JP3304866B2 - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JP3304866B2
JP3304866B2 JP03086098A JP3086098A JP3304866B2 JP 3304866 B2 JP3304866 B2 JP 3304866B2 JP 03086098 A JP03086098 A JP 03086098A JP 3086098 A JP3086098 A JP 3086098A JP 3304866 B2 JP3304866 B2 JP 3304866B2
Authority
JP
Japan
Prior art keywords
valve
heat storage
outdoor
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03086098A
Other languages
Japanese (ja)
Other versions
JPH11230630A (en
Inventor
俊幸 北條
浩作 八木
隆雄 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03086098A priority Critical patent/JP3304866B2/en
Publication of JPH11230630A publication Critical patent/JPH11230630A/en
Application granted granted Critical
Publication of JP3304866B2 publication Critical patent/JP3304866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は蓄熱運転と蓄熱利
用空調運転を実施することで昼間の空気調和による電力
消費量の低減を実現する蓄熱式空気調和機およびその制
御方法に関わる。
The present invention relates to a regenerative air conditioner that realizes a reduction in power consumption by daytime air conditioning by performing a heat storage operation and a heat storage air conditioning operation, and a control method thereof.

【0002】[0002]

【従来の技術】 圧縮機、凝縮器、流量調整弁、蒸発器
を順に冷媒配管で接続し、冷媒配管の途中に蓄熱熱交換
器を配設して構成される蓄熱式空気調和機の例として
は、例えば特開平6−147678号公報に記載されて
いる。
2. Description of the Related Art As an example of a regenerative air conditioner, a compressor, a condenser, a flow control valve, and an evaporator are sequentially connected by a refrigerant pipe, and a heat storage heat exchanger is arranged in the refrigerant pipe. Are described, for example, in Japanese Patent Application Laid-Open No. 6-147678.

【0003】[0003]

【発明が解決しようとする課題】 上記従来の蓄熱式空
気調和機では、蓄熱熱交換器を複数台接続して構成して
おり、室外熱交換器と蓄熱熱交換器を共に凝縮器として
使用して蓄熱利用冷房運転時の凝縮圧力を下げ、圧縮機
の圧力比改善により消費電力の低減を図っているもの
の、さらなる凝縮圧力および消費電力の低減する手段に
は配慮がされていなかった。
In the above-mentioned conventional heat storage type air conditioner, a plurality of heat storage heat exchangers are connected, and both the outdoor heat exchanger and the heat storage heat exchanger are used as condensers. Although the condensing pressure during the cooling operation using heat storage is lowered to reduce the power consumption by improving the pressure ratio of the compressor, no consideration has been given to means for further reducing the condensing pressure and the power consumption.

【0004】本発明の目的は、ピーク時の消費電力の低
減幅をよりその他の時間帯よりも大きくした蓄熱式空気
調和機及びその制御方法を提供することにある。
[0004] It is an object of the present invention to provide a regenerative air conditioner in which the reduction in power consumption during peak hours is made larger than in other time zones, and a control method thereof.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は複数台とされ、室外ユニットと室内ユニッ
トとの間に設けられた蓄熱熱交換器と、圧縮機に接続さ
れる室外熱交換器及び室外流量調整弁と、室外熱交換器
の圧縮機側と室外流量調整弁側に接続された第1の開閉
弁と、複数台の蓄熱熱交換器の反室外流量調整弁側から
圧縮機の吸い込み側へそれぞれ接続された第2の開閉弁
と、第2の開閉弁と蓄熱熱交換器の間から室内膨張弁へ
それぞれ接続された第3の開閉弁と、を備え、蓄熱利用
冷房運転時に、複数の第2の開閉弁を閉弁し、閉弁され
た第2の開閉弁に接続された第3の開閉弁を開弁すると
共に、第1の開閉弁を開弁して圧縮機で吐出された冷媒
の一部をバイパスさせて室外流量調整弁を流れる冷媒の
流量を減少するものである。
Means for Solving the Problems To achieve the above object,
Therefore, the present invention comprises a plurality of heat storage heat exchangers provided between the outdoor unit and the indoor unit, an outdoor heat exchanger and an outdoor flow control valve connected to the compressor, and an outdoor heat exchanger. A first on-off valve connected to the compressor side and the outdoor flow control valve side, and a plurality of heat storage heat exchangers from the opposite outdoor flow control valve side
Second on-off valves respectively connected to the suction side of the compressor
When a third on-off valve connected respectively to the indoor expansion valve from between the second on-off valve and the heat storage heat exchanger, comprising a heat storage utilization
During the cooling operation, the plurality of second on-off valves are closed, and the valves are closed.
Opening the third on-off valve connected to the second on-off valve
In both cases, the first on-off valve is opened and the refrigerant discharged by the compressor
Of the refrigerant flowing through the outdoor flow control valve
It reduces the flow rate.

