JPH10220893A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH10220893A
JPH10220893A JP1901097A JP1901097A JPH10220893A JP H10220893 A JPH10220893 A JP H10220893A JP 1901097 A JP1901097 A JP 1901097A JP 1901097 A JP1901097 A JP 1901097A JP H10220893 A JPH10220893 A JP H10220893A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heating
cooling
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1901097A
Other languages
Japanese (ja)
Other versions
JP3791090B2 (en
Inventor
Kenji Nakajima
謙司 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP01901097A priority Critical patent/JP3791090B2/en
Publication of JPH10220893A publication Critical patent/JPH10220893A/en
Application granted granted Critical
Publication of JP3791090B2 publication Critical patent/JP3791090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger, capable of supercooling refrigerant upon cooling operation and absorbing the heat of outside air by evaporating the refrigerant upon heating operation, and improve heating capacity, in a heat pump device, circulating the refrigerant by a compressor and capable of switching the cooling operation into the heating operation. SOLUTION: A heat pump device is provided with three pieces of U-shape refrigerant flow passages 92-94 for a heat exchanger 9 while the refrigerant flow passages 92-94 can be switched by a valve means, consisting of solenoid valves 7b-7i and check valves 10a-10f, so as to be connected in series upon cooling operation and in parallel upon heating operation. Further, the device is provided with a distributor 91, distributing refrigerant, whose pressure is reduced by an expansion valve 11a for heating, into respective refrigerant flow passages 92-94 simultaneously, and a header 90, into which the refrigerant, discharged out of respective refrigerant flow passages 92-94, is collected, upon the heating operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機で冷媒を循
環させる冷暖房切り替え可能なヒ−トポンプ装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump apparatus capable of switching between cooling and heating in which a refrigerant is circulated in a compressor.

【0002】[0002]

【従来の技術】この種のヒートポンプ装置の従来技術と
して、冷凍サイクルの冷房時に、凝縮器となる室外熱交
換器出口の液冷媒を過冷却熱交換器に導き、冷房能力の
向上を図る手段がある。これによると、冷凍サイクルの
冷房時に、室外熱交換器にて凝縮された液冷媒が、過冷
却熱交換器に導入され、過冷却熱交換器内の冷媒流路を
流通する間に、外気と熱交換して過冷却されるものであ
る。続いて、液冷媒は、膨張弁等によって減圧膨張され
て、室内熱交換器入口に至り、室内熱交換器にて冷媒は
蒸発して室内の空気が冷却される。
2. Description of the Related Art As a prior art of this type of heat pump device, there is a means for improving a cooling capacity by guiding a liquid refrigerant at an outlet of an outdoor heat exchanger serving as a condenser to a supercooling heat exchanger during cooling of a refrigeration cycle. is there. According to this, at the time of cooling of the refrigeration cycle, the liquid refrigerant condensed in the outdoor heat exchanger is introduced into the subcooling heat exchanger, and while flowing through the refrigerant flow path in the supercooling heat exchanger, It is supercooled by heat exchange. Subsequently, the liquid refrigerant is decompressed and expanded by an expansion valve or the like and reaches the indoor heat exchanger inlet, where the refrigerant evaporates and the indoor air is cooled.

【0003】ここで、液冷媒は十分に過冷却されている
ため、蒸発器(室内熱交換器)入口と出口における冷媒
のエンタルピー差が大きくでき、ヒートポンプの冷房能
力が向上する。
[0003] Here, since the liquid refrigerant is sufficiently subcooled, the difference in enthalpy of the refrigerant between the inlet and the outlet of the evaporator (indoor heat exchanger) can be increased, and the cooling capacity of the heat pump is improved.

【0004】[0004]

【発明が解決しようとする課題】しかし、この種のヒー
トポンプ装置では、冷房時に、室外熱交換器にて凝縮さ
れた液冷媒を過冷却熱交換器に通し、冷房能力の向上を
狙っているものの、暖房時には、室内熱交換器にて凝縮
された冷媒は過冷却熱交換器をバイパスして流すなど、
過冷却熱交換器は冷媒を蒸発させて外気吸熱を行う蒸発
器として用いられていない。その理由は以下の様であ
る。
However, in this type of heat pump device, during cooling, the liquid refrigerant condensed in the outdoor heat exchanger is passed through a supercooling heat exchanger to improve the cooling capacity. At the time of heating, the refrigerant condensed in the indoor heat exchanger flows by bypassing the subcooling heat exchanger,
The supercooling heat exchanger is not used as an evaporator for evaporating the refrigerant to absorb the outside air. The reason is as follows.

【0005】すなわち、過冷却時には、過冷却熱交換器
内を流れる冷媒が液相であり相変化しない。このような
液冷媒においては、熱伝達率は冷媒流速の増加とともに
大きくなることが知られている。そのため、従来におい
ては、過冷却熱交換器内の冷媒流路を入口から出口まで
1本の直列流路にすることによって、流速を減速させな
いようにして熱伝達率を確保している。ちなみに、複数
の冷媒流路を同時に流すようにすると、冷媒が分配され
流速が低下してしまうため、熱伝達率が低下し十分な過
冷却が行われない。
That is, during supercooling, the refrigerant flowing in the subcooling heat exchanger is in a liquid phase and does not change its phase. It is known that in such a liquid refrigerant, the heat transfer coefficient increases as the flow rate of the refrigerant increases. Therefore, in the related art, the heat transfer coefficient is secured by preventing the flow velocity from being reduced by making the refrigerant flow path in the subcooling heat exchanger a single serial flow path from the inlet to the outlet. By the way, if a plurality of refrigerant channels are caused to flow at the same time, the refrigerant is distributed and the flow velocity is reduced, so that the heat transfer coefficient is reduced and sufficient supercooling is not performed.

【0006】一方、暖房時に、減圧膨張された冷媒を過
冷却熱交換器に流して外気吸熱を行おうすると、過冷却
熱交換器内で低圧冷媒(気液二相冷媒)の蒸発が起こ
り、冷媒の比体積が大きくなるため、1本の直列な冷媒
流路では圧力損失が過大となってしまう。その結果、冷
媒を循環する圧縮機の吸入圧が低下して冷媒循環量の減
少が起こり、十分な外気吸熱が行われず暖房能力の向上
に対して有効に作用しないのである。
On the other hand, when the refrigerant expanded under reduced pressure is supplied to the supercooling heat exchanger during heating to absorb the outside air, the low-pressure refrigerant (gas-liquid two-phase refrigerant) evaporates in the supercooling heat exchanger. Since the specific volume of the refrigerant increases, the pressure loss in one serial refrigerant flow path becomes excessive. As a result, the suction pressure of the compressor that circulates the refrigerant is reduced, and the amount of the circulated refrigerant is reduced. As a result, sufficient external heat absorption is not performed, and the heating capacity is not effectively improved.

