JPH09196489A - Refrigeration cycle for air conditioner - Google Patents

Refrigeration cycle for air conditioner

Info

Publication number
JPH09196489A
JPH09196489A JP719896A JP719896A JPH09196489A JP H09196489 A JPH09196489 A JP H09196489A JP 719896 A JP719896 A JP 719896A JP 719896 A JP719896 A JP 719896A JP H09196489 A JPH09196489 A JP H09196489A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
way valve
refrigerant
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP719896A
Other languages
Japanese (ja)
Inventor
Makoto Araki
誠 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP719896A priority Critical patent/JPH09196489A/en
Publication of JPH09196489A publication Critical patent/JPH09196489A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an economical air conditioner using a non-azeotrope mixed refrigerant, and improve the efficiency by a method wherein a passage switching valve is inserted in the suction port and the discharge port of an indoor heat- exchanger, and the direction of a refrigerant flow of the indoor heat-exchanger is made uniform regardless of the cooling and heating operations, and the regrigerant flow is made into a countercurrent flow to the air direction. SOLUTION: The discharge port of a compressor 1 is connected to the suction port of an indoor heat-exchanger 5 by a first 4-way valve 2 and a second 4-way valve 6. Then, the suction port of the compressor 1 is connected to the discharge port of the indoor heat-exchanger 5 by the first 4-way vale 2 and the second 4-way valve 6. One side of a decompressor 4 is connected to the suction port of the indoor heat-exchanger 5 by the second 4-way valve 6, and the other side is connected to the other port of an outdoor heat-exchanger 3. Also, the decompressor 4 is constituted in such a manner that two capillary tubes 4a, 4b for cooling being connected in parallel, are serially connected to a capillary tube 4c for heating and a reverse current preventive valve 4d being arranged so as to flow in the normal direction at the time of cooling, which are connected in parallel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機の冷凍サイ
クルに係わり、とくに、沸点が異なる2種類以上の冷媒
を所定の比率で混合した非共沸混合冷媒を使用したもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle of an air conditioner, and more particularly to a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio.

【0002】[0002]

【従来の技術】従来、冷暖房用に使用する空気調和機の
冷凍サイクルは、冷媒としてR22等の単一冷媒を使用
し、図7の冷凍サイクル図に示すように、圧縮機1、凝
縮器、減圧器4、蒸発器を順次連結する冷凍サイクルを
構成し、圧縮機1からの冷媒を四方弁2にて室内熱交換
器5または室外熱交換器3に切り換えることにより、同
室内熱交換器5または室外熱交換器3を凝縮器または蒸
発器に切り換え、同室内熱交換器5および室外熱交換器
3にファン7、8により一定方向に通風して使用してい
た。従来の冷媒の特性は、図6−aのP−h(モリエ
ル)線図に示すように、気液2層状態では等温線がほぼ
水平であり温度勾配を持たないため、熱交換器の吸入口
側と吐出口側における冷媒の温度は略一定であり、熱交
換器の吸入口側または吐出口側の何方から通風しても熱
交換効率はあまり変化しないため、通常、凝縮器として
働く熱交換器を図5−aに示すように対向流、蒸発器と
して働く熱交換器を図5−bに示すように並行流となる
ようにしていた。近年、地球環境保護の立場から、オゾ
ン層を破壊するフロンに対する規制が強化され、代替冷
媒として、2種類以上の冷媒を混合させた非共沸混合冷
媒が有望視されている。しかし、上述の非共沸混合冷媒
の特性は、図6−bのP−h(モリエル)線図に示すよ
うに、気液2層状態における等温線は右下がりとなって
温度勾配を持っている。このような温度勾配特性を持つ
冷媒を従来の冷凍サイクルにおける熱交換器に通した場
合、熱交換器の吸入口側と吐出口側における冷媒の温度
に差が生じるため、通風方向と冷媒流方向が同一の所謂
並行流の場合と、通風方向と冷媒流方向が逆の所謂対向
流の場合とでは熱交換効率が異なり、並行流の場合、特
に冷媒の温度が空気の温度に近い場合に熱交換効率が著
しく落ちることは周知の通りである。以上説明したよう
に、非共沸混合冷媒を従来の空気調和機の冷凍サイクル
に使用した場合、蒸発器側の熱交換効率が低下してしま
うという問題がある。
2. Description of the Related Art Conventionally, a refrigerating cycle of an air conditioner used for cooling and heating uses a single refrigerant such as R22 as a refrigerant, and as shown in the refrigerating cycle diagram of FIG. A refrigerating cycle in which the decompressor 4 and the evaporator are sequentially connected is configured, and the refrigerant from the compressor 1 is switched to the indoor heat exchanger 5 or the outdoor heat exchanger 3 by the four-way valve 2, whereby the indoor heat exchanger 5 Alternatively, the outdoor heat exchanger 3 is switched to a condenser or an evaporator, and the indoor heat exchanger 5 and the outdoor heat exchanger 3 are used by being blown in a certain direction by the fans 7 and 8. As shown in the Ph (Mollier) diagram of FIG. 6-a, the characteristic of the conventional refrigerant is that the isotherm is almost horizontal and has no temperature gradient in the gas-liquid two-layer state. The temperatures of the refrigerant on the inlet side and the outlet side are almost constant, and the heat exchange efficiency does not change much even if air is ventilated from either the inlet side or the outlet side of the heat exchanger. As shown in FIG. 5-a, the exchanger was a counter flow, and as the evaporator, the heat exchanger was a parallel flow as shown in FIG. 5-b. In recent years, from the standpoint of protecting the global environment, regulations on CFCs that destroy the ozone layer have been strengthened, and non-azeotropic mixed refrigerants in which two or more kinds of refrigerants are mixed are regarded as promising as alternative refrigerants. However, the characteristic of the above non-azeotropic mixed refrigerant is that the isotherm in the gas-liquid two-layer state has a downward slope to the right and has a temperature gradient as shown in the Ph (Mollier) diagram of FIG. 6-b. There is. When a refrigerant with such a temperature gradient characteristic is passed through a heat exchanger in a conventional refrigeration cycle, there is a difference in the temperature of the refrigerant on the inlet side and the outlet side of the heat exchanger, so the ventilation direction and the refrigerant flow direction are different. Have different heat exchange efficiencies between the same so-called parallel flow and the so-called counter flow in which the direction of air flow and the direction of flow of the refrigerant are opposite. It is well known that the exchange efficiency is significantly reduced. As described above, when the non-azeotropic mixed refrigerant is used in the refrigeration cycle of the conventional air conditioner, there is a problem that the heat exchange efficiency on the evaporator side is reduced.

【0003】以上の欠点を解決するため、図8に示す冷
凍サイクル図に示すように、圧縮機1の吐出口が第1の
四方弁2を介して室内熱交換器5の吸入口と室外熱交換
器3の吸入口に接続され、圧縮機1の吸入口が第2の四
方弁12を介して前記室内熱交換器5の吐出口と室外熱
交換器3の吐出口に接続されており、減圧器40の出口
が前記第1の四方弁2を介して前記室内熱交換器5の吸
入口と室外熱交換器3の吸入口に接続され、前記減圧器
40の入口が前記第2の四方弁12を介して前記室内熱
交換器5の吐出口と室外熱交換器3の吐出口に接続され
るようにして、室内熱熱交換器5および室外熱交換器3
に流れる冷媒流の方向を冷房時、暖房時によらず一定と
して、冷媒流を風向に対して対向流とすることが考えら
れている。しかし、この冷媒回路では、減圧器40に流
れる冷媒の方向が冷房時、暖房時によらず一定方向とな
っていた。しかるに、冷房時と暖房時では減圧器40の
特性(絞り具合)を変える必要があるため、減圧器40
としては、電子膨張弁等の電気的に制御可能なものを使
用するしかなく、コストを上げる原因になっていた。
In order to solve the above-mentioned drawbacks, as shown in the refrigeration cycle diagram shown in FIG. 8, the discharge port of the compressor 1 is connected to the suction port of the indoor heat exchanger 5 and the outdoor heat via the first four-way valve 2. The inlet of the compressor 3 is connected to the inlet of the compressor 3, and the inlet of the compressor 1 is connected to the outlet of the indoor heat exchanger 5 and the outlet of the outdoor heat exchanger 3 via the second four-way valve 12. The outlet of the decompressor 40 is connected to the inlet of the indoor heat exchanger 5 and the inlet of the outdoor heat exchanger 3 via the first four-way valve 2, and the inlet of the decompressor 40 is the second four-way. The indoor heat exchanger 5 and the outdoor heat exchanger 3 are connected to the outlet of the indoor heat exchanger 5 and the outlet of the outdoor heat exchanger 3 via the valve 12.
It has been considered that the direction of the refrigerant flow flowing in is constant regardless of whether it is during cooling or during heating, and the refrigerant flow is opposed to the wind direction. However, in this refrigerant circuit, the direction of the refrigerant flowing through the decompressor 40 is constant regardless of whether it is in cooling or heating. However, since it is necessary to change the characteristic (the degree of throttling) of the pressure reducer 40 during cooling and during heating, the pressure reducer 40
However, there is no choice but to use an electrically controllable one such as an electronic expansion valve, which has been a cause of increasing the cost.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上述べた問
題点を解決し、非共沸混合冷媒を使用した安価でしかも
効率の良い空気調和機の冷凍サイクルを提供することを
目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and provide an inexpensive and efficient refrigeration cycle for an air conditioner using a non-azeotropic mixed refrigerant.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題を解
決するため、沸点が異なる2種類以上の冷媒を所定の比
率で混合した非共沸混合冷媒を使用し、圧縮機、四方
弁、凝縮器、減圧器、蒸発器を順次連結する冷凍サイク
ルを構成し、圧縮機からの吐出冷媒を四方弁にて室内熱
交換器または室外熱交換器に切り換えて流すことによ
り、同室内熱交換器を凝縮器または蒸発器に切り換え、
同室内熱交換器および前記室外熱交換器にファンにより
一定方向に通風して熱交換することにより、冷暖房用に
使用する空気調和機において、第1の発明は、前記室内
熱交換器の吸入口および吐出口に流路切換弁を介挿し、
前記室内熱交換器の冷媒流の方向を冷暖房によらず一定
とし、冷媒流を風向に対して逆方向の、所謂対向流にし
た。
In order to solve the above-mentioned problems, the present invention uses a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio, and a compressor, a four-way valve, A refrigeration cycle in which a condenser, a decompressor, and an evaporator are sequentially connected is configured, and the refrigerant discharged from the compressor is switched to an indoor heat exchanger or an outdoor heat exchanger by a four-way valve to flow through the indoor heat exchanger. Switch to condenser or evaporator,
An air conditioner used for cooling and heating by ventilating the indoor heat exchanger and the outdoor heat exchanger in a certain direction by a fan to exchange heat, the first invention is the suction port of the indoor heat exchanger. And insert a flow path switching valve at the discharge port,
The direction of the refrigerant flow in the indoor heat exchanger is constant regardless of cooling and heating, and the refrigerant flow is in a so-called counterflow direction opposite to the wind direction.

【0006】同上の空気調和機において、第2の発明
は、前記室内熱交換器および室外熱交換器の吸入口およ
び吐出口に流路切換弁を介挿し、前記室内熱交換器およ
び室外熱交換器の冷媒流の方向を冷暖房によらず一定と
し、冷媒流を風向に対して逆方向の、所謂対向流にし
た。
In the air conditioner of the above, a second aspect of the present invention is to install a flow path switching valve at the intake port and the discharge port of the indoor heat exchanger and the outdoor heat exchanger so as to provide the indoor heat exchanger and the outdoor heat exchanger. The direction of the refrigerant flow in the vessel was constant regardless of cooling and heating, and the refrigerant flow was a so-called counter flow, which was the opposite direction to the wind direction.

【0007】また、前記流路切換弁を、四方弁または、
ブリッジ状に配管した4個の逆流防止弁にて構成するよ
うにした。
Further, the flow path switching valve is a four-way valve or
It is configured by four check valves that are piped in a bridge shape.

【0008】[0008]

【作用】以上のように構成したので、本発明の第1の発
明の空気調和機の冷凍サイクルのおいては、冷房時、圧
縮機により圧縮され温度を上げて吐出する冷媒は室外熱
交換機で空気と熱交換してエンタルピィを下げた後、キ
ャピラリチューブと逆流防止弁とで構成し冷房用に特性
を合わせた減圧器で減圧されて温度を下げ、四方弁また
は、ブリッジ状に配管した4個の逆流防止弁で構成する
流路切換弁を介して室内熱交換器の吸入口に吸入され、
同室内熱交換器で空気と熱交換してエンタルピィを上げ
て吐出口より吐出され、前記流路切換弁を介して四方
弁、圧縮器に循環されるようにし、また、暖房時、圧縮
機により圧縮され温度を上げて吐出する冷媒は四方弁ま
たは、ブリッジ状に配管した4個の逆流防止弁で構成す
る流路切換弁を介して室内熱交換器の吸入口に吸入さ
れ、同室内熱交換器で空気と熱交換してエンタルピィを
下げた後、前記流路切換弁を介してキャピラリチューブ
と逆流防止弁とで構成し暖房用に特性を合わせた減圧器
に送られ同減圧器で減圧されて温度を下げ、室外熱交換
機で空気と熱交換してエンタルピィを上げて四方弁を介
して圧縮器に循環されるようにしている。このため、室
内熱交換器には冷房時も暖房時も共に冷媒流方向が一定
となり、冷媒流方向と通風方向が逆の、所謂対向流とし
て室内熱交換器の熱交換効率を高めるようにしている。
With the above construction, in the refrigeration cycle of the air conditioner of the first aspect of the present invention, the refrigerant that is compressed by the compressor to raise the temperature and is discharged during cooling is the outdoor heat exchanger. After lowering the enthalpy by exchanging heat with air, the temperature is reduced by a decompressor composed of a capillary tube and a backflow prevention valve that has characteristics matching for cooling, and the temperature is lowered. Is sucked into the suction port of the indoor heat exchanger through the flow path switching valve composed of the check valve of
The indoor heat exchanger exchanges heat with air to raise the enthalpy and discharges it from the discharge port so that it is circulated to the four-way valve and the compressor through the flow path switching valve. The refrigerant that is compressed and raises the temperature is discharged to the intake port of the indoor heat exchanger through the four-way valve or the flow path switching valve that is composed of four check valves that are piped in the shape of a bridge, and the indoor heat exchange is performed. After exchanging heat with air in the heater to lower the enthalpy, it is sent to a pressure reducer composed of a capillary tube and a backflow prevention valve through the flow path switching valve and matched in characteristics for heating, and the pressure is reduced by the pressure reducer. The temperature is lowered, and the outdoor heat exchanger exchanges heat with air to raise the enthalpy so that it is circulated to the compressor through a four-way valve. Therefore, the refrigerant flow direction in the indoor heat exchanger is constant during both cooling and heating, and the refrigerant flow direction and the ventilation direction are opposite, so that the heat exchange efficiency of the indoor heat exchanger is increased as a so-called counterflow. There is.

【0009】第1の発明では室内熱交換器に流れる冷媒
流方向が冷房時も暖房時も共に一定方向になるようにし
たが、第2の発明による空気調和機の冷凍サイクルのお
いては、第1の発明と同様に、冷暖房時、室内熱交換器
に流れる冷媒流方向を一定とすると共に、室外熱交換器
に流れる冷媒流方向も一定として、冷媒流方向と通風方
向が逆の、所謂対向流として室内熱交換器および室外熱
交換器の熱交換効率を高めるようにしている。
In the first aspect of the invention, the flow direction of the refrigerant flowing through the indoor heat exchanger is set to be constant during both cooling and heating. However, in the refrigeration cycle of the air conditioner according to the second aspect of the invention, Similar to the first aspect of the invention, during cooling and heating, the direction of the refrigerant flowing through the indoor heat exchanger is constant, and the direction of the refrigerant flowing through the outdoor heat exchanger is also constant, so that the direction of the refrigerant and the direction of ventilation are opposite. As a counter flow, the heat exchange efficiency of the indoor heat exchanger and the outdoor heat exchanger is increased.

【0010】[0010]

【実施例】以下、図面に基づいて本発明による空気調和
機を詳細に説明する。図1は本発明による空気調和機の
冷凍サイクルの一実施例を示す冷凍サイクル図である。
沸点が異なる2種類以上の冷媒を所定の比率で混合した
非共沸混合冷媒を使用し、冷暖房共用に使用される本発
明による空気調和機の冷凍サイクルは、図1に示すよう
に、圧縮機1の吐出口が第1の四方弁2を介して室外熱
交換器3の一方の口と、第1の四方弁2および第2の四
方弁6を介して室内熱交換器5の吸入口に接続され、圧
縮機1の吸入口が第1の四方弁2および第2の四方弁6
を介して室内熱交換器5の吐出口と、第1の四方弁2を
介して室外熱交換器3の他方の口に接続されており、減
圧器4の一方は第2の四方弁6を介して室内熱交換器5
の吸入口に、他方は室外熱交換器3の他方の口に接続さ
れている。また、前記室外熱交換器3および、前記室内
熱交換器5に、ファン7またはファン8により一定方向
に通風し空気と冷媒間の熱交換を速している。また前記
減圧器4は2個の並列接続した冷房用キャピラリチュー
ブ4aに、直列に、暖房用キャピラリチューブ4cと冷
房時に順方向に流れるように配置した逆流防止弁4dを
並列接続したものを接続して構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an air conditioner according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a refrigeration cycle diagram showing an embodiment of a refrigeration cycle of an air conditioner according to the present invention.
As shown in FIG. 1, the refrigerating cycle of the air conditioner according to the present invention, which uses a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio, is used for both cooling and heating. One discharge port is connected to one port of the outdoor heat exchanger 3 via the first four-way valve 2 and an intake port of the indoor heat exchanger 5 via the first four-way valve 2 and the second four-way valve 6. Connected, and the suction port of the compressor 1 has a first four-way valve 2 and a second four-way valve 6
Is connected to the discharge port of the indoor heat exchanger 5 via the first four-way valve 2 and the other port of the outdoor heat exchanger 3 via the first four-way valve 2. One of the pressure reducers 4 is connected to the second four-way valve 6. Through the indoor heat exchanger 5
Of the outdoor heat exchanger 3 is connected to the other inlet of the outdoor heat exchanger 3. Further, the outdoor heat exchanger 3 and the indoor heat exchanger 5 are ventilated in a certain direction by the fan 7 or the fan 8 to accelerate the heat exchange between the air and the refrigerant. Further, the decompressor 4 is connected to two cooling capillary tubes 4a connected in parallel, in which a heating capillary tube 4c and a check valve 4d arranged so as to flow forward in cooling are connected in parallel. Are configured.

【0011】図2は本発明による空気調和機の冷凍サイ
クルの別の実施例を示す冷凍サイクル図である。本実施
例では、圧縮機1の吐出口が第1の四方弁2および第3
の四方弁61を介して室外熱交換器3の吸入口と、第1
の四方弁2および第2の四方弁6を介して室内熱交換器
5の吸入口に接続され、圧縮機1の吸入口が第1の四方
弁2および第2の四方弁6を介して室内熱交換器5の吐
出口と、第1の四方弁2および第3の四方弁61を介し
て室外熱交換器3の吐出口に接続されており、減圧器4
の一方は第2の四方弁6を介して室内熱交換器5の吸入
口と、室内熱交換器5の吐出口に、減圧器4の他方は第
3の四方弁61を介して室外熱交換器3の吸入口と、室
外熱交換器3の吐出口に接続されている。
FIG. 2 is a refrigeration cycle diagram showing another embodiment of the refrigeration cycle of the air conditioner according to the present invention. In this embodiment, the discharge port of the compressor 1 is the first four-way valve 2 and the third four-way valve.
Through the four-way valve 61 of the outdoor heat exchanger 3 and the first
Is connected to the intake port of the indoor heat exchanger 5 via the four-way valve 2 and the second four-way valve 6, and the intake port of the compressor 1 is indoors via the first four-way valve 2 and the second four-way valve 6. The outlet of the heat exchanger 5 is connected to the outlet of the outdoor heat exchanger 3 via the first four-way valve 2 and the third four-way valve 61, and the pressure reducer 4
One is connected to the inlet of the indoor heat exchanger 5 via the second four-way valve 6 and the outlet of the indoor heat exchanger 5, and the other of the pressure reducer 4 is connected to the outdoor heat exchange via the third four-way valve 61. It is connected to the inlet of the vessel 3 and the outlet of the outdoor heat exchanger 3.

【0012】図3、図4は、各々図1、図2の実施例に
於ける前記第2の四方弁6および第3の四方弁61を逆
流防止弁16a、逆流防止弁16b、逆流防止弁16
c、逆流防止弁16dの4個、または、逆流防止弁26
a、逆流防止弁26b、逆流防止弁26c、逆流防止弁
26dの4個をブリッジ接続して流路切換弁とした例を
示している。
FIGS. 3 and 4 respectively show the second four-way valve 6 and the third four-way valve 61 in the embodiment of FIGS. 1 and 2 as a check valve 16a, a check valve 16b, and a check valve. 16
c, four check valves 16d, or check valves 26
An example is shown in which four valves, a, a check valve 26b, a check valve 26c, and a check valve 26d are bridge-connected to form a flow path switching valve.

【0013】以上の構成において、つぎに本発明による
空気調和機の冷凍サイクルの冷媒の流れおよび動作を説
明する。まず、図1の構成について説明する。冷房運転
時は、圧縮機1により圧縮され温度を上げて吐出する冷
媒は第1の四方弁2にて流路を切り換えて室外熱交換機
3に流入する。同室外熱交換機3ではファン7により送
風される空気と熱交換してエンタルフィを下げた後、減
圧器4で減圧されて温度を下げ、第2の四方弁6を介し
て室内熱交換器5の吸入口5aに吸入され、同室内熱交
換器5でファン8より送風される空気と熱交換してエン
タルフィを上げて吐出口5bより吐出され、前記第2の
四方弁6、第1の四方弁2を介して圧縮器1に循環され
る。
The flow and operation of the refrigerant in the refrigerating cycle of the air conditioner according to the present invention having the above structure will be described below. First, the configuration of FIG. 1 will be described. During the cooling operation, the refrigerant which is compressed by the compressor 1 to raise the temperature and is discharged flows into the outdoor heat exchanger 3 by switching the flow path by the first four-way valve 2. In the outdoor heat exchanger 3, after exchanging heat with the air blown by the fan 7 to lower the enthalpy, the pressure is reduced by the pressure reducer 4 to lower the temperature, and the temperature of the indoor heat exchanger 5 is reduced via the second four-way valve 6. The second four-way valve 6 and the first four-way valve are sucked into the suction port 5a, exchange heat with the air blown from the fan 8 in the indoor heat exchanger 5 to raise enthalpy, and are discharged from the discharge port 5b. It is circulated to the compressor 1 via 2.

【0014】また、図1の構成において、暖房運転時
は、圧縮機1により圧縮され温度を上げて吐出する冷媒
は第1の四方弁2および第2の四方弁6にて流路を切り
換えて室内熱交換器5の吸入口5aに流入され、同室内
熱交換器5でファン8より送風される空気と熱交換して
エンタルフィを下げた後、前記第2の四方弁6を介して
減圧器4に送られ同減圧器4で減圧されて温度を下げ、
さらに、室外熱交換機3でファン7により送風される空
気と熱交換してエンタルフィを上げて四方弁を介して圧
縮器1に循環される。以上説明したように、冷房、暖房
に係わらず、冷媒は室内熱交換器の吸入口5aより吸入
され、吐出口5bより吐出されるので、冷媒流方向が一
定となり、図3−aに示すように冷媒流方向と通風方向
が逆の、所謂対向流として冷房時、暖房時共に室内熱交
換器の熱交換効率を高めることができる。
Further, in the configuration of FIG. 1, during the heating operation, the refrigerant compressed by the compressor 1 to raise the temperature and to be discharged is switched by the first four-way valve 2 and the second four-way valve 6. The enthalpy is lowered by exchanging heat with the air that has flowed into the suction port 5a of the indoor heat exchanger 5 and is blown from the fan 8 in the indoor heat exchanger 5, and then the decompressor via the second four-way valve 6. 4 and the pressure is reduced by the pressure reducer 4 to lower the temperature,
Further, the outdoor heat exchanger 3 exchanges heat with the air blown by the fan 7 to raise the enthalpy and is circulated to the compressor 1 via the four-way valve. As described above, regardless of cooling or heating, the refrigerant is sucked through the suction port 5a of the indoor heat exchanger and discharged through the discharge port 5b, so that the refrigerant flow direction becomes constant, and as shown in FIG. In addition, the heat exchange efficiency of the indoor heat exchanger can be increased in both cooling and heating as a so-called counter flow in which the direction of the refrigerant flow and the direction of ventilation are opposite.

【0015】つぎに、図4の構成について説明する。冷
房運転時は、圧縮機1により圧縮され温度を上げて吐出
する冷媒は第1の四方弁2にて流路を切り換えた後、逆
流防止弁26aを介して室外熱交換機3の吸入口3aに
流入される。同室外熱交換機3ではファン7により送風
される空気と熱交換してエンタルフィを下げた後、吐出
口3bより逆流防止弁26dを介して減圧器4に流入さ
れ、同減圧器4で減圧されて温度を下げ、逆流防止弁1
6bを介して室内熱交換器5の吸入口5aに吸入され、
同室内熱交換器5でファン8より送風される空気と熱交
換してエンタルフィを上げて吐出口5bより吐出され、
逆流防止弁16c、前記第1の四方弁2を介して圧縮器
1に循環される。
Next, the configuration of FIG. 4 will be described. During the cooling operation, the refrigerant that is compressed by the compressor 1 and whose temperature is raised and discharged is switched to the suction port 3a of the outdoor heat exchanger 3 through the check valve 26a after switching the flow path by the first four-way valve 2. Be flowed in. In the outdoor heat exchanger 3, after exchanging heat with the air blown by the fan 7 to lower the enthalpy, it flows into the pressure reducer 4 from the discharge port 3b through the check valve 26d and is reduced in pressure by the pressure reducer 4. Reduce temperature, check valve 1
Is sucked into the suction port 5a of the indoor heat exchanger 5 via 6b,
The indoor heat exchanger 5 exchanges heat with the air blown by the fan 8 to raise the enthalpy and is discharged from the discharge port 5b.
It is circulated to the compressor 1 via the check valve 16c and the first four-way valve 2.

【0016】また、図4の構成において、暖房運転時
は、圧縮機1により圧縮され温度を上げて吐出する冷媒
は第1の四方弁2および逆流防止弁16aにて流路を切
り換えて室内熱交換器5の吸入口5aに流入され、同室
内熱交換器5でファン8より送風される空気と熱交換し
てエンタルフィを下げた後、逆流防止弁16dを介して
減圧器4に送られ同減圧器4で減圧されて温度を下げ、
逆流防止弁26bを介して室外熱交換機3の吸入口5a
に流入され、室外熱交換機3でファン7により送風され
る空気と熱交換してエンタルフィを上げて逆流防止弁2
6c、前記第1の四方弁2を介して圧縮器1に循環され
る。
In the configuration of FIG. 4, during the heating operation, the refrigerant compressed by the compressor 1 to raise the temperature and to be discharged is switched by the first four-way valve 2 and the backflow prevention valve 16a to switch the indoor heat. After the heat is exchanged with the air blown from the fan 8 in the indoor heat exchanger 5 into the suction port 5a of the exchanger 5 to lower the enthalpy, it is sent to the pressure reducer 4 via the check valve 16d. The pressure is reduced by the pressure reducer 4 to lower the temperature,
Intake port 5a of the outdoor heat exchanger 3 via the check valve 26b
To the backflow preventive valve 2 by exchanging heat with the air that has flowed into the outdoor heat exchanger 3 and is blown by the fan 7 in the outdoor heat exchanger 3.
6c, is circulated to the compressor 1 via the first four-way valve 2.

【0017】図3、図4は図1、図2の四方弁を逆流防
止弁4個をブリッジ接続して構成したものであり、図2
の動作は図4と、図3の動作は図1と基本的に同じであ
り、説明を省略する。
FIGS. 3 and 4 show the four-way valve of FIGS. 1 and 2 constructed by connecting four check valves in a bridge connection.
The operation of FIG. 4 is basically the same as that of FIG. 3, and the description thereof is omitted.

【0018】以上説明したように、冷房、暖房に係わら
ず、冷媒は室内熱交換器の吸入口5aより吸入され、吐
出口5bより吐出され、また、室外熱交換器の吸入口3
aより吸入され、吐出口3bより吐出されるので、冷媒
流方向が一定となり、図5−aに示すように、冷媒流方
向と通風方向が逆の、所謂対向流として冷房時、暖房時
共に室内熱交換器および室外熱交換器の熱交換効率を高
めることができる。
As described above, the refrigerant is drawn in through the suction port 5a of the indoor heat exchanger and discharged through the discharge port 5b regardless of whether it is cooling or heating, and the suction port 3 of the outdoor heat exchanger.
Since it is sucked from a and discharged from the discharge port 3b, the refrigerant flow direction is constant, and as shown in FIG. 5-a, the refrigerant flow direction and the ventilation direction are opposite to each other, that is, as a so-called counterflow, both during cooling and during heating. The heat exchange efficiency of the indoor heat exchanger and the outdoor heat exchanger can be improved.

【0019】[0019]

【発明の効果】以上説明したように、本発明による空気
調和機の冷凍サイクルによれば、冷房、暖房に係わら
ず、冷媒流は熱交換器の吸入口より吸入され、吐出口よ
り吐出されるため、熱交換器内の冷媒流方向が一定とな
り、冷媒流方向と通風方向を逆の、所謂対向流とするこ
とができ、沸点が異なる2種類以上の冷媒を所定の比率
で混合した非共沸混合冷媒を使用しても、冷房時、暖房
時共に室内熱交換器および室外熱交換器の熱交換効率を
高めることができ、また、減圧器に電子膨張弁等の電気
的に制御する部品を使用せず、キャピラリチューブと逆
流防止弁とで構成できるので、安価でしかも熱交換効率
の良い空気調和機の冷凍サイクルを提供することができ
る。
As described above, according to the refrigerating cycle of the air conditioner according to the present invention, the refrigerant flow is drawn from the suction port of the heat exchanger and discharged from the discharge port regardless of cooling or heating. Therefore, the flow direction of the refrigerant in the heat exchanger becomes constant, so that the flow direction of the refrigerant and the ventilation direction can be opposite, that is, so-called counterflow, and two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio. Even if the mixed refrigerant is used, the heat exchange efficiency of the indoor heat exchanger and the outdoor heat exchanger can be improved both during cooling and heating, and the decompressor is an electrically controlled component such as an electronic expansion valve. It is possible to provide a refrigeration cycle for an air conditioner that is inexpensive and has good heat exchange efficiency because it can be configured with a capillary tube and a check valve without using the.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空気調和機の冷凍サイクルの一実
施例を示す冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram showing an embodiment of a refrigeration cycle of an air conditioner according to the present invention.

【図2】本発明による空気調和機の冷凍サイクルの別の
実施例を示す冷凍サイクル図である。
FIG. 2 is a refrigeration cycle diagram showing another embodiment of the refrigeration cycle of the air conditioner according to the present invention.

【図3】本発明による空気調和機の冷凍サイクルの別の
実施例を示す冷凍サイクル図である。
FIG. 3 is a refrigeration cycle diagram showing another embodiment of the refrigeration cycle of the air conditioner according to the present invention.

【図4】本発明による空気調和機の冷凍サイクルの別の
実施例を示す冷凍サイクル図である。
FIG. 4 is a refrigeration cycle diagram showing another embodiment of the refrigeration cycle of the air conditioner according to the present invention.

【図5】対向流と並行流を説明する図である。FIG. 5 is a diagram illustrating a counter flow and a parallel flow.

【図6】従来の冷媒と非共沸混合冷媒のP−h(モリエ
ル)線図である。
FIG. 6 is a Ph (Mollier) diagram of a conventional refrigerant and a non-azeotropic mixed refrigerant.

【図7】従来の空気調和機の冷凍サイクルを示す冷凍サ
イクル図である。
FIG. 7 is a refrigeration cycle diagram showing a refrigeration cycle of a conventional air conditioner.

【図8】従来の空気調和機の冷凍サイクルの別の例を示
す冷凍サイクル図である。
FIG. 8 is a refrigeration cycle diagram showing another example of the refrigeration cycle of the conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 第1の四方弁 3 室外熱交換器 4 減圧器 4a 冷房用キャピラリチューブ 4b 冷房用キャピラリチューブ 4c 暖房用キャピラリチューブ 4d 逆流防止弁 5 室内熱交換器 6 第2の四方弁 7 ファン 8 ファン 16a逆流防止弁 16b逆流防止弁 16c逆流防止弁 16d逆流防止弁 26a逆流防止弁 26b逆流防止弁 26c逆流防止弁 26d逆流防止弁 DESCRIPTION OF SYMBOLS 1 Compressor 2 First four-way valve 3 Outdoor heat exchanger 4 Decompressor 4a Cooling capillary tube 4b Cooling capillary tube 4c Heating capillary tube 4d Backflow prevention valve 5 Indoor heat exchanger 6 Second four-way valve 7 Fan 8 Fan 16a Backflow prevention valve 16b Backflow prevention valve 16c Backflow prevention valve 16d Backflow prevention valve 26a Backflow prevention valve 26b Backflow prevention valve 26c Backflow prevention valve 26d Backflow prevention valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 沸点が異なる2種類以上の冷媒を所定の
比率で混合した非共沸混合冷媒を使用し、圧縮機、四方
弁、凝縮器、減圧器、蒸発器を順次連結する冷凍サイク
ルを構成し、圧縮機からの吐出冷媒を四方弁にて室内熱
交換器または室外熱交換器に切り換えて流すことによ
り、同室内熱交換器を凝縮器または蒸発器に切り換え、
同室内熱交換器および前記室外熱交換器にファンにより
一定方向に通風して熱交換することにより、冷暖房用に
使用する空気調和機において、前記室内熱交換器の吸入
口および吐出口に流路切換弁を介挿し、前記室内熱交換
器の冷媒流の方向を冷暖房によらず一定とし、冷媒流を
風向に対して逆方向の、所謂対向流にしたことを特徴と
する空気調和機の冷凍サイクル。
1. A refrigeration cycle in which a compressor, a four-way valve, a condenser, a pressure reducer, and an evaporator are sequentially connected using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio. The refrigerant discharged from the compressor is switched to an indoor heat exchanger or an outdoor heat exchanger by a four-way valve to flow, thereby switching the indoor heat exchanger to a condenser or an evaporator.
In the air conditioner used for cooling and heating, air is passed through the indoor heat exchanger and the outdoor heat exchanger in a certain direction by a fan to exchange heat, so that a flow path is provided to the intake port and the discharge port of the indoor heat exchanger. A refrigeration of an air conditioner, characterized in that a switching valve is inserted to make the direction of the refrigerant flow of the indoor heat exchanger constant irrespective of heating and cooling, and the refrigerant flow is in a so-called counterflow direction opposite to the wind direction. cycle.
【請求項2】 沸点が異なる2種類以上の冷媒を所定の
比率で混合した非共沸混合冷媒を使用し、圧縮機、四方
弁、凝縮器、減圧器、蒸発器を順次連結する冷凍サイク
ルを構成し、圧縮機からの吐出冷媒を四方弁にて室内熱
交換器または室外熱交換器に切り換えて流すことによ
り、同室内熱交換器を凝縮器または蒸発器に切り換え、
同室内熱交換器および前記室外熱交換器にファンにより
一定方向に通風して熱交換することにより、冷暖房用に
使用する空気調和機において、前記室内熱交換器および
室外熱交換器の吸入口および吐出口に流路切換弁を介挿
し、前記室内熱交換器および室外熱交換器の冷媒流の方
向を冷暖房によらず一定とし、冷媒流を風向に対して逆
方向の、所謂対向流にしたことを特徴とする空気調和機
の冷凍サイクル。
2. A refrigeration cycle in which a compressor, a four-way valve, a condenser, a pressure reducer, and an evaporator are sequentially connected by using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed in a predetermined ratio. The refrigerant discharged from the compressor is switched to an indoor heat exchanger or an outdoor heat exchanger by a four-way valve to flow, thereby switching the indoor heat exchanger to a condenser or an evaporator.
In the air conditioner used for cooling and heating, air is blown into the indoor heat exchanger and the outdoor heat exchanger in a certain direction by a fan to exchange heat, and thus, the intake ports of the indoor heat exchanger and the outdoor heat exchanger and A flow path switching valve was inserted at the discharge port, and the direction of the refrigerant flow of the indoor heat exchanger and the outdoor heat exchanger was made constant regardless of cooling and heating, and the refrigerant flow was in the opposite direction to the wind direction, so-called counterflow. A refrigeration cycle for an air conditioner, which is characterized in that
【請求項3】 前記流路切換弁を、四方弁にて構成して
なることを特徴とする請求項1記載の空気調和機の冷凍
サイクル。
3. The refrigeration cycle for an air conditioner according to claim 1, wherein the flow path switching valve is a four-way valve.
【請求項4】 前記流路切換弁を、ブリッジ状に配管し
た4個の逆流防止弁にて構成してなることを特徴とする
請求項1記載の空気調和機の冷凍サイクル。
4. The refrigerating cycle for an air conditioner according to claim 1, wherein the flow path switching valve is constituted by four check valves which are arranged in a bridge shape.
JP719896A 1996-01-19 1996-01-19 Refrigeration cycle for air conditioner Pending JPH09196489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP719896A JPH09196489A (en) 1996-01-19 1996-01-19 Refrigeration cycle for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP719896A JPH09196489A (en) 1996-01-19 1996-01-19 Refrigeration cycle for air conditioner

Publications (1)

Publication Number Publication Date
JPH09196489A true JPH09196489A (en) 1997-07-31

Family

ID=11659343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP719896A Pending JPH09196489A (en) 1996-01-19 1996-01-19 Refrigeration cycle for air conditioner

Country Status (1)

Country Link
JP (1) JPH09196489A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318031A (en) * 2001-04-23 2002-10-31 Daikin Ind Ltd Heat exchanger unit and air-conditioning equipment having the heat exchanger unit
JP2008116135A (en) * 2006-11-06 2008-05-22 Daikin Ind Ltd Heat exchanger and refrigeration device
JP2009222362A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
US7918104B2 (en) 2006-09-01 2011-04-05 Lg Electronics Inc. Water cooling type air conditioner
JP2012202624A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Refrigeration cycle apparatus
WO2013190830A1 (en) * 2012-06-18 2013-12-27 パナソニック株式会社 Heat exchanger and air conditioner
JPWO2012101677A1 (en) * 2011-01-27 2014-06-30 三菱電機株式会社 Air conditioner
WO2018189805A1 (en) * 2017-04-11 2018-10-18 三菱電機株式会社 Refrigeration cycle device
JP2019143870A (en) * 2018-02-20 2019-08-29 三菱電機株式会社 Air conditioner
JP2020020576A (en) * 2019-11-08 2020-02-06 三菱電機株式会社 Refrigeration cycle device and air conditioner including the same
CN110805958A (en) * 2019-11-08 2020-02-18 珠海格力电器股份有限公司 Air conditioner indoor unit, air conditioner and control method
WO2021095134A1 (en) * 2019-11-12 2021-05-20 三菱電機株式会社 Outdoor unit and air conditioner device
WO2022224436A1 (en) 2021-04-23 2022-10-27 三菱電機株式会社 Air conditioner

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318031A (en) * 2001-04-23 2002-10-31 Daikin Ind Ltd Heat exchanger unit and air-conditioning equipment having the heat exchanger unit
US7918104B2 (en) 2006-09-01 2011-04-05 Lg Electronics Inc. Water cooling type air conditioner
EP2057424B1 (en) * 2006-09-01 2018-11-07 LG Electronics Inc. Water cooling type air conditioner
JP2008116135A (en) * 2006-11-06 2008-05-22 Daikin Ind Ltd Heat exchanger and refrigeration device
JP2009222362A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
US9732992B2 (en) 2011-01-27 2017-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant
JPWO2012101677A1 (en) * 2011-01-27 2014-06-30 三菱電機株式会社 Air conditioner
JP5674822B2 (en) * 2011-01-27 2015-02-25 三菱電機株式会社 Air conditioner
JP2012202624A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Refrigeration cycle apparatus
WO2013190830A1 (en) * 2012-06-18 2013-12-27 パナソニック株式会社 Heat exchanger and air conditioner
JPWO2013190830A1 (en) * 2012-06-18 2016-02-08 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner
CN104350341A (en) * 2012-06-18 2015-02-11 松下知识产权经营株式会社 Heat exchanger and air conditioner
WO2018189805A1 (en) * 2017-04-11 2018-10-18 三菱電機株式会社 Refrigeration cycle device
JPWO2018189805A1 (en) * 2017-04-11 2019-11-14 三菱電機株式会社 Refrigeration cycle equipment
JP2019143870A (en) * 2018-02-20 2019-08-29 三菱電機株式会社 Air conditioner
JP2020020576A (en) * 2019-11-08 2020-02-06 三菱電機株式会社 Refrigeration cycle device and air conditioner including the same
CN110805958A (en) * 2019-11-08 2020-02-18 珠海格力电器股份有限公司 Air conditioner indoor unit, air conditioner and control method
CN110805958B (en) * 2019-11-08 2023-12-15 珠海格力电器股份有限公司 Air conditioner indoor unit, air conditioner and control method
WO2021095134A1 (en) * 2019-11-12 2021-05-20 三菱電機株式会社 Outdoor unit and air conditioner device
JPWO2021095134A1 (en) * 2019-11-12 2021-05-20
WO2022224436A1 (en) 2021-04-23 2022-10-27 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
JPH09196489A (en) Refrigeration cycle for air conditioner
JP2000274879A (en) Air conditioner
JPH08105652A (en) Air conditioner
JP2989491B2 (en) Air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JPH074794A (en) Air-conditioning equipment
JP2003139436A (en) Air conditioner
JPH0894205A (en) Air conditioner
JP3724011B2 (en) Air conditioner
KR100533006B1 (en) Multi-air conditioner capable of heating and cooling simultaneously for home
KR102509997B1 (en) Outdoor Unit
JP2004177064A (en) Air conditioner
KR20050043089A (en) Heat pump
KR102261131B1 (en) Heat pump air-conditioner having defrosting
JPH0894207A (en) Air conditioner
KR100974179B1 (en) Air conditioner for dehumidification and dehumidification method
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH025323Y2 (en)
JPH06272992A (en) Air conditioner
JPH0798166A (en) Air-conditioner
KR20040090129A (en) Multi-air conditioner capable of heating and cooling simultaneously for building
JPH11248290A (en) Air conditioner
KR101646147B1 (en) Air conditioner including outdoor device
KR100439058B1 (en) Air conditioner for dehumidification and dehumidification method