JP2000274879A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JP2000274879A JP2000274879A JP11082229A JP8222999A JP2000274879A JP 2000274879 A JP2000274879 A JP 2000274879A JP 11082229 A JP11082229 A JP 11082229A JP 8222999 A JP8222999 A JP 8222999A JP 2000274879 A JP2000274879 A JP 2000274879A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- indoor heat
- valve
- air conditioner
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、空気調和機にお
ける冷媒流路の制御に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of a refrigerant flow path in an air conditioner.
【0002】[0002]
【従来の技術】従来の空気調和機は、例えば特開平10
−82567号公報に開示されている。この空気調和機
は図12及び図13に示すように、圧縮器1、四方弁
2、室外熱交換器3、減圧器4、室内熱交換器5を構成
する2つに分割された第1の室内熱交換器5aと第2の
室内熱交換器5b、および開閉弁6からなり、これらを
配管で接続して冷媒が循環する冷凍サイクルを構成して
いる。2. Description of the Related Art A conventional air conditioner is disclosed in
-82567. As shown in FIGS. 12 and 13, this air conditioner is divided into two parts, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a decompressor 4, and an indoor heat exchanger 5. The refrigeration cycle includes an indoor heat exchanger 5a, a second indoor heat exchanger 5b, and an on-off valve 6, and these are connected by piping to circulate a refrigerant.
【0003】この空気調和機は室内熱交換器5aに連な
る開閉弁6を設け、通常の冷房運転時は図12に示すよ
うに、この開閉弁6を開いて冷媒流路を2つに分割され
た第1の室内熱交換器5aと、もう一方の第2の室内熱
交換器5bの両流路からなる2パス状態として高い出力
を得ている。一方、除湿運転時には、室内熱交換器5
a,5b全体を使って運転すると、能力が大きすぎて除
湿とともに室温が下がりすぎるため、図13に示すよう
に、開閉弁6を閉じることで室内熱交換器5bのみに冷
媒を流し、過度な出力を防いで室温低下を抑制するよう
にしている。This air conditioner is provided with an on-off valve 6 connected to the indoor heat exchanger 5a. During normal cooling operation, as shown in FIG. 12, the on-off valve 6 is opened to divide the refrigerant flow path into two. The first indoor heat exchanger 5a and the other second indoor heat exchanger 5b have a high output in a two-pass state including both flow paths. On the other hand, during the dehumidifying operation, the indoor heat exchanger 5
When the operation is performed using the entirety of a and 5b, the capacity is too large and the room temperature is too low together with dehumidification. Therefore, as shown in FIG. The output is prevented so that the decrease in room temperature is suppressed.
【0004】[0004]
【発明が解決しようとする課題】このように、運転モー
ドに応じて室内熱交換器5の利用する割合を開閉弁6の
開閉で変更し、除湿運転時にはその割合を減らして過度
な室温低下を抑制することができる。一方、冷房と暖房
では最適パス数が異なり、通常、暖房運転時は冷媒流速
の速い1パス、冷房運転時は冷媒流速の遅い2パスにし
て運転すると効率が良い。すなわち暖房運転では室内熱
交換器5全体、すなわち第1の室内熱交換器5aと第2
の室内熱交換器5bを直列の1パスとし、冷房運転では
第1の室内熱交換器5aと第2の室内熱交換器5bを2
パスとして並列に用いると高い効率が得られる。As described above, the ratio of the use of the indoor heat exchanger 5 is changed by opening and closing the on-off valve 6 according to the operation mode, and the ratio is reduced during the dehumidifying operation to prevent an excessive decrease in room temperature. Can be suppressed. On the other hand, the optimal number of passes differs between cooling and heating, and it is usually efficient to perform one pass with a high refrigerant flow rate during the heating operation and two passes with a low refrigerant flow rate during the cooling operation. That is, in the heating operation, the entire indoor heat exchanger 5, that is, the first indoor heat exchanger 5 a and the second indoor heat exchanger 5
Of the first indoor heat exchanger 5a and the second indoor heat exchanger 5b in cooling operation.
High efficiency is obtained when used in parallel as paths.
【0005】しかしながら、上記した従来技術では、冷
房運転は室内熱交換器5aと室内熱交換器5bの2パス
運転は可能であるが、冷媒の流れ方向が逆転する暖房運
転では、冷房運転と同じ2パス運転か、若しくは除湿運
転と同じく室内熱交換器の1部である第2の熱交換器と
なる室内熱交換器5bのみに冷媒を流す運転のみが可能
であり、高効率運転が可能な、室内熱交換器全体を1パ
スとして、すなわち第1の室内熱交換器5aと第2の室
内熱交換器5bとを直列に接続して運転することができ
ないものであった。[0005] However, in the above-described prior art, the cooling operation can be performed in two passes of the indoor heat exchanger 5a and the indoor heat exchanger 5b. However, in the heating operation in which the flow direction of the refrigerant is reversed, the same as the cooling operation Either a two-pass operation or an operation in which the refrigerant flows only into the indoor heat exchanger 5b, which is the second heat exchanger that is a part of the indoor heat exchanger as in the dehumidifying operation, is possible, and high-efficiency operation is possible. In addition, the entire indoor heat exchanger cannot be operated as one pass, that is, the first indoor heat exchanger 5a and the second indoor heat exchanger 5b are connected in series.
【0006】この発明は、冷房運転時と除湿運転時の最
適な室内熱交換器のパス数の選択のみならず、暖房運転
時においても最適なパス数、すなわち暖房運転時には室
内熱交換器全体を1パスとして運転することが可能な空
気調和機を提供することを目的とするものである。The present invention not only selects the optimal number of passes of the indoor heat exchanger during the cooling operation and the dehumidifying operation, but also optimizes the number of passes during the heating operation, that is, the entire indoor heat exchanger during the heating operation. It is an object of the present invention to provide an air conditioner that can be operated as one pass.
【0007】[0007]
【課題を解決するための手段】この発明の請求項1記載
に係る空気調和機は、圧縮機、四方弁、室外熱交換器、
減圧器および室内熱交換器を配管を介して順次接続して
なる冷凍サイクルを備え、上記室内熱交換器の冷媒流路
が上記配管から室内熱交換器を構成する第1の室内熱交
換器と第2の室内熱交換器とに分割されそれぞれ分岐さ
れている空気調和機において、第1の室内熱交換器の冷
房時入口に第1の開閉弁を備え、第2の室内熱交換器の
冷房時出口に第2の開閉弁を備えるとともに、一方が上
記第1の開閉弁と第1の室内熱交換器との間から分岐
し、他方が第2の開閉弁と第2の室内熱交換器の間に配
置される冷媒流路を設置し、この流路上に第3の開閉弁
を設置してなり、これら第1から第3の開閉弁を選択制
御することにより冷房・除湿・暖房の各運転モードで、
それぞれ最適な冷媒回路形状が選択できるようにしたこ
とを特徴とするものである。An air conditioner according to claim 1 of the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger,
A first refrigerating cycle comprising a decompressor and an indoor heat exchanger sequentially connected via a pipe, wherein a refrigerant flow path of the indoor heat exchanger is a first indoor heat exchanger that forms an indoor heat exchanger from the pipe; In the air conditioner divided into the second indoor heat exchanger and branched, the first indoor heat exchanger is provided with a first opening / closing valve at a cooling inlet, and the second indoor heat exchanger is cooled. A second on-off valve at the time outlet, one branching off from between the first on-off valve and the first indoor heat exchanger, and the other branching off from the second on-off valve and the second indoor heat exchanger And a third on-off valve is installed on this flow path. By selectively controlling these first to third on-off valves, each of cooling, dehumidifying, and heating is controlled. In operation mode,
It is characterized in that an optimum refrigerant circuit shape can be selected.
【0008】この発明の請求項2記載に係る空気調和機
は、請求項1の空気調和機において、冷房運転時に第1
の開閉弁と第2の開閉弁を開口し、第3の開閉弁を閉鎖
することによって、高効率での冷房運転が可能な室内熱
交換器のパス数を得るようにしたことを特徴とするもの
である。An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the first air conditioner is operated during a cooling operation.
Opening and closing the third on-off valve and the third on-off valve to obtain the number of passes of the indoor heat exchanger capable of performing the cooling operation with high efficiency. Things.
【0009】この発明の請求項3記載に係る空気調和機
は、請求項1の空気調和機において、除湿運転時に第2
の開閉弁を開口し、第1と第3の開閉弁を閉鎖すること
によって冷房能力を半減させ、過度な室温低下の防止が
可能な室内熱交換器のパス数を得るようにしたことを特
徴とするものである。An air conditioner according to a third aspect of the present invention is the air conditioner according to the first aspect, wherein the second air conditioner is operated during the dehumidifying operation.
Opening and closing the first and third on-off valves, thereby halving the cooling capacity and obtaining the number of passes of the indoor heat exchanger capable of preventing an excessive decrease in room temperature. It is assumed that.
【0010】この発明の請求項4記載に係る空気調和機
は、請求項1の空気調和機において、暖房運転時に第3
の開閉弁を開口し、第1と第2の開閉弁を閉鎖すること
によって、高効率での暖房運転が可能な室内熱交換器の
パス数を得るようにしたことを特徴とするものである。An air conditioner according to a fourth aspect of the present invention is the air conditioner of the first aspect, wherein the third air conditioner is operated during the heating operation.
The number of passes of the indoor heat exchanger capable of performing the heating operation with high efficiency is obtained by opening the on-off valve and closing the first and second on-off valves. .
【0011】この発明の請求項5記載に係る空気調和機
は、圧縮機、四方弁、室外熱交換器、減圧器および室内
熱交換器を配管を介して順次接続してなる冷凍サイクル
を備え、上記室内熱交換器の冷媒流路が上記配管から室
内熱交換器を構成する第1の室内熱交換器と第2の室内
熱交換器とに分割されそれぞれ分岐されている空気調和
機において、上記第1の室内熱交換器と第2の室内熱交
換器との間の冷媒流路上に第2の四方弁と第1の開閉弁
とを設置してなり、この第1の開閉弁と第2の四方弁に
より冷房・除湿・暖房の各運転モードで、それぞれ最適
な冷媒回路形状が選択できるようにしたことを特徴とす
るものである。An air conditioner according to a fifth aspect of the present invention is provided with a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are sequentially connected through piping. In the air conditioner, a refrigerant flow path of the indoor heat exchanger is divided from the pipe into a first indoor heat exchanger and a second indoor heat exchanger that constitute an indoor heat exchanger, and each of the first and second indoor heat exchangers is branched. A second four-way valve and a first on-off valve are provided on a refrigerant flow path between the first indoor heat exchanger and the second indoor heat exchanger, and the first on-off valve and the second The optimum refrigerant circuit shape can be selected in each of the cooling, dehumidification and heating operation modes by the four-way valve.
【0012】この発明の請求項6記載に係る空気調和機
は、請求項5の空気調和機において、第1の開閉弁を開
口し、第2の四方弁を冷房運転方向に冷媒流路を形成す
ることで、冷房運転時に高効率での運転が可能な室内熱
交換器のパス数を選択できるようにしたことを特徴とす
るものである。According to a sixth aspect of the present invention, in the air conditioner of the fifth aspect, the first on-off valve is opened, and the second four-way valve forms a refrigerant flow path in a cooling operation direction. By doing so, it is possible to select the number of passes of the indoor heat exchanger capable of operating with high efficiency during the cooling operation.
【0013】この発明の請求項7記載に係る空気調和機
は、請求項5の空気調和機において、第1の開閉弁を閉
鎖し、第2の四方弁を冷房運転方向に冷媒流路を形成す
ることで、除湿運転時に冷房能力を半減させ、過度な室
温低下の防止が可能な室内熱交換器のパス数を得るよう
にしたことを特徴とするものである。According to a seventh aspect of the present invention, in the air conditioner of the fifth aspect, the first on-off valve is closed, and the second four-way valve forms a refrigerant flow path in a cooling operation direction. By doing so, the cooling capacity is reduced by half during the dehumidifying operation, and the number of passes of the indoor heat exchanger capable of preventing an excessive decrease in room temperature is obtained.
【0014】この発明の請求項8記載に係る空気調和機
は、請求項5の空気調和機において、第1の開閉弁を閉
鎖し、第2の四方弁を暖房運転方向に冷媒流路を形成す
ることで、暖房運転時に高効率での運転が可能な室内熱
交換器のパス数を得るようにしたことを特徴とするもの
である。According to an eighth aspect of the present invention, in the air conditioner of the fifth aspect, the first on-off valve is closed, and the second four-way valve forms a refrigerant flow path in the heating operation direction. By doing so, the number of passes of the indoor heat exchanger capable of operating with high efficiency during the heating operation is obtained.
【0015】この発明の請求項9記載に係る空気調和機
は、圧縮機、四方弁、室外熱交換器、減圧器および室内
熱交換器を配管を介して順次接続してなる冷凍サイクル
を備え、上記室内熱交換器の冷媒流路が上記配管から室
内熱交換器を構成する第1の室内熱交換器と第2の室内
熱交換器とに分割されそれぞれ分岐されている空気調和
機において、上記第1の室内熱交換器と第2の室内熱交
換器との間の冷媒流路上に第2の四方弁と第1の開閉弁
とを設置してなり、かつ、第2の室内熱交換器冷房時出
口と第2の四方弁との間の冷媒流路上に第2の減圧器を
付加して構成し、これら第1の開閉弁と第2の四方弁お
よび第2の減圧器とにより冷房・除湿・暖房の各運転モ
ードでそれぞれ最適な冷媒回路形状が選択できるように
したことを特徴とするものである。An air conditioner according to a ninth aspect of the present invention includes a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are sequentially connected via piping. In the air conditioner, a refrigerant flow path of the indoor heat exchanger is divided from the pipe into a first indoor heat exchanger and a second indoor heat exchanger that constitute an indoor heat exchanger, and each of the first and second indoor heat exchangers is branched. A second four-way valve and a first on-off valve installed on a refrigerant flow path between the first indoor heat exchanger and the second indoor heat exchanger, and a second indoor heat exchanger A second decompressor is additionally provided on the refrigerant flow path between the cooling outlet and the second four-way valve, and the first on-off valve, the second four-way valve, and the second decompressor provide cooling.・ The optimum refrigerant circuit shape can be selected in each operation mode of dehumidification and heating. Is shall.
【0016】この発明の請求項10記載に係る空気調和
機は、請求項9の空気調和機において、第1の開閉弁を
閉鎖し、第2の四方弁を冷房運転方向にすることで、第
2の室内熱交換器を凝縮器として再熱機能を持たせ、除
湿運転時における室温低下のより一層の抑制を可能とす
るようにしたことを特徴とするものである。According to a tenth aspect of the present invention, in the air conditioner according to the ninth aspect, the first on-off valve is closed, and the second four-way valve is set in the cooling operation direction. The indoor heat exchanger of No. 2 is provided with a reheating function as a condenser, so that a lowering of the room temperature during the dehumidifying operation can be further suppressed.
【0017】この発明の請求項11記載に係る空気調和
機は、請求項9の空気調和機において、第1および第2
の減圧器を共に動作させることで第2の室内熱交換器の
再熱量を制御し、除湿運転時において冷房能力と除湿能
力の制御範囲の拡大を可能とするようにしたことを特徴
とするものである。An air conditioner according to an eleventh aspect of the present invention is the air conditioner according to the ninth aspect, wherein the first and second air conditioners are different from each other.
The reheat amount of the second indoor heat exchanger is controlled by operating both of the decompressors, and the control range of the cooling capacity and the dehumidifying capacity can be expanded during the dehumidifying operation. It is.
【0018】この発明の請求項12記載に係る空気調和
機は、圧縮機、四方弁、室外熱交換器、減圧器および室
内熱交換器を配管を介して順次接続してなる冷凍サイク
ルを備え、上記室内熱交換器の冷媒流路が上記配管から
室内熱交換器を構成する第1の室内熱交換器と第2の室
内熱交換器とに分割されてそれぞれ分岐接続されている
空気調和機において、上記第1の室内熱交換器と第2の
室内熱交換器との間の冷媒流路上に第2の四方弁と第1
の開閉弁および第2の減圧器を設置してなり、かつ、圧
縮器出口と室外熱交換器の冷房時出口とを連結する冷媒
流路と、この冷媒流路上に第4の開閉弁を設置して室外
熱交換器のバイパスを可能とするように構成してなり、
冷房・除湿・暖房および除霜の各運転モードで、より高
効率な運転が可能な最適な冷媒回路形状が選択できるよ
うにしたことを特徴とするものである。An air conditioner according to a twelfth aspect of the present invention includes a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are sequentially connected via piping. In the air conditioner, the refrigerant flow path of the indoor heat exchanger is divided from the pipe into a first indoor heat exchanger and a second indoor heat exchanger that constitute the indoor heat exchanger, and each of the air conditioners is branched and connected. A second four-way valve and a first four-way valve on a refrigerant flow path between the first indoor heat exchanger and the second indoor heat exchanger.