【0007】このように、冷房時に冷房能力向上のため
に付加した過冷却熱交換器が、暖房時の暖房能力向上に
対して有効に作用しないという問題が生じている。本発
明は上記点に鑑みてなされたもので、圧縮機で冷媒を循
環させる冷暖房切り替え可能なヒ−トポンプ装置におい
て、冷房時には冷媒を過冷却し暖房時には冷媒を蒸発さ
せて外気吸熱を行うことのできる熱交換手段を提供し、
暖房能力を向上させることを目的とする。
As described above, there is a problem that the supercooling heat exchanger added for improving the cooling capacity at the time of cooling does not effectively work for improving the heating capacity at the time of heating. The present invention has been made in view of the above points, and in a heat pump device capable of switching between cooling and heating by circulating a refrigerant by a compressor, supercooling the refrigerant during cooling and evaporating the refrigerant during heating to absorb outside air. Provide heat exchange means that can
The purpose is to improve the heating capacity.

【0008】[0008]

【課題を解決するための手段】本発明者等は、過冷却熱
交換器内の圧力損失に着目して鋭意検討を行い、以下の
技術的手段を採用することとした。すなわち、請求項1
の発明によれば、圧縮機(1)で冷媒を循環させる冷暖
房切り替え可能なヒ−トポンプ装置において、冷房時に
は気液分離器(5)からの液冷媒を過冷却し、暖房時に
は暖房用減圧手段(11a)で減圧膨張された冷媒を蒸
発させる熱交換手段(9)を備え、この熱交換手段
(9)は、複数の冷媒流路(92〜94)を有し、暖房
時には冷房時に比して冷媒が同時に流れる並列冷媒流路
の数が多くなるものであることを特徴とする。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies focusing on the pressure loss in the subcooling heat exchanger, and have adopted the following technical means. That is, claim 1
According to the invention, in a heat pump apparatus capable of switching between cooling and heating by circulating the refrigerant in the compressor (1), the liquid refrigerant from the gas-liquid separator (5) is supercooled during cooling, and the pressure reducing means for heating is heated during heating. A heat exchange means (9) for evaporating the refrigerant decompressed and expanded in (11a) is provided. This heat exchange means (9) has a plurality of refrigerant flow paths (92 to 94), and has a larger air temperature at the time of heating than at the time of cooling. In this case, the number of parallel refrigerant flow paths through which the refrigerant flows at the same time is increased.

【0009】それによって、冷房時には、室外熱交換器
(4)で凝縮され気液分離器(5)で気液分離された液
冷媒は熱交換手段(9)で過冷却されるので、冷房能力
が向上できる共に、暖房時には、冷房時に比して熱交換
手段(9)内の冷媒流路の圧力損失が低減できるので、
冷媒循環量の減少が抑えられ十分な外気吸熱を行うこと
ができ、暖房能力が向上できる。
Accordingly, during cooling, the liquid refrigerant condensed in the outdoor heat exchanger (4) and gas-liquid separated in the gas-liquid separator (5) is supercooled by the heat exchanging means (9). Can be improved, and the pressure loss in the refrigerant flow path in the heat exchange means (9) can be reduced during heating as compared with during cooling, so that
A decrease in the amount of circulating refrigerant is suppressed, sufficient heat absorption of outside air can be performed, and the heating capacity can be improved.

【0010】ここで、熱交換手段(9)としては、具体
的には請求項3の発明のように、熱交換手段(9)の複
数の冷媒流路(92〜94)が、冷房時には直列関係と
なり、暖房時には並列関係となるように切替える弁手段
(7b〜7i、10a〜10f)と、暖房時に、暖房用
減圧手段(11a)で減圧された冷媒を冷媒流路(92
〜94)へ同時分配する分配手段(91)と、暖房時に
冷媒流路(92〜94)から出た冷媒が集められる集合
部(90)とを有するものにすることができる。
Here, as the heat exchange means (9), specifically, as in the invention of claim 3, a plurality of refrigerant flow paths (92-94) of the heat exchange means (9) are connected in series during cooling. Valve means (7b to 7i, 10a to 10f) for switching to a parallel relation at the time of heating, and a refrigerant flow path (92)
To 94), and a collecting part (90) for collecting the refrigerant flowing out of the refrigerant channels (92 to 94) during heating.

【0011】それによって、冷房時には、室外熱交換器
(4)で凝縮された冷媒が今度は同じ冷媒流路(92〜
94)間を順次直列に流れ1本の流路を形成するため、
流速が減速せずに熱伝達率が確保できる。一方、暖房時
には、暖房用減圧手段(11a)で減圧された冷媒が、
分配手段(91)によって各冷媒流路(92〜94)に
同時分配されて、各冷媒流路(92〜94)を同時に並
列に流れるため、圧力損失が低減できる。よって、熱交
換手段(9)は冷房能力向上にも暖房能力向上にも有効
に作用することができる。
As a result, at the time of cooling, the refrigerant condensed in the outdoor heat exchanger (4) is supplied to the same refrigerant flow path (92 to 92).
94) to flow in series in series to form one flow path,
The heat transfer rate can be secured without reducing the flow velocity. On the other hand, during heating, the refrigerant decompressed by the heating decompression means (11a)
Since the refrigerant is simultaneously distributed to the refrigerant flow paths (92 to 94) by the distribution means (91) and flows in parallel in the respective refrigerant flow paths (92 to 94), the pressure loss can be reduced. Therefore, the heat exchange means (9) can effectively act on both the cooling capacity improvement and the heating capacity improvement.

【0012】また、請求項2の発明によれば、請求項1
の発明に加えて、暖房時には、暖房用減圧手段(11
a)にて減圧された冷媒の一部が熱交換手段(9)に送
られ、残りは室外熱交換器(4)に送られることを特徴
とする。それによって、暖房時には、熱交換手段(9)
と室外熱交換器(4)とで同時に外気吸熱を行うことが
できる。
Further, according to the invention of claim 2, according to claim 1,
In addition to the invention described above, the heating pressure reducing means (11
A part of the refrigerant depressurized in a) is sent to the heat exchange means (9), and the rest is sent to the outdoor heat exchanger (4). Thereby, at the time of heating, heat exchange means (9)
And the outdoor heat exchanger (4) can simultaneously absorb outside air.

【0013】請求項2の発明の具体的な手段としては、
請求項4の発明のように、分岐した補助回路(6、1
4)を設け、暖房時に暖房用減圧手段(11a)で減圧
された冷媒が、この補助回路(6、14)を流れ分岐部
(6a)で分流して室外熱交換器(4)と熱交換手段
(9)とへ導入されるものにすることができる。
The concrete means of the invention of claim 2 includes:
According to the fourth aspect of the present invention, the branched auxiliary circuit (6, 1
4), the refrigerant depressurized by the heating decompression means (11a) at the time of heating flows through the auxiliary circuits (6, 14) and is diverted at the branch portion (6a) to exchange heat with the outdoor heat exchanger (4). Means (9).

【0014】[0014]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。本実施形態では本発明に係るヒート
ポンプ装置を室内空調装置として用いている。図1は、
その全体構成を示す回路図であり、冷媒を圧縮し吐出す
るコンプレッサ(圧縮機)1が設定され、本実施形態で
はこのコンプレッサ1は図示しないエンジンによって駆
動されるようになっている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. In the present embodiment, the heat pump device according to the present invention is used as an indoor air conditioner. FIG.
FIG. 1 is a circuit diagram showing the entire configuration, in which a compressor (compressor) 1 for compressing and discharging a refrigerant is set, and in the present embodiment, the compressor 1 is driven by an engine (not shown).

【0015】このコンプレッサ1からの吐出冷媒は、四
方弁(切替装置)2に供給されるが、この四方弁2はコ
ンプレッサ1からの吐出冷媒の循環方向を室内熱交換器
3あるいは室外熱交換器4のいずれか一方に切替えて供
給するもので、暖房時には図1中に実線で示すようにコ
ンプレッサ1からの吐出冷媒を室内熱交換器3に導く。
そして、冷房時には図1中に点線で示すようにコンプレ
ッサ1からの吐出冷媒を室外熱交換器4に導く。
The refrigerant discharged from the compressor 1 is supplied to a four-way valve (switching device) 2. The four-way valve 2 controls the circulation direction of the refrigerant discharged from the compressor 1 to the indoor heat exchanger 3 or the outdoor heat exchanger. In the heating, the refrigerant discharged from the compressor 1 is guided to the indoor heat exchanger 3 as shown by a solid line in FIG.
During cooling, the refrigerant discharged from the compressor 1 is guided to the outdoor heat exchanger 4 as shown by a dotted line in FIG.

【0016】室内熱交換器3には室内ファン3aが設定
され、この室内ファン3aで発生した空気流が室内熱交
換器3を介して冷暖房しようとする室内に導かれるよう
にする。また、室外熱交換器4に対しては室外ファン4
aが設定され、この室外ファン4aで発生した空気流が
室外熱交換器4を介して室外に吹き出され、室外熱交換
器4に流れる冷媒との熱交換が行われるようにしてい
る。
An indoor fan 3a is set in the indoor heat exchanger 3, and the air flow generated by the indoor fan 3a is guided through the indoor heat exchanger 3 into the room to be cooled and heated. The outdoor fan 4 is connected to the outdoor heat exchanger 4.
a is set, and the airflow generated by the outdoor fan 4a is blown out through the outdoor heat exchanger 4 to the outside to exchange heat with the refrigerant flowing through the outdoor heat exchanger 4.

【0017】ここで、室外熱交換器4は、複数(本実施
形態では4本)のU字型の冷媒流路40が並列に設けら
れ、これら冷媒流路40の両端部が、それぞれ冷媒が集
められるタンクであるヘッダ41と、冷媒を分配および
合流させる周知の分配器(ディストリビュータ)42と
接続されたものとなっている。このヘッダ41と四方弁
2とは冷媒配管によって接続されている。
Here, the outdoor heat exchanger 4 is provided with a plurality (four in the present embodiment) of U-shaped refrigerant flow passages 40 arranged in parallel. It is connected to a header 41, which is a collecting tank, and a well-known distributor (distributor) 42 for distributing and merging the refrigerant. The header 41 and the four-way valve 2 are connected by a refrigerant pipe.

【0018】そして、この室外熱交換器4の分配器42
と冷媒を気液分離して液冷媒のみを送りだすレシーバ
(気液分離器)5とが冷媒配管6によって接続されてい
る。ここで、冷媒配管6には、管路を開閉する電磁弁7
aが介在設定されている。さらに、冷媒配管8によって
レシーバ5と後述する熱交換手段である熱交換器9とが
接続されており、この冷媒配管8の熱交換器9寄りの途
中部には、管路を開閉する電磁弁7bが介在設定されて
いる。
The distributor 42 of the outdoor heat exchanger 4
And a receiver (gas-liquid separator) 5 that separates the refrigerant into gas and liquid and sends out only the liquid refrigerant, is connected by a refrigerant pipe 6. Here, the refrigerant pipe 6 has an electromagnetic valve 7 for opening and closing the pipe.
a is set to intervene. Further, a receiver pipe 5 is connected to a heat exchanger 9 which is a heat exchange means to be described later by a refrigerant pipe 8, and an electromagnetic valve for opening and closing a pipe is provided in a part of the refrigerant pipe 8 near the heat exchanger 9. 7b is interposed and set.

【0019】なお、上述の電磁弁7a、電磁弁7bおよ
び本実施形態において後述されるその他の電磁弁7c〜
7k(全11個)は、いずれも通電によって管路(流
路)を開閉するものである。次に、熱交換器9について
述べる。熱交換器9は、冷房時にはレシーバ5からの液
冷媒を過冷却する過冷却器として作用し、暖房時には暖
房用膨張弁11aで減圧膨張された冷媒を蒸発させる蒸
発器として作用するものである。
The above-described solenoid valves 7a and 7b and other solenoid valves 7c to 7c to be described later in the present embodiment.
Each of 7k (11 in total) opens and closes a pipe (flow path) by energization. Next, the heat exchanger 9 will be described. The heat exchanger 9 functions as a supercooler for supercooling the liquid refrigerant from the receiver 5 during cooling, and functions as an evaporator for evaporating the refrigerant decompressed and expanded by the heating expansion valve 11a during heating.

【0020】この熱交換手段9には、冷媒が集められる
タンクであるヘッダ(集合部)90および冷媒を同時分
配させる分配手段である周知の分配器(ディストリビュ
ータ)91が備えられ、これらヘッダ90と分配器91
の間には、両者を接続するU字型の冷媒流路(第1の冷
媒流路92、第2の冷媒流路93、第3の冷媒流路9
4)が並列に複数本(本実施形態では3本)設けられて
いる。尚、これら冷媒流路の管径は同一となっている。
The heat exchanging means 9 includes a header (collecting portion) 90 as a tank in which the refrigerant is collected and a well-known distributor (distributor) 91 as a distributing means for simultaneously distributing the refrigerant. Distributor 91
A U-shaped refrigerant flow path (a first refrigerant flow path 92, a second refrigerant flow path 93, a third refrigerant flow path 9
4) are provided in parallel (three in this embodiment). Note that the pipe diameters of these refrigerant channels are the same.

【0021】ここで、各々の冷媒流路には、分配器91
側からヘッダ90側へ向かって、以下に示すように複数
の弁が介在設定されている。すなわち、第1の冷媒流路
92には分配器側の電磁弁7c、逆止弁10aおよびヘ
ッダ側の電磁弁7dが、第2の冷媒流路93には分配器
側の電磁弁7e、逆止弁10bおよびヘッダ側の電磁弁
7fが、第3の冷媒流路94には分配器側の電磁弁7
g、逆止弁10cおよびヘッダ側の電磁弁7hが、各々
これらの順に介在設定されている。ここで、各逆止弁1
0a〜10cは、いずれも、分配器91への冷媒の逆流
を阻止するように設定されている。
Here, a distributor 91 is provided in each refrigerant channel.
From the side toward the header 90, a plurality of valves are interposed and set as shown below. That is, the first refrigerant flow path 92 includes the distributor-side electromagnetic valve 7c, the check valve 10a, and the header-side electromagnetic valve 7d, and the second refrigerant flow path 93 includes the distributor-side electromagnetic valve 7e, The stop valve 10b and the solenoid valve 7f on the header side are provided in the third refrigerant flow path 94 with the solenoid valve 7 on the distributor side.
g, the check valve 10c and the solenoid valve 7h on the header side are interposed and set in this order. Here, each check valve 1
Each of 0a to 10c is set to prevent the backflow of the refrigerant to the distributor 91.

【0022】さらに、第1の冷媒流路92、第2の冷媒
流路93のおよび第3の冷媒流路94には、各々、逆止
弁とヘッダ側電磁弁との間の部位に2つの分岐部が設け
られている。これら2つの分岐部のうち、逆止弁寄りの
分岐部を第1の分岐部、ヘッダ側電磁弁寄りの分岐部を
第2の分岐部とする。そして、各冷媒流路のU字型の屈
曲部分はこれら2つの分岐部の間に位置し、これら2つ
の分岐部の間の流路長は、暖房時に流れる冷媒が十分に
外気吸熱する所定の流路長となっている。
Further, the first refrigerant flow path 92, the second refrigerant flow path 93, and the third refrigerant flow path 94 are respectively provided at two positions between the check valve and the header side solenoid valve. A branch is provided. Of these two branch portions, the branch portion closer to the check valve is a first branch portion, and the branch portion closer to the header-side solenoid valve is a second branch portion. The U-shaped bent portion of each refrigerant flow path is located between these two branch parts, and the flow path length between these two branch parts is a predetermined length at which the refrigerant flowing during heating sufficiently absorbs outside air. It is the flow path length.

【0023】そして、第1の冷媒流路92の第1の分岐
部92aには、冷媒配管8が接続されており、これによ
って、上述したようにレシーバ5と熱交換器9とが接続
されていることになる。さらに、第1の冷媒流路92の
第2の分岐部92bと第2の冷媒流路93の第2の分岐
部93aとの間は、逆止弁10dが介在設定された冷媒
流路によってつながれており、第2の冷媒流路93の第
1の分岐部93bと第3の冷媒流路94の第2の分岐部
94aとの間は、逆止弁10eが介在設定された冷媒流
路によってつながれている。このように、第1〜第3の
冷媒流路92〜94を直列に接続する冷媒流路が形成さ
れている。
The refrigerant pipe 8 is connected to the first branch portion 92a of the first refrigerant flow path 92, whereby the receiver 5 and the heat exchanger 9 are connected as described above. Will be. Further, the second branch portion 92b of the first coolant channel 92 and the second branch portion 93a of the second coolant channel 93 are connected by a coolant channel having a check valve 10d interposed therebetween. Between the first branch portion 93b of the second coolant channel 93 and the second branch portion 94a of the third coolant channel 94, a coolant channel provided with a check valve 10e is provided. They are connected. In this way, a refrigerant flow path that connects the first to third refrigerant flow paths 92 to 94 in series is formed.

【0024】また、第3の冷媒流路94の第2の分岐部
94bと暖房時にのみ冷媒を減圧する暖房用膨張弁(暖
房用減圧手段)11aとが、冷媒配管12によって接続
されている。この冷媒配管12には、第2の分岐部94
b側から暖房用膨張弁11a側に向かって、電磁弁7
i、逆止弁10fがこの順に介在設定されており、逆止
弁10fは第2の分岐部94b(熱交換器9)への冷媒
の逆流を阻止するように設定されている。
The second branch portion 94b of the third refrigerant flow path 94 and a heating expansion valve (heating decompression means) 11a for reducing the pressure of the refrigerant only during heating are connected by a refrigerant pipe 12. The refrigerant pipe 12 has a second branch portion 94.
b from the heating valve 11a toward the heating expansion valve 11a.
i, the check valve 10f is interposed and set in this order, and the check valve 10f is set so as to prevent the backflow of the refrigerant to the second branch portion 94b (heat exchanger 9).

【0025】以上のように、上述の各電磁弁7b〜7i
および逆止弁10a〜10fが、暖房時と冷房時とで、
上記各冷媒流路を切替える熱交換器9の弁手段として構
成されている。また、暖房用膨張弁11aと室内熱交換
器3との間には、冷房時にのみ冷媒を減圧する冷房用膨
張弁(冷房用減圧手段)11bが設けられている。ここ
で、暖房用膨張弁11aおよび冷房用膨張弁11bとし
ては、周知のように、運転時に蒸発器となる方の熱交換
器出口の冷媒温度および冷媒圧力を各々温度センサおよ
び圧力センサで検知し、これらセンサからの検知信号に
応じて弁開度を制御する電子膨張弁が用いられる。これ
ら、両膨張弁はキャピラリーチューブなどの1つの固定
絞りで代替してもよい。
As described above, each of the above-described solenoid valves 7b to 7i
And the check valves 10a to 10f are used for heating and cooling,
It is configured as a valve means of the heat exchanger 9 for switching the respective refrigerant flow paths. Further, between the heating expansion valve 11a and the indoor heat exchanger 3, a cooling expansion valve (cooling decompression means) 11b for reducing the pressure of the refrigerant only during cooling is provided. Here, as is well known, the heating expansion valve 11a and the cooling expansion valve 11b detect the refrigerant temperature and the refrigerant pressure at the outlet of the heat exchanger that becomes the evaporator during operation with a temperature sensor and a pressure sensor, respectively. An electronic expansion valve that controls the valve opening in accordance with detection signals from these sensors is used. These two expansion valves may be replaced by one fixed throttle such as a capillary tube.

【0026】また、熱交換器9のヘッダ90と室外熱交
換器4のヘッダ41とは、冷媒配管13によって接続さ
れており、この冷媒配管13には逆止弁10gが介在設
定され、熱交換器9への冷媒の逆流を阻止するようにな
っている。ところで、冷媒配管12のうち逆止弁10f
と暖房用膨張弁11aとの間の部位には分岐部12aが
設けられ、この分岐部12aからは、冷媒配管14が分
岐している。一方、冷媒配管6のうち室外熱交換器4と
電磁弁7aとの間の部位には分岐部6aが設定されてお
り、冷媒配管14が接続されている。この冷媒配管14
には分岐部12a側から冷媒配管6側に向かって、電磁
弁7j、逆止弁10hがこの順に介在設定されており、
逆止弁10hは冷媒の分岐部12aへの逆流を阻止する
ように設定されている。そして、冷媒配管14および冷
媒配管6のうち分岐部6aと分配器42との間の部位
は、暖房用膨張弁11aと室外熱交換器をつなぐ補助回
路として構成されている。
The header 90 of the heat exchanger 9 and the header 41 of the outdoor heat exchanger 4 are connected by a refrigerant pipe 13, and a check valve 10g is interposed in the refrigerant pipe 13 for heat exchange. The backflow of the refrigerant to the vessel 9 is prevented. By the way, the check valve 10f of the refrigerant pipe 12
A branch portion 12a is provided in a portion between the heating valve 11a and the heating expansion valve 11a, and a refrigerant pipe 14 branches from the branch portion 12a. On the other hand, a branch portion 6a is provided in a portion of the refrigerant pipe 6 between the outdoor heat exchanger 4 and the electromagnetic valve 7a, and a refrigerant pipe 14 is connected to the branch portion 6a. This refrigerant pipe 14
A solenoid valve 7j and a check valve 10h are interposed in this order from the branch portion 12a toward the refrigerant pipe 6 side,
The check valve 10h is set so as to prevent the refrigerant from flowing back to the branch portion 12a. A portion of the refrigerant pipe 14 and the refrigerant pipe 6 between the branch portion 6a and the distributor 42 is configured as an auxiliary circuit that connects the heating expansion valve 11a and the outdoor heat exchanger.

【0027】さらに、冷媒配管6の分岐部6aから分岐
して熱交換器9の分配器91と連通する冷媒配管15が
設けられ、この冷媒配管15には電磁弁7kが介在設定
されている。また、暖房用膨張弁11aは、室内熱交換
器3と接続し、さらに室内熱交換器3は四方弁2と接続
されている。そして、四方弁2とコンプレッサ1の吸入
側との間には、冷媒を気液分離してガス冷媒のみを送り
だすアキュムレータ16が介在設定されている。
Further, a refrigerant pipe 15 is provided which branches off from the branch portion 6a of the refrigerant pipe 6 and communicates with the distributor 91 of the heat exchanger 9, and the refrigerant pipe 15 is provided with an electromagnetic valve 7k. The heating expansion valve 11 a is connected to the indoor heat exchanger 3, and the indoor heat exchanger 3 is connected to the four-way valve 2. An accumulator 16 is provided between the four-way valve 2 and the suction side of the compressor 1 for separating the refrigerant into gas and liquid and sending out only the gas refrigerant.

【0028】尚、上述したエンジン(図示しない)、コ
ンプレッサ1、四方弁2、膨張弁11、室内ファン3
a、室外ファン4aおよび各電磁弁7a〜7kは図示し
ない電気回路によって構成される制御装置によって制御
されるようになっている。また、この制御装置は、ヒ−
トポンプ装置を暖房運転と冷房運転とに切り替える冷暖
房切換スイッチを有している。
The above-mentioned engine (not shown), compressor 1, four-way valve 2, expansion valve 11, and indoor fan 3
a, the outdoor fan 4a and each of the solenoid valves 7a to 7k are controlled by a control device constituted by an electric circuit (not shown). In addition, this control device
A heating / cooling changeover switch for switching the heat pump device between a heating operation and a cooling operation.

【0029】次に、上記した構成の作動について、図1
および2を参照して述べる。まず、冷房時の作動につい
て述べる。ヒートポンプ装置の冷房スイッチが投入され
ると、図1の点線矢印で示すように冷媒が流れる。尚、
この時の、11個の電磁弁7a〜7kの開閉状態は、図
2に示すように、電磁弁7a、7bおよび7iが開状態
(図ではO)、残りの電磁弁7c〜7h、7jおよび7
kは閉状態(図ではS)となっている。
Next, the operation of the above configuration will be described with reference to FIG.
And 2 will be described. First, the operation during cooling will be described. When the cooling switch of the heat pump device is turned on, the refrigerant flows as shown by a dotted arrow in FIG. still,
At this time, the open / close state of the eleven electromagnetic valves 7a to 7k is such that the electromagnetic valves 7a, 7b and 7i are open (O in the figure) and the remaining electromagnetic valves 7c to 7h, 7j and 7
k is in a closed state (S in the figure).

【0030】すなわち、コンプレッサ1から吐出した高
温高圧の冷媒は、四方弁2を介して室外熱交換器4のヘ
ッダ41に導入され、複数(4本)の並列な冷媒流路4
3を流れ、室外ファン4aにて発生する空気流と熱交換
して冷却される。各冷媒流路42から出た冷媒は室外熱
交換器の分配器41にて合流し、冷媒配管6を流れてレ
シーバ5へと至る。このレシーバ5にて、冷媒は気液分
離され液冷媒のみがレシーバ5から出て冷媒配管8を流
れ、熱交換器9の第1の冷媒流路92の第1の分岐部9
2aへと至る。
That is, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is introduced into the header 41 of the outdoor heat exchanger 4 through the four-way valve 2, and a plurality of (four) parallel refrigerant flow paths 4 are provided.
3 and is cooled by heat exchange with the airflow generated by the outdoor fan 4a. The refrigerant flowing out of each refrigerant flow path 42 joins in the distributor 41 of the outdoor heat exchanger, flows through the refrigerant pipe 6, and reaches the receiver 5. In the receiver 5, the refrigerant is gas-liquid separated, and only the liquid refrigerant exits the receiver 5 and flows through the refrigerant pipe 8, and flows into the first branch 9 of the first refrigerant flow path 92 of the heat exchanger 9.
2a.

【0031】続いて、冷媒は熱交換器9内を以下のよう
に流れる。第1の分岐部92aから第1の冷媒流路92
内を流れ、第2の分岐部92bから逆止弁10dを通り
第1の分岐部93aへと至る。続いて、第1の分岐部9
3aから第2の冷媒流路93を流れ、第2の分岐部93
b、逆止弁10e、第1の分岐部94aへと至り、第3
の冷媒流路94を流れ第2の分岐部94bへと至る。こ
のように、冷媒は1本の直列な冷媒流路を流れ過冷却さ
れる。
Subsequently, the refrigerant flows in the heat exchanger 9 as follows. From the first branch portion 92a to the first refrigerant flow path 92
And flows from the second branch portion 92b to the first branch portion 93a through the check valve 10d. Subsequently, the first branch 9
3a, flows through the second coolant channel 93, and flows into the second branch 93
b, the check valve 10e, the first branch portion 94a,
Flows through the refrigerant passage 94 to the second branch portion 94b. In this way, the refrigerant flows through one serial refrigerant flow path and is supercooled.

【0032】過冷却された冷媒は、全開となった暖房用
膨張弁11aを通り、冷房用膨張弁11bで減圧され室
内熱交換器3で蒸発し、室内が冷房される。続いて、蒸
発した冷媒は、四方弁2からアキュムレータ16へと至
り、気液分離されてガス冷媒はコンプレッサ1へ戻る。
次に、暖房時の作動について述べる。ヒートポンプ装置
の暖房スイッチが投入されると、図1の実線矢印で示す
ように冷媒が流れる。尚、この時の、11個の電磁弁7
a〜7kの開閉状態は、図2に示すように、電磁弁7
a、7bおよび7iが閉状態、残りの電磁弁7c〜7
h、7jおよび7kは開状態となっている。
The supercooled refrigerant passes through the fully opened heating expansion valve 11a, is decompressed by the cooling expansion valve 11b, evaporates in the indoor heat exchanger 3, and is cooled in the room. Subsequently, the evaporated refrigerant reaches the accumulator 16 from the four-way valve 2, is separated into gas and liquid, and the gas refrigerant returns to the compressor 1.
Next, the operation during heating will be described. When the heating switch of the heat pump device is turned on, the refrigerant flows as shown by the solid arrow in FIG. At this time, the eleven electromagnetic valves 7
As shown in FIG.
a, 7b and 7i are closed, and the remaining solenoid valves 7c to 7c
h, 7j and 7k are open.

【0033】すなわち、コンプレッサ1から吐出した高
温高圧の冷媒は、四方弁2を介して室内熱交換器3に導
入され、室内熱交換器3で凝縮されて、室内を暖房す
る。続いて、全開となった冷房用膨張弁11bを通り暖
房用膨張弁11aで減圧される。そして、分岐部12a
から冷媒配管14を流れ、冷媒配管6の分岐部6aに
て、熱交換器9方向と室外熱交換器4方向とに分流され
る。
That is, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is introduced into the indoor heat exchanger 3 through the four-way valve 2 and condensed in the indoor heat exchanger 3 to heat the room. Subsequently, the pressure is reduced by the heating expansion valve 11a through the fully opened cooling expansion valve 11b. And the branch part 12a
Flows through the refrigerant pipe 14, and is divided into the heat exchanger 9 direction and the outdoor heat exchanger 4 direction at the branch portion 6 a of the refrigerant pipe 6.

【0034】熱交換器9方向に分流された冷媒は、冷媒
配管15を流れ分配器91にて3方向に均等に同時分配
される。分配された冷媒は、各々第1〜第3の冷媒流路
92〜94を並列に同時に流れて外気吸熱を行い、各冷
媒流路を出た冷媒はヘッダ90に集められる。このよう
に、暖房時には、冷媒は熱交換器9の第1〜第3の冷媒
流路92〜94を同時に並列に流れて外気吸熱を行う。
The refrigerant diverted in the direction of the heat exchanger 9 flows through the refrigerant pipe 15 and is simultaneously and uniformly distributed in three directions by the distributor 91. The distributed refrigerants simultaneously flow through the first to third refrigerant flow paths 92 to 94 in parallel, respectively, to absorb heat from outside air, and the refrigerant exiting each refrigerant flow path is collected in the header 90. As described above, during heating, the refrigerant flows through the first to third refrigerant flow paths 92 to 94 of the heat exchanger 9 in parallel at the same time to absorb outside air.

【0035】一方、室外熱交換器4方向に分流された冷
媒は、そのまま冷媒配管6を流れ分配器42から冷媒流
路40の各々へ同時に分配導入される。続いて、冷媒は
各冷媒流路を流れ外気吸熱を行い、各冷媒流路から出た
冷媒はヘッダ41に集められる。そして、熱交換器9の
ヘッダ90から逆止弁10gを通ってきた冷媒と合流し
て四方弁2を通りアキュムレータ16へと至り、気液分
離されてガス冷媒はコンプレッサ1へ戻る。
On the other hand, the refrigerant diverted in the direction of the outdoor heat exchanger 4 flows through the refrigerant pipe 6 as it is, and is simultaneously distributed and introduced from the distributor 42 to each of the refrigerant channels 40. Subsequently, the refrigerant flows through each of the refrigerant flow paths and absorbs outside air, and the refrigerant flowing out of each of the refrigerant flow paths is collected in the header 41. Then, the refrigerant that has passed through the check valve 10 g from the header 90 of the heat exchanger 9 joins the refrigerant, passes through the four-way valve 2, reaches the accumulator 16, is separated into gas and liquid, and returns to the compressor 1.

【0036】ところで、本実施形態において、熱交換器
9の第1〜第3の冷媒流路92〜94を、冷房時には直
列に接続して1本の冷媒流路とし、暖房時には複数の並
列の冷媒流路としているが、以下その理由について述べ
る。通常、冷房時に過冷却器となる熱交換器で過冷却さ
れる冷媒は液相であり、相変化しないため、熱伝達率は
冷媒流速の増加とともに大きくなる。
In the present embodiment, the first to third refrigerant passages 92 to 94 of the heat exchanger 9 are connected in series during cooling to form one refrigerant passage, and a plurality of parallel refrigerant passages during heating. The refrigerant channel is used, and the reason will be described below. Normally, the refrigerant supercooled by the heat exchanger that becomes a supercooler during cooling is in a liquid phase and does not change phase, so that the heat transfer coefficient increases with an increase in the refrigerant flow rate.

【0037】図3は、冷媒流路数の増加による冷媒流速
の変化を模式的に示した図である。ここで、vおよびt
inは各々、熱交換器入口の冷媒流速および冷媒温度であ
る。冷媒流路が1本の場合(冷房時)は、冷媒流路入口
で冷媒流速vは変わらないが、冷媒流路がn本の場合
(暖房時、本実施形態ではn=3)は、冷媒がn本に分
配されるため、冷媒流速はv/nに減少する。ここで、
熱伝達率αは以下の式(A)で表される。
FIG. 3 is a diagram schematically showing a change in the flow velocity of the refrigerant due to an increase in the number of refrigerant flow paths. Where v and t
in is the refrigerant flow rate and the refrigerant temperature at the heat exchanger inlet, respectively. When the number of the refrigerant channels is one (at the time of cooling), the refrigerant flow rate v does not change at the inlet of the refrigerant channel, but when the number of the refrigerant channels is n (at the time of heating, n = 3 in the present embodiment), Are distributed to n lines, the refrigerant flow velocity is reduced to v / n. here,
The heat transfer coefficient α is represented by the following equation (A).

【0038】 α=f(Re)、 ここで、Re=v・d/ν ‥‥‥ (A) (d:冷媒流路の管径、ν:冷媒の動粘性係数) 本実施形態では、冷房時と暖房時とで、同一管径の冷媒
流路を直列と並列とに切換えており、また、冷媒は同じ
であるから、冷房時と暖房時での冷媒流路の管径dおよ
び動粘性係数νは変わらず定数とみなせる。そこで、冷
媒流路が1本の場合の熱伝達率および過冷却温度(熱交
換器出口の冷媒温度)を、各々αおよびtout 、冷媒流
路がn本の場合の熱伝達率および過冷却温度をα’およ
びt’ou t とすると、図3に示すようにα>α’および
out <t’out の関係となる。
Α = f (Re), where Re = v · d / ν ‥‥‥ (A) (d: pipe diameter of refrigerant flow path, ν: kinematic viscosity coefficient of refrigerant) In the present embodiment, cooling The refrigerant flow path having the same pipe diameter is switched between series and parallel at the time of heating and at the time of heating, and since the refrigerant is the same, the pipe diameter d and the kinematic viscosity of the refrigerant flow path at the time of cooling and at the time of heating are changed. The coefficient ν can be regarded as a constant without change. Therefore, the heat transfer coefficient and the supercooling temperature (refrigerant temperature at the outlet of the heat exchanger) when the number of the refrigerant channels is one are α and t out , respectively, and the heat transfer coefficient and the subcooling when the number of the refrigerant channels is n When the temperature alpha 'and t' ou t, a relationship of the alpha> alpha 'and t out <t' out as shown in FIG.

【0039】よって、冷房時にも暖房時と同じように複
数の並列な冷媒流路とすると、流速が低下して熱伝達率
も減少し十分な過冷却が行われない。逆にいえば、暖房
時にも冷房時と同じように1本の直列な冷媒流路とする
と、低圧冷媒の蒸発によって冷媒の比体積が大きくなる
ため圧力損失が大きくなってしまい、コンプレッサ1の
吸入圧が低下して冷媒循環量が減少し十分な外気吸熱が
行われない。
Therefore, if a plurality of parallel refrigerant flow paths are used for cooling as well as for heating, the flow velocity decreases, the heat transfer coefficient decreases, and sufficient supercooling is not performed. Conversely, if a single refrigerant flow path is used during heating as in the case of cooling, the specific volume of the refrigerant increases due to evaporation of the low-pressure refrigerant, so that the pressure loss increases, and the suction of the compressor 1 The pressure decreases, the refrigerant circulation amount decreases, and sufficient external air heat absorption is not performed.

【0040】以上の理由により、本実施形態の熱交換器
9においては、冷房時には1本の直列の冷媒流路とし、
暖房時には複数の並列な冷媒流路としている。そのた
め、冷房時には、室外熱交換器4で凝縮されレシーバ5
から出た液冷媒が、熱交換器9で十分に過冷却され、一
方、暖房時には、暖房用膨張弁11aで減圧された冷媒
が、熱交換器9で蒸発して十分に外気吸熱される。よっ
て、本実施形態においては、熱交換器9を冷房能力向上
と暖房能力向上に対して有効に作用させることができ
る。
For the above reasons, in the heat exchanger 9 of the present embodiment, one cooling medium flow path is used during cooling.
During heating, a plurality of parallel refrigerant flow paths are provided. Therefore, at the time of cooling, it is condensed in the outdoor heat exchanger 4 and the receiver 5
Is supercooled sufficiently in the heat exchanger 9, while the refrigerant decompressed by the heating expansion valve 11a evaporates in the heat exchanger 9 and sufficiently absorbs outside air during heating. Therefore, in the present embodiment, the heat exchanger 9 can be effectively operated for improving the cooling capacity and the heating capacity.

【0041】また、本実施形態によれば、流れる冷媒が
熱交換器9内でターンする数は、暖房時(1回)には、
冷房時(5回)よりも回数を少なくできる。ここでター
ンとは、冷媒が流れる向きを変えることである。そのた
め、暖房時には、このターンによる圧力損失を低減させ
ることができる。また、本実施形態においては、熱交換
器9の各冷媒流路92〜94中の分配器91側の電磁弁
7c、7e、7gについて、各開閉状態を制御すること
により、冷媒流れの数を1本、2本あるいは3本と変え
ることができるため、暖房時の運転状態に応じて、熱交
換器9の圧力損失の大きさを調節できる。
According to the present embodiment, the number of times the flowing refrigerant turns in the heat exchanger 9 is as follows during heating (once).
The number of times can be reduced as compared with the cooling time (5 times). Here, the term “turn” refers to changing the direction in which the refrigerant flows. Therefore, during heating, pressure loss due to this turn can be reduced. In the present embodiment, the number of refrigerant flows is controlled by controlling the open / close states of the solenoid valves 7c, 7e, and 7g on the distributor 91 side in the refrigerant flow paths 92 to 94 of the heat exchanger 9. Since the number can be changed to one, two or three, the magnitude of the pressure loss of the heat exchanger 9 can be adjusted according to the operating state during heating.

【0042】尚、本実施形態においては、暖房時には、
熱交換器9と室外熱交換器4とで並列に冷媒を流して外
気吸熱させているが、熱交換器9にて外気吸熱させた
後、室外熱交換器4において冷媒を並列に流し、さらに
外気吸熱させるようにしてもよい。
In this embodiment, during heating,
The refrigerant flows in parallel in the heat exchanger 9 and the outdoor heat exchanger 4 to absorb the outside air. After absorbing the external air in the heat exchanger 9, the refrigerant flows in the outdoor heat exchanger 4 in parallel. You may make it heat-absorb outside air.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態におけるヒ−トポンプ装置の
全体構成を示す回路図である。
FIG. 1 is a circuit diagram showing an overall configuration of a heat pump device according to an embodiment of the present invention.

【図2】本発明の実施形態の電磁弁の開閉状態を示す図
表である。
FIG. 2 is a table showing an open / closed state of a solenoid valve according to the embodiment of the present invention.

【図3】本発明の実施形態における熱交換器の冷媒流路
数の増加による冷媒流速変化を表す模式図である。
FIG. 3 is a schematic diagram illustrating a change in refrigerant flow velocity due to an increase in the number of refrigerant flow paths in the heat exchanger according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…コンプレッサ、2…四方弁、3…室内熱交換器、4
…室外熱交換器、5…レシーバ、6…冷媒配管、6a…
分岐部、7b〜7i…電磁弁、9…熱交換器、10a〜
10f…逆止弁、11a…暖房用膨張弁、11b…冷房
用膨張弁、14…冷媒配管、15…冷媒配管、90…ヘ
ッダ、91…分配器、92…第1の冷媒流路、93…第
2の冷媒流路、94…第3の冷媒流路。
1 ... Compressor, 2 ... Four-way valve, 3 ... Indoor heat exchanger, 4
... outdoor heat exchanger, 5 ... receiver, 6 ... refrigerant pipe, 6a ...
Branch, 7b-7i ... solenoid valve, 9 ... heat exchanger, 10a-
10f ... check valve, 11a ... heating expansion valve, 11b ... cooling expansion valve, 14 ... refrigerant pipe, 15 ... refrigerant pipe, 90 ... header, 91 ... distributor, 92 ... first refrigerant flow path, 93 ... Second refrigerant flow path, 94... Third refrigerant flow path.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮し吐出する圧縮機(1)と、 冷媒と室内空気との間で熱交換を行う室内熱交換器
(3)と、 冷媒と室外空気との間で熱交換を行う室外熱交換器
(4)と、 前記室内熱交換器(3)と前記室外熱交換器(4)との
間に設けられ、暖房時に冷媒を減圧する暖房用減圧手段
(11a)と、 前記室内熱交換器(3)と前記室外熱交換器(4)との
間に設けられ、冷房時に冷媒を減圧する冷房用減圧手段
(11b)と、 前記圧縮機(1)より吐出された冷媒の循環方向を前記
室内熱交換器(3)側と前記室外熱交換器(4)側とに
切替える切替装置(2)と、 冷房時には前記室外熱交換器(4)にて凝縮された冷媒
を気液分離して液冷媒のみを送りだす気液分離器(5)
とを備えるヒートポンプ装置において、 冷房時には前記気液分離器(5)からの液冷媒を過冷却
し、暖房時には前記暖房用減圧手段(11a)で減圧膨
張された冷媒を蒸発させる熱交換手段(9)を備え、 前記熱交換手段(9)は、複数の冷媒流路(92〜9
4)を有し、暖房時には冷房時に比して冷媒が同時に流
れる並列冷媒流路の数が多くなるものであることを特徴
とするヒートポンプ装置。
1. A compressor (1) for compressing and discharging a refrigerant, an indoor heat exchanger (3) for exchanging heat between the refrigerant and indoor air, and a heat exchange between the refrigerant and outdoor air. An outdoor heat exchanger (4) for performing heating; a heating decompression means (11a) provided between the indoor heat exchanger (3) and the outdoor heat exchanger (4) for decompressing the refrigerant during heating; A cooling pressure reducing means (11b) provided between the indoor heat exchanger (3) and the outdoor heat exchanger (4) for reducing the pressure of the refrigerant during cooling; A switching device (2) for switching a circulation direction between the indoor heat exchanger (3) side and the outdoor heat exchanger (4) side, and a refrigerant condensed in the outdoor heat exchanger (4) during cooling. Gas-liquid separator that separates liquid and sends out only liquid refrigerant (5)
A heat exchange device (9) that supercools the liquid refrigerant from the gas-liquid separator (5) during cooling and evaporates the refrigerant decompressed and expanded by the heating decompression device (11a) during heating. ), And the heat exchange means (9) includes a plurality of refrigerant flow paths (92 to 9).
4) The heat pump device according to (1), wherein the number of parallel refrigerant flow paths through which refrigerant flows at the time of heating is greater than at the time of cooling.
【請求項2】 暖房時には、前記暖房用減圧手段(11
a)にて減圧された冷媒の一部が前記熱交換手段(9)
に送られ、残りは前記室外熱交換器(4)に送られるこ
とを特徴とする請求項1に記載のヒートポンプ装置。
2. During heating, the heating decompression means (11)
Part of the refrigerant decompressed in a) is supplied to the heat exchange means (9).
The heat pump device according to claim 1, wherein the remainder is sent to the outdoor heat exchanger (4).
【請求項3】 前記熱交換手段(9)は、 冷房時には前記冷媒流路(92〜94)が直列関係に接
続され、暖房時には前記冷媒流路(92〜94)が並列
関係になるように切替える弁手段(7b〜7i、10a
〜10f)と、 暖房時に、前記暖房用減圧手段(11a)で減圧された
冷媒を前記冷媒流路(92〜94)へ同時に分配する分
配手段(91)と暖房時に、前記冷媒流路(92〜9
4)から出た冷媒が集められる集合部(90)とを有す
るものであることを特徴とする請求項1または2に記載
のヒートポンプ装置。
3. The heat exchange means (9) is arranged such that the refrigerant flow paths (92-94) are connected in series during cooling, and the refrigerant flow paths (92-94) are connected in parallel during heating. Switching valve means (7b to 7i, 10a
-10f), a distribution means (91) for simultaneously distributing the refrigerant depressurized by the decompression means for heating (11a) to the refrigerant flow paths (92-94) during heating, and the refrigerant flow path (92) during heating. ~ 9
The heat pump device according to claim 1, further comprising a collecting portion (90) for collecting the refrigerant discharged from 4).
【請求項4】 暖房時に前記暖房用減圧手段(11a)
で減圧された冷媒が前記室外熱交換器(4)へ送られる
補助回路(6、14)と、 前記補助回路(6、14)の途中部に設けられた分岐部
(6a)と、 前記分岐部(6a)から分岐して前記分配手段(91)
に連通する分岐回路(15)とが設けられており、 暖房時には、前記暖房用減圧手段(11a)にて減圧さ
れた冷媒が前記補助回路(6、14)を流れ前記分岐部
(6a)で分流し、一部は前記熱交換手段(9)に導入
され、残りは前記分岐回路(15)から前記室外熱交換
器(4)に導入されることを特徴とする請求項3に記載
のヒートポンプ装置。
4. The heating decompression means (11a) during heating.
An auxiliary circuit (6, 14) through which the refrigerant decompressed in the above is sent to the outdoor heat exchanger (4); a branch portion (6a) provided in the middle of the auxiliary circuit (6, 14); Branching off from the section (6a),
And a branch circuit (15) that communicates with the refrigerant. During heating, the refrigerant depressurized by the heating depressurizing means (11a) flows through the auxiliary circuit (6, 14) and passes through the branch part (6a). Heat pump according to claim 3, characterized in that the diverted flow is partially introduced into the heat exchange means (9) and the remainder is introduced from the branch circuit (15) into the outdoor heat exchanger (4). apparatus.
JP01901097A 1997-01-31 1997-01-31 Heat pump equipment Expired - Fee Related JP3791090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01901097A JP3791090B2 (en) 1997-01-31 1997-01-31 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01901097A JP3791090B2 (en) 1997-01-31 1997-01-31 Heat pump equipment

Publications (2)

Publication Number Publication Date
JPH10220893A true JPH10220893A (en) 1998-08-21
JP3791090B2 JP3791090B2 (en) 2006-06-28

Family

ID=11987543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01901097A Expired - Fee Related JP3791090B2 (en) 1997-01-31 1997-01-31 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP3791090B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118754A (en) * 2004-10-19 2006-05-11 Denso Corp Vapor compression refrigerator
US7302811B2 (en) * 2004-11-23 2007-12-04 Parker Hannifin Corporation Fluid expansion-distribution assembly
JP2009300001A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
JP2012107857A (en) * 2010-11-18 2012-06-07 Lg Electronics Inc Air conditioner
KR20130096960A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 Air conditioner
KR20160074373A (en) * 2014-12-18 2016-06-28 엘지전자 주식회사 An air conditioner
US10156387B2 (en) 2014-12-18 2018-12-18 Lg Electronics Inc. Outdoor device for an air conditioner
CN115235145A (en) * 2022-07-21 2022-10-25 北京工业大学 Heat pump system with sleeve pipe fin type heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891615B1 (en) * 2012-01-20 2018-08-24 엘지전자 주식회사 Outdoor heat exchanger

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118754A (en) * 2004-10-19 2006-05-11 Denso Corp Vapor compression refrigerator
JP4654655B2 (en) * 2004-10-19 2011-03-23 株式会社デンソー Vapor compression refrigerator
US7302811B2 (en) * 2004-11-23 2007-12-04 Parker Hannifin Corporation Fluid expansion-distribution assembly
JP2009300001A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
KR101233209B1 (en) 2010-11-18 2013-02-15 엘지전자 주식회사 Heat pump
CN102706046A (en) * 2010-11-18 2012-10-03 Lg电子株式会社 Air conditioner
JP2012107857A (en) * 2010-11-18 2012-06-07 Lg Electronics Inc Air conditioner
EP2455689A3 (en) * 2010-11-18 2014-03-05 LG Electronics Inc. Air conditioner
JP2015117936A (en) * 2010-11-18 2015-06-25 エルジー エレクトロニクス インコーポレイティド Air conditioner
US9140474B2 (en) 2010-11-18 2015-09-22 Lg Electronics Inc. Air conditioner
KR20130096960A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 Air conditioner
KR20160074373A (en) * 2014-12-18 2016-06-28 엘지전자 주식회사 An air conditioner
US10156387B2 (en) 2014-12-18 2018-12-18 Lg Electronics Inc. Outdoor device for an air conditioner
CN115235145A (en) * 2022-07-21 2022-10-25 北京工业大学 Heat pump system with sleeve pipe fin type heat exchanger

Also Published As

Publication number Publication date
JP3791090B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP4321095B2 (en) Refrigeration cycle equipment
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
WO2017216861A1 (en) Air conditioner
JP2001056159A (en) Air conditioner
JP2804527B2 (en) Air conditioner
JP4449139B2 (en) Refrigeration equipment
JP2000274879A (en) Air conditioner
JPH10220893A (en) Heat pump device
JP6448780B2 (en) Air conditioner
JP4156422B2 (en) Refrigeration cycle equipment
JP3324420B2 (en) Refrigeration equipment
JP3719296B2 (en) Refrigeration cycle equipment
JP2698118B2 (en) Air conditioner
JP2002357353A (en) Air conditioner
JP2000146258A (en) Air conditioner and control method therefor
JP4023386B2 (en) Refrigeration equipment
JP2001241797A (en) Refrigerating cycle
JP2800428B2 (en) Air conditioner
CN113266965A (en) Air conditioner
JP3754272B2 (en) Air conditioner
JP2007163011A (en) Refrigeration unit
JP3723413B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP3304866B2 (en) Thermal storage type air conditioner
JP4090238B2 (en) Air conditioner and outdoor heat exchanger switching control method of air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050825

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Effective date: 20051107

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060327

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees