JP2000035255A - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JP2000035255A
JP2000035255A JP11154106A JP15410699A JP2000035255A JP 2000035255 A JP2000035255 A JP 2000035255A JP 11154106 A JP11154106 A JP 11154106A JP 15410699 A JP15410699 A JP 15410699A JP 2000035255 A JP2000035255 A JP 2000035255A
Authority
JP
Japan
Prior art keywords
heat storage
heat exchanger
valve
outdoor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11154106A
Other languages
Japanese (ja)
Inventor
Masateru Kawachi
政輝 河内
Toshiyuki Hojo
俊幸 北條
Kenji Togusa
健治 戸草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11154106A priority Critical patent/JP2000035255A/en
Publication of JP2000035255A publication Critical patent/JP2000035255A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To further increase a reduction width of consumed power at the peak time as compared with that at the other time zone by connecting an outdoor heat exchanger and a thermal storage heat exchanger in series or in parallel, feeding a part of discharged refrigerant from a compressor to the outdoor exchanger, and feeding the other to the storage exchanger. SOLUTION: In the case that an outdoor heat exchanger 7 and a thermal storage heat exchanger 13 are connected in series and both the exchangers are used as condensers, high temperature and high pressure refrigerant discharged from a compressor 5 is condensed in the exchanger 7 via a four-way switching valve 6, and fed to the exchanger 13 via an outdoor flow control valve 8 opened to a maximum valve travel and an opened third opening/closing valve. In the case that the exchanger 7 and the exchanger 13 are aligned in parallel and used as the condensers, the high temperature and high pressure refrigerant discharged from the compressor 5 is condensed at one side by the exchanger 7 via the valve 6 and condensed at the other side in the case of feeding the exchanger 13 via a first opened opening/closing valve 1 while maintained in the high temperature and high pressure gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱運転と蓄熱利
用空調運転とを実施することで昼間の空気調和による電
力消費量の低減を従来以上に実現する蓄熱式空気調和装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative air conditioner which realizes a reduction in power consumption by daytime air conditioning by performing a heat storage operation and a heat storage air conditioning operation.

【0002】[0002]

【従来の技術】圧縮機、四方切替弁、凝縮器、流量調整
弁及び蒸発器を順に冷媒配管で接続して冷凍サイクルを
構成し、冷媒配管の途中に蓄熱熱交換器を配設して構成
される蓄熱式空気調和装置の例としては、例えば特開平
6−147678号公報に開示されているものがあっ
た。
2. Description of the Related Art A refrigeration cycle is constructed by connecting a compressor, a four-way switching valve, a condenser, a flow control valve, and an evaporator in order through a refrigerant pipe, and a heat storage heat exchanger is arranged in the refrigerant pipe. An example of such a heat storage type air conditioner is disclosed, for example, in Japanese Patent Application Laid-Open No. Hei 6-147678.

【0003】[0003]

【発明が解決しようとする課題】上記従来例の蓄熱式空
気調和装置では、蓄熱熱交換器を複数台接続して構成さ
れており、室外熱交換器と蓄熱熱交換器を共に凝縮器と
して使用して蓄熱利用冷房運転時の凝縮圧力を下げ、圧
縮機の圧力比改善により消費電力の低減を図っているも
のの、さらなる凝縮圧力及び消費電力の低減する手段に
は配慮がなされていなかった。そこで本発明が解決しよ
うとする課題は、ピーク時の消費電力の低減巾をその他
の時間帯でのそれよりもより一層大きくしてこの種の従
来技術以上に消費電力の低減を図ることにある。
In the above-mentioned conventional heat storage type air conditioner, a plurality of heat storage heat exchangers are connected, and both the outdoor heat exchanger and the heat storage heat exchanger are used as condensers. Although the condensing pressure during the cooling operation using the heat storage is lowered to reduce the power consumption by improving the pressure ratio of the compressor, no consideration has been given to means for further reducing the condensing pressure and the power consumption. Therefore, the problem to be solved by the present invention is to reduce the power consumption at the peak time more than that at other time zones and to reduce the power consumption more than this kind of conventional technology. .

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明による蓄熱式空気調和装置は、
圧縮機、四方切替弁、室外熱交換器及び室外流量調整弁
を備えた室外ユニットと、蓄熱熱交換器を備えた蓄熱ユ
ニットと、室内流量調整弁及び室内熱交換器を備えた室
内ユニットとを有する蓄熱式空気調和装置において、前
記室外熱交換器と前記蓄熱熱交換器とを直列にする手段
と、前記室外熱交換器と前記蓄熱熱交換器とを並列にす
る手段と、前記圧縮機からの吐出冷媒の一部を前記室外
熱交換器に流し、他を前記蓄熱熱交換器に流す手段とを
備えたことを特徴とするものである。
In order to solve the above-mentioned problems, a regenerative air conditioner according to the first aspect of the present invention is provided.
An outdoor unit including a compressor, a four-way switching valve, an outdoor heat exchanger, and an outdoor flow control valve, a heat storage unit including a heat storage heat exchanger, and an indoor unit including an indoor flow control valve and an indoor heat exchanger. In the regenerative air conditioner having means for serializing the outdoor heat exchanger and the heat storage heat exchanger, means for parallelizing the outdoor heat exchanger and the heat storage heat exchanger, and Means for allowing a part of the discharged refrigerant to flow to the outdoor heat exchanger and the other to flow to the heat storage heat exchanger.

【0005】請求項1に記載の発明の構成によれば、蓄
熱熱交換器を利用する場合には、室外熱交換器と蓄熱熱
交換器とを直列に並べて、これらの熱交換器を凝縮器と
して使用し、凝縮圧力を下げ冷媒を過冷却冷媒にする運
転方法と、室外熱交換器と蓄熱熱交換器とを並列に並べ
て、これらの熱交換器を凝縮器として使用し、直接製氷
されている蓄熱熱交換器に圧縮機の吐出ガス冷媒を流し
込むことにより、凝縮圧力を下げ冷媒を過冷却し、室外
熱交換器に流す冷媒量を室外流量調整弁で調節し、蓄熱
流量調整弁後の冷媒と合流させることで凝縮圧力を制御
する運転方法と、圧縮機の吐出ガス冷媒の一部は、これ
を室外熱交換器に流して凝縮させ、圧縮機の吐出ガス冷
媒の他の一部は、これを室外流量調整弁後の冷媒と合流
させて製氷されている蓄熱熱交換器に流し込むことで凝
縮圧力を下げ冷媒を過冷却冷媒にする運転方法と、の3
つの運転方法のいずれかを選択することができる。
According to the first aspect of the present invention, when a heat storage heat exchanger is used, an outdoor heat exchanger and a heat storage heat exchanger are arranged in series, and these heat exchangers are connected to a condenser. It is used as an operating method that lowers the condensation pressure and turns the refrigerant into a supercooled refrigerant, and arranges an outdoor heat exchanger and a heat storage heat exchanger in parallel, using these heat exchangers as condensers and directly making ice. By flowing the refrigerant gas discharged from the compressor into the heat storage heat exchanger, the condensing pressure is lowered, the refrigerant is supercooled, and the amount of refrigerant flowing to the outdoor heat exchanger is adjusted by the outdoor flow rate adjustment valve. An operation method of controlling the condensing pressure by merging with the refrigerant, and a part of the discharge gas refrigerant of the compressor is condensed by flowing this to the outdoor heat exchanger, and another part of the discharge gas refrigerant of the compressor is This is combined with the refrigerant after the outdoor flow control valve to make ice. A driving method of a refrigerant to lower the condensing pressure by pouring the heat storage heat exchanger for supercooling the refrigerant that, the 3
One of the two driving methods can be selected.

【0006】同じく請求項2に記載の発明による蓄熱式
空気調和装置は、圧縮機、四方切替弁、室外熱交換器及
び室外流量調整弁を備えた室外ユニットと、蓄熱槽及び
蓄熱熱交換器を備えた蓄熱ユニットと、室内流量調整弁
及び室内熱交換器を備えた室内ユニットとを有する蓄熱
式空気調和装置において、前記蓄熱槽及び蓄熱熱交換器
を有する前記蓄熱ユニットを複数台備え、前記蓄熱ユニ
ットの利用台数が選択可能とされたことを特徴とするも
のである。
A regenerative air conditioner according to a second aspect of the present invention comprises an outdoor unit having a compressor, a four-way switching valve, an outdoor heat exchanger and an outdoor flow rate regulating valve, a heat storage tank and a heat storage heat exchanger. A heat storage unit having a heat storage unit and an indoor unit having an indoor flow rate regulating valve and an indoor heat exchanger, the heat storage unit having a plurality of the heat storage units having the heat storage tank and the heat storage heat exchanger, It is characterized in that the number of units used can be selected.

【0007】請求項2に記載の発明の構成によれば、複
数台の蓄熱ユニットのそれぞれにおける各蓄熱熱交換器
が請求項1に記載の発明の蓄熱熱交換器と同様に3つの
運転方法のいずれかを選択することができる。
According to the configuration of the invention described in claim 2, each of the heat storage heat exchangers in each of the plurality of heat storage units has the same three operation methods as the heat storage heat exchanger of the invention described in claim 1. Either can be selected.

【0008】[0008]

【発明の実施の形態】本発明の実施例を図1、図2、図
3及び図4に基づいて以下に説明する。ここで、下記す
る表1はモード毎に各流量調整弁の状態を表す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3 and 4. FIG. Here, Table 1 below shows the state of each flow control valve for each mode.

【0009】[0009]

【表1】 [Table 1]

【0010】図1は、第1の実施例による蓄熱式空気調
和装置の全体構成を示したものである。
FIG. 1 shows an overall configuration of a regenerative air conditioner according to a first embodiment.

【0011】図1に示す実施例において、蓄熱式空気調
和装置は、基本構成として圧縮機5、四方切替弁6、室
外熱交換器7及び室外流量調整弁8で構成される室外ユ
ニットと、蓄熱流量調整弁11及び蓄熱槽12に内包さ
れた蓄熱熱交換器13で構成される1台の蓄熱ユニット
と、室内流量調整弁9a,9b及び室内熱交換器10
a,10bで構成される2台の室内ユニットと、これら
の各ユニットを互いに接続する冷媒配管と、を備えてい
る。
In the embodiment shown in FIG. 1, the regenerative air conditioner comprises, as a basic configuration, an outdoor unit comprising a compressor 5, a four-way switching valve 6, an outdoor heat exchanger 7 and an outdoor flow control valve 8, One heat storage unit composed of a flow control valve 11 and a heat storage heat exchanger 13 included in a heat storage tank 12, an indoor flow control valve 9a, 9b and an indoor heat exchanger 10
a and 10b, and a refrigerant pipe connecting these units to each other.

【0012】本実施例の特徴的構成は、冷媒配管中に第
1の開閉弁1、第2の開閉弁2、第3の開閉弁3及び第
4の開閉弁4を配したことであり、これらの開閉弁を含
む冷媒配管の接続態様は次のような構成になっている。
A characteristic configuration of this embodiment is that a first on-off valve 1, a second on-off valve 2, a third on-off valve 3, and a fourth on-off valve 4 are arranged in a refrigerant pipe. The connection configuration of the refrigerant pipes including these on-off valves has the following configuration.

【0013】すなわち、圧縮機5の吐出側から分岐した
一方の冷媒配管を四方切替弁6を介して室外熱交換器7
もしくは室内熱交換器10a,10bの一方に接続する
と共に、他方の冷媒配管を第1の開閉弁1の一方に接続
している。また、圧縮機5の吸込側から分岐した一方の
冷媒配管を四方切替弁6を介して室内熱交換器10a,
10bもしくは室外熱交換器7の一方に接続すると共
に、他方の冷媒配管を第2の開閉弁2の一方に接続して
いる。
That is, one refrigerant pipe branched from the discharge side of the compressor 5 is connected to the outdoor heat exchanger 7 through the four-way switching valve 6.
Alternatively, it is connected to one of the indoor heat exchangers 10a and 10b, and the other refrigerant pipe is connected to one of the first on-off valves 1. In addition, one refrigerant pipe branched from the suction side of the compressor 5 is connected via the four-way switching valve 6 to the indoor heat exchanger 10a,
10 b or one of the outdoor heat exchangers 7, and the other refrigerant pipe is connected to one of the second on-off valves 2.

【0014】次に、第1の開閉弁1の他方と第2の開閉
弁2の他方とは合流した後分岐して、その一方の冷媒配
管を蓄熱熱交換器13の一方に接続すると共に、他方の
冷媒配管を第3の開閉弁3の一方に接続し、蓄熱熱交換
器13の他方は、蓄熱流量調整弁11を介して第4の開
閉弁4の一方に接続している。
Next, the other of the first on-off valve 1 and the other of the second on-off valve 2 are merged and then branched, and one of the refrigerant pipes is connected to one of the heat storage heat exchangers 13. The other refrigerant pipe is connected to one of the third on-off valves 3, and the other one of the heat storage heat exchangers 13 is connected to one of the fourth on-off valves 4 via the heat storage flow control valve 11.

【0015】さらに、第3の開閉弁3の他方と第4の開
閉弁4の他方とは合流した後室外流量調整弁8を介して
室外熱交換器7の他方に接続し、蓄熱流量調整弁11と
第4の開閉弁4の一方との間から分岐した冷媒配管を室
内流量調整弁9a,9bを介してそれぞれ室内熱交換器
10a,10bの他方に接続した構成となっている。
Further, after the other of the third on-off valve 3 and the other of the fourth on-off valve 4 have joined, they are connected to the other of the outdoor heat exchanger 7 via the outdoor flow control valve 8, and the heat storage flow control valve Refrigerant piping branched from between 11 and one of the fourth on-off valves 4 is connected to the other one of the indoor heat exchangers 10a and 10b via the indoor flow control valves 9a and 9b, respectively.

【0016】また、図1では示されていないが、蓄熱槽
12内の蓄熱媒体としては水が一般的であり、本発明に
ついても水の場合として説明を記述する。もちろん水以
外の蓄熱媒体であっても本発明の内容はそのまま適用で
きる。
Although not shown in FIG. 1, water is generally used as a heat storage medium in the heat storage tank 12, and the description of the present invention will be made on the assumption that water is used. Of course, the contents of the present invention can be applied to heat storage media other than water.

【0017】図1に示した構成で運転される冷凍サイク
ルの冷媒の流れを図6ないし図16を参照して以下に説
明する。
The flow of the refrigerant in the refrigeration cycle operated with the configuration shown in FIG. 1 will be described below with reference to FIGS.

【0018】はじめに、図6に示す冷房蓄熱運転につい
て説明する。圧縮機5から吐出された高温高圧の冷媒
は、四方切替弁6を経由して室外熱交換器7で凝縮し液
化する。液化した冷媒は、最大開度に開弁した室外流量
調整弁8を経由し、開弁した第4の開閉弁4を介して開
度を減じて流量を絞り減圧機構として作用する蓄熱流量
調整弁11で減圧される。蓄熱槽12に内包される蓄熱
熱交換器13で蒸発する冷媒は、周囲の水を冷却し製氷
する。蒸発した冷媒は、開弁した第2の開閉弁2を介し
て圧縮機5に戻る。このとき、第2の開閉弁1、第3の
開閉弁3及び室内流量調整弁9a,9bは閉弁してお
り、室内熱交換器10a,10bには冷媒が流れない。
ここで、室内に冷房負荷があった場合、室内流量調整弁
9a,9bを減圧機構として作用させ、室内熱交換器1
0a,10bにも冷媒を流すことは可能である。
First, the cooling heat storage operation shown in FIG. 6 will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 5 is condensed and liquefied in the outdoor heat exchanger 7 via the four-way switching valve 6. The liquefied refrigerant passes through the outdoor flow control valve 8 that has been opened to the maximum opening degree, and has its opening degree reduced through the fourth opening / closing valve 4 that has been opened to reduce the flow rate and act as a heat storage flow adjustment valve that acts as a pressure reducing mechanism. The pressure is reduced at 11. The refrigerant evaporating in the heat storage heat exchanger 13 included in the heat storage tank 12 cools surrounding water and makes ice. The evaporated refrigerant returns to the compressor 5 via the opened second on-off valve 2. At this time, the second on-off valve 1, the third on-off valve 3, and the indoor flow rate adjusting valves 9a, 9b are closed, and no refrigerant flows through the indoor heat exchangers 10a, 10b.
Here, when there is a cooling load in the room, the indoor flow rate adjusting valves 9a and 9b are operated as a pressure reducing mechanism, and the indoor heat exchanger 1 is operated.
It is possible to flow a refrigerant also to 0a and 10b.

【0019】また、蓄熱運転中に蓄熱ユニット13につ
いてセンサなどの信号により規定の蓄熱量に達したと判
断した場合には、蓄熱流量調整弁11を全閉として蓄熱
熱交換器13への冷媒の流れを遮断する。
If it is determined during the heat storage operation that the heat storage unit 13 has reached the specified amount of heat storage based on a signal from a sensor or the like, the heat storage flow control valve 11 is fully closed to transfer the refrigerant to the heat storage heat exchanger 13. Block the flow.

【0020】次に、蓄熱利用冷房運転について説明す
る。蓄熱利用冷房運転には、図7に示すように、室外熱
交換器7と蓄熱熱交換器13とを直列に並べ凝縮器とし
て使用する場合と、図8に示すように、室外熱交換器7
と蓄熱熱交換器13とを並列に並べ凝縮器として使用す
る場合とがある。はじめに、室外熱交換器7と蓄熱熱交
換器13とを直列に並べ凝縮器として使用する場合、次
に、室外熱交換器7と蓄熱熱交換器13とを並列に並べ
凝縮器として使用する場合を説明する。
Next, the cooling operation using heat storage will be described. As shown in FIG. 7, in the cooling operation using heat storage, the outdoor heat exchanger 7 and the heat storage heat exchanger 13 are arranged in series and used as a condenser, and as shown in FIG.
And the heat storage heat exchanger 13 may be arranged in parallel and used as a condenser. First, when the outdoor heat exchanger 7 and the heat storage heat exchanger 13 are arranged in series and used as a condenser, and then, when the outdoor heat exchanger 7 and the heat storage heat exchanger 13 are arranged in parallel and used as a condenser. Will be described.

【0021】図7において、室外熱交換器7と蓄熱熱交
換器13とを直列に並べてこれらの両熱交換器を凝縮器
として使用する場合、圧縮機5で吐出された高温高圧の
冷媒は、四方切替弁6を経由して室外熱交換器7で凝縮
し最大開度に開弁した室外流量調整弁8を経由し、開弁
した第3の開閉弁を経由して蓄熱熱交換器13に流入す
る。ここで、第1の開閉弁1、第2の開閉弁2及び第4
の開閉弁4は、閉弁のままであり、室外熱交換器7で凝
縮した冷媒は、直接圧縮機5及び室内流量調整弁9a,
9bに流れることはない。すでに製氷されている蓄熱槽
12内の蓄熱熱交換器13で凝縮及び過冷却された冷媒
は、最大開度に開弁した蓄熱流量調整弁11を介して、
減圧機構として作用する室内流量調整弁9a,9bで減
圧され、室内熱交換器10a,10bで蒸発することに
より室内の空気を冷却する。蒸発した冷媒は、四方切替
弁6を経由して圧縮機5に戻る。
In FIG. 7, when the outdoor heat exchanger 7 and the heat storage heat exchanger 13 are arranged in series and these two heat exchangers are used as a condenser, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is: The heat storage heat exchanger 13 is condensed in the outdoor heat exchanger 7 via the four-way switching valve 6, passes through the outdoor flow control valve 8 opened to the maximum opening degree, passes through the third opening / closing valve, and opens. Inflow. Here, the first on-off valve 1, the second on-off valve 2, and the fourth on-off valve
The on-off valve 4 remains closed, and the refrigerant condensed in the outdoor heat exchanger 7 is supplied directly to the compressor 5 and the indoor flow control valve 9a,
It does not flow to 9b. The refrigerant that has been condensed and supercooled in the heat storage heat exchanger 13 in the heat storage tank 12 in which ice is already being made passes through the heat storage flow control valve 11 that has been opened to the maximum opening degree.
The pressure is reduced by the indoor flow rate control valves 9a and 9b functioning as a pressure reducing mechanism, and is evaporated by the indoor heat exchangers 10a and 10b to cool the indoor air. The evaporated refrigerant returns to the compressor 5 via the four-way switching valve 6.

【0022】図7に示す蓄熱利用冷房運転においては、
室外熱交換器7で高温高圧ガスが凝縮する。この場合室
外空気(例えば気温35℃)と熱交換するので、凝縮圧
力は気温の影響を受け、例えば1.7MPa(17kg/
cm2 G)になっている。このような凝縮冷媒はさらに直
列に接続された蓄熱熱交換器13において氷と熱交換し
過冷却される。室外熱交換器7及び蓄熱熱交換器13を
直列に並べて使用するので、室外熱交換器7のみを使用
する図10に示す通常冷房運転時に比べて凝縮器容量が
大きくなっている。液冷媒領域が蓄熱熱交換器13に移
った分、凝縮器能力は大きく、図10の通常冷房運転時
における凝縮圧力例えば1.9MPa(19kg/cm2
G)に対し、約0.2MPa(2kg/cm2 G)低下す
る。圧縮機の消費電力は、凝縮圧力の高さに負うところ
が大きく、凝縮圧力の低下した分、消費電力は低下す
る。
In the cooling operation using heat storage shown in FIG.
The high-temperature and high-pressure gas is condensed in the outdoor heat exchanger 7. In this case, since heat exchange is performed with outdoor air (for example, an air temperature of 35 ° C.), the condensing pressure is affected by the air temperature, and is, for example, 1.7 MPa (17 kg /
cm 2 G). Such condensed refrigerant further exchanges heat with ice in the heat storage heat exchanger 13 connected in series and is supercooled. Since the outdoor heat exchanger 7 and the heat storage heat exchanger 13 are used in series, the capacity of the condenser is larger than that in the normal cooling operation shown in FIG. 10 in which only the outdoor heat exchanger 7 is used. As the liquid refrigerant region moves to the heat storage heat exchanger 13, the capacity of the condenser is large, and the condensing pressure during the normal cooling operation in FIG. 10, for example, 1.9 MPa (19 kg / cm 2)
G) is reduced by about 0.2 MPa (2 kg / cm 2 G). The power consumption of the compressor depends largely on the height of the condensing pressure, and the power consumption decreases as the condensing pressure decreases.

【0023】次に、図8に示すように、室外熱交換器7
と蓄熱熱交換器13とを並列に並べ凝縮器として使用す
る場合を説明する。
Next, as shown in FIG.
The case where the heat storage heat exchanger 13 and the heat storage heat exchanger 13 are arranged in parallel and used as a condenser will be described.

【0024】図8において、圧縮機5から吐出された高
温高圧の冷媒は、一方は四方切替弁6を経由して室外熱
交換器7で凝縮し、凝縮圧力制御として作用する室外流
量調整弁8及び開弁した第4の開閉弁4を経由し、他方
は高温高圧のガスのままで、開弁した第1の開閉弁1を
介して直接蓄熱熱交換器13を経由する際に凝縮され、
次いで、最大開度に開弁した蓄熱流量調整弁11を経由
し、第4の開閉弁4の一方と合流する。一部の冷媒が室
外熱交換器7及び凝縮圧力制御として作用する室外流量
調整弁8を経由し、蓄熱流量調整弁11後の液冷媒と合
流することで、蓄熱熱交換器13の蓄熱利用量と蓄熱流
量調整弁11後の凝縮圧力とが制御できるようになる。
ここで、第2の開閉弁2と第3の開閉弁3とは閉弁して
おり、圧縮機5及び室外熱交換器7を経由してきた冷媒
が蓄熱熱交換器13内に流れることはない。このときの
蓄熱槽12内の温度は外気温度に比べ低く、また凝縮器
として熱交換性能も良いので、高温高圧のガスの冷媒を
室外熱交換器7に流すより蓄熱熱交換器13に流すこと
で凝縮圧力を下げ、さらに冷媒を過冷却できる。
In FIG. 8, one of the high-temperature and high-pressure refrigerant discharged from the compressor 5 is condensed in the outdoor heat exchanger 7 via the four-way switching valve 6, and the outdoor flow control valve 8 acts as a condensing pressure control. Through the fourth open / close valve 4 that has been opened, and the other is condensed when passing directly through the heat storage heat exchanger 13 via the open / closed first open / close valve 1 while remaining at high temperature and pressure.
Next, it merges with one of the fourth on-off valves 4 via the heat storage flow control valve 11 that has been opened to the maximum opening. A part of the refrigerant passes through the outdoor heat exchanger 7 and the outdoor flow control valve 8 acting as a condensing pressure control, and joins with the liquid refrigerant after the heat storage flow control valve 11, so that the heat storage use amount of the heat storage heat exchanger 13 And the condensing pressure after the heat storage flow control valve 11 can be controlled.
Here, the second on-off valve 2 and the third on-off valve 3 are closed, and the refrigerant that has passed through the compressor 5 and the outdoor heat exchanger 7 does not flow into the heat storage heat exchanger 13. . At this time, the temperature in the heat storage tank 12 is lower than the outside air temperature, and the heat exchange performance is good as a condenser. Reduces the condensation pressure and further supercools the refrigerant.

【0025】凝縮及び過冷却された液冷媒は、減圧機構
として作用する室内流量調整弁9a,9bで減圧され、
室内熱交換器10a,10bで蒸発することにより室内
の空気を冷却する。蒸発した冷媒は四方切替弁6を経由
して圧縮機5に戻る。
The condensed and supercooled liquid refrigerant is depressurized by the indoor flow rate regulating valves 9a and 9b which function as a pressure reducing mechanism.
The indoor air is cooled by evaporating in the indoor heat exchangers 10a and 10b. The evaporated refrigerant returns to the compressor 5 via the four-way switching valve 6.

【0026】図8に示す蓄熱利用冷房運転においては、
基本的には蓄熱熱交換器13において氷と高温高圧ガス
が熱交換する。氷は通常0℃であり、融解後も例えば1
2℃までの冷水を熱源として使用でき、このとき凝縮圧
力は例えば0.7〜0.8MPa(7〜8kg/cm2 G)
まで低下するので、圧縮機5の消費電力は図7の冷房運
転時に比べてさらに低減することができる。なお、第4
の開閉弁4を開弁し、室外流量調整弁8で調整しなが
ら、冷媒ガスを室外熱交換器7を介してバイパスするこ
とで凝縮圧力をおし上げることができ、これにより圧縮
機の信頼性を向上することができる。
In the cooling operation using heat storage shown in FIG.
Basically, in the heat storage heat exchanger 13, the ice and the high-temperature high-pressure gas exchange heat. Ice is usually at 0 ° C.
Cold water up to 2 ° C. can be used as a heat source, and the condensing pressure is, for example, 0.7 to 0.8 MPa (7 to 8 kg / cm 2 G).
Therefore, the power consumption of the compressor 5 can be further reduced as compared with the cooling operation in FIG. The fourth
The refrigerant gas is bypassed through the outdoor heat exchanger 7 while the on-off valve 4 is opened and adjusted by the outdoor flow control valve 8, so that the condensing pressure can be increased. Performance can be improved.

【0027】図7の冷房運転時における蓄熱槽12での
氷の融解速度に対し、図8の冷房運転時における同じく
氷の融解速度は、熱交換時の温度差が大きい分だけ融解
速度が大きい。したがって、できるだけ小さくかつ有効
な蓄熱量とする、すなわちむだの小さい蓄熱槽12の大
きさとするためには、図7と図8の運転方法の切換えが
肝要となる。換言すれば、図8の運転方法のみに依存す
る場合は、大きな蓄熱槽が必要となり、図7の運転方法
のみに依存すると、消費電力の低下幅は小さい。さら
に、図3に示す第3の実施例のように、蓄熱ユニットを
複数台に分離するようにすれば、それだけ設置場所選定
の自由度が増える。
In contrast to the melting speed of ice in the heat storage tank 12 during the cooling operation in FIG. 7, the melting speed of the ice during the cooling operation in FIG. . Therefore, in order to make the heat storage amount as small and effective as possible, that is, to make the size of the heat storage tank 12 small, it is important to switch the operation method between FIG. 7 and FIG. In other words, when relying solely on the operating method of FIG. 8, a large heat storage tank is required, and when relying solely on the operating method of FIG. 7, the decrease in power consumption is small. Further, if the heat storage unit is divided into a plurality of units as in the third embodiment shown in FIG. 3, the degree of freedom in selecting the installation location increases accordingly.

【0028】また、上述の例では第4の開閉弁4は開弁
し、第3の開閉弁3は閉弁しているが、図9に示すよう
に、第3の開閉弁3を開弁し、第4の開閉弁4を閉弁
し、室外流量調整弁8の流量を調整することで蓄熱利用
時間と蓄熱熱交換器後の凝縮圧力を適正な状態に制御す
ることができる。
In the above example, the fourth on-off valve 4 is opened and the third on-off valve 3 is closed. However, as shown in FIG. 9, the third on-off valve 3 is opened. Then, by closing the fourth opening / closing valve 4 and adjusting the flow rate of the outdoor flow rate adjusting valve 8, it is possible to control the heat storage utilization time and the condensing pressure after the heat storage heat exchanger to an appropriate state.

【0029】さらにまた、第1の開閉弁1を開弁して凝
縮圧力を低減して運転している間は、室外熱交換器7に
空気を通過させるべく配設されるファンを停止してさら
に室外ユニットの消費電力を下げるべく運転することも
可能である。
Further, while the first opening / closing valve 1 is opened to reduce the condensing pressure and the operation is performed, the fan disposed to allow the air to pass through the outdoor heat exchanger 7 is stopped. It is also possible to operate the outdoor unit to reduce the power consumption.

【0030】次に、図10を参照し通常冷房運転につい
て説明する。図10において、圧縮機5から吐出された
高温高圧の冷媒は、四方切替弁6を経由して室外熱交換
器7で凝縮し液化する。液化した冷媒は、最大開度に開
弁した室外流量調整弁8を経由し、開弁した第4の開閉
弁4を介し、開度を減じて流量を絞り減圧機構として作
用する室内流量調整弁9a,9bで減圧され、室内熱交
換器10a,10bで蒸発し室内の熱を吸収し、室内の
空気を冷却する。蒸発した冷媒は、四方切替弁6を介し
て圧縮機5に戻る。このとき、第1の開閉弁1、第2の
開閉弁2、第3の開閉弁3及び蓄熱流量調整弁11は閉
弁しており蓄熱熱交換器13には冷媒が流れない。
Next, the normal cooling operation will be described with reference to FIG. In FIG. 10, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is condensed and liquefied in the outdoor heat exchanger 7 via the four-way switching valve 6. The liquefied refrigerant passes through the outdoor flow control valve 8 that has been opened to the maximum opening degree, passes through the fourth opening / closing valve 4 that has been opened, reduces the opening degree, reduces the flow rate, and acts as an indoor flow adjustment valve that acts as a pressure reducing mechanism. The pressure is reduced at 9a and 9b, evaporated at the indoor heat exchangers 10a and 10b to absorb the indoor heat, and cool the indoor air. The evaporated refrigerant returns to the compressor 5 via the four-way switching valve 6. At this time, the first opening / closing valve 1, the second opening / closing valve 2, the third opening / closing valve 3, and the heat storage flow control valve 11 are closed, and the refrigerant does not flow through the heat storage heat exchanger 13.

【0031】次に、図11を参照し暖房蓄熱運転につい
て説明する。図11において、圧縮機5から吐出された
高温高圧の冷媒は、開弁された第1の開閉弁1を経由
し、蓄熱熱交換器13で凝縮することにより周囲の水を
加熱し温水を作る。凝縮した冷媒は最大開度に開弁した
蓄熱流量調整弁11、開弁した第4の開閉弁4、開度を
減じて流量を絞り減圧機構として作用する室外流量調整
弁8を経由し、室外熱交換器7で蒸発し、流路方向の切
り替わった四方切替弁6を通り圧縮機5に戻る。また、
圧縮機5で吐出された高温高圧の冷媒の一部は、流路方
向の切り替わった四方切替弁6を経由し、室内熱交換器
10a,10bで凝縮し、室内流量調整弁9a,9bを
経由し、第4の開閉弁4と蓄熱流量調整弁11の間で蓄
熱流量調整弁11後の冷媒と合流する。ここで、第2の
開閉弁2、第3の開閉弁3は閉弁しており、合流した冷
媒が直接圧縮機5に流れることはない。
Next, the heating and heat storage operation will be described with reference to FIG. In FIG. 11, the high-temperature and high-pressure refrigerant discharged from the compressor 5 passes through the opened first opening / closing valve 1 and is condensed in the heat storage heat exchanger 13 to heat the surrounding water to produce hot water. . The condensed refrigerant passes through the heat storage flow control valve 11 that has been opened to the maximum opening, the fourth opening / closing valve 4 that has been opened, and the outdoor flow control valve 8 that has a reduced opening to reduce the flow rate and act as a pressure reducing mechanism. It evaporates in the heat exchanger 7 and returns to the compressor 5 through the four-way switching valve 6 whose flow direction has been switched. Also,
Part of the high-temperature and high-pressure refrigerant discharged from the compressor 5 passes through the four-way switching valve 6 whose flow direction is switched, is condensed in the indoor heat exchangers 10a and 10b, and passes through the indoor flow control valves 9a and 9b. Then, between the fourth on-off valve 4 and the heat storage flow control valve 11, the refrigerant after the heat storage flow control valve 11 merges. Here, the second on-off valve 2 and the third on-off valve 3 are closed, and the combined refrigerant does not flow directly to the compressor 5.

【0032】また、蓄熱運転中に蓄熱熱交換器13につ
いてセンサなどの信号により規定の蓄熱量に達したと判
断した場合には、蓄熱流量調整弁11を全閉として冷媒
の流れを遮断する。
If it is determined during the heat storage operation that the heat storage heat exchanger 13 has reached the specified heat storage amount by a signal from a sensor or the like, the heat storage flow control valve 11 is fully closed to shut off the flow of the refrigerant.

【0033】次に、図12及び図13を参照し蓄熱利用
暖房運転について説明する。蓄熱利用暖房運転には、図
12に示すように、蓄熱熱交換器13だけを蒸発器とし
て使用する場合と、図13に示すように、室外熱交換器
7と蓄熱熱交換器13を並列に並べ共に蒸発器として使
用する場合とがある。はじめに蓄熱熱交換器13だけを
蒸発器として使用する場合、次に室外熱交換器と蓄熱熱
交換器を並列に並べ共に蒸発器として使用する場合を説
明する。
Next, the heating operation using heat storage will be described with reference to FIGS. In the heating operation using heat storage, the case where only the heat storage heat exchanger 13 is used as the evaporator as shown in FIG. 12 and the case where the outdoor heat exchanger 7 and the heat storage heat exchanger 13 are connected in parallel as shown in FIG. There are cases where both are used as evaporators. First, the case where only the heat storage heat exchanger 13 is used as an evaporator, and the case where the outdoor heat exchanger and the heat storage heat exchanger are arranged in parallel and used together as an evaporator will be described.

【0034】蓄熱熱交換器13だけを蒸発器として使用
する場合、図12において、圧縮機5から吐出された高
温高圧の冷媒は、流路方向の切り替わった四方切替弁6
を経由して室内熱交換器10a,10bで凝縮し室内を
加熱する。凝縮した冷媒は最大開度あるいは任意の所定
開度に開弁した室内流量調整弁9a,9bを経由し、減
圧機構として作用する蓄熱流量調整弁11で減圧され蓄
熱熱交換器13で蒸発する。この際、冷媒は加熱されて
いる蓄熱槽12の温水から熱を吸収する。蒸発した冷媒
は、開弁した第2の開閉弁2を経由し圧縮機5に戻る。
ここで、第3の開閉弁3、第4の開閉弁4は閉弁してお
り、室外熱交換器7には冷媒は流れない。また、第1の
開閉弁1も閉弁しており、圧縮機5から吐出された冷媒
は、直接圧縮機5には流れない。
In the case where only the heat storage heat exchanger 13 is used as an evaporator, in FIG. 12, the high-temperature and high-pressure refrigerant discharged from the compressor 5 passes through the four-way switching valve 6 whose flow direction is switched.
And condenses in the indoor heat exchangers 10a and 10b to heat the room. The condensed refrigerant passes through the indoor flow rate regulating valves 9a and 9b opened to the maximum opening degree or an arbitrary predetermined opening degree, is depressurized by the heat storage flow rate regulating valve 11 acting as a pressure reducing mechanism, and is evaporated by the heat storage heat exchanger 13. At this time, the refrigerant absorbs heat from the warm water in the heated heat storage tank 12. The evaporated refrigerant returns to the compressor 5 via the second on-off valve 2 that has been opened.
Here, the third on-off valve 3 and the fourth on-off valve 4 are closed, and no refrigerant flows into the outdoor heat exchanger 7. Further, the first on-off valve 1 is also closed, and the refrigerant discharged from the compressor 5 does not flow directly to the compressor 5.

【0035】図12に示す蓄熱利用暖房運転において
は、室外熱交換器7を使用せずに蓄熱熱交換器13を単
独に使用するものであり、この場合温水のたまっている
蓄熱槽12を熱源としているので、室外熱交換器7がお
かれている外気温度の影響を受けることなく熱のくみ上
げができ、ヒートポンプ性能のよい暖房運転ができる。
また、室外熱交換器7に冷媒が流れないため室外機ファ
ンを止めることにより消費電力を低減することができ
る。
In the heating operation utilizing heat storage shown in FIG. 12, the heat storage heat exchanger 13 is used alone without using the outdoor heat exchanger 7, and in this case, the heat storage tank 12 in which hot water is stored is used as a heat source. Therefore, heat can be pumped without being affected by the outside air temperature where the outdoor heat exchanger 7 is placed, and a heating operation with good heat pump performance can be performed.
In addition, since the refrigerant does not flow to the outdoor heat exchanger 7, power consumption can be reduced by stopping the outdoor unit fan.

【0036】次に、図13を参照し室外熱交換器7と蓄
熱熱交換器13を並列に並べ蒸発器として使用する場合
を説明する。
Next, a case where the outdoor heat exchanger 7 and the heat storage heat exchanger 13 are arranged in parallel and used as an evaporator will be described with reference to FIG.

【0037】図13において、圧縮機5から吐出された
高温高圧の冷媒は、流路方向の切り替わった四方切替弁
6を経由して室内熱交換器10a,10bで凝縮し室内
を加熱する。凝縮した冷媒は、最大開度あるいは任意の
所定開度に開弁した室内流量調整弁9a,9bを経由
し、一方は減圧機構として作用する蓄熱流量調整弁11
に、他方は開弁した第4の開閉弁4に分岐し、蓄熱流量
調整弁11で減圧された冷媒は、蓄熱熱交換器13で蒸
発し、加熱されている蓄熱槽12の温水から熱を吸収
し、開弁した第2の開閉弁2を経由して圧縮機5に戻
る。他方の第4の開閉弁4に流れる冷媒は減圧機構とし
て作用する室外流量調整弁8を介して室外熱交換器7で
蒸発し、外気から熱を吸収し四方切替弁6を経由して圧
縮機5に戻る。ここで、第1の開閉弁1、第3の開閉弁
3は閉弁しており、圧縮機5の吐出側の冷媒は、直接圧
縮機5に戻らず、蓄熱熱交換器13のバイパスにならな
い。
In FIG. 13, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is condensed in the indoor heat exchangers 10a and 10b via the four-way switching valve 6 whose flow direction is switched, and heats the room. The condensed refrigerant passes through the indoor flow rate control valves 9a and 9b which are opened to the maximum opening degree or an arbitrary predetermined opening degree, and one of them is a heat storage flow rate adjustment valve 11 acting as a pressure reducing mechanism.
Meanwhile, the other is branched to the opened fourth opening / closing valve 4, and the refrigerant decompressed by the heat storage flow control valve 11 evaporates in the heat storage heat exchanger 13 and removes heat from the heated water in the heated heat storage tank 12. It returns to the compressor 5 via the second opening / closing valve 2 that has been absorbed and opened. The refrigerant flowing to the other fourth on-off valve 4 evaporates in the outdoor heat exchanger 7 via the outdoor flow rate control valve 8 acting as a pressure reducing mechanism, absorbs heat from the outside air, and passes through the four-way switching valve 6 to the compressor. Return to 5. Here, the first on-off valve 1 and the third on-off valve 3 are closed, and the refrigerant on the discharge side of the compressor 5 does not return directly to the compressor 5 and does not bypass the heat storage heat exchanger 13. .

【0038】図13に示す蓄熱利用暖房運転において
は、例えば、室外空気温度が高く蓄熱槽12の水温が低
いような場合には、室外熱交換器7を蒸発器として併用
するものであり、室外熱交換器7から熱をくみ上げるこ
とで低水温からでは不足する熱を補給して、快適性の低
下を抑制することができる。
In the heating operation using heat storage shown in FIG. 13, for example, when the outdoor air temperature is high and the water temperature of the heat storage tank 12 is low, the outdoor heat exchanger 7 is used in combination as an evaporator. By pumping heat from the heat exchanger 7, it is possible to replenish insufficient heat from a low water temperature and to suppress a decrease in comfort.

【0039】前記した図12に示す蓄熱利用暖房運転で
蓄熱熱交換器13を蒸発器として使用し続けると、水温
低下の温度によっては製氷することにもなり、夜間の暖
房蓄熱運転時の消費電力が増え、効率が低下してしま
う。そこで、蓄熱槽12の水温と外気の温度レベルによ
って、図12及び図13に示す各運転方法のいずれかを
選択すればよい。
If the heat storage heat exchanger 13 is continued to be used as an evaporator in the heat storage use heating operation shown in FIG. 12, ice may be produced depending on the temperature of the water temperature drop, and the power consumption during the nighttime heat storage operation And the efficiency decreases. Therefore, one of the operation methods shown in FIGS. 12 and 13 may be selected according to the water temperature of the heat storage tank 12 and the temperature level of the outside air.

【0040】次に、図14を参照し通常暖房運転につい
て説明する。図14において、圧縮機5から吐出された
高温高圧の冷媒は四方切替弁6を経由して室内熱交換器
10a,10bで凝縮し室内を加熱する。凝縮した冷媒
は、最大開度あるいは任意の所定開度に開弁した室内流
量調整弁9a,9bを経由し、開弁した第4の開閉弁4
を介し、開度を減じて流量を絞り減圧機構として作用す
る室外流量調整弁8を経由し、室外熱交換器7で蒸発
し、室外から熱を吸収し四方切替弁6を介して圧縮機5
に戻る。ここで、第4の開閉弁4のみが開弁し、第1の
開閉弁1、第2の開閉弁2、第3の開閉弁3及び蓄熱流
量調整弁11は閉弁しているので、蓄熱熱交換器13に
冷媒が流れることはない。
Next, the normal heating operation will be described with reference to FIG. In FIG. 14, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is condensed in the indoor heat exchangers 10a and 10b via the four-way switching valve 6, and heats the room. The condensed refrigerant passes through the indoor opening / closing valves 9a and 9b opened to the maximum opening degree or an arbitrary predetermined opening degree, and the opened fourth opening / closing valve 4 is opened.
, The flow rate is reduced and the flow rate is reduced through the outdoor flow rate control valve 8 acting as a pressure reducing mechanism, evaporating in the outdoor heat exchanger 7, absorbing heat from the outdoor, and passing through the four-way switching valve 6 to the compressor 5.
Return to Here, only the fourth on-off valve 4 is opened, and the first on-off valve 1, the second on-off valve 2, the third on-off valve 3, and the heat storage flow control valve 11 are closed. No refrigerant flows through the heat exchanger 13.

【0041】次に、図15を参照し蓄熱利用除霜運転に
ついて説明をする。図15において、圧縮機5から吐出
された高温高圧の冷媒は、四方切替弁6を経由して室外
熱交換器7で凝縮し液化する。このとき、室外熱交換器
7で除霜が行われる。液化した冷媒は、最大開度あるい
は任意の所定開度に開弁した室外流量調整弁8、開弁し
た第4の開閉弁4を経由し、開度を減じて流量を絞り減
圧機構として作用する蓄熱流量調整弁11で減圧され
る。蓄熱槽12に内包される蓄熱熱交換器13において
冷媒は周囲の温水から熱を吸収して蒸発し、開弁した第
2の開閉弁2を介して圧縮機5に戻る。このとき、第1
の開閉弁1、第3の開閉弁3及び室内流量調整弁9a,
9bは閉弁しており、室内熱交換器10a,10bには
冷媒が流れない。この場合、熱源を室内ではなく蓄熱槽
にするので、除霜により室内の熱を奪うことはない。
Next, the heat storage utilizing defrosting operation will be described with reference to FIG. In FIG. 15, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is condensed and liquefied in the outdoor heat exchanger 7 via the four-way switching valve 6. At this time, defrosting is performed in the outdoor heat exchanger 7. The liquefied refrigerant passes through the outdoor flow control valve 8 that has been opened to the maximum opening or an arbitrary predetermined opening, and the fourth open / close valve 4 that has been opened, and reduces the opening to reduce the flow and act as a pressure reducing mechanism. The pressure is reduced by the heat storage flow control valve 11. In the heat storage heat exchanger 13 included in the heat storage tank 12, the refrigerant absorbs heat from the surrounding hot water, evaporates, and returns to the compressor 5 via the opened second on-off valve 2. At this time, the first
On-off valve 1, third on-off valve 3, and indoor flow rate regulating valve 9a,
9b is closed, and the refrigerant does not flow through the indoor heat exchangers 10a and 10b. In this case, since the heat source is not a room but a heat storage tank, the indoor heat is not deprived by defrosting.

【0042】次に、図16を参照し通常除霜運転につい
て説明をする。図16において、圧縮機5から吐出され
た高温高圧の冷媒は、四方切替弁6を経由して室外熱交
換器7で凝縮し液化する。このとき、室外熱交換器7で
除霜が行われる。液化した冷媒は最大開度あるいは任意
の所定開度に開弁した室外流量調整弁8、開弁した第4
の開閉弁4を経由し、開度を減じて流量を絞り減圧機構
として作用する室内流量調整弁9a,9bで減圧され
る。室内熱交換器10a,10bで冷媒は、室内の熱を
吸収して蒸発し、四方切替弁6を介して圧縮機5に戻
る。このとき、第1の開閉弁1、第2の開閉弁2、第3
の開閉弁3及び蓄熱流量調整弁11は閉弁しており、蓄
熱熱交換器13には冷媒が流れない。
Next, the normal defrosting operation will be described with reference to FIG. In FIG. 16, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is condensed and liquefied in the outdoor heat exchanger 7 via the four-way switching valve 6. At this time, defrosting is performed in the outdoor heat exchanger 7. The liquefied refrigerant is supplied to the outdoor flow control valve 8 which is opened to the maximum opening or an arbitrary predetermined opening,
, The opening degree is reduced, the flow rate is reduced, and the pressure is reduced by the indoor flow rate adjusting valves 9a and 9b which function as a pressure reducing mechanism. In the indoor heat exchangers 10a and 10b, the refrigerant absorbs indoor heat and evaporates, and returns to the compressor 5 via the four-way switching valve 6. At this time, the first on-off valve 1, the second on-off valve 2, the third on-off valve
The on-off valve 3 and the heat storage flow control valve 11 are closed, and the refrigerant does not flow through the heat storage heat exchanger 13.

【0043】図2は、第2の実施例による第5の開閉弁
14及び第6の開閉弁15を持った1台の蓄熱ユニット
を備えた蓄熱式空気調和装置の全体構成を示したもので
ある。
FIG. 2 shows the overall configuration of a heat storage type air conditioner having one heat storage unit having a fifth on-off valve 14 and a sixth on-off valve 15 according to the second embodiment. is there.

【0044】図2に示す実施例において、蓄熱式空気調
和装置は、その基本構成として、圧縮機5、四方切替弁
6、室外熱交換器7及び室外流量調整弁8で構成される
1台の室外ユニットと、蓄熱流量調整弁11及び蓄熱熱
交換器13で構成される1台の蓄熱ユニットと、室内流
量調整弁9a,9b及びそれぞれに対応する室内熱交換
器10a,10bで構成される2台の室内ユニットと、
これらの各ユニットを互いに接続する冷媒配管と、を備
えている。
In the embodiment shown in FIG. 2, the regenerative air conditioner has one basic configuration including a compressor 5, a four-way switching valve 6, an outdoor heat exchanger 7, and an outdoor flow control valve 8. An outdoor unit, one heat storage unit including a heat storage flow rate control valve 11 and a heat storage heat exchanger 13, and indoor flow rate control valves 9a and 9b, and indoor heat exchangers 10a and 10b corresponding thereto, respectively. Indoor units,
And a refrigerant pipe for connecting these units to each other.

【0045】蓄熱ユニットが、冷媒配管により第1ない
し第4の開閉弁1,2,3及び4を介して、他の室外ユ
ニット及び室内ユニットに接続される態様は、図1に示
す実施例における1台の蓄熱ユニットの接続態様と全く
同様であり、第5の開閉弁14及び第6の開閉弁15を
加えた本実施例の蓄熱ユニットについて説明する。
The embodiment in which the heat storage unit is connected to other outdoor units and indoor units via refrigerant pipes through first to fourth on-off valves 1, 2, 3 and 4 is the same as the embodiment shown in FIG. This is exactly the same as the connection mode of one heat storage unit, and a heat storage unit of the present embodiment in which a fifth on-off valve 14 and a sixth on-off valve 15 are added will be described.

【0046】まず、図2に示すように圧縮機5の吐出側
から分岐した一方の冷媒配管を四方切替弁6を介して室
内熱交換器7もしくは室内熱交換器10a,10bの一
方に接続すると共に、他方の冷媒配管を第1の開閉弁1
の一方に接続している。また圧縮機5の吸込側から分岐
した一方の冷媒配管を四方切替弁6を介して室内熱交換
器10a,10bもしくは室外熱交換器7の一方に接続
すると共に、他方の冷媒配管を第2の開閉弁2の一方に
接続している。
First, as shown in FIG. 2, one refrigerant pipe branched from the discharge side of the compressor 5 is connected to one of the indoor heat exchanger 7 or one of the indoor heat exchangers 10a and 10b via the four-way switching valve 6. At the same time, the other refrigerant pipe is connected to the first on-off valve 1
Connected to one of the One refrigerant pipe branched from the suction side of the compressor 5 is connected to one of the indoor heat exchangers 10a and 10b or the outdoor heat exchanger 7 via the four-way switching valve 6, and the other refrigerant pipe is connected to the second heat pipe. It is connected to one of the on-off valves 2.

【0047】次に、第1の開閉弁1の他方と第2の開閉
弁2の他方とは合流した後分岐して、その一方の冷媒配
管を第5の開閉弁の一方に接続し、他方の冷媒配管を第
5の開閉弁よりも口径が小さく絞られた第6の開閉弁の
一方に接続し、第5の開閉弁の他方と第6の開閉弁の他
方とは合流した後分岐して、その一方の冷媒配管を蓄熱
熱交換器13の一方に接続すると共に、他方の冷媒配管
を第3の開閉弁3の一方に接続し、蓄熱熱交換器13の
他方は、蓄熱流量調整弁11を介して第4の開閉弁4の
一方に接続している。
Next, the other of the first on-off valve 1 and the other of the second on-off valve 2 are merged and then branched, and one of the refrigerant pipes is connected to one of the fifth on-off valves. Is connected to one of the sixth on-off valves whose diameter is smaller than that of the fifth on-off valve, and the other of the fifth on-off valve and the other of the sixth on-off valve are merged and then branched. One of the refrigerant pipes is connected to one of the heat storage heat exchangers 13, and the other refrigerant pipe is connected to one of the third opening / closing valves 3, and the other of the heat storage heat exchangers 13 is a heat storage flow control valve. 11 is connected to one of the fourth on-off valves 4.

【0048】さらに、第3の開閉弁3の他方と第4の開
閉弁4の他方とは合流した後室外流量調整弁8を介して
室外熱交換器7の他方に接続し、蓄熱流量調整弁11と
第4の開閉弁4の一方との間から分岐した冷媒配管を室
内流量調整弁9a,9bを介してそれぞれ室内熱交換器
10a,10bの他方に接続した構成となっており、こ
れは、第1実施例の接続態様と全く同様である。
Further, after the other of the third on-off valve 3 and the other of the fourth on-off valve 4 have joined, they are connected to the other of the outdoor heat exchanger 7 via the outdoor flow control valve 8, and the heat storage flow control valve Refrigerant piping branched from between 11 and one of the fourth on-off valves 4 is connected to the other one of the indoor heat exchangers 10a and 10b via the indoor flow control valves 9a and 9b, respectively. And the connection mode of the first embodiment.

【0049】図2に示した構成で運転される冷凍サイク
ルの冷媒の流れとして、冷房蓄熱運転及び蓄熱利用暖房
運転の二つの運転態様がある。室外熱交換器7または室
内熱交換器10a,10bで凝縮された液冷媒が蓄熱熱
交換器13で蒸発し、圧縮機5に戻る運転の時、特に始
動時には一時的に圧縮機5に液冷媒が大量に流れ、液圧
縮により圧縮機5が壊れる恐れがあるため、まず先に口
径が小さく絞られた第6の開閉弁16を開弁し、少量の
冷媒を流し、安定後に第5の開閉弁14を開弁すること
で圧縮機5への液冷媒戻りを防ぐことができる。
The refrigerant flow of the refrigeration cycle operated with the configuration shown in FIG. 2 has two operation modes, a cooling heat storage operation and a heat storage utilizing heating operation. The liquid refrigerant condensed in the outdoor heat exchanger 7 or the indoor heat exchangers 10a and 10b evaporates in the heat storage heat exchanger 13 and temporarily returns to the compressor 5 during the operation of returning to the compressor 5, particularly at the time of starting. Flows in a large amount, and the compressor 5 may be broken by liquid compression. Therefore, first, the sixth opening / closing valve 16 having a small diameter is opened, a small amount of refrigerant is allowed to flow, and after the stabilization, the fifth opening / closing valve is opened. By opening the valve 14, return of the liquid refrigerant to the compressor 5 can be prevented.

【0050】図3は、第3の実施例による2台の蓄熱ユ
ニットを備えた蓄熱式空気調和装置の全体構成を示した
ものである。
FIG. 3 shows the overall configuration of a heat storage type air conditioner provided with two heat storage units according to the third embodiment.

【0051】図3に示す実施例において、蓄熱式空気調
和装置は、その基本構成として、圧縮機5、四方切替弁
6、室外熱交換器7及び室外流量調整弁8で構成される
1台の室外ユニットと、蓄熱流量調整弁11a,11b
及びそれぞれに対応する蓄熱熱交換器13a、13bで
構成される2台の蓄熱ユニットと、室内流量調整弁9
a,9b及びそれぞれに対応する室内熱交換器10a,
10bで構成される2台の室内ユニットと、これらの各
ユニットを互いに接続する冷媒配管と、を備えている。
In the embodiment shown in FIG. 3, the regenerative air conditioner has one basic configuration including a compressor 5, a four-way switching valve 6, an outdoor heat exchanger 7, and an outdoor flow control valve 8. Outdoor unit and heat storage flow control valves 11a, 11b
And two heat storage units constituted by corresponding heat storage heat exchangers 13a and 13b, and an indoor flow rate regulating valve 9
a, 9b and the corresponding indoor heat exchangers 10a,
There are provided two indoor units constituted by 10b, and refrigerant pipes connecting these units to each other.

【0052】2台の蓄熱ユニットの各々が、冷媒配管に
より第1ないし第4の開閉弁1,2,3a,3b及び4
a,4bを介して、他の室外ユニット及び室内ユニット
に接続される態様は、図1に示す実施例における1台の
蓄熱ユニットの接続態様と全く同様であり、蓄熱流量調
整弁11a及び蓄熱熱交換器13aで構成される蓄熱ユ
ニットの接続態様についてのみ以下に説明する。
Each of the two heat storage units is connected to first to fourth on-off valves 1, 2, 3a, 3b and 4 by refrigerant piping.
The mode of connection to other outdoor units and indoor units via a and 4b is exactly the same as the mode of connection of one heat storage unit in the embodiment shown in FIG. Only the connection mode of the heat storage unit constituted by the exchanger 13a will be described below.

【0053】まず、図3に示すように圧縮機5の吐出側
から分岐した一方の冷媒配管を四方切替弁6を介して室
外熱交換器7もしくは室内熱交換器10a,10bの一
方に接続すると共に、他方の冷媒配管を第1の開閉弁1
の一方に接続している。また、圧縮機5の吸込側から分
岐した一方の冷媒配管を四方切替弁6を介して室内熱交
換器10a,10bもしくは室外熱交換器7の一方に接
続すると共に、他方の冷媒配管を第2の開閉弁2の一方
に接続している。
First, as shown in FIG. 3, one refrigerant pipe branched from the discharge side of the compressor 5 is connected to one of the outdoor heat exchanger 7 or one of the indoor heat exchangers 10a and 10b via the four-way switching valve 6. At the same time, the other refrigerant pipe is connected to the first on-off valve 1
Connected to one of the Further, one refrigerant pipe branched from the suction side of the compressor 5 is connected to one of the indoor heat exchangers 10a and 10b or the outdoor heat exchanger 7 via the four-way switching valve 6, and the other refrigerant pipe is connected to the second heat pipe. Is connected to one of the on-off valves 2.

【0054】次に,第1の開閉弁1の他方と第2の開閉
弁2の他方とは合流した後分岐し、該分岐後の一方の冷
媒配管を再分岐し、該再分岐後の一方の冷媒配管を蓄熱
熱交換器13aの一方に接続すると共に、他方の冷媒配
管を第3の開閉弁3aの一方に接続し、蓄熱熱交換器1
3aの他方は、蓄熱流量調整弁11aを介して第4の開
閉弁4aの一方に接続している。
Next, the other of the first on-off valve 1 and the other of the second on-off valve 2 are merged and branched, and one of the refrigerant pipes after the branch is re-branched. Is connected to one of the heat storage heat exchangers 13a, and the other refrigerant pipe is connected to one of the third on-off valves 3a.
The other of 3a is connected to one of the fourth on-off valves 4a via the heat storage flow control valve 11a.

【0055】さらに、第3の開閉弁3aの他方と第4の
開閉弁4aの他方とは合流した後室外流量調整弁8を介
して室外熱交換器7の他方に接続し、蓄熱流量調整弁1
1aと第4の開閉弁4aの一方との間から分岐した冷媒
配管を室内流量調整弁9a,9bを介してそれぞれ室内
熱交換器10a,10bの他方に接続した構成となって
いる。なお、蓄熱流量調整弁11b及び蓄熱熱交換器1
3bで構成される蓄熱ユニットに対する冷媒配管の接続
態様も前記した蓄熱熱交換器13aの場合と同様であ
り、その説明は省略する。
Further, the other of the third on-off valve 3a and the other of the fourth on-off valve 4a are merged and connected to the other of the outdoor heat exchanger 7 via the outdoor flow control valve 8, and the heat storage flow control valve 1
A refrigerant pipe branched from between 1a and one of the fourth on-off valves 4a is connected to the other one of the indoor heat exchangers 10a and 10b via indoor flow control valves 9a and 9b, respectively. Note that the heat storage flow control valve 11b and the heat storage heat exchanger 1
The manner of connecting the refrigerant pipes to the heat storage unit constituted by 3b is also the same as in the case of the heat storage heat exchanger 13a described above, and a description thereof will be omitted.

【0056】また、図3では示されていないが、蓄熱槽
12a,12b内の蓄熱媒体としては水が一般的であ
り、本発明についても水の場合として説明を記述する。
もちろん水以外の蓄熱媒体であっても本発明の内容はそ
のまま適用できる。
Although not shown in FIG. 3, water is generally used as the heat storage medium in the heat storage tanks 12a and 12b, and the description of the present invention will be made assuming that water is used.
Of course, the contents of the present invention can be applied to heat storage media other than water.

【0057】図3で示した構成で運転される冷凍サイク
ルの冷媒の流れについては、図1で説明した第3の開閉
弁3、第4の開閉弁4、蓄熱流量調整弁11、蓄熱槽1
2、蓄熱熱交換器13をひとまとまりとした蓄熱ユニッ
トが並列に接続されているものであって、図1で説明し
た冷凍サイクルの冷媒の流れと基本的に同じである。ま
た、図5に示すように、第1の開閉弁1と第2の開閉弁
2が合流し、各蓄熱熱交換器に分岐する点と第3の開閉
弁3a,3bと蓄熱熱交換器13a,13bの接続部の
間にそれぞれ第7の開閉弁16a,16bを置くことに
よって、各蓄熱槽12a,12bの利用の選択をするこ
とができる。
The flow of the refrigerant in the refrigeration cycle operated in the configuration shown in FIG. 3 is determined by the third on-off valve 3, fourth on-off valve 4, heat storage flow regulating valve 11, heat storage tank 1 described in FIG.
2. A heat storage unit in which the heat storage heat exchangers 13 are grouped is connected in parallel, and is basically the same as the refrigerant flow of the refrigeration cycle described with reference to FIG. As shown in FIG. 5, a point where the first opening / closing valve 1 and the second opening / closing valve 2 join and branch to each heat storage heat exchanger, the third opening / closing valves 3a and 3b, and the heat storage heat exchanger 13a. , 13b, the seventh on-off valve 16a, 16b, respectively, allows the use of each heat storage tank 12a, 12b to be selected.

【0058】図3に示す第3の実施例において、各蓄熱
槽12a,12bの水温レベルもしくは残氷量に違いが
あるような場合、各開閉弁を個々に切換えることによ
り、例えば水温の高い蓄熱熱交換器への、あるいは水温
の低い蓄熱熱交換器への冷媒供給を止め、熱源の有効利
用を図ることができる。また、室内負荷が小さく、蓄熱
利用量が少なくて良い場合、それに応じて蓄熱ユニット
の利用台数を制限すればよく、さらに蓄熱ユニットを複
数台にすることで設置場所の有効利用を図ることができ
る。
In the third embodiment shown in FIG. 3, when there is a difference in the water temperature level or the amount of residual ice in each of the heat storage tanks 12a and 12b, each of the on-off valves is individually switched so that, for example, the heat storage with a high water temperature is performed. The supply of the refrigerant to the heat exchanger or to the heat storage heat exchanger having a low water temperature can be stopped, and the heat source can be effectively used. In addition, when the indoor load is small and the amount of heat storage used may be small, the number of heat storage units to be used may be limited accordingly, and by using a plurality of heat storage units, the installation location can be effectively used. .

【0059】図4は、第3の実施例による2台の蓄熱ユ
ニットを備えた蓄熱式空気調和装置において、各蓄熱熱
交換器13a,13bにそれぞれ対応して、第2の実施
例におけるのと同様な作用効果を奏する第5の開閉弁1
4a,14b及び第6の開閉弁15a,15bを用いた
ものであり、この場合、第2の実施例と同様に圧縮機5
への液冷媒戻りを防ぐことができる。
FIG. 4 shows a regenerative air conditioner equipped with two heat storage units according to the third embodiment, corresponding to the heat storage heat exchangers 13a and 13b, respectively. Fifth on-off valve 1 having similar operation and effect
4a, 14b and a sixth on-off valve 15a, 15b. In this case, the compressor 5 is used similarly to the second embodiment.
The liquid refrigerant can be prevented from returning to the chamber.

【0060】[0060]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、室外熱交換器と蓄熱熱交換器を直列、また
は並列に並べ凝縮器として使用する2つの運転方法を可
能にし、圧縮機から吐出された高温高圧の冷媒を直接蓄
熱熱交換器に流入することで、凝縮に室外熱交換器を利
用する場合に比べ凝縮圧力を低くすることができ、これ
により圧縮機の消費電力を低減することができる。
As described above, according to the first aspect of the present invention, it is possible to provide two operation methods in which an outdoor heat exchanger and a heat storage heat exchanger are arranged in series or in parallel and used as a condenser. By directly flowing the high-temperature and high-pressure refrigerant discharged from the compressor into the heat storage heat exchanger, the condensing pressure can be reduced as compared with the case where the outdoor heat exchanger is used for condensation, thereby reducing the power consumption of the compressor. Can be reduced.

【0061】また請求項2記載の発明によれば、より大
きな凝縮を得ることができ、圧縮機の消費電力を低減で
きる。また、蓄熱利用する台数を変更もできる。
According to the second aspect of the present invention, it is possible to obtain a larger amount of condensation and reduce the power consumption of the compressor. Also, the number of heat storage units can be changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する冷凍サイクルの蓄熱槽1台の
第1の実施例
FIG. 1 is a first embodiment of a heat storage tank of a refrigeration cycle for implementing the present invention.

【図2】第1の実施例において第5及び第6の開閉弁を
設けた第2の実施例
FIG. 2 is a second embodiment in which fifth and sixth on-off valves are provided in the first embodiment.

【図3】本発明を実施する冷凍サイクルの蓄熱槽複数台
の第3の実施例
FIG. 3 is a third embodiment of a plurality of heat storage tanks of a refrigeration cycle for implementing the present invention.

【図4】第3の実施例において第5及び第6の開閉弁を
設けた第4の実施例
FIG. 4 is a fourth embodiment in which fifth and sixth on-off valves are provided in the third embodiment.

【図5】第3の実施例において第7の開閉弁を設けた第
5の実施例
FIG. 5 is a fifth embodiment in which a seventh on-off valve is provided in the third embodiment.

【図6】冷房蓄熱運転の説明図FIG. 6 is an explanatory diagram of a cooling heat storage operation.

【図7】直列の蓄熱利用冷房運転の説明図FIG. 7 is an explanatory diagram of a cooling operation using heat storage in series.

【図8】並列の蓄熱利用冷房運転の説明図FIG. 8 is an explanatory diagram of a cooling operation using heat storage in parallel.

【図9】蓄熱利用冷房運転の説明図FIG. 9 is an explanatory diagram of a cooling operation using heat storage.

【図10】通常の冷房運転の説明図FIG. 10 is an explanatory diagram of a normal cooling operation.

【図11】暖房蓄熱運転の説明図FIG. 11 is an explanatory diagram of a heating heat storage operation.

【図12】蓄熱熱交換器のみを用いる蓄熱利用暖房運転
の説明図
FIG. 12 is an explanatory diagram of a heat storage utilizing heating operation using only a heat storage heat exchanger.

【図13】蓄熱熱交換器と室外熱交換器とを併用する蓄
熱利用暖房運転の説明図
FIG. 13 is an explanatory diagram of a heat storage utilizing heating operation in which a heat storage heat exchanger and an outdoor heat exchanger are used in combination.

【図14】通常暖房運転の説明図FIG. 14 is an explanatory diagram of a normal heating operation.

【図15】蓄熱利用除霜運転の説明図FIG. 15 is an explanatory diagram of a heat storage utilizing defrosting operation.

【図16】通常除霜運転の説明図FIG. 16 is an explanatory diagram of a normal defrosting operation.

【符号の説明】[Explanation of symbols]

1…第1の開閉弁 2…第2の開閉弁 3,3a,3b…第3の開閉弁 4,4a,4b…第4の開閉弁 5…圧縮機 6…四方切替弁 7…室外熱交換器 8…室外流量調整弁 9,9a,9b…室内流量調整弁 10,10a,10b…室内熱交換器 11,11a,11b…蓄熱流量調整弁 12,12a,12b…蓄熱槽 13,13a,13b…蓄熱熱交換器 14,14a,14b…第5の開閉弁 15,15a,15b…第6の開閉弁 16a,16b…第7の開閉弁 DESCRIPTION OF SYMBOLS 1 ... 1st on-off valve 2 ... 2nd on-off valve 3, 3a, 3b ... 3rd on-off valve 4, 4a, 4b ... 4th on-off valve 5 ... Compressor 6 ... 4-way switching valve 7 ... Outdoor heat exchange Unit 8: outdoor flow control valves 9, 9a, 9b: indoor flow control valves 10, 10a, 10b: indoor heat exchangers 11, 11a, 11b: heat storage flow control valves 12, 12a, 12b: heat storage tanks 13, 13a, 13b ... heat storage heat exchangers 14, 14a, 14b ... fifth on-off valve 15, 15a, 15b ... sixth on-off valve 16a, 16b ... seventh on-off valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸草 健治 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenji Togusa 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Air Conditioning Systems Division, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方切替弁、室外熱交換器及び
室外流量調整弁を備えた室外ユニットと、蓄熱熱交換器
を備えた蓄熱ユニットと、室内流量調整弁及び室内熱交
換器を備えた室内ユニットとを有する蓄熱式空気調和装
置において、 前記室外熱交換器と前記蓄熱熱交換器とを直列にする手
段と、前記室外熱交換器と前記蓄熱熱交換器とを並列に
する手段と、前記圧縮機からの吐出冷媒の一部を前記室
外熱交換器に流し、他を前記蓄熱熱交換器に流す手段と
を備えたことを特徴とする蓄熱式空気調和器。
1. An outdoor unit having a compressor, a four-way switching valve, an outdoor heat exchanger and an outdoor flow control valve, a heat storage unit having a heat storage heat exchanger, an indoor flow control valve and an indoor heat exchanger. A heat storage type air conditioner having an indoor unit, a means for connecting the outdoor heat exchanger and the heat storage heat exchanger in series, and a means for setting the outdoor heat exchanger and the heat storage heat exchanger in parallel. Means for flowing a part of the refrigerant discharged from the compressor to the outdoor heat exchanger and flowing another part to the heat storage heat exchanger.
【請求項2】 圧縮機、四方切替弁、室外熱交換器及び
室外流量調整弁を備えた室外ユニットと、蓄熱槽及び蓄
熱熱交換器を備えた蓄熱ユニットと、室内流量調整弁及
び室内熱交換器を備えた室内ユニットとを有する蓄熱式
空気調和装置において、 前記蓄熱槽及び蓄熱熱交換器を有する前記蓄熱ユニット
を複数台備え、前記蓄熱ユニットの利用台数が選択可能
とされたことを特徴とする蓄熱式空気調和装置。
2. An outdoor unit having a compressor, a four-way switching valve, an outdoor heat exchanger and an outdoor flow control valve, a heat storage unit having a heat storage tank and a heat storage heat exchanger, an indoor flow control valve and indoor heat exchange. A heat storage air conditioner having an indoor unit provided with a heat storage unit, wherein a plurality of the heat storage units having the heat storage tank and the heat storage heat exchanger are provided, and the number of the heat storage units to be used can be selected. Heat storage type air conditioner.
JP11154106A 1999-06-01 1999-06-01 Thermal storage type air conditioner Pending JP2000035255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11154106A JP2000035255A (en) 1999-06-01 1999-06-01 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11154106A JP2000035255A (en) 1999-06-01 1999-06-01 Thermal storage type air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13791398A Division JP3253276B2 (en) 1998-05-20 1998-05-20 Thermal storage type air conditioner and operation method thereof

Publications (1)

Publication Number Publication Date
JP2000035255A true JP2000035255A (en) 2000-02-02

Family

ID=15577064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11154106A Pending JP2000035255A (en) 1999-06-01 1999-06-01 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2000035255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292330A (en) * 2006-04-21 2007-11-08 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292330A (en) * 2006-04-21 2007-11-08 Matsushita Electric Ind Co Ltd Air conditioner

Similar Documents

Publication Publication Date Title
CN203249455U (en) Air conditioning device
JP5327308B2 (en) Hot water supply air conditioning system
US5381671A (en) Air conditioning apparatus with improved ice storage therein
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2000179970A (en) Air conditioning system
JP3882056B2 (en) Refrigeration air conditioner
JP5145026B2 (en) Air conditioner
JP2000074514A (en) Battery type air conditioner and cold heat source device used therefor
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JP2001263848A (en) Air conditioner
JPH0828932A (en) Thermal storage type air conditioner
JP2003185287A (en) Manufacturing system for supercooled water and hot water
JP3304866B2 (en) Thermal storage type air conditioner
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JP3814877B2 (en) Thermal storage air conditioner
JP2000035255A (en) Thermal storage type air conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3781340B2 (en) Thermal storage refrigeration air conditioner
KR100345579B1 (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JPH09119725A (en) Binary refrigerator
JP3164079B2 (en) Refrigeration equipment
JP2003065584A (en) Air-conditioning apparatus and its control method
CN113237145B (en) Heat pump air conditioning device and implementation method thereof
JPH086940B2 (en) Building air conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301