And a second flow path connecting the compressor outlet and the cooling air outlet of the outdoor heat exchanger, and a fourth flow control valve installed on the refrigerant flow path. To allow the outdoor heat exchanger to be bypassed,
In each of the cooling, dehumidifying, heating, and defrosting operation modes, an optimum refrigerant circuit shape enabling more efficient operation can be selected.
【0019】この発明の請求項13記載に係る空気調和
機は、請求項12の空気調和機において、第1および第
4の開閉弁を閉鎖し、第1および第2の減圧器を制御し
て第2の室内熱交換器の再熱量を制御し、再熱除湿運転
時において冷房能力と除湿能力の制御範囲の拡大を可能
とするようにしたことを特徴とするものである。An air conditioner according to a thirteenth aspect of the present invention is the air conditioner according to the twelfth aspect, wherein the first and fourth on-off valves are closed, and the first and second pressure reducers are controlled. The reheat amount of the second indoor heat exchanger is controlled so that the control range of the cooling capacity and the dehumidifying capacity can be expanded during the reheating dehumidifying operation.
【0020】この発明の請求項14記載に係る空気調和
機は、請求項12の空気調和機において、第1の開閉弁
を閉鎖し、第4の開閉弁を開口して室内熱交換器の再熱
量を増大させ、再熱除湿運転時において除湿量を保つた
まま室温低下のより一層の制御を可能とするようにした
ことを特徴とするものである。An air conditioner according to a fourteenth aspect of the present invention is the air conditioner according to the twelfth aspect, wherein the first on-off valve is closed and the fourth on-off valve is opened to restart the indoor heat exchanger. The amount of heat is increased so that the room temperature can be further controlled during the reheat dehumidification operation while maintaining the dehumidification amount.
【0021】この発明の請求項15記載に係る空気調和
機は、請求項12の空気調和機において、第1の開閉弁
を閉鎖して第4の開閉弁を開口し、かつ、第1の四方弁
を暖房運転方向とすることで、除霜運転時において除霜
運転時間の短縮を可能とするようにしたことを特徴とす
るものである。An air conditioner according to a fifteenth aspect of the present invention is the air conditioner of the twelfth aspect, wherein the first on-off valve is closed to open the fourth on-off valve, and the first four-way valve is opened. By setting the valve in the heating operation direction, the defrosting operation time can be reduced during the defrosting operation.
【0022】[0022]
【発明の実施の形態】実施の形態1.図1から3は、い
ずれもこの発明の実施の形態1による空気調和機の冷媒
回路図を示すものである。これらの各図において、空気
調和機は圧縮機1を備え、この圧縮機にはメインの冷媒
流路である配管12を介して、この配管を冷房運転用と
暖房運転用とに切換える四方弁2、室外熱交換器3、減
圧器4および室内熱交換器5が順次接続され、これらに
より冷凍サイクルが構成されている。すなわち、冷房運
転時には、室外熱交換器3→減圧器4→室内熱交換器5
→圧縮機1へと冷媒が流れ、暖房運転時には、室内熱交
換器5→減圧器4→室外熱交換器3→圧縮機1へと冷媒
が流れる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIGS. 1 to 3 each show a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention. In each of these drawings, the air conditioner includes a compressor 1 and a four-way valve 2 for switching the piping between a cooling operation and a heating operation via a pipe 12 which is a main refrigerant flow path. , An outdoor heat exchanger 3, a decompressor 4, and an indoor heat exchanger 5 are sequentially connected to each other, thereby forming a refrigeration cycle. That is, during the cooling operation, the outdoor heat exchanger 3 → the decompressor 4 → the indoor heat exchanger 5
→ The refrigerant flows to the compressor 1, and during the heating operation, the refrigerant flows to the indoor heat exchanger 5 → the decompressor 4 → the outdoor heat exchanger 3 → the compressor 1.
【0023】また、室内熱交換器5は第1の室内熱交換
器5aと第2の室内熱交換器5bに分割されそれぞれ分
岐接続して構成されており、第1の室内熱交換器5aの
冷房時入口には第1の開閉弁6を備え、第2の室内熱交
換器5bの冷房時出口には第2の開閉弁8を備えるとと
もに、一方が上記第1の開閉弁6と第1の室内熱交換器
5aとの間から分岐し、他方が第2の開閉弁と第2の室
内熱交換器5bとの間に配置される冷媒流路を設置し、
この冷媒流路上に第3の開閉弁7を設置する形で構成さ
れている。The indoor heat exchanger 5 is divided into a first indoor heat exchanger 5a and a second indoor heat exchanger 5b, each of which is branched and connected. A first opening / closing valve 6 is provided at the cooling-time inlet, and a second opening / closing valve 8 is provided at the cooling-time outlet of the second indoor heat exchanger 5b, one of which is the first opening / closing valve 6 and the first. A refrigerant flow path that is branched from between the indoor heat exchanger 5a and the other is disposed between the second on-off valve and the second indoor heat exchanger 5b,
The third on-off valve 7 is provided on the refrigerant flow path.
【0024】そして、上記した第1の開閉弁6、第2の
開閉弁8および第3の開閉弁7を選択制御することによ
り冷房・除湿・暖房の各運転モードにおいてそれぞれ最
適な室内熱交換器のパス数を得る冷媒回路を形成するよ
うに構成しているものである。By selectively controlling the first on-off valve 6, the second on-off valve 8, and the third on-off valve 7, the optimum indoor heat exchanger is provided in each of the cooling, dehumidifying and heating operation modes. And a refrigerant circuit for obtaining the number of passes.
【0025】まず、図1において、第1の開閉弁6と第
2の開閉弁8を開口し第3の開閉弁7を閉鎖状態に制御
する。この状態においては冷房運転時は圧縮機1を出た
冷媒は四方弁2を通って室外熱交換器3で凝縮される。
次に減圧器4で減圧された後、一部は開閉弁6を経て第
1の室内熱交換器5aで蒸発し圧縮機1に戻り、残りは
第2の室内熱交換器5bで蒸発して開閉弁8を経て圧縮
機1に戻る。なお、開閉弁7は閉鎖の状態としており、
このため分割された2つの室内熱交換器5a,5bは冷
媒の流れに対して並列に接続された構成となる。以上の
ように開閉弁6と開閉弁8を開口し開閉弁7を閉鎖する
ことで、冷房運転時は室内熱交換器5aおよび5bは並
列に、すなわち2パスの状態となり、高効率での冷房運
転の実現が可能となる。First, in FIG. 1, the first on-off valve 6 and the second on-off valve 8 are opened, and the third on-off valve 7 is controlled to a closed state. In this state, during the cooling operation, the refrigerant that has left the compressor 1 passes through the four-way valve 2 and is condensed in the outdoor heat exchanger 3.
Next, after the pressure is reduced by the decompressor 4, a part is evaporated by the first indoor heat exchanger 5 a via the on-off valve 6 and returns to the compressor 1, and the rest is evaporated by the second indoor heat exchanger 5 b. The flow returns to the compressor 1 via the on-off valve 8. The on-off valve 7 is closed.
Therefore, the two divided indoor heat exchangers 5a and 5b are connected in parallel to the flow of the refrigerant. By opening the on-off valves 6 and 8 and closing the on-off valve 7 as described above, the indoor heat exchangers 5a and 5b are placed in parallel during cooling operation, that is, in a two-pass state, and the cooling is performed with high efficiency. Driving can be realized.
【0026】また、除湿運転時においては図2に示すよ
うに第1の開閉弁6と第3の開閉弁7を閉鎖し、第2の
開閉弁8を開口状態に制御する。この状態においては減
圧機4を経た冷媒は第2の室内熱交換器5bにのみ流れ
て蒸発し、第1の室内熱交換器5aには流れない。よっ
て冷房能力は半減され、過度な室温低下を防ぐことが可
能となる。During the dehumidifying operation, as shown in FIG. 2, the first on-off valve 6 and the third on-off valve 7 are closed, and the second on-off valve 8 is controlled to be open. In this state, the refrigerant that has passed through the decompressor 4 flows only into the second indoor heat exchanger 5b and evaporates, and does not flow into the first indoor heat exchanger 5a. Therefore, the cooling capacity is reduced by half, and it is possible to prevent an excessive decrease in room temperature.
【0027】さらに、暖房運転時においては、図3に示
すように四方弁2を回転させて冷媒の流れ方向を逆転さ
せると共に第1の開閉弁6と第2の開閉弁8を閉鎖し、
第3の開閉弁7を開口状態に制御する。この状態におい
ては圧縮機1を出た冷媒は四方弁2を経たのち、まず第
1の室内熱交換器5aに流れ、第3の開閉弁7を経由し
て第2の室内熱交換器5bを経たのち減圧機4に至り、
室外熱交換器3で蒸発して四方弁2を経由して圧縮機1
に戻る。すなわち、冷媒の凝縮は第1の室内熱交換器5
aと第2の室内熱交換器5bとを直列に接続した形の室
内熱交換器全体で1パスとして行われ、高効率での暖房
運転の実現が可能となる。Further, during the heating operation, as shown in FIG. 3, the four-way valve 2 is rotated to reverse the flow direction of the refrigerant, and the first on-off valve 6 and the second on-off valve 8 are closed.
The third on-off valve 7 is controlled to be open. In this state, the refrigerant that has left the compressor 1 passes through the four-way valve 2 and then flows to the first indoor heat exchanger 5a, and then passes through the third on-off valve 7 to the second indoor heat exchanger 5b. After passing through to the decompressor 4,
The compressor 1 is evaporated through the outdoor heat exchanger 3 and passed through the four-way valve 2.
Return to That is, the condensation of the refrigerant is performed by the first indoor heat exchanger 5.
a and the second indoor heat exchanger 5b are connected in series, so that the entire indoor heat exchanger is performed as one pass, and a highly efficient heating operation can be realized.
【0028】実施の形態2.図4から図6は、いずれも
この発明の実施の形態2における空気調和機の冷媒回路
図を示すものである。これらの図においては前述した実
施の形態1における冷媒回路において3個ある開閉弁
を、1個の開閉弁と1個の四方弁に置き換えて同等の効
果を実現するようにしたものである。すなわち、開閉弁
6,7,および8に換えて開閉弁6と第2の四方弁9で
構成したもので、より低コストで、かつ省スペースを実
現しつつ前述した実施の形態1の冷媒回路と同等の効果
を上げることが可能となる。なお図中で同じ番号をつけ
た構成部品は全て実施の形態1と同じ部品を示す。Embodiment 2 4 to 6 each show a refrigerant circuit diagram of an air conditioner according to Embodiment 2 of the present invention. In these figures, three on-off valves are replaced by one on-off valve and one four-way valve in the refrigerant circuit according to Embodiment 1 described above to achieve the same effect. That is, the refrigerant circuit according to the first embodiment described above is constituted by the on-off valve 6 and the second four-way valve 9 in place of the on-off valves 6, 7, and 8, while realizing lower cost and space saving. It is possible to achieve the same effect as. In the drawings, all components having the same numbers represent the same components as in the first embodiment.
【0029】まず、図4において、冷房運転時は開閉弁
6を開いて第2の四方弁9を図の向きに設定すること
で、減圧器4を経た冷媒は室内熱交換機5aと5bに分
岐して流れそれぞれで蒸発し、再び合流して第1の四方
弁2を経由して圧縮機1に戻る。すなわち前述した実施
の形態1と同様に冷媒回路は室内熱交換器5a及び5b
は並列に、すなわち2パスの状態となり、高効率での冷
房運転の実現が可能となる。First, in FIG. 4, during cooling operation, the on-off valve 6 is opened and the second four-way valve 9 is set in the direction shown in FIG. And evaporates in each of the streams, merges again, and returns to the compressor 1 via the first four-way valve 2. That is, similar to the first embodiment described above, the refrigerant circuit includes the indoor heat exchangers 5a and 5b.
Are in parallel, that is, in a two-pass state, and a cooling operation with high efficiency can be realized.
【0030】また、除湿運転時においては図5に示すよ
うに開閉弁6を閉鎖することで、減圧器4を経た冷媒は
第2の室内熱交換器5bのみに流れて蒸発し、第1の室
内熱交換器5aには流れない。従って前述した実施の形
態1における冷媒回路と同様に室内熱交換器5の半分の
み、すなわち第2の室内熱交換器5bのみ使用すること
になり、冷房能力を半減して過度な室温低下を防ぐこと
が可能となる。Further, during the dehumidifying operation, by closing the on-off valve 6 as shown in FIG. 5, the refrigerant having passed through the decompressor 4 flows only into the second indoor heat exchanger 5b and evaporates. It does not flow to the indoor heat exchanger 5a. Therefore, only half of the indoor heat exchanger 5, that is, only the second indoor heat exchanger 5b is used, similarly to the refrigerant circuit in the first embodiment, and the cooling capacity is halved to prevent an excessive decrease in room temperature. It becomes possible.
【0031】さらに、暖房運転時においては図6に示す
ように、第1の四方弁2を回転させて冷媒の流れ方向を
逆転させると共に、開閉弁6を閉じて第2の四方弁9を
回転させて冷媒の流れ方向を変更する。この制御動作に
よって前述した実施の形態1における冷媒回路と同様に
冷媒の凝縮は室内熱交換器5全体、すなわち第1の室内
熱交換器5aと第2の室内熱交換器5bとを直列とした
1パスとして行われ、高効率での暖房運転の実現が可能
となる。Further, during the heating operation, as shown in FIG. 6, the first four-way valve 2 is rotated to reverse the flow direction of the refrigerant, and the on-off valve 6 is closed to rotate the second four-way valve 9. Then, the flow direction of the refrigerant is changed. By this control operation, in the same manner as in the refrigerant circuit in the first embodiment described above, the refrigerant is condensed by connecting the entire indoor heat exchanger 5, that is, the first indoor heat exchanger 5a and the second indoor heat exchanger 5b in series. This is performed as one pass, and a highly efficient heating operation can be realized.
【0032】実施の形態3.図7はこの発明の実施の形
態3における空気調和機の冷媒回路図で、除湿運転時を
示している。これは前述した実施の形態2の構成に更に
第2の減圧器10を付加したものであり、より低コスト
でかつ省スペースを実現しつつ、実施の形態5の冷媒回
路と同等以上の効果を上げることが可能となる。なお図
中で同じ番号をつけた構成部品は全て前述した図4乃至
図6と同じ構成部品を示す。Embodiment 3 FIG. FIG. 7 is a refrigerant circuit diagram of an air conditioner according to Embodiment 3 of the present invention, showing a dehumidifying operation. This is obtained by further adding the second decompressor 10 to the configuration of the above-described second embodiment, and achieves an effect equal to or more than that of the refrigerant circuit of the fifth embodiment while realizing lower cost and space saving. Can be raised. Note that, in the drawings, all the components having the same reference numerals indicate the same components as those in FIGS. 4 to 6 described above.
【0033】まず、除湿運転時は図7に示すように、開
閉弁6や第2の四方弁9の動作は前述した実施の形態2
と同等である。この実施の形態において第1の減圧器4
は動作させずに第2の減圧器10のみ動作させる。従っ
て室外熱交換器3と第2の室内熱交換器5bが凝縮器と
して作用し、第1の室内熱交器5aが蒸発器として作用
する。すなわち室内空気は第1の室内熱交換器5aで冷
却・除湿され、第2の室内熱交換器5bによって加熱さ
れることで、前述した実施の形態1や実施の形態2にお
ける冷媒回路の除湿運転よりも、室温の低下をより抑制
することが可能となる。さらにこの実施の形態におい
て、減圧器4および第2の減圧器10を共に減圧機能さ
せることで、第2の室内熱交換器5bの再熱量を制御
し、冷房能力と除湿能力の制御範囲をより拡大すること
が可能となる。First, during the dehumidifying operation, as shown in FIG. 7, the operations of the on-off valve 6 and the second four-way valve 9 are the same as those in the second embodiment.
Is equivalent to In this embodiment, the first decompressor 4
Is operated, and only the second decompressor 10 is operated. Therefore, the outdoor heat exchanger 3 and the second indoor heat exchanger 5b function as a condenser, and the first indoor heat exchanger 5a functions as an evaporator. That is, the indoor air is cooled and dehumidified by the first indoor heat exchanger 5a, and heated by the second indoor heat exchanger 5b, so that the dehumidifying operation of the refrigerant circuit in the first and second embodiments described above. It is possible to further suppress the decrease in room temperature. Further, in this embodiment, the decompressor 4 and the second decompressor 10 are both operated to reduce the pressure, thereby controlling the amount of reheating of the second indoor heat exchanger 5b, thereby increasing the control range of the cooling capacity and the dehumidifying capacity. It is possible to expand.
【0034】次にこの実施の形態3における効果を図8
を用いて説明する。冷房能力には顕熱と潜熱が含まれる
が、室温を下げるのはそのうち顕熱分であり、除湿を行
うのが潜熱分である。図8に示すグラフは横軸を冷房能
力のうちの顕熱分を示し、縦軸を潜熱分に相当する除湿
量を示している。通常の冷房運転においては図8に示す
ように高い顕熱範囲で運転されており、ある程度除湿も
されるが、除湿が主目的の場合も当然の事ながら顕熱分
の能力によって室温は低下する。この発明の実施の形態
1に基づいた空気調和機では、室内熱交換器の一部のみ
使用することで、ある程度顕熱分の能力が下がり、図8
の「実施の形態1における除湿運転」として示すような
範囲で制御される。なお図示していないが実施の形態2
における空気調和機も同等の範囲となる。Next, the effect of the third embodiment will be described with reference to FIG.
This will be described with reference to FIG. The cooling capacity includes sensible heat and latent heat. Of these, the sensible heat reduces the room temperature, and the latent heat dehumidifies. In the graph shown in FIG. 8, the horizontal axis indicates the sensible heat component of the cooling capacity, and the vertical axis indicates the dehumidification amount corresponding to the latent heat component. In the normal cooling operation, as shown in FIG. 8, the operation is performed in a high sensible heat range, and dehumidification is performed to some extent. . In the air conditioner based on Embodiment 1 of the present invention, by using only a part of the indoor heat exchanger, the capability of the sensible heat is reduced to some extent.
Is controlled in a range as shown as “dehumidification operation in the first embodiment”. Although not shown, Embodiment 2
The air conditioners in are also in the same range.
【0035】前述したように、実施の形態3における空
気調和機は、室内熱交換機の一部を再熱器として運転す
るため、除湿量は維持したまま顕熱分の冷房能力は大幅
に下がる。また第1の減圧器4と第2の減圧器10の減
圧機能を調節することで、第2の室内熱交換器5bの再
熱量を制御し、より広い範囲での制御が可能となり、図
8に示すように、通常冷房における制御範囲からほとん
ど連続的に制御範囲を拡大することができる。As described above, since the air conditioner according to Embodiment 3 operates part of the indoor heat exchanger as a reheater, the cooling capacity for the sensible heat is greatly reduced while maintaining the dehumidification amount. In addition, by adjusting the pressure reducing function of the first pressure reducer 4 and the second pressure reducer 10, the reheat amount of the second indoor heat exchanger 5b can be controlled, and control over a wider range becomes possible. As shown in (1), the control range can be extended almost continuously from the control range in normal cooling.
【0036】実施の形態4.図9から図11はこの発明
の実施の形態4における空気調和機の冷媒回路図を示し
たものである。これらの図においては前述の実施の形態
3における冷媒回路の圧縮機1出口と室外熱交換器3冷
房時出口を接続する冷媒流路を設置し、この流路上に第
4の開閉弁11を設置している。この第4の開閉弁11
の制御によって、室外熱交換器3のオンオフを自由に選
択する事ができ、冷房・除湿・暖房及び除霜運転それぞ
れを、より高効率な運転が可能な回路パターンを選択す
ることが可能となる。なお、通常再熱除湿運転時は図9
に示すように、第4の開閉弁11は閉鎖し、第2の減圧
器10を制御することによって、第2の室内熱交換器5
bにおける再熱量の制御範囲のより一層の拡大が可能と
なる。Embodiment 4 FIG. 9 to 11 show a refrigerant circuit diagram of an air conditioner according to Embodiment 4 of the present invention. In these figures, a refrigerant channel connecting the compressor 1 outlet of the refrigerant circuit and the outdoor heat exchanger 3 cooling outlet in the above-described third embodiment is installed, and a fourth on-off valve 11 is installed on this channel. are doing. This fourth on-off valve 11
, The ON / OFF of the outdoor heat exchanger 3 can be freely selected, and it becomes possible to select a circuit pattern that enables more efficient operation of each of the cooling, dehumidifying, heating, and defrosting operations. . Note that during normal reheat dehumidification operation, FIG.
As shown in the figure, the fourth on-off valve 11 is closed, and the second indoor heat exchanger 5 is controlled by controlling the second decompressor 10.
The control range of the reheat amount in b can be further expanded.
【0037】また、再熱除湿運転時には、図10に示す
ように第4の開閉弁11を開口する。これにより室外熱
交換器3をバイパスした冷媒は第2の室内熱交換器5b
で凝縮するので、第2の室内熱交換器5bの再熱量は図
9の運転時より大きくなり、再熱量の制御範囲を拡大
し、更に広い範囲に対応した除湿運転が可能となる。In the reheat dehumidifying operation, the fourth on-off valve 11 is opened as shown in FIG. As a result, the refrigerant bypassing the outdoor heat exchanger 3 is supplied to the second indoor heat exchanger 5b.
Therefore, the amount of reheat of the second indoor heat exchanger 5b is larger than that in the operation in FIG. 9, the control range of the amount of reheat is expanded, and the dehumidification operation corresponding to a wider range is possible.
【0038】さらに、除霜運転時は図11に示すように
第4の開閉弁11を開き、圧縮機1から出た高温冷媒を
室外熱交換器3の除霜に用いる。これによって除霜運転
時間の短縮が可能となる。Further, at the time of the defrosting operation, the fourth on-off valve 11 is opened as shown in FIG. 11, and the high-temperature refrigerant discharged from the compressor 1 is used for defrosting the outdoor heat exchanger 3. This makes it possible to reduce the defrosting operation time.
【0039】なお、上述したこの発明の実施の形態1〜
4において、開閉弁や四方弁、圧縮機の制御や、更に図
示していないが室内・室外熱交換器の送風ファン等の制
御によって、除湿量の制御が可能である。さらに、実施
の形態3に記述したように第1の減圧器と第2の減圧器
との切換え、また実施の形態4に記述したように、第4
の開閉弁11と第2の減圧器10を制御することにより
第2の室内熱交換器における再熱量の制御範囲変更も可
能であるため、室内湿度を検知して除湿量を制御する事
が考えられる。例えば湿度検知手段を設けて必要除湿量
を算出し、必要冷房能力を加味して、両減圧器を制御し
ても良いし、更に直接湿度を検知しなくても、室温と冷
媒の蒸発温度から湿度を推論するなど、間接的に湿度を
知る事も可能である。いずれにしてもこの発明は湿度の
検知手段を限定するものではない。It should be noted that Embodiments 1 to 1 of the present invention described above.
In 4, the amount of dehumidification can be controlled by controlling an open / close valve, a four-way valve, a compressor, and a control of a blower fan of an indoor / outdoor heat exchanger (not shown). Further, switching between the first pressure reducer and the second pressure reducer as described in the third embodiment, and the fourth pressure reducer as described in the fourth embodiment.
It is possible to change the control range of the reheat amount in the second indoor heat exchanger by controlling the on-off valve 11 and the second decompressor 10 in order to control the dehumidification amount by detecting the indoor humidity. Can be For example, a humidity detecting means is provided to calculate the required dehumidification amount, and in consideration of the required cooling capacity, both decompressors may be controlled, or even without directly detecting the humidity, the room temperature and the evaporation temperature of the refrigerant may be used. It is also possible to know the humidity indirectly, for example, by inferring the humidity. In any case, the present invention does not limit the means for detecting humidity.
【0040】[0040]
【発明の効果】請求項1に記載の発明によれば、冷房・
除湿・暖房の各運転モードでそれぞれ最適な冷媒回路形
状の選択が可能となる。According to the first aspect of the present invention, cooling / cooling
In each operation mode of dehumidification and heating, it is possible to select an optimum refrigerant circuit shape.
【0041】請求項2に記載の発明によれば、請求項1
の空気調和機において高効率での冷房運転が可能とな
る。According to the invention of claim 2, according to claim 1,
In this air conditioner, a cooling operation with high efficiency can be performed.
【0042】請求項3に記載の発明によれば、請求項1
の空気調和機において除湿運転時に過度な室温低下の防
止が可能となる。According to the invention described in claim 3, according to claim 1
It is possible to prevent an excessive decrease in room temperature during the dehumidifying operation in the air conditioner of the present invention.
【0043】請求項4に記載の発明によれば、請求項1
の空気調和機において高効率での暖房運転が可能とな
る。According to the invention described in claim 4, according to claim 1
In this air conditioner, a heating operation with high efficiency becomes possible.
【0044】請求項5に記載の発明によれば、請求項1
の空気調和機と同等の効果が、より低コストでかつ省ス
ペースで実現可能となる。According to the fifth aspect of the present invention, the first aspect is provided.
The same effect as that of the air conditioner can be realized with lower cost and space saving.
【0045】請求項6に記載の発明によれば、請求項5
の空気調和機において高効率での冷房運転が可能とな
る。According to the invention of claim 6, according to claim 5,
In this air conditioner, a cooling operation with high efficiency can be performed.
【0046】請求項7に記載の発明によれば、請求項5
の空気調和機において除湿運転時に過度な室温低下の防
止が可能となる。According to the invention of claim 7, according to claim 5,
It is possible to prevent an excessive decrease in room temperature during the dehumidifying operation in the air conditioner of the present invention.
【0047】請求項8に記載の発明によれば、請求項5
の空気調和機において高効率での暖房運転が可能とな
る。According to the invention of claim 8, according to claim 5,
In this air conditioner, a heating operation with high efficiency becomes possible.
【0048】請求項9に記載の発明によれば、請求項5
の空気調和機において冷房・除湿・暖房の各運転モード
の選択を可能とし、更に除湿運転の制御範囲拡大が可能
となる。According to the ninth aspect of the present invention, the fifth aspect
In this air conditioner, each operation mode of cooling, dehumidification, and heating can be selected, and the control range of the dehumidification operation can be further expanded.
【0049】請求項10に記載の発明によれば、請求項
9の空気調和機において、除湿運転時に室温低下のより
一層の抑制が可能となる。According to the tenth aspect of the invention, in the air conditioner of the ninth aspect, it is possible to further suppress the decrease in room temperature during the dehumidifying operation.
【0050】請求項11に記載の発明によれば、請求項
9の空気調和機において、除湿運転時に冷房能力と除湿
能力の制御範囲の拡大が可能となる。According to the eleventh aspect of the present invention, in the air conditioner of the ninth aspect, the control range of the cooling capacity and the dehumidifying capacity during the dehumidifying operation can be expanded.
【0051】請求項12に記載の発明によれば、請求項
9の空気調和機において、室外熱交換器のバイパスを可
能とし、冷房・除湿・暖房及び除霜運転それぞれについ
て、より高効率な運転が可能な回路パターンを選択する
ことが可能となる。According to the twelfth aspect of the present invention, in the air conditioner of the ninth aspect, the outdoor heat exchanger can be bypassed, and the cooling, dehumidifying, heating and defrosting operations can be performed with higher efficiency. It is possible to select a circuit pattern that can perform the operation.
【0052】請求項13に記載の発明によれば、請求項
12の空気調和機において、再熱除湿運転時に冷房能力
と除湿能力の制御範囲の拡大が可能となる。According to the thirteenth aspect of the present invention, in the air conditioner of the twelfth aspect, the control range of the cooling capacity and the dehumidifying capacity during the reheating dehumidifying operation can be expanded.
【0053】請求項14に記載の発明によれば、請求項
12の空気調和機において、再熱除湿運転時に除湿量を
保ったまま室温低下のより一層の制御が可能となる。According to the fourteenth aspect of the invention, in the air conditioner of the twelfth aspect, it is possible to further control the decrease in room temperature while maintaining the dehumidification amount during the reheating dehumidification operation.
【0054】請求項15に記載の発明によれば、請求項
12の空気調和機において、除霜運転時間の短縮が可能
となる。According to the fifteenth aspect of the present invention, in the air conditioner of the twelfth aspect, the defrosting operation time can be reduced.
【図1】 この発明の実施形態1における冷房運転時の
選択した冷媒回路図である。FIG. 1 is a selected refrigerant circuit diagram during a cooling operation in Embodiment 1 of the present invention.
【図2】 この発明の実施形態1における除湿運転時の
選択した冷媒回路図である。FIG. 2 is a selected refrigerant circuit diagram during a dehumidifying operation in Embodiment 1 of the present invention.
【図3】 この発明の実施形態1における暖房運転時の
選択した冷媒回路図である。FIG. 3 is a selected refrigerant circuit diagram during a heating operation in Embodiment 1 of the present invention.
【図4】 この発明の実施形態2における冷房運転時の
選択した冷媒回路図である。FIG. 4 is a selected refrigerant circuit diagram during a cooling operation in Embodiment 2 of the present invention.
【図5】 この発明の実施形態2における除湿運転時の
選択した冷媒回路図である。FIG. 5 is a selected refrigerant circuit diagram during a dehumidifying operation in Embodiment 2 of the present invention.
【図6】 この発明の実施形態2における暖房運転時の
選択した冷媒回路図である。FIG. 6 is a selected refrigerant circuit diagram during a heating operation in Embodiment 2 of the present invention.
【図7】 この発明の実施形態3における除湿運転時の
選択した冷媒回路図である。FIG. 7 is a selected refrigerant circuit diagram during a dehumidifying operation in Embodiment 3 of the present invention.
【図8】 この発明の実施形態3における除湿運転時の
効果を示すグラフである。FIG. 8 is a graph showing an effect at the time of a dehumidification operation in Embodiment 3 of the present invention.
【図9】 この発明の実施形態4における再熱除湿運転
時の選択した冷媒回路図である。FIG. 9 is a selected refrigerant circuit diagram during a reheat dehumidifying operation according to Embodiment 4 of the present invention.
【図10】 この発明の実施形態4における除湿運転時
の選択した冷媒回路図である。FIG. 10 is a selected refrigerant circuit diagram during a dehumidifying operation in Embodiment 4 of the present invention.
【図11】 この発明の実施形態4における除霜運転時
の選択した冷媒回路図である。FIG. 11 is a refrigerant circuit diagram selected during a defrosting operation in Embodiment 4 of the present invention.
【図12】 従来の空気調和機の、冷房及び暖房運転時
の冷媒回路図である。FIG. 12 is a refrigerant circuit diagram of a conventional air conditioner during cooling and heating operations.
【図13】 従来の空気調和機の、除湿運転時の冷媒回
路図である。FIG. 13 is a refrigerant circuit diagram of a conventional air conditioner during a dehumidifying operation.
1 圧縮機、 2 四方弁、 3 室外熱交換機、 4
減圧器、 5 室内熱交換器、 5a 第1の室内熱
交換器、 5b 第2の室内熱交換器、 6第1の開閉
弁、 7 第3の開閉弁、 8 第2の開閉弁、 9
第2の四方弁、 10 第2の減圧器、 11 第4の
開閉弁、 12 配管、1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4
Decompressor, 5 indoor heat exchanger, 5a first indoor heat exchanger, 5b second indoor heat exchanger, 6 first on-off valve, 7 third on-off valve, 8 second on-off valve, 9
2nd four-way valve, 10 2nd decompressor, 11 4th on-off valve, 12 piping,
Claims (15)
および室内熱交換器を配管を介して順次接続してなる冷
凍サイクルを備え、上記室内熱交換器の冷媒流路が上記
配管から室内熱交換器を構成する第1の室内熱交換器と
第2の室内熱交換器とに分割されてそれぞれ分岐接続さ
れている空気調和機において、第1の室内熱交換器の冷
房時入口に第1の開閉弁を備え、第2の室内熱交換器の
冷房時出口に第2の開閉弁を備えるとともに、一方が上
記第1の開閉弁と第1の室内熱交換器との間から分岐
し、他方が第2の開閉弁と第2の室内熱交換器の間に配
置される冷媒流路を設置し、この流路上に第3の開閉弁
を設置してなり、これら第1から第3の開閉弁を選択制
御することにより冷房・除湿・暖房の各運転モードに応
じた室内熱交換器のパス数を得る冷媒流路を形成するよ
うにしたことを特徴とする空気調和機。1. A refrigerating cycle comprising a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger sequentially connected via piping, wherein a refrigerant flow path of the indoor heat exchanger is connected to the piping. In the air conditioner, which is divided into a first indoor heat exchanger and a second indoor heat exchanger that constitute an indoor heat exchanger, and is branched and connected to the first indoor heat exchanger, the cooling indoor inlet of the first indoor heat exchanger A first opening / closing valve, and a second opening / closing valve at a cooling outlet of the second indoor heat exchanger, one of which is provided between the first opening / closing valve and the first indoor heat exchanger. A refrigerant flow path is provided between the second on-off valve and the second indoor heat exchanger, and a third on-off valve is installed on this flow path. By selectively controlling the third on-off valve, the indoor heat exchanger can be operated in accordance with the cooling, dehumidifying, and heating operation modes. An air conditioner characterized by forming a refrigerant flow path for obtaining the number of refrigerants.
弁を開口し、第3の開閉弁を閉鎖することによって、第
1の室内熱交換器と第2の室内熱交換器とを並列の2パ
ス状態に形成したことを特徴とする請求項1に記載の空
気調和機。2. A first indoor heat exchanger and a second indoor heat exchanger by opening a first on-off valve and a second on-off valve and closing a third on-off valve during a cooling operation. The air conditioner according to claim 1, wherein the air conditioners are formed in a two-pass state in parallel.
1と第3の開閉弁を閉鎖することによって、第2の室内
熱交換器のみの使用状態を形成したことを特徴とする請
求項1に記載の空気調和機。3. The use state of only the second indoor heat exchanger is formed by opening the second on-off valve and closing the first and third on-off valves during the dehumidifying operation. The air conditioner according to claim 1.
1と第2の開閉弁を閉鎖することによって、第1の室内
熱交換器と第2の室内熱交換器とを直列の1パス状態に
形成したことを特徴とする請求項1に記載の空気調和
機。4. A first indoor heat exchanger and a second indoor heat exchanger are connected in series by opening a third on-off valve and closing the first and second on-off valves during a heating operation. The air conditioner according to claim 1, wherein the air conditioner is formed in a one-pass state.
および室内熱交換器を配管を介して順次接続してなる冷
凍サイクルを備え、上記室内熱交換器の冷媒流路が上記
配管から室内熱交換器を構成する第1の室内熱交換器と
第2の室内熱交換器とに分割されてそれぞれ分岐接続さ
れている空気調和機において、上記第1の室内熱交換器
と第2の室内熱交換器との間の冷媒流路上に第2の四方
弁と第1の開閉弁とを設置してなり、これら第2の四方
弁と第1の開閉弁を選択制御することにより冷房・除湿
・暖房の各運転モードに応じた室内熱交換器のパス数を
得る冷媒流路を形成するようにしたことを特徴とする空
気調和機。5. A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are sequentially connected through piping, and a refrigerant flow path of the indoor heat exchanger is connected to the piping. In the air conditioner divided into a first indoor heat exchanger and a second indoor heat exchanger that constitute an indoor heat exchanger, and the first indoor heat exchanger and the second indoor heat exchanger A second four-way valve and a first on-off valve are provided on a refrigerant flow path between the first and second indoor heat exchangers, and the second four-way valve and the first on-off valve are selectively controlled to perform cooling. -An air conditioner characterized by forming a refrigerant passage for obtaining the number of passes of the indoor heat exchanger according to each operation mode of dehumidification and heating.
2の四方弁を冷房運転方向に冷媒流路を形成することに
よって、第1の室内熱交換器と第2の室内熱交換器とを
並列の2パス状態に形成したことを特徴とする請求項5
に記載の空気調和機。6. A first indoor heat exchanger and a second indoor heat exchanger by opening a first on-off valve during cooling operation and forming a refrigerant flow path in a second four-way valve in a cooling operation direction. 6. The apparatus according to claim 5, wherein the first and second devices are formed in a two-pass state in parallel.
The air conditioner according to item 1.
2の四方弁を冷房運転方向に冷媒流路を形成することに
よって、第2の室内熱交換器のみの状態に形成したこと
を特徴とする請求項5に記載の空気調和機。7. A method in which the first on-off valve is closed during the dehumidifying operation, and the second four-way valve is formed in the state of only the second indoor heat exchanger by forming a refrigerant flow path in the cooling operation direction. The air conditioner according to claim 5, characterized in that:
2の四方弁を暖房運転方向に冷媒流路を形成することに
よって、第1の室内熱交換器と第2の室内熱交換器とを
直列の1パス状態に形成したことを特徴とする請求項5
に記載の空気調和機。8. A first indoor heat exchanger and a second indoor heat exchanger by closing a first on-off valve during a heating operation and forming a refrigerant flow path in a second four-way valve in a heating operation direction. 6. The apparatus according to claim 5, wherein the first and second devices are formed in a one-pass state in series.
The air conditioner according to item 1.
および室内熱交換器を配管を介して順次接続してなる冷
凍サイクルを備え、上記室内熱交換器の冷媒流路が上記
配管から室内熱交換器を構成する第1の室内熱交換器と
第2の室内熱交換器とに分割されてそれぞれ分岐接続さ
れている空気調和機において、上記第1の室内熱交換器
と第2の室内熱交換器との間の冷媒流路上に第2の四方
弁と第1の開閉弁とを設置してなり、かつ、第2の室内
熱交換器冷房時出口と第2の四方弁との間の冷媒流路上
に第2の減圧器を付加して構成し、これら第1の開閉弁
と第2の四方弁および第2の減圧器を選択制御すること
により冷房・除湿・暖房の各運転モードに応じた室内熱
交換器のパス数を得る冷媒流路を形成するようにしたこ
とを特徴とする空気調和機。9. A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are sequentially connected via piping, and a refrigerant flow path of the indoor heat exchanger is connected to the piping. In the air conditioner divided into a first indoor heat exchanger and a second indoor heat exchanger that constitute an indoor heat exchanger, and the first indoor heat exchanger and the second indoor heat exchanger A second four-way valve and a first on-off valve are provided on a refrigerant flow path between the second indoor heat exchanger and the second indoor heat exchanger, and a second four-way valve. A second decompressor is additionally provided on the refrigerant flow path between the two, and the first on-off valve, the second four-way valve, and the second decompressor are selectively controlled to perform cooling, dehumidification, and heating. Air characterized by forming a refrigerant passage for obtaining the number of passes of the indoor heat exchanger according to the operation mode Harmony machine.
第2の四方弁を冷房運転方向に選択し、さらに第1の減
圧器を開放して動作させず第2の減圧器のみ動作させる
ことによって、第2の室内熱交換器を凝縮器として作用
させたことを特徴とする請求項9に記載の空気調和機。10. The first on-off valve is closed during a dehumidifying operation,
The second indoor heat exchanger acts as a condenser by selecting the second four-way valve in the cooling operation direction and operating only the second pressure reducer without opening and operating the first pressure reducer. The air conditioner according to claim 9, wherein:
2の四方弁を冷房運転方向に選択し、さらに第1および
第2の減圧器を共に動作させることを特徴とする請求項
9に記載の空気調和機。11. The method according to claim 1, wherein the first on-off valve is closed during the dehumidifying operation, the second four-way valve is selected in the cooling operation direction, and the first and second pressure reducers are operated together. 10. The air conditioner according to 9.
器および室内熱交換器を配管を介して順次接続してなる
冷凍サイクルを備え、上記室内熱交換器の冷媒流路が上
記配管から室内熱交換器を構成する第1の室内熱交換器
と第2の室内熱交換器とに分割されてそれぞれ分岐接続
されている空気調和機において、上記第1の室内熱交換
器と第2の室内熱交換器との間の冷媒流路上に第2の四
方弁と第1の開閉弁および第2の減圧器を設置してな
り、かつ、圧縮器出口と室外熱交換器の冷房時出口とを
連結する冷媒流路と、この冷媒流路上に第4の開閉弁を
設置して室外熱交換器のバイパスを可能とするように構
成し、冷房・除湿・暖房および除霜の各運転モードに応
じた室内熱交換器のパス数を得る冷媒流路を形成するよ
うにしたことを特徴とする空気調和機。12. A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are sequentially connected through piping, and a refrigerant flow path of the indoor heat exchanger is connected to the piping. In the air conditioner divided into a first indoor heat exchanger and a second indoor heat exchanger that constitute an indoor heat exchanger, and the first indoor heat exchanger and the second indoor heat exchanger A second four-way valve, a first on-off valve, and a second decompressor are provided on a refrigerant flow path between the indoor heat exchanger and a compressor outlet and a cooling outlet of the outdoor heat exchanger. And a fourth opening / closing valve installed on the refrigerant flow path to enable bypass of the outdoor heat exchanger, and each operation mode of cooling / dehumidification / heating and defrosting Characterized by forming a refrigerant flow path to obtain the number of passes of the indoor heat exchanger according to the Air conditioner.
閉弁を閉鎖し、第1および第2の減圧器を制御して第2
の室内熱交換器の再熱量を制御したことを特徴とする請
求項12に記載の空気調和機。13. The first and fourth on-off valves are closed during the reheat dehumidification operation, and the first and second decompressors are controlled to control the second and third pressure reducing devices.
The air conditioner according to claim 12, wherein a reheat amount of the indoor heat exchanger is controlled.
し、第4の開閉弁を開口して室内熱交換器の再熱量を増
大させたことを特徴とする請求項12に記載の空気調和
機。14. The reheat dehumidifying operation according to claim 12, wherein the first on-off valve is closed and the fourth on-off valve is opened to increase the reheat amount of the indoor heat exchanger. Air conditioner.
第4の開閉弁を開口し、かつ、第1の四方弁を暖房運転
方向としたことを特徴とする請求項12に記載の空気調
和機。15. The first on-off valve is closed during a defrosting operation,
The air conditioner according to claim 12, wherein the fourth on-off valve is opened, and the first four-way valve is set in the heating operation direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08222999A JP3884591B2 (en) | 1999-03-25 | 1999-03-25 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08222999A JP3884591B2 (en) | 1999-03-25 | 1999-03-25 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000274879A true JP2000274879A (en) | 2000-10-06 |
JP3884591B2 JP3884591B2 (en) | 2007-02-21 |
Family
ID=13768589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08222999A Expired - Fee Related JP3884591B2 (en) | 1999-03-25 | 1999-03-25 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3884591B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006200869A (en) * | 2005-01-24 | 2006-08-03 | Hitachi Ltd | Air conditioner |
JP2007132651A (en) * | 2005-10-13 | 2007-05-31 | Kankyo Setsubi Keikaku:Kk | Air conditioner |
EP1801520A1 (en) * | 2005-12-26 | 2007-06-27 | Hitachi Appliances, Inc. | Air conditioning system |
JP2012242046A (en) * | 2011-05-23 | 2012-12-10 | Daikin Industries Ltd | Flow path switching valve, and air conditioner with the same |
JP2015183996A (en) * | 2014-03-26 | 2015-10-22 | 三建設備工業株式会社 | gas conditioning system |
WO2016001957A1 (en) * | 2014-06-30 | 2016-01-07 | 日立アプライアンス株式会社 | Air conditioner |
WO2016071999A1 (en) * | 2014-11-06 | 2016-05-12 | 日立アプライアンス株式会社 | Air conditioning apparatus |
WO2019163090A1 (en) | 2018-02-23 | 2019-08-29 | 三菱電機株式会社 | Flow path switching valve and air conditioner |
CN112377986A (en) * | 2020-11-11 | 2021-02-19 | 海信(山东)空调有限公司 | Air conditioner and control method thereof |
CN112902480A (en) * | 2021-03-25 | 2021-06-04 | 珠海格力电器股份有限公司 | Air conditioner heat exchange structure, air conditioner system, control method of air conditioner system and air conditioner outdoor unit |
CN112902474A (en) * | 2021-03-25 | 2021-06-04 | 珠海格力电器股份有限公司 | Air conditioner heat exchange structure, air conditioner system, control method of air conditioner system and air conditioner indoor unit |
CN112902475A (en) * | 2021-03-25 | 2021-06-04 | 珠海格力电器股份有限公司 | Air conditioner heat exchange structure, air conditioner indoor unit, air conditioner system and air conditioner system control method |
WO2022131627A1 (en) * | 2020-12-16 | 2022-06-23 | 삼성전자주식회사 | Air conditioner |
CN115419953A (en) * | 2022-09-02 | 2022-12-02 | 珠海格力电器股份有限公司 | Dehumidifier and dehumidification method |
CN115751517A (en) * | 2022-09-08 | 2023-03-07 | 珠海格力电器股份有限公司 | Heat pump type air conditioner control method, heat pump type air conditioner control device, heat pump type air conditioner, and storage medium |
US11965682B2 (en) | 2020-12-16 | 2024-04-23 | Samsung Electronics Co., Ltd. | Air conditioner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101467274B1 (en) * | 2013-04-11 | 2014-12-01 | (주)그린이엔티 | Dehumidifying cooling and heating apparatus being available to two evaporator and condenser |
-
1999
- 1999-03-25 JP JP08222999A patent/JP3884591B2/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006200869A (en) * | 2005-01-24 | 2006-08-03 | Hitachi Ltd | Air conditioner |
JP4544461B2 (en) * | 2005-01-24 | 2010-09-15 | 日立アプライアンス株式会社 | Air conditioner |
JP2007132651A (en) * | 2005-10-13 | 2007-05-31 | Kankyo Setsubi Keikaku:Kk | Air conditioner |
EP1801520A1 (en) * | 2005-12-26 | 2007-06-27 | Hitachi Appliances, Inc. | Air conditioning system |
JP2012242046A (en) * | 2011-05-23 | 2012-12-10 | Daikin Industries Ltd | Flow path switching valve, and air conditioner with the same |
JP2015183996A (en) * | 2014-03-26 | 2015-10-22 | 三建設備工業株式会社 | gas conditioning system |
WO2016001957A1 (en) * | 2014-06-30 | 2016-01-07 | 日立アプライアンス株式会社 | Air conditioner |
JPWO2016001957A1 (en) * | 2014-06-30 | 2017-04-27 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | Air conditioner |
WO2016071999A1 (en) * | 2014-11-06 | 2016-05-12 | 日立アプライアンス株式会社 | Air conditioning apparatus |
EP3757434A4 (en) * | 2018-02-23 | 2021-01-27 | Mitsubishi Electric Corporation | Flow path switching valve and air conditioner |
WO2019163090A1 (en) | 2018-02-23 | 2019-08-29 | 三菱電機株式会社 | Flow path switching valve and air conditioner |
JPWO2019163090A1 (en) * | 2018-02-23 | 2021-02-04 | 三菱電機株式会社 | Flow path switching valve and air conditioner |
CN112377986A (en) * | 2020-11-11 | 2021-02-19 | 海信(山东)空调有限公司 | Air conditioner and control method thereof |
WO2022131627A1 (en) * | 2020-12-16 | 2022-06-23 | 삼성전자주식회사 | Air conditioner |
US11965682B2 (en) | 2020-12-16 | 2024-04-23 | Samsung Electronics Co., Ltd. | Air conditioner |
CN112902480A (en) * | 2021-03-25 | 2021-06-04 | 珠海格力电器股份有限公司 | Air conditioner heat exchange structure, air conditioner system, control method of air conditioner system and air conditioner outdoor unit |
CN112902474A (en) * | 2021-03-25 | 2021-06-04 | 珠海格力电器股份有限公司 | Air conditioner heat exchange structure, air conditioner system, control method of air conditioner system and air conditioner indoor unit |
CN112902475A (en) * | 2021-03-25 | 2021-06-04 | 珠海格力电器股份有限公司 | Air conditioner heat exchange structure, air conditioner indoor unit, air conditioner system and air conditioner system control method |
CN115419953A (en) * | 2022-09-02 | 2022-12-02 | 珠海格力电器股份有限公司 | Dehumidifier and dehumidification method |
CN115751517A (en) * | 2022-09-08 | 2023-03-07 | 珠海格力电器股份有限公司 | Heat pump type air conditioner control method, heat pump type air conditioner control device, heat pump type air conditioner, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3884591B2 (en) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07234038A (en) | Multiroom type cooling-heating equipment and operating method thereof | |
JP3884591B2 (en) | Air conditioner | |
JP2006258343A (en) | Air conditioning system | |
JP3740637B2 (en) | Air conditioner | |
JP4039358B2 (en) | Air conditioner | |
CN107084562A (en) | A kind of control method of air conditioner and air conditioner | |
JP2002107000A (en) | Air conditioner | |
JP4288934B2 (en) | Air conditioner | |
JPH0842938A (en) | Dehumidifying device and method of air conditioner | |
KR20060086763A (en) | Air conditioner equipped with variable capacity type compressor | |
JPH09196489A (en) | Refrigeration cycle for air conditioner | |
JP3465574B2 (en) | Refrigeration air conditioner and equipment selection method | |
JP3969381B2 (en) | Multi-room air conditioner | |
JP4187008B2 (en) | Air conditioner | |
JPH01247967A (en) | Multi-room type air-conditioner | |
JP2006194525A (en) | Multi-chamber type air conditioner | |
JP2522361B2 (en) | Air conditioner | |
JP4270555B2 (en) | Reheat dehumidification type air conditioner | |
JP2008175430A (en) | Air conditioner | |
JP2002286327A (en) | Dehumidifying/air conditioning apparatus | |
JPH10220893A (en) | Heat pump device | |
JP2004177064A (en) | Air conditioner | |
JP2008232617A (en) | Air conditioner | |
CN111928343A (en) | Heat pump air conditioning system and defrosting method thereof | |
JP2000154941A (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061117 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |