensing pressure on the regenerative tank is large. A capillary tube 39 is provided at the inlet on the cold storage heat tank side, and simultaneous operation of heat storage and heating can be performed by lowering the condensing pressure from that on the heating side. In this operation mode, operation is performed when the water temperature of the regenerative heat storage tank is low at night and there is a heating request from the user, and simultaneous operation of heating and heat storage is possible. Can be secured.

【0053】図16は蓄熱・給湯同時運転時の冷媒の流
れを表す図である。この場合には、第2、第4、第7の
電磁弁を開き、第1、第3、第5、第6の電磁弁は閉じ
ておく。また、第3、第4の流量調整弁は絞り状態に開
き、第1、第2の流量制御弁は閉じておく。蒸発圧力調
整弁9も閉じておく。また、四方弁8は室外熱交換器2
が圧縮機1の吸入側に連通するように切り換えておく。
圧縮機1より吐出された高圧冷媒は分岐部31にて二方
向に分岐され、蓄冷熱槽4側はキャピラリーチューブ3
9を通り減圧され、第7の電磁弁SV7を通り、蓄冷熱
槽4にて水と熱交換を行うことにより凝縮して液冷媒と
なったのちに、第4の流量調整弁V4にて絞られ低圧二
相冷媒となり、他方の給湯熱交換器5側は、第4の電磁
弁SV4を通り、給湯熱交換器5にて熱交換を行い凝縮
して液冷媒となったのちに、第3の流量調整弁V3にて
絞られ低圧二相冷媒となる。そして、双方の低圧二相冷
媒は分岐部32にて合流し、第2の電磁弁SV2を経て
室外熱交換器2にて外気と熱交換し蒸発、ガス冷媒とな
り四方弁8を経て圧縮機1へ吸入される。
FIG. 16 is a diagram showing the flow of the refrigerant during the simultaneous operation of heat storage and hot water supply. In this case, the second, fourth, and seventh solenoid valves are opened, and the first, third, fifth, and sixth solenoid valves are closed. In addition, the third and fourth flow control valves are opened in a throttle state, and the first and second flow control valves are closed. The evaporation pressure regulating valve 9 is also closed. The four-way valve 8 is connected to the outdoor heat exchanger 2.
Is connected to the suction side of the compressor 1.
The high-pressure refrigerant discharged from the compressor 1 is branched in two directions at a branch part 31, and the cold storage heat tank 4 side has a capillary tube 3.
9, passes through the seventh solenoid valve SV7, exchanges heat with water in the cold storage tank 4, condenses into liquid refrigerant, and is then throttled by the fourth flow control valve V4. The second hot-water supply heat exchanger 5 passes through the fourth solenoid valve SV4 and exchanges heat in the hot-water supply heat exchanger 5 to be condensed into a liquid refrigerant. Is throttled by the flow control valve V3 to become a low-pressure two-phase refrigerant. Then, the two low-pressure two-phase refrigerants join at the branch part 32, exchange heat with the outside air at the outdoor heat exchanger 2 via the second solenoid valve SV2, evaporate and become gaseous refrigerant, and the compressor 1 via the four-way valve 8 Inhaled to.

【0054】この冷凍サイクルでは、蓄冷熱槽4の水温
が低いため凝縮圧力が低くなり、給湯側凝縮圧力と蓄冷
熱槽側凝縮圧力との違いが大きく、同時運転が困難な場
合においても、蓄冷熱槽側の入口にキャピラリーチュー
ブ39を設け、凝縮圧力を給湯側よりも下げることによ
り蓄熱・給湯の同時運転が可能となる。この運転モード
は、夜間に蓄冷熱槽の水温が低く、かつ給湯タンクの湯
量が少ない場合に運転を行い、給湯と蓄熱の同時運転が
可能となるため、給湯運転を行いながら蓄熱量の確保が
可能となる。
In this refrigeration cycle, the condensing pressure is lowered because the water temperature of the regenerator 4 is low, and the difference between the condensing pressure on the hot water supply side and the condensing pressure on the regenerative heat tank is large. A capillary tube 39 is provided at the inlet on the heat tank side, and the condensing pressure is made lower than that on the hot water supply side, thereby enabling simultaneous operation of heat storage and hot water supply. In this operation mode, operation is performed at night when the water temperature of the regenerative heat storage tank is low and the amount of hot water in the hot water supply tank is small, and simultaneous operation of hot water supply and heat storage is possible. It becomes possible.

【0055】[0055]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0056】一つの冷凍サイクルシステムにて、冷暖
房、給湯、蓄熱、蓄冷およびそれらの重複運転を可能と
した熱利用効率の高い多機能ヒートポンプシステムを実
現することができる。
With one refrigeration cycle system, it is possible to realize a multifunctional heat pump system having high heat utilization efficiency, which enables cooling / heating, hot water supply, heat storage, cold storage, and overlapping operation thereof.

【0057】室外ユニット、室内機、蓄冷熱槽、給湯タ
ンク、分岐ユニット(給湯熱交換器、流量調整弁、弁な
どの配管分岐部分を備えたユニット)を各ユニットごと
に構成することにより、従来の室外ユニット、室内機、
蓄冷熱槽、給湯タンクへの改造を極力抑えたシステム構
成が可能となり、低コストにて多機能ヒートポンプシス
テムの構築が可能となる。
Conventionally, an outdoor unit, an indoor unit, a cold storage tank, a hot water supply tank, and a branching unit (a unit having a pipe branching portion such as a hot water supply heat exchanger, a flow control valve, and a valve) are provided for each unit. Outdoor units, indoor units,
This makes it possible to configure a system that minimizes the need for modification to cold storage tanks and hot water supply tanks, and enables the construction of a multifunctional heat pump system at low cost.

【0058】また、蓄冷熱槽の入口側に第3の弁と並列
にキャピラリーチューブと第7の弁を設けることによ
り、蓄冷熱槽内の水温が低く凝縮圧力が低い条件となる
場合においても、凝縮温度のより高い給湯、暖房との同
時運転が可能となる。
By providing a capillary tube and a seventh valve in parallel with the third valve on the inlet side of the cold storage tank, even when the water temperature in the cold storage tank is low and the condensation pressure is low, Simultaneous operation with hot water supply and heating with a higher condensing temperature becomes possible.

【0059】運転開始の際に冷媒をその運転モードで使
用される熱交換器へ冷媒回収運転を行い、その運転モー
ドに必要とされる冷媒量と冷凍機油を確保することがで
きるため、正常な運転が可能となる。
At the start of the operation, the refrigerant is recovered to the heat exchanger used in the operation mode by the refrigerant recovery operation, and the refrigerant amount and the refrigerating machine oil required for the operation mode can be secured. Driving becomes possible.

【0060】冷媒回収とそれに続く運転において四方弁
を切換えることなく冷媒を回収することにより、四方弁
の反転にともなう音の発生を防ぎ、圧縮機への急激な液
冷媒の戻りによる圧縮機故障を防ぐことが可能となり、
また、冷媒回収をその運転モードにて使用される凝縮熱
交換器へ行うため、冷媒回収に続く運転の立ち上げをス
ムーズに継続して行うことが可能となる。
By recovering the refrigerant without switching the four-way valve in the refrigerant recovery and the subsequent operation, the generation of the sound accompanying the inversion of the four-way valve is prevented, and the compressor failure due to the sudden return of the liquid refrigerant to the compressor is prevented. Can be prevented,
Further, since the refrigerant recovery is performed to the condensing heat exchanger used in the operation mode, the start-up of the operation following the refrigerant recovery can be smoothly and continuously performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1における多機能ヒートポ
ンプシステムの回路構成図である。
FIG. 1 is a circuit configuration diagram of a multifunctional heat pump system according to a first embodiment of the present invention.

【図2】 本発明の実施形態1における多機能ヒートポ
ンプシステムの放冷冷房運転時の冷凍サイクル回路構成
図である。
FIG. 2 is a configuration diagram of a refrigeration cycle circuit during a cooling / cooling operation of the multifunctional heat pump system according to Embodiment 1 of the present invention.

【図3】 本発明の実施形態1における多機能ヒートポ
ンプシステムの放熱暖房運転時の冷凍サイクル回路構成
図である。
FIG. 3 is a refrigeration cycle circuit configuration diagram of the multifunctional heat pump system according to Embodiment 1 of the present invention during a heat radiation and heating operation.

【図4】 本発明の実施形態1における多機能ヒートポ
ンプシステムの冷房・給湯同時運転時の冷凍サイクル回
路構成図である。
FIG. 4 is a refrigeration cycle circuit configuration diagram of the multifunctional heat pump system according to the first embodiment of the present invention during simultaneous cooling and hot water supply operation.

【図5】 本発明の実施形態1における多機能ヒートポ
ンプシステムの蓄冷・冷房同時運転時の冷凍サイクル回
路構成図である。
FIG. 5 is a refrigeration cycle circuit configuration diagram of the multifunctional heat pump system according to Embodiment 1 of the present invention at the time of simultaneous cold storage / cooling operation.

【図6】 本発明の実施形態1における多機能ヒートポ
ンプシステムの蓄冷・給湯同時運転時の冷凍サイクル回
路構成図である。
FIG. 6 is a refrigeration cycle circuit configuration diagram during simultaneous operation of cold storage and hot water supply of the multi-function heat pump system according to Embodiment 1 of the present invention.

【図7】 本発明の実施形態1における多機能ヒートポ
ンプシステムの蓄冷・冷房・給湯同時運転時の冷凍サイ
クル回路構成図である。
FIG. 7 is a refrigeration cycle circuit configuration diagram during simultaneous operation of cold storage, cooling, and hot water supply of the multi-function heat pump system according to the first embodiment of the present invention.

【図8】 本発明の実施形態1における多機能ヒートポ
ンプシステムの給湯・暖房同時運転時の冷凍サイクル回
路構成図である。
FIG. 8 is a configuration diagram of a refrigeration cycle circuit during simultaneous operation of hot water supply and heating of the multifunctional heat pump system according to Embodiment 1 of the present invention.

【図9】 本発明の実施形態1における多機能ヒートポ
ンプシステムの冷房運転前冷媒回収時の冷凍サイクル回
路構成図である。
FIG. 9 is a refrigeration cycle circuit configuration diagram of the multifunctional heat pump system according to Embodiment 1 of the present invention at the time of refrigerant recovery before cooling operation.

【図10】 本発明の実施形態1における多機能ヒート
ポンプシステムの暖房運転前冷媒回収時の冷凍サイクル
回路構成図である。
FIG. 10 is a refrigeration cycle circuit configuration diagram of the multi-function heat pump system according to Embodiment 1 of the present invention at the time of refrigerant recovery before heating operation.

【図11】 本発明の実施形態1における多機能ヒート
ポンプシステムの冷房・給湯同時運転前冷媒回収時の冷
凍サイクル回路構成図である。
FIG. 11 is a refrigeration cycle circuit configuration diagram of the multifunctional heat pump system according to Embodiment 1 of the present invention at the time of refrigerant recovery before simultaneous cooling and hot water supply operation.

【図12】 本発明の実施形態1における多機能ヒート
ポンプシステムの蓄熱運転前冷媒回収時の冷凍サイクル
回路構成図である。
FIG. 12 is a refrigeration cycle circuit configuration diagram of the multifunctional heat pump system according to Embodiment 1 of the present invention at the time of recovering refrigerant before the heat storage operation.

【図13】 本発明の実施形態1における多機能ヒート
ポンプシステムの給湯運転前冷媒回収時の冷凍サイクル
回路構成図である。
FIG. 13 is a configuration diagram of a refrigeration cycle circuit of the multi-function heat pump system according to Embodiment 1 of the present invention at the time of refrigerant recovery before a hot-water supply operation.

【図14】 本発明の実施形態1における多機能ヒート
ポンプシステムの給湯・暖房同時運転前冷媒回収時の冷
凍サイクル回路構成図である。
FIG. 14 is a refrigeration cycle circuit configuration diagram of the multifunction heat pump system according to Embodiment 1 of the present invention at the time of refrigerant recovery before simultaneous hot water supply / heating operation.

【図15】 本発明の実施形態2における多機能ヒート
ポンプシステムの蓄熱・暖房同時運転時の冷凍サイクル
回路構成図である。
FIG. 15 is a configuration diagram of a refrigeration cycle circuit during simultaneous operation of heat storage and heating of the multifunctional heat pump system according to Embodiment 2 of the present invention.

【図16】 本発明の実施形態2における多機能ヒート
ポンプシステムの蓄熱・給湯同時運転時の冷凍サイクル
回路構成図である。
FIG. 16 is a configuration diagram of a refrigeration cycle circuit during simultaneous operation of heat storage and hot water supply of the multifunctional heat pump system according to Embodiment 2 of the present invention.

【図17】 本発明の多機能ヒートポンプシステムの実
施イメージ図である。
FIG. 17 is a conceptual diagram of an embodiment of the multifunctional heat pump system according to the present invention.

【図18】 従来の多機能ヒートポンプシステムの冷凍
サイクル回路構成図である。
FIG. 18 is a refrigeration cycle circuit configuration diagram of a conventional multifunctional heat pump system.

【図19】 従来の他の多機能ヒートポンプシステムの
冷凍サイクル回路構成図である。
FIG. 19 is a refrigeration cycle circuit configuration diagram of another conventional multifunctional heat pump system.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 室外熱交換器、3 室内機(室内熱交
換器)、4 蓄冷熱槽、5 給湯熱交換器、6 給湯タ
ンク、7 給湯ヒータ、8 四方弁、9 蒸発圧力調整
弁、10 水用流量調整弁、11 水用ポンプ、12
圧力センサ、13室外ユニット、14 分岐ユニット、
15〜30 接続端、31〜34 分岐部、35 室内
熱交換器側冷媒回路、36 給湯熱交換器側冷媒回路、
37 蓄冷熱槽側冷媒回路、38 冷媒吸入回路、39
キャピラリーチューブ、SV1〜SV7 電磁弁、V
1〜V4 流量調整弁。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 outdoor heat exchangers, 3 indoor units (indoor heat exchangers), 4 cold storage heat tanks, 5 hot water supply heat exchangers, 6 hot water supply tanks, 7 hot water supply heaters, 8 four-way valves, 9 evaporation pressure adjustment valves, 10 Flow control valve for water, 11 Pump for water, 12
Pressure sensor, 13 outdoor unit, 14 branch unit,
15-30 connection end, 31-34 branch, 35 indoor heat exchanger side refrigerant circuit, 36 hot water supply heat exchanger side refrigerant circuit,
37 Refrigerant storage tank side refrigerant circuit, 38 Refrigerant suction circuit, 39
Capillary tube, SV1 to SV7 Solenoid valve, V
1 to V4 Flow control valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七種 哲二 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 黒川 惠兒 福岡県福岡市中央区渡辺通2丁目1番82号 九州電力株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuji Nana species 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Keiji Kurokawa 2-chome Watanabe-dori, Chuo-ku, Fukuoka City, Fukuoka Prefecture 1-82 Kyushu Electric Power Co., Inc.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1台の圧縮機を備え、該圧縮機と、室外
熱交換器、室内熱交換器、蓄冷熱槽および給湯熱交換器
とを接続した冷媒回路により構成され、それぞれの熱交
換器への冷媒の流れを切り換えることにより、冷暖房・
給湯・蓄熱・蓄冷の単独運転およびそれらの複合運転を
可能とする冷凍サイクルを構成してなることを特徴とす
る多機能ヒートポンプシステム。
1. A refrigerant circuit comprising one compressor and connecting the compressor with an outdoor heat exchanger, an indoor heat exchanger, a cold storage heat tank and a hot water supply heat exchanger. By switching the flow of refrigerant to the
A multifunctional heat pump system comprising a refrigeration cycle capable of independent operation of hot water supply, heat storage, and cold storage and a combined operation thereof.
【請求項2】 1台の圧縮機と、室外熱交換器、室内熱
交換器、蓄冷熱槽および給湯熱交換器とを接続して冷凍
サイクルを構成し、圧縮機吐出側配管を二方向に分岐し
て、一方は第1の弁、切換弁、室外熱交換器、第2の
弁、流量調整弁、室内熱交換器を経て、蒸発圧力調整弁
と並列に設けられた第6の弁を介して前記切換弁に接続
し、さらに該切換弁と圧縮機吸入側配管を接続してなる
冷媒回路と、 他方は第4の弁、給湯熱交換器を経て、室内熱交換器用
流量調整弁と並列に設けられた給湯熱交換器用流量調整
弁を介して前記第2の弁に合流接続される冷媒回路と、 前記第4の弁の上流より分岐して第3の弁、蓄冷熱槽を
経て、前記室内熱交換器用流量調整弁と並列に設けられ
た蓄冷熱槽用流量調整弁を介して前記第2の弁に合流接
続される冷媒回路と、 前記第3の弁の下流より分岐して第5の弁を介して前記
圧縮機吸入側配管に合流接続される冷媒吸入回路と、を
備えたことを特徴とする多機能ヒートポンプシステム。
2. A refrigeration cycle is constituted by connecting one compressor, an outdoor heat exchanger, an indoor heat exchanger, a regenerative heat tank and a hot water supply heat exchanger, and a compressor discharge side pipe is connected in two directions. After branching, one is provided with a sixth valve provided in parallel with the evaporating pressure regulating valve via a first valve, a switching valve, an outdoor heat exchanger, a second valve, a flow regulating valve, and an indoor heat exchanger. A refrigerant circuit that is connected to the switching valve through the switching valve, and further connects the switching valve to a compressor suction side pipe; and the other is a fourth valve, a hot water supply heat exchanger, and a flow control valve for an indoor heat exchanger. A refrigerant circuit joined and connected to the second valve via a flow control valve for a hot water supply heat exchanger provided in parallel; and a third valve branched from an upstream of the fourth valve and a cold storage heat tank. Connected to the second valve via a flow control valve for a cold storage heat tank provided in parallel with the flow control valve for the indoor heat exchanger. A multifunction heat pump system, comprising: a refrigerant circuit; and a refrigerant suction circuit branched from a downstream of the third valve and connected to the compressor suction side pipe via a fifth valve. .
【請求項3】 室外ユニット、分岐ユニット、室内機、
蓄冷熱槽、給湯タンクの各ユニットにて構成され、前記
分岐ユニット内に給湯熱交換器と少なくとも流量調整弁
を備え、前記室外ユニット、前記室内機、前記蓄冷熱
槽、前記給湯タンクにそれぞれ接続される配管部分を備
えたことを特徴とする請求項2記載の多機能ヒートポン
プシステム。
3. An outdoor unit, a branch unit, an indoor unit,
The branch unit includes a hot water supply heat exchanger and at least a flow control valve, and is connected to the outdoor unit, the indoor unit, the cold storage heat tank, and the hot water supply tank, respectively. The multifunctional heat pump system according to claim 2, further comprising a piping portion that is provided.
【請求項4】 請求項2または請求項3記載の多機能ヒ
ートポンプシステムにおいて、蓄冷熱槽側の冷媒回路に
設けられた前記第3の弁に対して並列にキャピラリーチ
ューブと第7の弁を設けることにより、蓄熱と暖房、あ
るいは蓄熱と給湯の同時運転を可能とすることを特徴と
する多機能ヒートポンプシステム。
4. The multifunctional heat pump system according to claim 2, wherein a capillary tube and a seventh valve are provided in parallel with the third valve provided in the refrigerant circuit on the side of the cold storage heat tank. A multifunctional heat pump system characterized by enabling simultaneous operation of heat storage and heating, or heat storage and hot water supply.
【請求項5】 請求項1〜4のいずれかに記載の多機能
ヒートポンプシステムの運転方法において、冷媒不足が
予想される特定の運転モード開始前に、冷媒回収運転時
と冷媒回収後に四方弁または同等の機能を有する切換弁
の切り換えを行うことなく、その運転モードで利用され
る凝縮側熱交換器に冷媒回収を行うことを特徴とする多
機能ヒートポンプシステムの運転制御方法。
5. The method for operating a multi-function heat pump system according to claim 1, wherein before starting a specific operation mode in which a shortage of refrigerant is expected, during a refrigerant recovery operation and after refrigerant recovery, a four-way valve or An operation control method for a multifunctional heat pump system, wherein a refrigerant is recovered in a condensing-side heat exchanger used in an operation mode without switching a switching valve having an equivalent function.
【請求項6】 冷媒回収を行う場合に、一定時間だけ回
収運転を行うことを特徴とする請求項5記載の多機能ヒ
ートポンプシステムの運転制御方法。
6. The operation control method for a multifunctional heat pump system according to claim 5, wherein, when the refrigerant is recovered, the recovery operation is performed for a predetermined time.
【請求項7】 冷媒回収を行う場合に、圧縮機吸入側配
管に取り付けられた圧力センサが、所定の圧力に達する
まで回収運転を行うことを特徴とする請求項5記載の多
機能ヒートポンプシステムの運転制御方法。
7. The multifunctional heat pump system according to claim 5, wherein, when the refrigerant is recovered, the pressure sensor attached to the compressor suction side pipe performs the recovery operation until the pressure reaches a predetermined pressure. Operation control method.
JP7197098A 1998-03-20 1998-03-20 Multifunctional heat pump system and method of its operation control Pending JPH11270920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7197098A JPH11270920A (en) 1998-03-20 1998-03-20 Multifunctional heat pump system and method of its operation control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7197098A JPH11270920A (en) 1998-03-20 1998-03-20 Multifunctional heat pump system and method of its operation control

Publications (1)

Publication Number Publication Date
JPH11270920A true JPH11270920A (en) 1999-10-05

Family

ID=13475845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7197098A Pending JPH11270920A (en) 1998-03-20 1998-03-20 Multifunctional heat pump system and method of its operation control

Country Status (1)

Country Link
JP (1) JPH11270920A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402365B1 (en) * 2001-07-10 2003-10-17 진금수 Heat pump system
WO2006112638A1 (en) * 2005-04-21 2006-10-26 Lg Electronics Inc. Heat storage air conditioner
KR100662123B1 (en) * 2005-04-21 2006-12-27 엘지전자 주식회사 Thermal storage airconditioner
KR100688653B1 (en) * 2005-05-12 2007-03-02 엘지전자 주식회사 Thermal storage airconditioner
KR100789436B1 (en) 2006-02-22 2007-12-28 윤영선 Complex heating and cooling system
KR100869971B1 (en) 2008-02-12 2008-11-21 브이에스에너지 주식회사 Freeze, refrigeration and warm water accumulation system using heatpump
WO2009098751A1 (en) 2008-02-04 2009-08-13 Mitsubishi Electric Corporation Air-conditioning and water-heating complex system
WO2009122477A1 (en) 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system
WO2009122476A1 (en) 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system
WO2010082324A1 (en) 2009-01-15 2010-07-22 三菱電機株式会社 Complex system for air conditioning and hot water supplying
WO2011061792A1 (en) 2009-11-18 2011-05-26 三菱電機株式会社 Refrigeration cycle device and information propagation method adapted thereto
WO2011089637A1 (en) 2010-01-19 2011-07-28 三菱電機株式会社 Air conditioning-hot water supply combined system
JP2012047375A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Air conditioning system
CN102486344A (en) * 2010-12-02 2012-06-06 陈则韶 Compact cooling/heating air-conditioning and hot water supply three-purpose machine capable of building natural circulating flow for heat exchange
WO2012085970A1 (en) 2010-12-22 2012-06-28 三菱電機株式会社 Hot-water-supplying, air-conditioning composite device
JP2013072580A (en) * 2011-09-27 2013-04-22 Science Kk Heat pump operation method and heat pump
US8516847B2 (en) 2005-08-22 2013-08-27 Lg Electronics Inc. Thermal storage air conditioner
WO2014091548A1 (en) 2012-12-11 2014-06-19 三菱電機株式会社 Air conditioning hot water supply composite system
JP2016020786A (en) * 2014-07-15 2016-02-04 積水化学工業株式会社 Facility installation structure for building
WO2016103690A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
EP2972010A4 (en) * 2013-03-13 2017-05-10 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
US9945587B2 (en) 2014-09-02 2018-04-17 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
EP2492614B1 (en) * 2009-10-23 2022-11-09 Mitsubishi Electric Corporation Air conditioning device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402365B1 (en) * 2001-07-10 2003-10-17 진금수 Heat pump system
WO2006112638A1 (en) * 2005-04-21 2006-10-26 Lg Electronics Inc. Heat storage air conditioner
KR100662123B1 (en) * 2005-04-21 2006-12-27 엘지전자 주식회사 Thermal storage airconditioner
EP1872077A4 (en) * 2005-04-21 2015-10-14 Lg Electronics Inc Heat storage air conditioner
KR100688653B1 (en) * 2005-05-12 2007-03-02 엘지전자 주식회사 Thermal storage airconditioner
EP1917485A4 (en) * 2005-08-22 2016-01-27 Lg Electronics Inc Thermal storage air conditioner
US8516847B2 (en) 2005-08-22 2013-08-27 Lg Electronics Inc. Thermal storage air conditioner
KR100789436B1 (en) 2006-02-22 2007-12-28 윤영선 Complex heating and cooling system
WO2009098751A1 (en) 2008-02-04 2009-08-13 Mitsubishi Electric Corporation Air-conditioning and water-heating complex system
JPWO2009098751A1 (en) * 2008-02-04 2011-05-26 三菱電機株式会社 Air conditioning and hot water supply complex system
KR100869971B1 (en) 2008-02-12 2008-11-21 브이에스에너지 주식회사 Freeze, refrigeration and warm water accumulation system using heatpump
WO2009122477A1 (en) 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system
WO2009122476A1 (en) 2008-03-31 2009-10-08 三菱電機株式会社 Air-conditioning and hot water complex system
US8991202B2 (en) 2008-03-31 2015-03-31 Mitsubishi Electric Corporation Air-conditioning hot-water supply complex system
WO2010082324A1 (en) 2009-01-15 2010-07-22 三菱電機株式会社 Complex system for air conditioning and hot water supplying
EP2492614B1 (en) * 2009-10-23 2022-11-09 Mitsubishi Electric Corporation Air conditioning device
WO2011061792A1 (en) 2009-11-18 2011-05-26 三菱電機株式会社 Refrigeration cycle device and information propagation method adapted thereto
JP5518101B2 (en) * 2010-01-19 2014-06-11 三菱電機株式会社 Air conditioning and hot water supply complex system
WO2011089637A1 (en) 2010-01-19 2011-07-28 三菱電機株式会社 Air conditioning-hot water supply combined system
CN102401503A (en) * 2010-08-25 2012-04-04 日立空调·家用电器株式会社 Air conditioning system
JP2012047375A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Air conditioning system
CN102486344A (en) * 2010-12-02 2012-06-06 陈则韶 Compact cooling/heating air-conditioning and hot water supply three-purpose machine capable of building natural circulating flow for heat exchange
US9528713B2 (en) 2010-12-22 2016-12-27 Mitsubishi Electric Corporation Combined hot water supply and air-conditioning device
WO2012085970A1 (en) 2010-12-22 2012-06-28 三菱電機株式会社 Hot-water-supplying, air-conditioning composite device
JP2013072580A (en) * 2011-09-27 2013-04-22 Science Kk Heat pump operation method and heat pump
WO2014091548A1 (en) 2012-12-11 2014-06-19 三菱電機株式会社 Air conditioning hot water supply composite system
US9631826B2 (en) 2012-12-11 2017-04-25 Mistubishi Electric Corporation Combined air-conditioning and hot-water supply system
US9879881B2 (en) 2013-03-13 2018-01-30 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
EP2972010A4 (en) * 2013-03-13 2017-05-10 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
US9945582B2 (en) 2013-03-13 2018-04-17 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
EP3591314A1 (en) * 2013-03-13 2020-01-08 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
US10871307B2 (en) 2013-03-13 2020-12-22 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
JP2016020786A (en) * 2014-07-15 2016-02-04 積水化学工業株式会社 Facility installation structure for building
US9945587B2 (en) 2014-09-02 2018-04-17 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US10041702B2 (en) 2014-09-02 2018-08-07 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
JP2016125736A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Storage air conditioner
WO2016103690A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner

Similar Documents

Publication Publication Date Title
JPH11270920A (en) Multifunctional heat pump system and method of its operation control
JP5860700B2 (en) System for providing a vapor compression cycle and method for controlling a vapor compression cycle
US6883342B2 (en) Multiform gas heat pump type air conditioning system
JP2003343936A (en) Refrigeration cycle system
US5381671A (en) Air conditioning apparatus with improved ice storage therein
JP2006017427A (en) Cooling system
CN217900144U (en) Heat storage defrosting control system and air conditioner
JP2003121025A (en) Heating-cooling combination appliance
JP2006234321A (en) Outdoor unit and air conditioner
JP2002061980A (en) Compression type heat pump air conditioner and method for operating the same
JP3615301B2 (en) Heat pump for hot water supply
CN114413406B (en) Air conditioner with heat storage device
JPH06241582A (en) Heat accumulative type cooling device
JP3750287B2 (en) Heat storage device
JPS63233266A (en) Heat pump type air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPH02178575A (en) Heat pump for cooling or heating and supplying hot water system
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JP2005003251A (en) Air conditioner
JPH09159210A (en) Cooling system
JP2023543521A (en) heat pump system
JPH0769090B2 (en) Heat pump air conditioner
JP2002115924A (en) Heat pump type hot water heater apparatus
JP2000035255A (en) Thermal storage type air conditioner
JP2001241704A (en) Ice storage system