【0006】また、本発明は圧縮機、室外熱交換器、室
外流量調整弁を有する室外ユニットと、室内膨張弁、室
内熱交換器を有する室内ユニットとを有する蓄熱式空気
調和機において、室外ユニットと室内ユニットとの間に
複数の蓄熱熱交換器を配設し、圧縮機で吐出された高温
高圧の冷媒の一方は室外熱交換器で凝縮し室外流量調整
弁を経由し、他方は高温高圧のガスのまま室外流量調整
弁を経由した一方と合流し、複数の蓄熱熱交換器に流入
するものである。
The present invention also relates to a compressor, an outdoor heat exchanger,
An outdoor unit having an outdoor flow control valve, an indoor expansion valve, and a chamber
Storage air having an indoor unit having an internal heat exchanger
In the harmonizer, between the outdoor unit and the indoor unit
With multiple heat storage heat exchangers installed, the high temperature discharged by the compressor
One of the high-pressure refrigerant is condensed in the outdoor heat exchanger and the outdoor flow rate is adjusted.
Via a valve, the other is a high-temperature, high-pressure gas while adjusting the outdoor flow rate
Merges with one via a valve and flows into multiple heat storage heat exchangers
Is what you do.

【0007】[0007]

【0008】[0008]

【発明の実施の形態】 本発明の実施例を図1〜図5に
示し以下説明する。◆図1は本発明の請求項1に記載の
蓄熱式空気調和機のシステム例を示したものである。全
体は1台の室外ユニット1に2台の蓄熱ユニット2a、
2bと複数台の室内ユニット3a、3bを冷媒配管で接
続して構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention are shown in FIGS. FIG. 1 shows a system example of a regenerative air conditioner according to claim 1 of the present invention. The whole is one outdoor unit 1 and two heat storage units 2a,
2b and a plurality of indoor units 3a, 3b are connected by refrigerant piping.

【0009】図2は本発明の請求項1および2に記載の
内容を含む蓄熱式空気調和機の一実施例を示したもので
ある。◆圧縮機4、四方弁5、室外熱交換器6、室外流
量調整弁7、室内流量調整弁8a、8b、室内熱交換器
9a、9b、四方弁5、圧縮機4を順次冷媒配管で接続
し、室外流量調整弁6と室内流量調整弁8a、8bの間
に冷媒配管を分岐して蓄熱流量調整弁10a、10bと
蓄熱槽11a、11bに内包された蓄熱熱交換器12
a、12bを直列に配設し、圧縮機4と四方弁5の間か
ら分岐して第1の開閉弁13を室外流量調整弁7と蓄熱
流量調整弁10a、10bの分岐部の間に接続しホット
ガスバイパス回路を構成し、蓄熱熱交換器12a、12
bと室内流量調整弁8a、8bの間から分岐して第2の
開閉弁14a、14bを介して四方弁5、圧縮機4の吸
込側に接続し、第2の開閉弁14a、14bの分岐部か
ら室内流量制御弁8a、8bの間に第3の開閉弁15
a、15bを配設し、室外流量調整弁7と蓄熱流量調整
弁10a、10bの間と、室内流量調整弁9a、9bと
第3の開閉弁15a、15bの間をそれぞれ接続する位
置に第4の開閉弁16を配設した構成としている。
FIG. 2 shows an embodiment of a regenerative air conditioner including the contents described in claims 1 and 2 of the present invention. ◆ The compressor 4, the four-way valve 5, the outdoor heat exchanger 6, the outdoor flow control valve 7, the indoor flow control valves 8a and 8b, the indoor heat exchangers 9a and 9b, the four-way valve 5, and the compressor 4 are sequentially connected by refrigerant piping. Then, a refrigerant pipe is branched between the outdoor flow control valve 6 and the indoor flow control valves 8a and 8b, and the heat storage heat exchanger 12 contained in the heat storage flow control valves 10a and 10b and the heat storage tanks 11a and 11b.
a, 12b are arranged in series, and branched from between the compressor 4 and the four-way valve 5 to connect the first on-off valve 13 between the outdoor flow rate control valve 7 and the branch portion of the heat storage flow rate control valves 10a, 10b. A hot gas bypass circuit, and heat storage heat exchangers 12a and 12a.
b and a branch from between the indoor flow control valves 8a and 8b, and are connected to the four-way valve 5 and the suction side of the compressor 4 via the second on-off valves 14a and 14b, and the second on-off valves 14a and 14b are branched. Between the indoor flow rate control valves 8a and 8b from the third opening / closing valve 15
a and 15b are disposed at positions connecting the outdoor flow control valve 7 and the heat storage flow control valves 10a and 10b and the indoor flow control valves 9a and 9b and the third on-off valves 15a and 15b, respectively. 4 on-off valve 16 is provided.

【0010】なお蓄熱流量調整弁10a、10bの圧力
損失を低減する目的でバイパス回路として、蓄熱流量調
整弁10a、10bの上流側と下流側に開閉弁を介して
冷媒配管を接続することもできるが図2では示していな
い。また第2の開閉弁14a、14bと第3の開閉弁1
5a、15bは三方弁に置き換えることも可能であり、
その場合の切替運転は以下に説明する冷媒の流れと同様
になるように制御されれば良いのでここでは言及しな
い。
In order to reduce the pressure loss of the heat storage flow control valves 10a and 10b, a refrigerant pipe may be connected to the upstream and downstream sides of the heat storage flow control valves 10a and 10b via on-off valves as a bypass circuit. However, it is not shown in FIG. The second on-off valves 14a and 14b and the third on-off valve 1
5a, 15b can be replaced with a three-way valve,
The switching operation in that case is not described here because it may be controlled so as to be similar to the flow of the refrigerant described below.

【0011】図2では示さないが蓄熱槽11a、11b
内の蓄熱媒体としては水が一般的であり、本発明につい
ても水の場合として説明を記述する。もちろん水以外の
蓄熱媒体であっても本発明の内容はそのまま適用でき
る。
Although not shown in FIG. 2, the heat storage tanks 11a and 11b
Water is generally used as a heat storage medium, and the description of the present invention will be made in the case of water. Of course, the contents of the present invention can be applied to heat storage media other than water.

【0012】図2に示した構成で運転される冷凍サイク
ルの冷媒の流れを次に説明する。◆蓄熱運転時について
説明する。圧縮機4で吐出された高温高圧の冷媒は四方
弁5を経由して室外熱交換器6で凝縮し液化する。液化
した冷媒は最大開度に開弁した室外流量調整弁7を経由
し、開度を減じて流量を絞り減圧機構として作用する蓄
熱流量制御弁10a、10bで減圧される。蓄熱槽11
a、11bに内包される蓄熱熱交換器12a、12bで
蒸発する冷媒は周囲の水を冷却し製氷する。蒸発した冷
媒は開弁した第2の開閉弁14a、14b、四方弁5を
介して圧縮機4に戻る。この時第1の開閉弁13、第3
の開閉弁15a、15b、室内流量制御弁8a、8bは
閉弁しており室内熱交換器9a、9bには冷媒が流れな
い。ただし第4の開閉弁16は通常は閉弁で良いが、運
転状態によっては開弁してもよい。
Next, the flow of the refrigerant in the refrigeration cycle operated with the configuration shown in FIG. 2 will be described. The operation during the heat storage operation will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 4 passes through the four-way valve 5 and is condensed and liquefied in the outdoor heat exchanger 6. The liquefied refrigerant passes through the outdoor flow control valve 7 that has been opened to the maximum opening, and is reduced in pressure by the heat storage flow control valves 10a and 10b that reduce the opening and reduce the flow rate and act as a pressure reducing mechanism. Thermal storage tank 11
The refrigerant evaporating in the heat storage heat exchangers 12a and 12b included in the heat storage heat exchangers 12a and 12b cools surrounding water and makes ice. The evaporated refrigerant returns to the compressor 4 through the opened second on-off valves 14a and 14b and the four-way valve 5. At this time, the first on-off valve 13, the third
The on-off valves 15a and 15b and the indoor flow control valves 8a and 8b are closed, and the refrigerant does not flow through the indoor heat exchangers 9a and 9b. However, the fourth on-off valve 16 may be normally closed, but may be opened depending on the operation state.

【0013】また蓄熱運転中に個別の蓄熱ユニット2
a、2bについてセンサなどの信号により規定の蓄熱量
に達したと判断した場合には、蓄熱流量調整弁10a、
10bを全閉として冷媒の流れを遮断する。規定の蓄熱
量に達しない蓄熱ユニットはそのまま蓄熱運転を継続す
る。
Further, during the heat storage operation, the individual heat storage units 2
When it is determined that the specified amount of heat storage has been reached by a signal from a sensor or the like for a and 2b, the heat storage flow rate adjusting valve 10a,
10b is fully closed to shut off the flow of the refrigerant. The heat storage unit that does not reach the specified heat storage amount continues the heat storage operation.

【0014】次に蓄熱利用冷房運転時について説明す
る。蓄熱利用冷房運転にはどちらか一方だけ利用する場
合と2台の蓄熱熱交換器12a、12bを両方とも利用
する場合とがある。はじめに一方のみ利用する場合、次
に両方とも利用する場合を説明する。
Next, a description will be given of a cooling operation using heat storage. In the cooling operation using heat storage, there is a case where only one of them is used and a case where both heat storage heat exchangers 12a and 12b are used. First, a case where only one is used and a case where both are used will be described.

【0015】蓄熱熱交換器12aのみで蓄熱利用運転す
る場合、圧縮機4で吐出された高温高圧の冷媒は四方弁
5を経由して室外熱交換器6で凝縮し最大開度に開弁し
た室外流量調整弁7を経由し、室外流量調整弁7と最大
開度に開弁した蓄熱流量制御弁10aを経由して蓄熱熱
交換器12aに流入する。第1の開閉弁13は閉弁のま
まであり高温高圧の冷媒が直接蓄熱流量開閉弁10a、
10bに流入することはない。
In the heat storage operation using only the heat storage heat exchanger 12a, the high-temperature and high-pressure refrigerant discharged from the compressor 4 is condensed in the outdoor heat exchanger 6 via the four-way valve 5 and opened to the maximum opening. It flows into the heat storage heat exchanger 12a via the outdoor flow control valve 7, and via the outdoor flow control valve 7 and the heat storage flow control valve 10a opened to the maximum degree. The first on-off valve 13 remains closed, and the high-temperature and high-pressure refrigerant is directly stored in the heat storage flow rate on-off valve 10a.
It does not flow into 10b.

【0016】蓄熱熱交換器12aでの熱交換により過冷
却されるがこのとき2台の蓄熱熱交換器12a、12b
を利用した場合に比べ蓄熱熱交換器12a内には液冷媒
が一杯になる。この液冷媒は開弁した第3の開閉弁15
aを介して減圧機構として作用する室内流量制御弁8
a、8bで減圧され、室内熱交換器9a、9bで蒸発す
ることにより室内の空気を冷却する。蒸発した冷媒は四
方切替弁5を経由して圧縮機4に戻る。このとき蓄熱流
量制御弁10bは全閉であり冷媒が流れ込まないように
なっており、第2の開閉弁14bは開弁しており蓄熱熱
交換器14bは圧縮機4の吸入側に接続されるため蓄熱
熱交換器12b内に冷媒が溜まることはない。このとき
第4の開閉弁16も閉弁しており冷媒が蓄熱熱交換器1
2a、12bをバイパスしてしまうことはない。
Subcooling is performed by heat exchange in the heat storage heat exchanger 12a. At this time, two heat storage heat exchangers 12a and 12b are used.
Is filled with the liquid refrigerant in the heat storage heat exchanger 12a as compared with the case of using the heat exchanger. This liquid refrigerant is supplied to the opened third opening / closing valve 15.
a flow rate control valve 8 acting as a pressure reducing mechanism via a
The indoor air is cooled by being decompressed at a and 8b and evaporated at the indoor heat exchangers 9a and 9b. The evaporated refrigerant returns to the compressor 4 via the four-way switching valve 5. At this time, the heat storage flow control valve 10b is fully closed so that the refrigerant does not flow in, the second on-off valve 14b is open, and the heat storage heat exchanger 14b is connected to the suction side of the compressor 4. Therefore, the refrigerant does not accumulate in the heat storage heat exchanger 12b. At this time, the fourth on-off valve 16 is also closed, and the refrigerant is stored in the heat storage heat exchanger 1.
There is no possibility of bypassing 2a and 12b.

【0017】次に2台の蓄熱熱交換器12a、12bを
両方利用する場合を説明する。
Next, a case where both heat storage heat exchangers 12a and 12b are used will be described.

【0018】圧縮機4で吐出された高温高圧の冷媒は一
方は四方弁5を経由して室外熱交換器6で凝縮し最大開
度に開弁した室外流量調整弁7を経由し、他方は高温高
圧のガスのまま開弁した第1の開閉弁13を経由し、室
外流量調整弁7と蓄熱流量調整弁10a、10bの間で
合流し最大開度に開弁した蓄熱流量調整弁10a、10
bを経由して蓄熱熱交換器12a、12bに流入する。
一部の冷媒が第1の開閉弁13を経由することで室外流
量調整弁7を流れる冷媒の流量は減るので圧力損失は小
さくなる。
One of the high-temperature and high-pressure refrigerant discharged from the compressor 4 passes through the four-way valve 5, condenses in the outdoor heat exchanger 6, passes through the outdoor flow control valve 7 opened to the maximum opening degree, and the other passes through. Via the first on-off valve 13 which is opened as a high-temperature and high-pressure gas, the heat storage flow control valve 10a which joins between the outdoor flow control valve 7 and the heat storage flow control valves 10a and 10b and opens to the maximum opening degree; 10
b flows into the heat storage heat exchangers 12a and 12b.
Since a part of the refrigerant passes through the first on-off valve 13, the flow rate of the refrigerant flowing through the outdoor flow control valve 7 is reduced, so that the pressure loss is reduced.

【0019】このときの各蓄熱熱交換器12a、12b
内において凝縮した液冷媒量は2台の蓄熱熱交換器を利
用しているので、蓄熱熱交換器12a1台のみを利用す
るときの約0.5倍になる。したがって蓄熱熱交換器1
2a、12bでの熱交換による冷媒の状態変化は凝縮お
よび過冷却されることとなる。
At this time, each heat storage heat exchanger 12a, 12b
Since the amount of liquid refrigerant condensed in the inside uses two heat storage heat exchangers, it becomes about 0.5 times that when only one heat storage heat exchanger 12a is used. Therefore, the heat storage heat exchanger 1
The state change of the refrigerant due to the heat exchange in 2a and 12b results in condensation and supercooling.

【0020】凝縮および過冷却された液冷媒は開弁した
第3の開閉弁15a、15bを介して減圧機構として作
用する室内流量制御弁8a、8bで減圧され、室内熱交
換器9a、9bで蒸発することにより室内の空気を冷却
する。蒸発した冷媒は四方弁5を経由して圧縮機4に戻
る。このとき第2の開閉弁14a、14bは閉弁してお
り蓄熱熱交換器14a、14bを介して四方弁5、圧縮
機4に冷媒が流れることはない。このとき第4の開閉弁
16も閉弁しており冷媒が蓄熱熱交換器12a、12b
をバイパスしてしまうことはない。
The condensed and supercooled liquid refrigerant is depressurized by the indoor flow rate control valves 8a and 8b acting as a decompression mechanism via the opened third on-off valves 15a and 15b, and is depressurized by the indoor heat exchangers 9a and 9b. The room air is cooled by evaporation. The evaporated refrigerant returns to the compressor 4 via the four-way valve 5. At this time, the second on-off valves 14a and 14b are closed, and the refrigerant does not flow to the four-way valve 5 and the compressor 4 via the heat storage heat exchangers 14a and 14b. At this time, the fourth on-off valve 16 is also closed, and the refrigerant is stored in the heat storage heat exchangers 12a, 12b.
Will not be bypassed.

【0021】また蓄熱流量調整弁10a、10bは最大
開度に開弁すべく制御されるが、弁口径など構造上の問
題があり圧力損失が大きくなる場合がある。その場合、
蓄熱流量調整弁10a、10bの上流側と下流側をバイ
パスさせるように冷媒配管を配設し途中に開閉弁を追加
してもよい。
The heat storage flow control valves 10a and 10b are controlled so as to open to the maximum opening degree, but there is a structural problem such as a valve diameter, and the pressure loss may increase. In that case,
A refrigerant pipe may be provided so as to bypass the upstream and downstream sides of the heat storage flow control valves 10a and 10b, and an on-off valve may be added in the middle.

【0022】一方第1の開閉弁13は2台の蓄熱熱交換
器12a、12bを利用する際に開弁するものとして説
明したが、室外流量調整弁7における圧力損失が小さく
無視できる場合には必要ではなく省略可能である。◆ま
た第1の開閉弁13を開弁して凝縮圧力を低減して運転
している間は、室外熱交換器6に空気を通過させるべく
配設されるファンを停止してさらに室外ユニット1の消
費電力を下げるべく運転することも可能である。 暖房運転時は、圧縮機4で吐出された高温高圧の冷媒が
流路方向の切り替わった四方弁5を経由して、室内熱交
換器9a、9bで凝縮することにより室内の空気が加熱
される。最大開度に開弁した室内流量調整弁8a、8
b、開弁する第4の開閉弁16を介して減圧機構として
作用する室外流量制御弁7で減圧され、室外熱交換器6
で蒸発した冷媒は四方弁5を経由して圧縮機4に戻る。
このとき蓄熱流量調整弁10a、10b、第1の開閉弁
13、第2の開閉弁14a、14bは閉弁しており蓄熱
熱交換器12a、12bには冷媒が流れない。
On the other hand, the first opening / closing valve 13 has been described as being opened when the two heat storage heat exchangers 12a and 12b are used. However, if the pressure loss in the outdoor flow control valve 7 is small and can be ignored. It is not necessary and can be omitted. During the operation in which the first on-off valve 13 is opened to reduce the condensing pressure, the fan disposed to allow the air to pass through the outdoor heat exchanger 6 is stopped, and the outdoor unit 1 is further stopped. It is also possible to operate to reduce the power consumption of the vehicle. During the heating operation, the indoor air is heated by the high-temperature and high-pressure refrigerant discharged from the compressor 4 being condensed in the indoor heat exchangers 9a and 9b via the four-way valve 5 switched in the flow direction. . Indoor flow regulating valves 8a, 8 opened to maximum opening
b, the pressure is reduced by the outdoor flow control valve 7 acting as a pressure reducing mechanism via the fourth opening / closing valve 16 which opens, and the outdoor heat exchanger 6
The refrigerant evaporated in step (1) returns to the compressor 4 via the four-way valve 5.
At this time, the heat storage flow control valves 10a, 10b, the first opening / closing valve 13, and the second opening / closing valves 14a, 14b are closed, and no refrigerant flows through the heat storage heat exchangers 12a, 12b.

【0023】図3は本発明の請求項1に記載の内容を含
む蓄熱式空気調和機のモリエル線図上での説明図を示
す。◆蓄熱熱交換器12aのみを蓄熱利用して冷房運転
している場合を実線で示す。また両方の蓄熱熱交換器1
2a、12bを蓄熱利用して冷房運転している場合を波
線で示す。◆蓄熱熱交換器12aのみを蓄熱利用して冷
房運転している場合、図3の例では約2.0MPaとな
っている。2台の蓄熱熱交換器12a、12bを使用す
る場合、蓄熱熱交換器12a、12b内に存在する液冷
媒量は蓄熱熱交換器12aのみを蓄熱利用して冷媒運転
している場合の約0.5倍になる。これにより蓄熱熱交
換器12a、12bでの凝縮圧力は蓄熱熱交換器12a
のみを蓄熱利用して冷媒運転している場合より低減でき
図3の例では約1.2MPaである。◆図4は本発明の
請求項2に記載の内容を含む蓄熱式空気調和機の運転パ
ターンと消費電力の時間変化の一実施例を示したもので
ある。
FIG. 3 is an explanatory diagram on a Mollier diagram of a regenerative air conditioner including the contents described in claim 1 of the present invention. ◆ The case where the cooling operation is performed using only the heat storage heat exchanger 12a to store heat is shown by a solid line. Also, both heat storage heat exchangers 1
The case where the cooling operation is performed by utilizing the heat storage of 2a and 12b is indicated by a dashed line. When the cooling operation is performed by using only the heat storage heat exchanger 12a for storing heat, the pressure is about 2.0 MPa in the example of FIG. When the two heat storage heat exchangers 12a and 12b are used, the amount of liquid refrigerant present in the heat storage heat exchangers 12a and 12b is about 0 in the case where the refrigerant is operated using only the heat storage heat exchanger 12a. .5 times. As a result, the condensing pressure in the heat storage heat exchangers 12a and 12b increases.
It can be reduced as compared with the case of operating the refrigerant using only the heat storage, and is about 1.2 MPa in the example of FIG. FIG. 4 shows an embodiment of an operation pattern of the regenerative air conditioner including the contents described in claim 2 of the present invention and a temporal change in power consumption.

【0024】全体の冷凍サイクルは図2と同じ場合とし
て説明する。◆蓄熱利用運転開始時刻(T1)におい
て、2台の蓄熱熱交換器12a、12bを同時に使用す
る時刻(T2)までの時間(T3)を分割し、各分割し
た時間毎に蓄熱熱交換器12a、12bを個別に1台ず
つ利用する。時刻(T2)以降は蓄熱流量調整弁10
a、10bを全開として2台の蓄熱熱交換器を利用す
る。この時室外流量調整弁7の圧力損失が大きいような
ら同時に第1の開閉弁13を開弁してホットガスバイパ
スを行う。さらに2台の蓄熱熱交換器12a、12bを
個別に1台ずつ使用する切換時刻(T4)以降蓄熱運転
開始時刻(T5)までの時間(T6)をT3時間と同様
に分割して運転する。◆これにより時刻(T2)から
(T4)までの間は凝縮圧力の低い運転になる。 T3時間、T6時間の分割の方法は単純に2分割する方
法が簡単であるが蓄熱利用可能な熱量の比較や蓄熱運転
に必要とした時間を考慮した重み付けといった方法であ
ってもよい。
The entire refrigeration cycle will be described as being the same as in FIG. At the heat storage utilization operation start time (T1), the time (T3) until the time (T2) at which the two heat storage heat exchangers 12a and 12b are used simultaneously is divided, and the heat storage heat exchanger 12a is divided for each of the divided times. , 12b are individually used. After time (T2), the heat storage flow control valve 10
a, 10b are fully opened and two heat storage heat exchangers are used. At this time, if the pressure loss of the outdoor flow control valve 7 is large, the first on-off valve 13 is simultaneously opened to perform hot gas bypass. Further, the operation (T6) from the switching time (T4) after the two heat storage heat exchangers 12a and 12b are individually used to the heat storage operation start time (T5) is divided and operated in the same manner as the T3 time. ◆ Thereby, during the period from time (T2) to (T4), the operation becomes a low condensing pressure. As a method of dividing the time T3 and the time T6, it is easy to simply divide the time into two. However, a method of comparing the amount of heat that can be used for heat storage and a method of weighting in consideration of the time required for the heat storage operation may be used.

【0025】図5は本発明の請求項3に記載の内容を含
む蓄熱式空気調和機の一実施例を示したものである。◆
2台の蓄熱熱交換器12a、12bが1台の蓄熱槽11
に入った構成とした部分が図2の場合と異なっている。
FIG. 5 shows an embodiment of a regenerative air conditioner including the contents described in claim 3 of the present invention. ◆
Two heat storage heat exchangers 12a and 12b are used as one heat storage tank 11.
The difference between the configuration shown in FIG.

【0026】[0026]

【発明の効果】本発明によれば、蓄熱利用冷房運転時の
凝縮圧力を下げ、室外流量調整弁の圧力損失を低減する
ので、電力使用量のピーク時の消費電力の低減幅を大き
くできる。
According to the present invention, the condensing pressure during the cooling operation using the heat storage is reduced, and the pressure loss of the outdoor flow control valve is reduced, so that the reduction in power consumption at the peak power consumption can be increased.

【0027】[0027]

【0028】[0028]

【0029】[0029]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を実施する蓄熱式空気調和機のシステ
ムの一例
FIG. 1 shows an example of a regenerative air conditioner system embodying the present invention.

【図2】 本発明を実施する冷凍サイクルの一実施例FIG. 2 shows an embodiment of a refrigeration cycle for implementing the present invention.

【図3】 本発明を実施する冷凍サイクルのモリエル線
図の一例
FIG. 3 is an example of a Mollier diagram of a refrigeration cycle for implementing the present invention.

【図4】 本発明を実施する冷凍サイクルの運転パター
ンの一実施例
FIG. 4 shows an embodiment of an operation pattern of a refrigeration cycle for implementing the present invention.

【図5】 本発明を実施する冷凍サイクルの他の実施例FIG. 5 shows another embodiment of a refrigeration cycle for implementing the present invention.

【符号の説明】[Explanation of symbols]

1…室外ユニット、2a、2b…蓄熱ユニット、3a、
3b…室内ユニット、4…圧縮機、5…四方弁、6…室
外熱交換器、7…室外流量調整弁、8a、8b…室内流
量調整弁、9a、9b…室内熱交換器、10、10a、
10b…蓄熱流量調整弁、11a、11b…蓄熱槽、1
2a、12b…蓄熱熱交換器、13…第1の開閉弁、1
4a、14b…第2の開閉弁、15a、15b…第3の
開閉弁、16…第4の開閉弁。
1 outdoor unit, 2a, 2b heat storage unit, 3a,
3b ... indoor unit, 4 ... compressor, 5 ... four-way valve, 6 ... outdoor heat exchanger, 7 ... outdoor flow control valve, 8a, 8b ... indoor flow control valve, 9a, 9b ... indoor heat exchanger, 10, 10a ,
10b: heat storage flow control valve, 11a, 11b: heat storage tank, 1
2a, 12b: heat storage heat exchanger, 13: first on-off valve, 1
4a, 14b: second on-off valve, 15a, 15b: third on-off valve, 16: fourth on-off valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−147678(JP,A) 特開 平7−127944(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F25B 13/00 F24F 11/02 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-6-147678 (JP, A) JP-A-7-127944 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 1/00 F25B 13/00 F24F 11/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、室外熱交換器を有する室外ユニッ
トと、蓄熱膨張弁、蓄熱熱交換器を有する蓄熱ユニット
と、室内膨張弁、室内熱交換器を有する室内ユニットと
を冷媒配管で接続された蓄熱式空気調和機において、 複数台とされ、前記室外ユニットと前記室内ユニットと
の間に設けられた前記蓄熱熱交換器と、 前記圧縮機に接続される室外熱交換器及び室外流量調整
弁と、 前記室外熱交換器の前記圧縮機側と前記室外流量調整弁
側に接続された第1の開閉弁と、 複数台の前記蓄熱熱交換器の反前記室外流量調整弁側か
ら前記圧縮機の吸い込み側へそれぞれ接続された第2の
開閉弁と、 前記第2の開閉弁と前記蓄熱熱交換器の間から前記室内
膨張弁へそれぞれ接続された第3の開閉弁と、を備え、蓄熱利用冷房運転時に、複数の前記第2の開閉
弁を閉弁し、閉弁された前記第2の開閉弁に接続された
前記第3の開閉弁を開弁すると共に、前記第1の開閉弁
を開弁して前記圧縮機で吐出された冷媒の一部をバイパ
スさせて前記室外流量調整弁を流れる冷媒の流量を減少
する ことを特徴とする蓄熱式空気調和機。
An outdoor unit having a compressor and an outdoor heat exchanger, a heat storage unit having a heat storage expansion valve and a heat storage heat exchanger, and an indoor unit having an indoor expansion valve and an indoor heat exchanger are connected by refrigerant piping. In the heat storage type air conditioner, a plurality of heat storage heat exchangers are provided between the outdoor unit and the indoor unit, an outdoor heat exchanger connected to the compressor, and an outdoor flow rate adjustment. A valve, a first on-off valve connected to the compressor side and the outdoor flow rate control valve side of the outdoor heat exchanger, and a plurality of the heat storage heat exchangers opposite the outdoor flow rate control valve side.
Connected to the suction side of the compressor respectively.
An on-off valve, and a third on-off valve respectively connected to the indoor expansion valve from between the second on-off valve and the heat storage heat exchanger, and a plurality of the second Opening and closing
Close the valve and connect to the closed second on-off valve
Opening the third on-off valve and the first on-off valve
And a part of the refrigerant discharged from the compressor is bypassed.
To reduce the flow rate of refrigerant flowing through the outdoor flow control valve.
A regenerative air conditioner characterized in that:
【請求項2】圧縮機、室外熱交換器、室外流量調整弁
有する室外ユニットと、室内膨張弁、室内熱交換器を有
する室内ユニットとを有する蓄熱式空気調和機におい
て、前記室外ユニットと前記室内ユニットとの間に複数
の蓄熱熱交換器を配設し、前記圧縮機で吐出された高温
高圧の冷媒の一方は前記室外熱交換器で凝縮し前記室外
流量調整弁を経由し、他方は高温高圧のガスのまま前記
室外流量調整弁を経由した一方と合流し、前記複数の蓄
熱熱交換器に流入することを特徴とした蓄熱式空気調和
機。
2. A regenerative air conditioner having an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor flow control valve , and an indoor unit having an indoor expansion valve and an indoor heat exchanger. Arranging a plurality of heat storage heat exchangers between the indoor unit and the high temperature discharged by the compressor
One of the high-pressure refrigerant is condensed in the outdoor heat exchanger and
Via the flow control valve, the other is a high temperature and high pressure gas
Merges with one that has passed through the outdoor flow control valve, and
A regenerative air conditioner characterized by flowing into a heat heat exchanger .
JP03086098A 1998-02-13 1998-02-13 Thermal storage type air conditioner Expired - Fee Related JP3304866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03086098A JP3304866B2 (en) 1998-02-13 1998-02-13 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03086098A JP3304866B2 (en) 1998-02-13 1998-02-13 Thermal storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH11230630A JPH11230630A (en) 1999-08-27
JP3304866B2 true JP3304866B2 (en) 2002-07-22

Family

ID=12315489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03086098A Expired - Fee Related JP3304866B2 (en) 1998-02-13 1998-02-13 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP3304866B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572579B2 (en) * 2011-04-14 2014-08-13 日立アプライアンス株式会社 Thermal storage air conditioner
CN102287966A (en) * 2011-07-31 2011-12-21 湖南科技学院 Refrigeration, heating and water boiling multipurpose air conditioner
CN105874282B (en) * 2013-12-25 2019-03-22 三菱电机株式会社 Air-conditioning device
JP2016125727A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner

Also Published As

Publication number Publication date
JPH11230630A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
US5381671A (en) Air conditioning apparatus with improved ice storage therein
US4441335A (en) Heat pump
CN107499089A (en) A kind of electric automobile heat-pump air-conditioning system and its method of work
JP3304866B2 (en) Thermal storage type air conditioner
JP2001263848A (en) Air conditioner
JPH08159621A (en) Air conditioner
KR101127758B1 (en) Hot and cool water, heating and cooling supply system
JPH05215437A (en) Multi-chamber type air conditioner
JPH10220893A (en) Heat pump device
JP3511161B2 (en) Air conditioner
JP3723413B2 (en) Air conditioner
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JP2005042980A (en) Heat accumulating type air conditioner
JP3195991B2 (en) Multi-room air conditioning system
JPH06300380A (en) Multi-room type air conditioner
JPS592832B2 (en) Heat recovery air conditioner
JPH0350466A (en) Air conditioner
JP2800573B2 (en) Air conditioner
JP3213992B2 (en) Air conditioner
JP2712641B2 (en) Air conditioner
JPH08320172A (en) Air conditioner
JPH11118265A (en) Heat storage unit
JP2000035255A (en) Thermal storage type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees