JPH074794A - Air-conditioning equipment - Google Patents

Air-conditioning equipment

Info

Publication number
JPH074794A
JPH074794A JP5753294A JP5753294A JPH074794A JP H074794 A JPH074794 A JP H074794A JP 5753294 A JP5753294 A JP 5753294A JP 5753294 A JP5753294 A JP 5753294A JP H074794 A JPH074794 A JP H074794A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
outdoor
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5753294A
Other languages
Japanese (ja)
Inventor
Yasuhiro Arai
康弘 新井
Tetsuo Sano
哲夫 佐野
Takayoshi Iwanaga
隆喜 岩永
Tetsuji Yamashita
哲司 山下
Koichi Goto
功一 後藤
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP7248493 priority Critical
Priority to JP5-72484 priority
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP5753294A priority patent/JPH074794A/en
Publication of JPH074794A publication Critical patent/JPH074794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform properly detection of frosting and a control of defrosting at the time of heating and thereby to improve a heating performance in a refrigerating cycle using a non-azeotropic mixture refrigerant. CONSTITUTION:An outdoor machine 1 is provided with a first outdoor heat exchanger 5 positioned on the windward of blowing of an outdoor blower 7 and with a second outdoor heat exchanger 6 positioned on the leeward thereof and these two outdoor heat exchangers 5 and 6 are connected in parallel, while a normally-closed bypass passage 13 for bypassing a discharge gas of a compressor is connected to the second outdoor heat exchanger 6. At the time of heating, the bypass passage 13 is opened on the basis of an inlet temperature of the second outdoor heat exchanger 6 or an outdoor temperature, so as to execute a control of defrosting.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、非共沸混合冷媒を用い
て空気と冷媒間で熱交換を行うヒートポンプ式冷凍サイ
クルを備え、室内の冷暖房を行う空気調和装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a heat pump type refrigerating cycle for exchanging heat between air and a refrigerant using a non-azeotropic mixed refrigerant and for cooling and heating the inside of a room.
【0002】[0002]
【従来の技術】空気調和装置における冷凍サイクルには
冷暖房の熱源として大気の熱源を利用するものが多い。
一般にはこのヒートポンプ式冷凍サイクルを備えた空気
調和装置は、暖房時には室外機で大気の熱を汲み取って
室内機で熱を放出し、逆に冷房時には室内機で室内の熱
を汲み取り、室外機で大気に熱を捨ている。従って、冷
凍サイクル的に見るとインバータ機種では、室外機にイ
ンバータ、圧縮機、絞り機構、四方弁、室外熱交換器、
室外送風機が、また室内機に室内熱交換器、室内送風機
がそれぞれ主要部品として搭載されている。このような
空気調和装置の性能は、圧縮機を除けば、室内機及び室
外機の熱交換器性能に大きく左右される。したがって、
各社ともに、最近の住宅事情に関係し、両室内外機の省
スペース性の大きいコンパクトで高性能な熱交換器及び
低騒音高効率送風機の研究、開発が主流になりつつあ
る。特に、室内機においては細径パイプ熱交換器等の使
用によりコンパクト化、高効率化が図られている。一
方、室外機においても熱交換器の高効率化が図られてい
るが、室内機ほどではない。これは、室外機の場合、暖
房時の霜付きの問題があり、室内機のようにフィンにス
リットを入れる、3段以上の多段にする等をして熱交換
性能を向上させることが困難であることも起因してい
る。
2. Description of the Related Art Many refrigeration cycles in air conditioners utilize the heat source of the atmosphere as the heat source for cooling and heating.
In general, an air conditioner equipped with this heat pump type refrigeration cycle draws heat from the atmosphere in the outdoor unit to release the heat from the indoor unit during heating, and conversely draws heat from the indoor unit into the outdoor unit to cool it during the cooling. Dissipating heat to the atmosphere. Therefore, when viewed as a refrigeration cycle, in the inverter model, the outdoor unit includes an inverter, a compressor, a throttle mechanism, a four-way valve, an outdoor heat exchanger,
The outdoor blower is installed in the indoor unit, and the indoor heat exchanger and the indoor blower are installed as main components. The performance of such an air conditioner largely depends on the heat exchanger performance of the indoor unit and the outdoor unit except for the compressor. Therefore,
Due to the recent housing situation, research and development of compact and high-performance heat exchangers with large space-savings for both indoor and outdoor units and low-noise and high-efficiency blowers are becoming mainstream in each company. In particular, in the indoor unit, the use of a small diameter pipe heat exchanger or the like has made it compact and highly efficient. On the other hand, the efficiency of the heat exchanger has been improved in the outdoor unit as well, but not so much as the indoor unit. This is because in the case of an outdoor unit, there is a problem of frosting during heating, and it is difficult to improve the heat exchange performance by making slits in the fins like in an indoor unit and making it multistage of three or more stages. There is also a cause.
【0003】さらには、近年、オゾン破壊を防ぎ、温暖
化を防止するという世界的な地球環境保護の観点から、
従来空気調和装置用冷媒として使用されてきたR22に
代る冷媒が求められている。このR22にサイクル温
度、圧力が近い代替冷媒は各種候補が上っているが、殆
んどが非共沸混合冷媒であり、この非共沸混合冷媒は冷
媒気液相変化時の温度勾配が大きく伝熱学的に伝熱性能
が劣る欠点がある。即ち、大気の熱を汲み上げる暖房ヒ
ートポンプ運転では、外気温度が低い場合には、室外熱
交換器入口付近で凍結、かつ、外気温度と室外機蒸発温
度との有効温度差が小さくなるので、外気温度が高い場
合に比べてどうしても暖房能力が低下する問題が生じ
る。冷房時も同様に、冷房性能の低下と外気温度の低い
場合などは室内熱交換器付近が凍結し易くなる。また、
冷暖房時ともに非共沸混合冷媒の流量制御の適正化を図
り、安定した冷凍サイクルを提供する必要がある。
Further, in recent years, from the viewpoint of global environmental protection of preventing ozone destruction and global warming,
There is a demand for a refrigerant that replaces R22 that has been conventionally used as a refrigerant for air conditioners. There are various candidates for alternative refrigerants whose cycle temperature and pressure are close to R22, but most of them are non-azeotropic mixed refrigerants, and this non-azeotropic mixed refrigerant has a temperature gradient at the time of refrigerant gas-liquid phase change. There is a drawback that heat transfer performance is inferior in terms of heat transfer. That is, in the heating heat pump operation that pumps up the heat of the atmosphere, when the outside air temperature is low, it freezes near the inlet of the outdoor heat exchanger and the effective temperature difference between the outside air temperature and the outdoor unit evaporation temperature becomes small. Inevitably, there is a problem that the heating capacity will be lower than when the value is high. Similarly, during cooling, the vicinity of the indoor heat exchanger is easily frozen when the cooling performance is low and the outside air temperature is low. Also,
It is necessary to optimize the flow rate control of the non-azeotropic mixed refrigerant during both heating and cooling to provide a stable refrigeration cycle.
【0004】[0004]
【発明が解決しようとする課題】上述のように、従来の
非共沸混合冷媒を使用した冷凍サイクルを有する空気調
和装置は、暖房運転時に外気温度が低い場合には、室外
熱交換器入口付近で凍結が生じ易く、また暖房能力が低
下するという問題があった。
As described above, the conventional air conditioner having the refrigerating cycle using the non-azeotropic mixed refrigerant has the vicinity of the inlet of the outdoor heat exchanger when the outside air temperature is low during the heating operation. However, there is a problem that freezing easily occurs and the heating capacity decreases.
【0005】本発明は、上記事情に鑑みてなされたもの
で、その目的とするところは、非共沸混合冷媒を使用し
た冷凍サイクルにおいて、暖房時の着霜検知及び除霜制
御を適正に行うことができて暖房性能を向上させること
のできる空気調和装置を提供することにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to appropriately perform frost detection and defrost control during heating in a refrigeration cycle using a non-azeotropic mixed refrigerant. An object is to provide an air conditioner capable of improving the heating performance.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、第1に、非共沸混合冷媒を使用した冷凍
サイクルを有する空気調和装置において、室外機には室
外送風機による送風に対し風上に位置させた第1の室外
熱交換器と風下に位置させた第2の室外熱交換器とを設
けるとともに該第1、第2の室外熱交換器を並列に接続
し、前記第2の室外熱交換器には圧縮機吐出ガスをバイ
パスさせる常閉のバイパス路を接続し、暖房時に前記第
2の室外熱交換器の入口温度或いは室外温度を基に前記
バイパス路を開路して除霜制御を行うように構成してな
ることを要旨とする。
In order to solve the above-mentioned problems, the present invention firstly provides an air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant, in which the outdoor unit blows air with an outdoor blower. A first outdoor heat exchanger located on the windward side and a second outdoor heat exchanger located on the leeward side, and the first and second outdoor heat exchangers are connected in parallel, A normally closed bypass path for bypassing the compressor discharge gas is connected to the second outdoor heat exchanger, and the bypass path is opened based on the inlet temperature or the outdoor temperature of the second outdoor heat exchanger during heating. The gist is that it is configured so as to perform defrosting control.
【0007】第2に、非共沸混合冷媒を使用した冷凍サ
イクルを有する空気調和装置において、室外機には室外
送風機による送風に対し風上に位置させた第1の室外熱
交換器と風下に位置させた第2の室外熱交換器とを設け
るとともに暖房時の冷媒流れに対し前記第1の室外熱交
換器が上流側となるように前記第1、第2の室外熱交換
器を直列に接続し、前記第1の室外熱交換器には圧縮機
吐出ガスをバイパスさせる常閉のバイパス路を接続し、
暖房時に前記第1の室外熱交換器の入口温度或いは室外
温度を基に前記バイパス路を開路して除霜制御を行うよ
うに構成してなることを要旨とする。
Secondly, in an air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant, the outdoor unit has a first outdoor heat exchanger located on the upwind side with respect to the air blown by the outdoor blower. And a second outdoor heat exchanger that is positioned, and the first and second outdoor heat exchangers are connected in series so that the first outdoor heat exchanger is on the upstream side with respect to the refrigerant flow during heating. And a normally closed bypass path for bypassing the compressor discharge gas is connected to the first outdoor heat exchanger,
The gist is that the defrosting control is performed by opening the bypass passage based on the inlet temperature or the outdoor temperature of the first outdoor heat exchanger during heating.
【0008】第3に、非共沸混合冷媒を使用し、冷、暖
房時における冷媒順路を設定する四方弁を備えた冷凍サ
イクルを有する空気調和装置において、室外機には室外
送風機による送風に対し風上に位置させた第1の室外熱
交換器と風下に位置させた第2の室外熱交換器とを設け
るとともに該第1、第2の室外熱交換器を並列に接続
し、暖房時に前記第2の室外熱交換器の入口温度或いは
室外温度を基に前記四方弁を反転し、前記第2の室外熱
交換器に圧縮機吐出ガスを導いて除霜制御を行うように
構成してなることを要旨とする。
Thirdly, in an air conditioner having a refrigerating cycle using a non-azeotropic mixed refrigerant and having a four-way valve for setting a refrigerant route during cooling and heating, the outdoor unit is provided with a blower by an outdoor blower. A first outdoor heat exchanger located on the windward side and a second outdoor heat exchanger located on the leeward side are provided, and the first and second outdoor heat exchangers are connected in parallel to each other during heating. The four-way valve is reversed based on the inlet temperature or the outdoor temperature of the second outdoor heat exchanger, and the compressor discharge gas is guided to the second outdoor heat exchanger to perform defrost control. That is the summary.
【0009】第4に、非共沸混合冷媒を使用し、室内熱
交換器と室外熱交換器側との間に冷媒流れを絞る絞り装
置を備えた冷凍サイクルを有する空気調和装置におい
て、室外機には室外送風機による送風に対し風上に位置
させた第1の室外熱交換器と風下に位置させた第2の室
外熱交換器とを設けるとともに該第1、第2の室外熱交
換器を並列に接続し、暖房時に前記第2の室外熱交換器
の入口温度或いは室外温度を基に前記絞り装置の絞りを
緩めて除霜制御を行うように構成してなることを要旨と
する。
Fourthly, in an air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant and having a throttle device for restricting the refrigerant flow between the indoor heat exchanger and the outdoor heat exchanger side, the outdoor unit Is provided with a first outdoor heat exchanger located on the windward side and a second outdoor heat exchanger located on the leeward side with respect to the air blown by the outdoor blower, and the first and second outdoor heat exchangers are provided. The gist is that the defrosting control is performed by connecting in parallel and loosening the throttle of the expansion device based on the inlet temperature or the outdoor temperature of the second outdoor heat exchanger during heating.
【0010】第5に、非共沸混合冷媒を使用し、冷、暖
房時における冷媒順路を設定する四方弁を備えた冷凍サ
イクルを有する空気調和装置において、室外機には室外
送風機による送風に対し風上に位置させた第1の室外熱
交換器と風下に位置させた第2の室外熱交換器とを設け
るとともに暖房時の冷媒流れに対し前記第1の室外熱交
換器が上流側となるように前記第1、第2の室外熱交換
器を直列に接続し、暖房時に前記第1の室外熱交換器の
入口温度或いは室外温度を基に前記四方弁を冷房時の冷
媒流れ側に反転して除霜制御を行うように構成してなる
ことを要旨とする。
Fifth, in an air conditioner having a refrigerating cycle using a non-azeotropic mixed refrigerant and having a four-way valve for setting a refrigerant route during cooling and heating, the outdoor unit is provided with a blower by an outdoor blower. A first outdoor heat exchanger located on the windward side and a second outdoor heat exchanger located on the leeward side are provided, and the first outdoor heat exchanger is upstream with respect to the refrigerant flow during heating. As described above, the first and second outdoor heat exchangers are connected in series, and the four-way valve is reversed to the refrigerant flow side during cooling based on the inlet temperature or the outdoor temperature of the first outdoor heat exchanger during heating. The gist is that it is configured to perform defrost control.
【0011】第6に、非共沸混合冷媒を使用し、室内熱
交換器と室外熱交換器側との間に冷媒流れを絞る絞り装
置を備えた冷凍サイクルを有する空気調和装置におい
て、室外機には室外送風機による送風に対し風上に位置
させた第1の室外熱交換器と風下に位置させた第2の室
外熱交換器とを設けるとともに暖房時の冷媒流れに対し
前記第1の室外熱交換器が上流側となるように前記第
1、第2の室外熱交換器を直列に接続し、暖房時に前記
第1の室外熱交換器の入口温度或いは室外温度を基に前
記絞り装置の絞りを緩めて除霜制御を行うように構成し
てなることを要旨とする。
Sixth, in the air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant and having a throttle device for restricting the refrigerant flow between the indoor heat exchanger and the outdoor heat exchanger side, the outdoor unit Is provided with a first outdoor heat exchanger located on the windward side and a second outdoor heat exchanger located on the leeward side with respect to the air blown by the outdoor blower, and the first outdoor heat exchanger is provided for the refrigerant flow during heating. The first and second outdoor heat exchangers are connected in series so that the heat exchanger is located on the upstream side, and during heating, based on the inlet temperature or the outdoor temperature of the first outdoor heat exchanger, The gist is that the defrosting control is performed by loosening the diaphragm.
【0012】[0012]
【作用】上記構成において、第1に、暖房時における室
外熱交換器の凍結は、並列接続された2基の熱交換器の
うち、風下側の第2の室外熱交換器の入口付近で起き易
い。この第2の室外熱交換器の入口温度或いは室外温度
で着霜が検知され、この検知結果を基にバイパス路が開
路されて高温の圧縮機吐出ガスが第2の室外熱交換器に
導かれ、適正に除霜が行われる。着霜検知、除霜制御は
風下側の第2の室外熱交換器のみで十分対応可能であ
る。風上側の第1の室外熱交換器は、第2の室外熱交換
器に比べて熱交換する外気温度が高いため蒸発温度が高
く凍結しにくい。この結果、暖房性能を向上させること
が可能となる。
In the above structure, first, freezing of the outdoor heat exchanger during heating occurs near the inlet of the second outdoor heat exchanger on the leeward side of the two heat exchangers connected in parallel. easy. Frost is detected at the inlet temperature or the outdoor temperature of the second outdoor heat exchanger, the bypass passage is opened based on the detection result, and high-temperature compressor discharge gas is guided to the second outdoor heat exchanger. , Defrosting is performed properly. Frost detection and defrost control can be sufficiently handled only by the second outdoor heat exchanger on the leeward side. The first outdoor heat exchanger on the windward side has a higher outside air temperature for heat exchange than the second outdoor heat exchanger, and therefore has a high evaporation temperature and is unlikely to freeze. As a result, heating performance can be improved.
【0013】第2に、直列接続された2基の熱交換器の
うち、暖房時に冷媒流れの上流側に位置する第1の室外
熱交換器の入口温度或いは室外温度で着霜が検知され、
この検知結果を基にバイパス路が開路されて高温の圧縮
機吐出ガスが第1の室外熱交換器側に導かれ、適正に除
霜が行われる。室外熱交換器が熱的に2分割された構成
となっているので、着霜検知、除霜制御は上流側の第1
の室外熱交換器のみで十分対応可能である。また、第1
の室外熱交換器は、室外送風機による送風に対し風上側
に位置しているので、熱交換する外気温度が高く、蒸発
温度が高くなるため着霜しにくい構成となっている。こ
の結果、暖房性能を向上させることが可能となる。
Secondly, of the two heat exchangers connected in series, frost formation is detected at the inlet temperature or the outdoor temperature of the first outdoor heat exchanger located upstream of the refrigerant flow during heating.
Based on this detection result, the bypass passage is opened, the high-temperature compressor discharge gas is guided to the first outdoor heat exchanger side, and defrosting is appropriately performed. Since the outdoor heat exchanger is configured to be thermally divided into two parts, frost detection and defrost control are performed on the upstream first side.
Only the outdoor heat exchanger can be used. Also, the first
Since the outdoor heat exchanger is located on the windward side with respect to the air blown by the outdoor blower, the outside air temperature for heat exchange is high and the evaporation temperature is high, so that it is difficult to form frost. As a result, heating performance can be improved.
【0014】第3に、並列接続された2基の室外熱交換
器のうち、暖房時に風下側の第2の室外熱交換器の入口
温度或いは室外温度で着霜が検知され、この検知結果を
基に四方弁が反転されて高温の圧縮機吐出ガスが第2の
室外熱交換器に導かれ、適正に除霜が行われる。着霜検
知、除霜制御は風下側の第2の室外熱交換器のみで十分
対応可能である。風上側の第1の室外熱交換器は、第2
の室外熱交換器に比べて熱交換する外気温度が高いため
蒸発温度が高く凍結しにくい。この結果、暖房性能を向
上させることが可能となる。
Thirdly, of the two outdoor heat exchangers connected in parallel, frost formation is detected at the inlet temperature or outdoor temperature of the second outdoor heat exchanger on the leeward side during heating. On the basis of this, the four-way valve is reversed and the high-temperature compressor discharge gas is guided to the second outdoor heat exchanger, so that defrosting is appropriately performed. Frost detection and defrost control can be sufficiently handled only by the second outdoor heat exchanger on the leeward side. The first outdoor heat exchanger on the windward side is the second
Since the outside air temperature for heat exchange is higher than that of the outdoor heat exchanger, the evaporation temperature is high and it is hard to freeze. As a result, heating performance can be improved.
【0015】第4に、並列接続された2基の室外熱交換
器のうち、暖房時に風下側の第2の室外熱交換器の入口
温度或いは室外温度で着霜が検知され、この検知結果を
基に絞り装置の絞りが緩められて直接高温の高圧ガス又
は液が第2の室外熱交換器の送られ、適正に除霜が行わ
れる。着霜検知、除霜制御は風下側の第2の室外熱交換
器のみで十分対応可能である。風上側の第1の室外熱交
換器は、第2の室外熱交換器に比べて熱交換する外気温
度が高いため蒸発温度が高く凍結しにくい。この結果、
暖房性能を向上させることが可能となる。
Fourth, among the two outdoor heat exchangers connected in parallel, frost is detected at the inlet temperature or outdoor temperature of the second outdoor heat exchanger on the leeward side during heating, and the detection result is Based on this, the throttle of the expansion device is loosened and the high-temperature high-pressure gas or liquid is directly sent to the second outdoor heat exchanger, and defrosting is appropriately performed. Frost detection and defrost control can be sufficiently handled only by the second outdoor heat exchanger on the leeward side. The first outdoor heat exchanger on the windward side has a higher outside air temperature for heat exchange than the second outdoor heat exchanger, and therefore has a high evaporation temperature and is unlikely to freeze. As a result,
It is possible to improve the heating performance.
【0016】第5に、直列接続された2基の室外熱交換
器のうち、暖房時に冷媒流れの上流側に位置する第1の
室外熱交換器の入口温度或いは室外温度で着霜が検知さ
れ、この検知結果を基に四方弁が冷房時の冷媒流れ側に
反転されて高温の圧縮機吐出ガスが第1、第2の室外熱
交換器に導かれ、適正に除霜が行われる。着霜検知、除
霜制御は上流側の第1の室外熱交換器のみで十分対応可
能である。第1の室外熱交換器は室外送風機による送風
の風上側に位置しているので熱交換する外気温度が高
く、蒸発温度が高くなるため着霜しにくい。この結果、
暖房性能を向上させることが可能となる。
Fifth, of the two outdoor heat exchangers connected in series, frost formation is detected at the inlet temperature or outdoor temperature of the first outdoor heat exchanger located upstream of the refrigerant flow during heating. Based on the detection result, the four-way valve is reversed to the refrigerant flow side during cooling, the hot compressor discharge gas is guided to the first and second outdoor heat exchangers, and defrosting is appropriately performed. Frost detection and defrost control can be sufficiently handled only by the first outdoor heat exchanger on the upstream side. Since the first outdoor heat exchanger is located on the windward side of the air blown by the outdoor blower, the temperature of the outside air for heat exchange is high and the evaporation temperature is high, so that frost formation is difficult. As a result,
It is possible to improve the heating performance.
【0017】第6に、直列接続された2基の室外熱交換
器のうち、暖房時に冷媒流れの上流側に位置する第1の
室外熱交換器の入口温度或いは室外温度で着霜が検知さ
れ、この検知結果を基に絞り装置の絞りが緩められて直
接高温の高圧ガス又は液が第1の室外熱交換器に送ら
れ、適正に除霜が行われる。着霜検知、除霜制御は上流
側の第1の室外熱交換器のみで十分対応可能である。第
1の室外熱交換器は室外送風機による送風の風上側に位
置しているので熱交換する外気温度が高く、蒸発温度が
高くなるため着霜しにくい。この結果、暖房性能を向上
させることが可能となる。
Sixth, of the two outdoor heat exchangers connected in series, frost is detected at the inlet temperature or outdoor temperature of the first outdoor heat exchanger located upstream of the refrigerant flow during heating. The throttle of the throttle device is loosened based on the detection result, and the high-temperature high-pressure gas or liquid is directly sent to the first outdoor heat exchanger, and the defrosting is appropriately performed. Frost detection and defrost control can be sufficiently handled only by the first outdoor heat exchanger on the upstream side. Since the first outdoor heat exchanger is located on the windward side of the air blown by the outdoor blower, the temperature of the outside air for heat exchange is high and the evaporation temperature is high, so that frost formation is difficult. As a result, heating performance can be improved.
【0018】[0018]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.
【0019】図1は、本発明の第1実施例を示す図であ
る。図1の冷凍サイクルにおいて、室外機1は、圧縮機
2、四方弁3、絞り機構4、第1の室外熱交換器5、第
2の室外熱交換器6、室外送風機7、第1の室外熱交換
器入口二方弁8、第2の室外熱交換器入口温度センサ
9、第2の室外熱交換器出口温度センサ11、室外温度
センサ12、圧縮機吐出ガスを第2の室外熱交換器6に
バイパスさせるバイパス路13、バイパス路13中に接
続された除霜用二方弁14、この除霜用二方弁14及び
第1の室外熱交換器入口二方弁8を制御する制御器15
等の主要部品で構成されている。第1の室外熱交換器5
は室外送風機7による送風に対し風上側に位置し、第2
の室外熱交換器6は風下側に位置し、且つ両室外熱交換
器5,6は並列に接続されている。また、室内機10
は、室内熱交換器16及び室内送風機17等で構成され
ている。本冷凍サイクルで使用される冷媒は、R22の
単一冷媒とサイクル温度、圧力が近い例えばR32/R
134a=30:70の非共沸混合冷媒である。図1中
には、この冷媒の流れを、暖房時は実線、冷房時は破線
で示した。
FIG. 1 is a diagram showing a first embodiment of the present invention. In the refrigeration cycle of FIG. 1, the outdoor unit 1 includes a compressor 2, a four-way valve 3, a throttle mechanism 4, a first outdoor heat exchanger 5, a second outdoor heat exchanger 6, an outdoor blower 7, and a first outdoor unit. Heat exchanger inlet two-way valve 8, second outdoor heat exchanger inlet temperature sensor 9, second outdoor heat exchanger outlet temperature sensor 11, outdoor temperature sensor 12, compressor discharge gas to the second outdoor heat exchanger 6, a bypass passage 13 to be bypassed, a defrosting two-way valve 14 connected in the bypass passage 13, a controller for controlling the defrosting two-way valve 14 and the first outdoor heat exchanger inlet two-way valve 8. 15
It is composed of main parts such as. First outdoor heat exchanger 5
Is located on the windward side with respect to the air blown by the outdoor blower 7,
The outdoor heat exchanger 6 is located on the leeward side, and the outdoor heat exchangers 5 and 6 are connected in parallel. In addition, the indoor unit 10
Is composed of an indoor heat exchanger 16, an indoor blower 17, and the like. The refrigerant used in the present refrigeration cycle is close to the single refrigerant of R22 in cycle temperature and pressure, for example, R32 / R.
It is a non-azeotropic mixed refrigerant of 134a = 30: 70. In FIG. 1, the flow of this refrigerant is shown by a solid line during heating and a broken line during cooling.
【0020】次に、上述のように構成された冷凍サイク
ルの作用を説明する。まず、暖房運転から説明する。通
常運転時に、第1の室外熱交換器入口二方弁8は開けら
れ、除霜用二方弁14は閉じられている。室外機1にお
ける圧縮機2より吐出された高温、高圧の気化冷媒は、
四方弁3を通過した後、室内機10に導かれ、室内熱交
換器16を流れる間に室内送風機17による室内空気と
熱交換することで、室内に熱を放出し、凝縮する。凝縮
し、液化した冷媒は、室外機1に戻り、絞り機構4で絞
られ、減圧された後、並列接続された第1、第2の室外
熱交換器5,6で室外送風機7による室外空気と熱交換
し、蒸発過程を完了する。加熱された低圧の気化冷媒
は、再び圧縮機2に入り高温、高圧の気化冷媒となって
吐出され、暖房時の1サイクルが終了する。この暖房運
転時において、着霜の検知は、第2の室外熱交換器6の
入口温度或いは室外温度で判断する。これらの温度が所
定の設定温度以下であれば着霜と判断される。除霜は、
第1の室外熱交換器入口二方弁8を閉じ、除霜用二方弁
14を開いて高温の圧縮機吐出ガスを第2の室外熱交換
器6にバイパスさせることにより行われる。除霜終了
は、第2の室外熱交換器6の入口温度あるいは出口温度
を見て判断する。これらの温度が設定温度以上になれば
除霜運転終了と判断する。
Next, the operation of the refrigeration cycle configured as described above will be described. First, the heating operation will be described. During normal operation, the first outdoor heat exchanger inlet two-way valve 8 is opened and the defrosting two-way valve 14 is closed. The high-temperature, high-pressure vaporized refrigerant discharged from the compressor 2 in the outdoor unit 1 is
After passing through the four-way valve 3, it is guided to the indoor unit 10 and exchanges heat with the indoor air by the indoor blower 17 while flowing through the indoor heat exchanger 16, thereby releasing heat and condensing it indoors. The condensed and liquefied refrigerant returns to the outdoor unit 1, is throttled by the throttling mechanism 4, is depressurized, and is then ventilated by the outdoor blower 7 by the first and second outdoor heat exchangers 5 and 6 connected in parallel. Heat exchange with and complete the evaporation process. The heated low-pressure vaporized refrigerant again enters the compressor 2 and is discharged as high-temperature, high-pressure vaporized refrigerant, and one cycle of heating is completed. During the heating operation, frost formation is detected by the inlet temperature or the outdoor temperature of the second outdoor heat exchanger 6. If these temperatures are equal to or lower than a predetermined set temperature, it is determined that frost is formed. Defrost
It is performed by closing the first outdoor heat exchanger inlet two-way valve 8 and opening the defrosting two-way valve 14 to bypass the high-temperature compressor discharge gas to the second outdoor heat exchanger 6. The completion of defrosting is judged by looking at the inlet temperature or the outlet temperature of the second outdoor heat exchanger 6. If these temperatures exceed the set temperature, it is determined that the defrosting operation has ended.
【0021】次いで、冷房運転を説明する。室外機1に
おける圧縮機2から吐出された高温高圧の気化冷媒は、
四方弁3を通過した後、並列接続された第1、第2の室
外熱交換器5,6に導かれ、室外送風機7による室外空
気により、冷却されて凝縮過程が完了する。高圧の液と
なった冷媒は、絞り機構4で絞られ、減圧される。そし
て、室内機10に導かれ、室内熱交換器16で室内送風
機17による室内空気と熱交換することで、蒸発過程で
室内空気の熱を奪い、冷房が行われる。低圧の気化され
た冷媒は、室外機1の圧縮機2に入り、再び高温、高圧
の気化冷媒となって吐出され、冷房時の1サイクルが終
了する。
Next, the cooling operation will be described. The high-temperature and high-pressure vaporized refrigerant discharged from the compressor 2 in the outdoor unit 1 is
After passing through the four-way valve 3, it is guided to the first and second outdoor heat exchangers 5 and 6 connected in parallel, and is cooled by the outdoor air by the outdoor blower 7 to complete the condensation process. The high-pressure liquid refrigerant is throttled by the throttling mechanism 4 and depressurized. Then, by being guided to the indoor unit 10 and exchanging heat with the indoor air by the indoor blower 17 in the indoor heat exchanger 16, the heat of the indoor air is taken in the evaporation process and cooling is performed. The low-pressure vaporized refrigerant enters the compressor 2 of the outdoor unit 1 and is again discharged as high-temperature, high-pressure vaporized refrigerant, and one cycle during cooling is completed.
【0022】上述の冷凍サイクルにおいては、以下に示
すようなメリットが多い。図6のモリエル線図に示すよ
うに、R22等の単一冷媒を使用した場合(図6
(a))に比べてR32/R134a=30:70付近
の非共沸混合冷媒を使用した場合(図6(b))は、冷
媒の気液相変化時の温度勾配が大きい(等温線が傾いて
いる)。このため、暖房時における除霜制御において
は、風下側の第2の室外熱交換器6の入口付近で凍結し
易く、その入口付近の温度或いは外気温度を見れば適正
な着霜検知が可能となる。そして除霜完了の判断は第2
の室外熱交換器6の入口温度と出口温度を見れば行え
る。また、室外熱交換器が熱的に2分割されているの
で、着霜検知、除霜制御は風下側の第2の室外熱交換器
6のみで十分対応可能である。風上側の第1の室外熱交
換器5は風下側の第2の室外熱交換器6に比べて、熱交
換する外気温度が高いため蒸発温度が高く凍結しにく
い。その結果、暖房性能の向上が図れる。
The above refrigeration cycle has many advantages as described below. As shown in the Mollier diagram of FIG. 6, when a single refrigerant such as R22 is used (see FIG.
Compared to (a)), when a non-azeotropic mixed refrigerant in the vicinity of R32 / R134a = 30: 70 is used (FIG. 6 (b)), the temperature gradient during the gas-liquid phase change of the refrigerant is large (the isotherm is Leaning). Therefore, in defrosting control during heating, it is easy to freeze near the inlet of the second outdoor heat exchanger 6 on the leeward side, and proper frost detection can be performed by looking at the temperature near the inlet or the outside air temperature. Become. And the judgment of defrosting completion is the second
This can be done by looking at the inlet temperature and the outlet temperature of the outdoor heat exchanger 6. Further, since the outdoor heat exchanger is thermally divided into two parts, only the second outdoor heat exchanger 6 on the leeward side can sufficiently cope with frost detection and defrost control. Compared with the second outdoor heat exchanger 6 on the leeward side, the first outdoor heat exchanger 5 on the leeward side has a higher outside air temperature for heat exchange, and thus has a higher evaporation temperature and is less likely to freeze. As a result, heating performance can be improved.
【0023】図2には、本発明の第2実施例を示す。本
実施例では図2の冷凍サイクルに示すように、室外送風
機7による送風に対し、風上側に位置させた第1の室外
熱交換器5と風下側に位置させた第2の室外熱交換器6
とが、暖房時の冷媒流れに対し第1の室外熱交換器5が
上流側となるように直列に接続されている。18は第1
の室外熱交換器入口温度センサ、19は第1の室外熱交
換器出口温度センサである。その他の構成は、前記第1
実施例のものとほぼ同様である。
FIG. 2 shows a second embodiment of the present invention. In the present embodiment, as shown in the refrigeration cycle of FIG. 2, the first outdoor heat exchanger 5 located on the upwind side and the second outdoor heat exchanger located on the downwind side with respect to the air blown by the outdoor blower 7. 6
Are connected in series so that the first outdoor heat exchanger 5 is on the upstream side with respect to the refrigerant flow during heating. 18 is the first
The outdoor heat exchanger inlet temperature sensor, and 19 is a first outdoor heat exchanger outlet temperature sensor. Other configurations are the same as those of the first
It is almost the same as that of the embodiment.
【0024】上述のように構成された冷凍サイクルの作
用を暖房運転から説明する。室外機1における圧縮機2
より吐出された高温、高圧の気化冷媒は、四方弁3を通
過した後、室内機10に導かれ、室内熱交換器16を流
れる間に室内送風機17による室内空気と熱交換するこ
とで、室内に熱を放出し、凝縮する。凝縮し、液化した
冷媒は、室外機1に戻り、絞り機構4で絞られ、減圧さ
れた後、直列接続された第1、第2の室外熱交換器5,
6で室外送風機7による室外空気と熱交換し、蒸発過程
を完了する。加熱された低圧の気化冷媒は、再び圧縮機
2に入り高温、高圧の気化冷媒となって吐出され、暖房
時の1サイクルが終了する。この暖房運転時において、
着霜の検知は、第1の室外熱交換器5の入口温度或いは
室外温度で判断する。これらの温度が所定の設定温度以
下であれば着霜と判断される。除霜は、除霜用二方弁1
4を開いて高温の圧縮機吐出ガスを第1の室外熱交換器
5側にバイパスさせることにより行われる。除霜終了
は、第1の室外熱交換器5の入口温度あるいは出口温度
を見て判断する。これらの温度が設定温度以上になれば
除霜運転終了と判断する。
The operation of the refrigeration cycle configured as described above will be described from the heating operation. Compressor 2 in outdoor unit 1
The discharged high-temperature, high-pressure vaporized refrigerant is guided to the indoor unit 10 after passing through the four-way valve 3, and while exchanging heat with the indoor air by the indoor blower 17 while flowing through the indoor heat exchanger 16, It releases heat to and condenses. The condensed and liquefied refrigerant returns to the outdoor unit 1, is throttled by the throttling mechanism 4, is depressurized, and is then connected in series to the first and second outdoor heat exchangers 5, 5.
At 6 the heat is exchanged with the outdoor air by the outdoor blower 7 to complete the evaporation process. The heated low-pressure vaporized refrigerant again enters the compressor 2 and is discharged as high-temperature, high-pressure vaporized refrigerant, and one cycle of heating is completed. During this heating operation,
The detection of frost formation is determined by the inlet temperature or the outdoor temperature of the first outdoor heat exchanger 5. If these temperatures are equal to or lower than a predetermined set temperature, it is determined that frost is formed. Defrosting is a two-way valve for defrosting 1.
4 is opened to bypass the high-temperature compressor discharge gas to the first outdoor heat exchanger 5 side. The completion of defrosting is judged by looking at the inlet temperature or the outlet temperature of the first outdoor heat exchanger 5. If these temperatures exceed the set temperature, it is determined that the defrosting operation has ended.
【0025】次いで、冷房運転を説明する。室外機1に
おける圧縮機2から吐出された高温高圧の気化冷媒は、
四方弁3を通過した後、直列接続された第1、第2の室
外熱交換器5,6に導かれ、室外送風機7による室外空
気により、冷却されて凝縮過程が完了する。高圧の液と
なった冷媒は、絞り機構4で絞られ、減圧される。そし
て、室内機10に導かれ、室内熱交換器16で室内送風
機17による室内空気と熱交換することで、蒸発過程で
室内空気の熱を奪い、冷房が行われる。低圧の気化され
た冷媒は、室外機1の圧縮機2に入り、再び高温、高圧
の気化冷媒となって吐出され、冷房時の1サイクルが終
了する。
Next, the cooling operation will be described. The high-temperature and high-pressure vaporized refrigerant discharged from the compressor 2 in the outdoor unit 1 is
After passing through the four-way valve 3, it is guided to the first and second outdoor heat exchangers 5 and 6 connected in series, and is cooled by the outdoor air by the outdoor blower 7 to complete the condensation process. The high-pressure liquid refrigerant is throttled by the throttling mechanism 4 and depressurized. Then, by being guided to the indoor unit 10 and exchanging heat with the indoor air by the indoor blower 17 in the indoor heat exchanger 16, the heat of the indoor air is taken in the evaporation process and cooling is performed. The low-pressure vaporized refrigerant enters the compressor 2 of the outdoor unit 1 and is again discharged as high-temperature, high-pressure vaporized refrigerant, and one cycle during cooling is completed.
【0026】上述の冷凍サイクルにおいては、以下に示
すようなメリットが多い。前述したようにR32/R1
34a=30:70付近の非共沸混合冷媒を使用した場
合、冷媒の気液相変化時の温度勾配が大きい。このた
め、暖房時における除霜制御においては、室外熱交換器
入口付近で凍結し易く、その入口付近の温度或いは外気
温度を見れば適正な着霜検知が可能となる。そして除霜
完了の判断は上流側の第1の室外熱交換器5の入口温度
と出口温度を見れば行える。また、室外熱交換器が熱的
に2分割されているので、着霜検知、除霜制御は上流側
の第1の室外熱交換器5のみで十分対応可能となる。し
かも、上流側の第1の室外熱交換器5は室外送風機7に
よる送風の風上側に位置しているので、熱交換する外気
温度は高く、蒸発温度が高くなるため着霜しにくい構成
となっている。その結果、暖房性能の向上が図れる。
The above refrigeration cycle has many advantages as described below. As mentioned above, R32 / R1
When a non-azeotropic mixed refrigerant of 34a = 30: 70 is used, the temperature gradient during the gas-liquid phase change of the refrigerant is large. Therefore, in defrosting control during heating, it is easy to freeze near the inlet of the outdoor heat exchanger, and proper frost detection can be performed by looking at the temperature near the inlet or the outside air temperature. The completion of defrosting can be determined by checking the inlet temperature and the outlet temperature of the first outdoor heat exchanger 5 on the upstream side. Further, since the outdoor heat exchanger is thermally divided into two parts, frost detection and defrosting control can be sufficiently performed only by the first outdoor heat exchanger 5 on the upstream side. Moreover, since the first outdoor heat exchanger 5 on the upstream side is located on the windward side of the air blown by the outdoor blower 7, the outside air temperature for heat exchange is high and the evaporation temperature is high, so that frost formation is difficult. ing. As a result, heating performance can be improved.
【0027】図3には、本発明の第3実施例を示す。本
実施例の冷凍サイクルは、前記第1実施例の冷凍サイク
ル(図1)に対し、第1の室外熱交換器入口二方弁8と
バイパス路13とを除去し、第1の室外熱交換器出口二
方弁20を付加した構成となっている。その他の構成部
分は、図1のものとほぼ同様である。
FIG. 3 shows a third embodiment of the present invention. The refrigeration cycle of the present embodiment differs from the refrigeration cycle of the first embodiment (FIG. 1) in that the first outdoor heat exchanger inlet two-way valve 8 and the bypass passage 13 are removed, and the first outdoor heat exchange is performed. It has a configuration in which a device outlet two-way valve 20 is added. The other components are almost the same as those in FIG.
【0028】このような冷凍サイクルの暖房運転におい
て、着霜の検知は、第2の室外熱交換器6の入口温度或
いは室外温度で判断する。これらの温度が所定の設定温
度以下であれば着霜と判断される。除霜は、第1の室外
熱交換器出口二方弁20を閉じ、四方弁3を反転させ高
温の圧縮機吐出ガスを第2の室外熱交換器6にバイパス
させることにより行われる。除霜終了は、第2の室外熱
交換器6の入口温度或いは出口温度を見て判断する。こ
れらの温度が設定温度以上になれば除霜運転終了と判断
する。
In the heating operation of such a refrigeration cycle, the detection of frost formation is judged by the inlet temperature or the outdoor temperature of the second outdoor heat exchanger 6. If these temperatures are equal to or lower than a predetermined set temperature, it is determined that frost is formed. Defrosting is performed by closing the first outdoor heat exchanger outlet two-way valve 20, reversing the four-way valve 3 and bypassing the high-temperature compressor discharge gas to the second outdoor heat exchanger 6. The completion of defrosting is judged by looking at the inlet temperature or the outlet temperature of the second outdoor heat exchanger 6. If these temperatures exceed the set temperature, it is determined that the defrosting operation has ended.
【0029】上述の冷凍サイクルにおいては、以下に示
すようなメリットが多い。図6のモリエル線図に示すよ
うに、R22等の単一冷媒を使用した場合(図6
(a))に比べてR32/R134a=30:70付近
の非共沸混合冷媒を使用した場合(図6(b))は、冷
媒の気液相変化時の温度勾配が大きい(等温線が傾いて
いる)。このため、暖房時における除霜制御において
は、風下側の第2の室外熱交換器6の入口付近で凍結し
易く、その入口付近の温度或いは外気温度を見れば適正
な着霜検知が可能となる。そして除霜完了の判断は第2
の室外熱交換器6の入口温度と出口温度を見れば行え
る。また、室外熱交換器が熱的に2分割されているの
で、着霜検知、除霜制御は風下側の第2の室外熱交換器
6のみで十分対応可能である。風上側の第1の室外熱交
換器5は風下側の第2の室外熱交換器6に比べて、熱交
換する外気温度が高いため蒸発温度が高く凍結しにく
い。その結果、暖房性能の向上が図れる。
The above-mentioned refrigeration cycle has many advantages as described below. As shown in the Mollier diagram of FIG. 6, when a single refrigerant such as R22 is used (see FIG.
Compared to (a)), when a non-azeotropic mixed refrigerant in the vicinity of R32 / R134a = 30: 70 is used (FIG. 6 (b)), the temperature gradient during the gas-liquid phase change of the refrigerant is large (the isotherm is Leaning). Therefore, in defrosting control during heating, it is easy to freeze near the inlet of the second outdoor heat exchanger 6 on the leeward side, and proper frost detection can be performed by looking at the temperature near the inlet or the outside air temperature. Become. And the judgment of defrosting completion is the second
This can be done by looking at the inlet temperature and the outlet temperature of the outdoor heat exchanger 6. Further, since the outdoor heat exchanger is thermally divided into two parts, only the second outdoor heat exchanger 6 on the leeward side can sufficiently cope with frost detection and defrost control. Compared with the second outdoor heat exchanger 6 on the leeward side, the first outdoor heat exchanger 5 on the leeward side has a higher outside air temperature for heat exchange, and thus has a higher evaporation temperature and is less likely to freeze. As a result, heating performance can be improved.
【0030】図4には、本発明の第4実施例を示す。本
実施例の冷凍サイクルは、前記第1実施例の冷凍サイク
ル(図1)からバイパス路13を除去した構成となって
いる。
FIG. 4 shows a fourth embodiment of the present invention. The refrigeration cycle of the present embodiment has a configuration in which the bypass passage 13 is removed from the refrigeration cycle of the first embodiment (FIG. 1).
【0031】このような冷凍サイクルの暖房運転におい
て、着霜の検知は、第2の室外熱交換器6の入口温度或
いは室外温度で判断する。これらの温度が所定の設定温
度以下であれば着霜と判断される。除霜は、第1の室外
熱交換器入口二方弁8を閉じ、絞り装置4の絞りを緩め
て高温の圧縮機吐出ガス又は冷媒液を第2の室外熱交換
器6に送ることにより行われる。除霜終了は、第2の室
外熱交換器6の入口温度或いは出口温度を見て判断す
る。これらの温度が設定温度以上になれば除霜運転終了
と判断する。
In the heating operation of such a refrigeration cycle, the detection of frost formation is determined by the inlet temperature or the outdoor temperature of the second outdoor heat exchanger 6. If these temperatures are equal to or lower than a predetermined set temperature, it is determined that frost is formed. Defrosting is performed by closing the first outdoor heat exchanger inlet two-way valve 8, loosening the throttle of the expansion device 4, and sending the hot compressor discharge gas or refrigerant liquid to the second outdoor heat exchanger 6. Be seen. The completion of defrosting is judged by looking at the inlet temperature or the outlet temperature of the second outdoor heat exchanger 6. If these temperatures exceed the set temperature, it is determined that the defrosting operation has ended.
【0032】上述の冷凍サイクルにおいては、以下に示
すようなメリットが多い。図6のモリエル線図に示すよ
うに、R22等の単一冷媒を使用した場合(図6
(a))に比べてR32/R134a=30:70付近
の非共沸混合冷媒を使用した場合(図6(b))は、冷
媒の気液相変化時の温度勾配が大きい(等温線が傾いて
いる)。このため、暖房時における除霜制御において
は、風下側の第2の室外熱交換器6の入口付近で凍結し
易く、その入口付近の温度或いは外気温度を見れば適正
な着霜検知が可能となる。そして除霜完了の判断は第2
の室外熱交換器6の入口温度と出口温度を見れば行え
る。また、室外熱交換器が熱的に2分割されているの
で、着霜検知、除霜制御は風下側の第2の室外熱交換器
6のみで十分対応可能である。風上側の第1の室外熱交
換器5は風下側の第2の室外熱交換器6に比べて、熱交
換する外気温度が高いため蒸発温度が高く凍結しにく
い。その結果、暖房性能の向上が図れる。
The above-mentioned refrigeration cycle has many advantages as described below. As shown in the Mollier diagram of FIG. 6, when a single refrigerant such as R22 is used (see FIG.
Compared to (a)), when a non-azeotropic mixed refrigerant in the vicinity of R32 / R134a = 30: 70 is used (FIG. 6 (b)), the temperature gradient during the gas-liquid phase change of the refrigerant is large (the isotherm is Leaning). Therefore, in defrosting control during heating, it is easy to freeze near the inlet of the second outdoor heat exchanger 6 on the leeward side, and proper frost detection can be performed by looking at the temperature near the inlet or the outside air temperature. Become. And the judgment of defrosting completion is the second
This can be done by looking at the inlet temperature and the outlet temperature of the outdoor heat exchanger 6. Further, since the outdoor heat exchanger is thermally divided into two parts, only the second outdoor heat exchanger 6 on the leeward side can sufficiently cope with frost detection and defrost control. Compared with the second outdoor heat exchanger 6 on the leeward side, the first outdoor heat exchanger 5 on the leeward side has a higher outside air temperature for heat exchange, and thus has a higher evaporation temperature and is less likely to freeze. As a result, heating performance can be improved.
【0033】図5には、本発明の第5実施例を示す。本
実施例の冷凍サイクルは、前記第2実施例の冷凍サイク
ル(図2)からバイパス路13を除去した構成となって
いる。
FIG. 5 shows a fifth embodiment of the present invention. The refrigeration cycle of the present embodiment has a configuration in which the bypass passage 13 is removed from the refrigeration cycle of the second embodiment (FIG. 2).
【0034】このような冷凍サイクルの暖房運転時にお
いて、着霜の検知は、第1の室外熱交換器5の入口温度
或いは室外温度で判断する。これらの温度が所定の設定
温度以下であれば着霜判断される。除霜は、四方弁3を
反転して高温の圧縮機吐出ガスを第1、第2の室外熱交
換器5,6側にバイパスさせることにより行われる。除
霜終了は、第1の室外熱交換器5の入口温度或いは出口
温度を見て判断する。これらの温度が設定温度以上にな
れば除霜運転終了と判断する。
During the heating operation of such a refrigeration cycle, the detection of frost formation is judged by the inlet temperature or the outdoor temperature of the first outdoor heat exchanger 5. If these temperatures are equal to or lower than a predetermined set temperature, it is determined that frost has formed. Defrosting is performed by reversing the four-way valve 3 and bypassing the high-temperature compressor discharge gas to the first and second outdoor heat exchangers 5 and 6. The completion of defrosting is judged by looking at the inlet temperature or the outlet temperature of the first outdoor heat exchanger 5. If these temperatures exceed the set temperature, it is determined that the defrosting operation has ended.
【0035】上述の冷凍サイクルにおいては、以下に示
すようなメリットが多い。前述したようにR32/R1
34a=30:70付近の非共沸混合冷媒を使用した場
合、冷媒の気液相変化時の温度勾配が大きい。このた
め、暖房時における除霜制御においては、室外熱交換器
入口付近で凍結し易く、その入口付近の温度或いは外気
温度を見れば適正な着霜検知が可能となる。そして除霜
完了の判断は上流側の第1の室外熱交換器5の入口温度
と出口温度を見れば行える。また、室外熱交換器が熱的
に2分割されているので、着霜検知、除霜制御は上流側
の第1の室外熱交換器5のみで十分対応可能となる。し
かも、上流側の第1の室外熱交換器5は室外送風機7に
よる送風の風上側に位置しているので、熱交換する外気
温度は高く、蒸発温度が高くなるため着霜しにくい構成
となっている。その結果、暖房性能の向上が図れる。
The above refrigeration cycle has many advantages as described below. As mentioned above, R32 / R1
When a non-azeotropic mixed refrigerant of 34a = 30: 70 is used, the temperature gradient during the gas-liquid phase change of the refrigerant is large. Therefore, in defrosting control during heating, it is easy to freeze near the inlet of the outdoor heat exchanger, and proper frost detection can be performed by looking at the temperature near the inlet or the outside air temperature. The completion of defrosting can be determined by checking the inlet temperature and the outlet temperature of the first outdoor heat exchanger 5 on the upstream side. Further, since the outdoor heat exchanger is thermally divided into two parts, frost detection and defrosting control can be sufficiently performed only by the first outdoor heat exchanger 5 on the upstream side. Moreover, since the first outdoor heat exchanger 5 on the upstream side is located on the windward side of the air blown by the outdoor blower 7, the outside air temperature for heat exchange is high and the evaporation temperature is high, so that frost formation is difficult. ing. As a result, heating performance can be improved.
【0036】次いで、本発明の第6実施例を説明する。
冷凍サイクルの構成は上記第5実施例のもの(図5)と
同じである。
Next, a sixth embodiment of the present invention will be described.
The structure of the refrigeration cycle is the same as that of the fifth embodiment (FIG. 5).
【0037】このような冷凍サイクルの暖房運転時にお
いて、着霜の検知は、第1の室外熱交換器5の入口温度
或いは室外温度で判断する。これらの温度が所定の設定
温度以下であれば着霜と判断される。除霜は、絞り装置
4の絞りを緩めて高温の圧縮機吐出ガス又は冷媒液を第
1の室外熱交換器5側に送ることにより行われる。除霜
終了は、第1の室外熱交換器5の入口温度或いは出口温
度を見て判断する。これらの温度が設定温度以上になれ
ば除霜運転終了と判断する。
During the heating operation of such a refrigeration cycle, the detection of frost formation is judged by the inlet temperature or the outdoor temperature of the first outdoor heat exchanger 5. If these temperatures are equal to or lower than a predetermined set temperature, it is determined that frost is formed. The defrosting is performed by loosening the throttle of the expansion device 4 and sending the high-temperature compressor discharge gas or refrigerant liquid to the first outdoor heat exchanger 5 side. The completion of defrosting is judged by looking at the inlet temperature or the outlet temperature of the first outdoor heat exchanger 5. If these temperatures exceed the set temperature, it is determined that the defrosting operation has ended.
【0038】上述の冷凍サイクルにおいては、以下に示
すようなメリットが多い。前述したようにR32/R1
34a=30:70付近の非共沸混合冷媒を使用した場
合、冷媒の気液相変化時の温度勾配が大きい。このた
め、暖房時における除霜制御においては、室外熱交換器
入口付近で凍結し易く、その入口付近の温度或いは外気
温度を見れば適正な着霜検知が可能となる。そして除霜
完了の判断は上流側の第1の室外熱交換器5の入口温度
と出口温度を見れば行える。また、室外熱交換器が熱的
に2分割されているので、着霜検知、除霜制御は上流側
の第1の室外熱交換器5のみで十分対応可能となる。し
かも、上流側の第1の室外熱交換器5は室外送風機7に
よる送風の風上側に位置しているので、熱交換する外気
温度は高く、蒸発温度が高くなるため着霜しにくい構成
となっている。その結果、暖房性能の向上が図れる。
The above refrigeration cycle has many advantages as follows. As mentioned above, R32 / R1
When a non-azeotropic mixed refrigerant of 34a = 30: 70 is used, the temperature gradient during the gas-liquid phase change of the refrigerant is large. Therefore, in defrosting control during heating, it is easy to freeze near the inlet of the outdoor heat exchanger, and proper frost detection can be performed by looking at the temperature near the inlet or the outside air temperature. The completion of defrosting can be determined by checking the inlet temperature and the outlet temperature of the first outdoor heat exchanger 5 on the upstream side. Further, since the outdoor heat exchanger is thermally divided into two parts, frost detection and defrosting control can be sufficiently performed only by the first outdoor heat exchanger 5 on the upstream side. Moreover, since the first outdoor heat exchanger 5 on the upstream side is located on the windward side of the air blown by the outdoor blower 7, the outside air temperature for heat exchange is high and the evaporation temperature is high, so that frost formation is difficult. ing. As a result, heating performance can be improved.
【0039】なお、本発明は上記の実施例に限ったもの
でなく、請求範囲の主旨を逸脱しなければ、冷凍サイク
ルの構成が多少異なったものであっても構わない。
The present invention is not limited to the above embodiments, and the refrigerating cycle may have a slightly different structure without departing from the spirit of the claims.
【0040】[0040]
【発明の効果】以上説明したように、本発明によれば、
第1に、室外機には室外送風機による送風に対し風上に
位置させた第1の室外熱交換器と風下に位置させた第2
の室外熱交換器を設けるとともに、この第1、第2の室
外熱交換器を並列に接続し、第2の室外熱交換器には圧
縮機吐出ガスをバイパスさせる常閉のバイパス路を接続
し、暖房時に第2の室外熱交換器の入口温度或いは室外
温度を基にバイパス路を開路して除霜制御を行うように
構成したため、非共沸混合冷媒を使用した冷凍サイクル
において、暖房時の着霜検知及び除霜制御を適正に行う
ことができる。また、風上側の第1の室外熱交換器は、
第2の室外熱交換器に比べて熱交換する外気温度が高い
ため蒸発温度が高く凍結しにくいことから暖房性能を向
上させることができる。
As described above, according to the present invention,
First, the outdoor unit has a first outdoor heat exchanger located on the windward side and a second unit located on the leeward side with respect to the air blown by the outdoor blower.
Of the outdoor heat exchanger, the first and second outdoor heat exchangers are connected in parallel, and the second outdoor heat exchanger is connected to a normally closed bypass path for bypassing the compressor discharge gas. Since the defrosting control is performed by opening the bypass passage on the basis of the inlet temperature or the outdoor temperature of the second outdoor heat exchanger during heating, in the refrigeration cycle using the non-azeotropic mixed refrigerant, Frost detection and defrost control can be properly performed. Further, the first outdoor heat exchanger on the windward side is
Since the outside air temperature for heat exchange is higher than that of the second outdoor heat exchanger, the evaporation temperature is high and it is difficult to freeze, so that the heating performance can be improved.
【0041】第2に、室外機には室外送風機による送風
に対し風上に位置させた第1の室外熱交換器と風下に位
置させた第2の室外熱交換器とを設けるとともに暖房時
の冷媒流れに対し第1の室外熱交換器が上流側となるよ
うに第1、第2の室外熱交換器を直列に接続し、第1の
室外熱交換器には圧縮機吐出ガスをバイパスさせる常閉
のバイパス路を接続し、暖房時に第1の室外熱交換器の
入口温度或いは室外温度を基にバイパス路を開路して除
霜制御を行うように構成したため、非共沸混合冷媒を使
用した冷凍サイクルにおいて、暖房時の着霜検知及び除
霜制御を適正に行うことができる。また、第1の室外熱
交換器は、室外送風機による送風に対し風上側に位置し
ているので、熱交換する外気温度が高く、蒸発温度が高
くなるため着霜しにくい構成となって暖房性能を向上さ
せることができる。
Secondly, the outdoor unit is provided with a first outdoor heat exchanger located on the upwind side and a second outdoor heat exchanger located on the downwind side with respect to the air blown by the outdoor blower, and at the time of heating. The first and second outdoor heat exchangers are connected in series so that the first outdoor heat exchanger is on the upstream side with respect to the refrigerant flow, and the compressor discharge gas is bypassed to the first outdoor heat exchanger. A non-azeotropic mixed refrigerant is used because a normally closed bypass path is connected and the defrost control is performed by opening the bypass path based on the inlet temperature or outdoor temperature of the first outdoor heat exchanger during heating. In the above refrigeration cycle, frost formation detection and defrost control during heating can be properly performed. Further, since the first outdoor heat exchanger is located on the windward side with respect to the air blown by the outdoor blower, the temperature of the outside air to be heat-exchanged is high and the evaporation temperature is high, so that it is difficult to form frost and the heating performance is improved. Can be improved.
【0042】第3に、室外機には室外送風機による送風
に対し風上に位置させた第1の室外熱交換器と風下に位
置させた第2の室外熱交換器とを設けるとともに、この
第1、第2の室外熱交換器を並列に接続し、暖房時に第
2の室外熱交換器の入口温度或いは室外温度を基に四方
弁を反転し、第2の室外熱交換器に圧縮機吐出ガスを導
いて除霜制御を行うように構成したため、非共沸混合冷
媒を使用した冷凍サイクルにおいて、暖房時の着霜検知
及び除霜制御を適正に行うことができる。また、風上側
の第1の室外熱交換器は第2の室外熱交換器に比べて熱
交換する外気温度が高いため蒸発温度が高く凍結しにく
いことから暖房性能を向上させることができる。
Thirdly, the outdoor unit is provided with a first outdoor heat exchanger located on the upwind side and a second outdoor heat exchanger located on the downwind side with respect to the air blown by the outdoor blower. 1 and 2 outdoor heat exchangers are connected in parallel, the four-way valve is reversed based on the inlet temperature or outdoor temperature of the second outdoor heat exchanger during heating, and the compressor is discharged to the second outdoor heat exchanger. Since the gas is guided to perform defrost control, it is possible to appropriately perform frost detection and defrost control during heating in a refrigeration cycle using a non-azeotropic mixed refrigerant. Further, the first outdoor heat exchanger on the windward side has a higher outside air temperature for heat exchange than the second outdoor heat exchanger, and therefore has a high evaporation temperature and is unlikely to freeze, so that the heating performance can be improved.
【0043】第4に、室外機には室外送風機による送風
に対し風上に位置させた第1の室外熱交換器と風下に位
置させた第2の室外熱交換器とを設けるとともに、この
第1、第2の室外熱交換器を並列に接続し、暖房時に第
2の室外熱交換器の入口温度或いは室外温度を基に絞り
装置の絞りを緩めて除霜制御を行うように構成したた
め、非共沸混合冷媒を使用した冷凍サイクルにおいて、
暖房時の着霜検知及び除霜制御を適正に行うことができ
る。また、風上側の第1の室外熱交換器は第2の室外熱
交換器に比べて熱交換する外気温度が高いため蒸発温度
が高く凍結しにくいことから暖房性能を向上させること
ができる。
Fourth, the outdoor unit is provided with a first outdoor heat exchanger located on the upwind side and a second outdoor heat exchanger located on the downwind side with respect to the air blown by the outdoor blower. Since the first and second outdoor heat exchangers are connected in parallel and the defrosting control is performed by loosening the throttle of the expansion device based on the inlet temperature or the outdoor temperature of the second outdoor heat exchanger during heating, In a refrigeration cycle using a non-azeotropic mixed refrigerant,
It is possible to properly perform frost detection and defrost control during heating. Further, the first outdoor heat exchanger on the windward side has a higher outside air temperature for heat exchange than the second outdoor heat exchanger, and therefore has a high evaporation temperature and is unlikely to freeze, so that the heating performance can be improved.
【0044】第5に、室外機には室外送風機による送風
に対し風上に位置させた第1の室外熱交換器と風下に位
置させた第2の室外熱交換器とを設けるとともに暖房時
の冷媒流れに対し第1の室外熱交換器が上流側となるよ
うに第1、第2の室外熱交換器を直列に接続し、暖房時
に第1の室外熱交換器の入口温度或いは室外温度を基に
四方弁を冷房時の冷媒流れ側に反転して除霜制御を行う
ように構成したため、高温の圧縮機吐出ガスが第1、第
2の室外熱交換器に導かれ、非共沸混合冷媒を使用した
冷凍サイクルにおいて、暖房時の着霜検知及び除霜制御
を適正に行うことができる。また、第1の室外熱交換器
は室外送風機による送風の風上側に位置しているので熱
交換する外気温度が高く、蒸発温度が高くなるため着霜
しにくいことから、暖房性能を向上させることができ
る。
Fifth, the outdoor unit is provided with a first outdoor heat exchanger located on the upwind side and a second outdoor heat exchanger located on the downwind side with respect to the air blown by the outdoor blower, and at the time of heating. The first and second outdoor heat exchangers are connected in series so that the first outdoor heat exchanger is on the upstream side with respect to the refrigerant flow, and the inlet temperature or the outdoor temperature of the first outdoor heat exchanger is changed during heating. Since the four-way valve is configured to reverse the refrigerant flow side during cooling to perform defrost control, the high-temperature compressor discharge gas is guided to the first and second outdoor heat exchangers for non-azeotropic mixing. In a refrigeration cycle that uses a refrigerant, frost formation detection and defrost control during heating can be appropriately performed. In addition, since the first outdoor heat exchanger is located on the windward side of the air blown by the outdoor blower, the outside air temperature for heat exchange is high, and the evaporation temperature is high, so that it is difficult to form frost, and therefore the heating performance is improved. You can
【0045】第6に、室外機には室外送風機による送風
に対し風上に位置させた第1の室外熱交換器と風下に位
置させた第2の室外熱交換器とを設けるとともに暖房時
の冷媒流れに対し第1の室外熱交換器が上流側となるよ
うに第1、第2の室外熱交換器を直列に接続し、暖房時
に第1の室外熱交換器の入口温度或いは室外温度を基に
絞り装置の絞りを緩めて除霜制御を行うように構成した
ため、非共沸混合冷媒を使用した冷凍サイクルにおい
て、暖房時の着霜検知及び除霜制御を適正に行うことが
できる。また、第1の室外熱交換器は室外送風機による
送風の風上側に位置しているので熱交換する外気温度が
高く、蒸発温度が高くなるため着霜しにくいことから暖
房性能を向上させることができる。
Sixth, the outdoor unit is provided with a first outdoor heat exchanger located on the upwind side and a second outdoor heat exchanger located on the downwind side with respect to the air blown by the outdoor blower, and at the time of heating. The first and second outdoor heat exchangers are connected in series so that the first outdoor heat exchanger is on the upstream side with respect to the refrigerant flow, and the inlet temperature or the outdoor temperature of the first outdoor heat exchanger is changed during heating. Since the defrosting control is performed by loosening the throttle of the expansion device, the frosting detection and the defrosting control during heating can be appropriately performed in the refrigeration cycle using the non-azeotropic mixed refrigerant. Further, since the first outdoor heat exchanger is located on the windward side of the air blown by the outdoor blower, the outside air temperature for heat exchange is high, and the evaporation temperature is high, so frost formation is difficult and the heating performance can be improved. it can.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る空気調和装置の第1実施例におけ
る冷凍サイクルを示す図である。
FIG. 1 is a diagram showing a refrigeration cycle in a first embodiment of an air conditioner according to the present invention.
【図2】本発明の第2実施例における冷凍サイクルを示
す図である。
FIG. 2 is a diagram showing a refrigeration cycle in a second embodiment of the present invention.
【図3】本発明の第3実施例における冷凍サイクルを示
す図である。
FIG. 3 is a diagram showing a refrigeration cycle in a third embodiment of the present invention.
【図4】本発明の第4実施例における冷凍サイクルを示
す図である。
FIG. 4 is a diagram showing a refrigeration cycle in a fourth embodiment of the present invention.
【図5】本発明の第5実施例における冷凍サイクルを示
す図である。
FIG. 5 is a diagram showing a refrigeration cycle in a fifth embodiment of the present invention.
【図6】単一冷媒を使用したときと非共沸混合冷媒を使
用したときの気液相変化時の温度勾配を説明するための
モリエル線図である。
FIG. 6 is a Mollier diagram for explaining a temperature gradient at the time of gas-liquid phase change when a single refrigerant is used and when a non-azeotropic mixed refrigerant is used.
【符号の説明】[Explanation of symbols]
1 室外機 2 圧縮機 3 四方弁 4 絞り機構(絞り装置) 5 第1の室外熱交換器 6 第2の室外熱交換器 7 室外送風機 8 第1の室外熱交換器入口二方弁 9 第2の室外熱交換器入口温度センサ 10 室内機 11 第2の室外熱交換器出口温度センサ 12 室外温度センサ 13 バイパス路 14 除霜用二方弁 15 制御器 16 室内熱交換器 18 第1の室外熱交換器入口温度センサ 19 第1の室外熱交換器出口温度センサ 20 第1の室外熱交換器出口二方弁 1 outdoor unit 2 compressor 3 four-way valve 4 throttle mechanism (throttle device) 5 first outdoor heat exchanger 6 second outdoor heat exchanger 7 outdoor blower 8 first outdoor heat exchanger inlet two-way valve 9 second Outdoor heat exchanger inlet temperature sensor 10 indoor unit 11 second outdoor heat exchanger outlet temperature sensor 12 outdoor temperature sensor 13 bypass path 14 defrosting two-way valve 15 controller 16 indoor heat exchanger 18 first outdoor heat Exchanger inlet temperature sensor 19 First outdoor heat exchanger outlet temperature sensor 20 First outdoor heat exchanger outlet two-way valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 哲司 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 後藤 功一 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Yamashita 8 Shinsita-cho, Isogo-ku, Yokohama, Kanagawa Pref., Institute of Housing and Space Systems Technology, Toshiba Corporation (72) Koichi Goto, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 2-4, Toshiba Keihin Office

Claims (6)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 非共沸混合冷媒を使用した冷凍サイクル
    を有する空気調和装置において、室外機には室外送風機
    による送風に対し風上に位置させた第1の室外熱交換器
    と風下に位置させた第2の室外熱交換器とを設けるとと
    もに該第1、第2の室外熱交換器を並列に接続し、前記
    第2の室外熱交換器には圧縮機吐出ガスをバイパスさせ
    る常閉のバイパス路を接続し、暖房時に前記第2の室外
    熱交換器の入口温度或いは室外温度を基に前記バイパス
    路を開路して除霜制御を行うように構成してなることを
    特徴とする空気調和装置。
    1. In an air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant, the outdoor unit is located leeward with a first outdoor heat exchanger located upwind with respect to air blown by an outdoor blower. And a second outdoor heat exchanger, the first and second outdoor heat exchangers are connected in parallel, and the second outdoor heat exchanger bypasses the compressor discharge gas. An air conditioner configured to connect the paths and open the bypass path based on the inlet temperature or the outdoor temperature of the second outdoor heat exchanger to perform defrost control during heating. .
  2. 【請求項2】 非共沸混合冷媒を使用した冷凍サイクル
    を有する空気調和装置において、室外機には室外送風機
    による送風に対し風上に位置させた第1の室外熱交換器
    と風下に位置させた第2の室外熱交換器とを設けるとと
    もに暖房時の冷媒流れに対し前記第1の室外熱交換器が
    上流側となるように前記第1、第2の室外熱交換器を直
    列に接続し、前記第1の室外熱交換器には圧縮機吐出ガ
    スをバイパスさせる常閉のバイパス路を接続し、暖房時
    に前記第1の室外熱交換器の入口温度或いは室外温度を
    基に前記バイパス路を開路して除霜制御を行うように構
    成してなることを特徴とする空気調和装置。
    2. An air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant, wherein the outdoor unit is located leeward with a first outdoor heat exchanger located upwind with respect to air blown by an outdoor blower. And a second outdoor heat exchanger, and the first and second outdoor heat exchangers are connected in series so that the first outdoor heat exchanger is on the upstream side with respect to the refrigerant flow during heating. , A normally closed bypass passage for bypassing the compressor discharge gas is connected to the first outdoor heat exchanger, and the bypass passage is formed on the basis of the inlet temperature or the outdoor temperature of the first outdoor heat exchanger during heating. An air conditioner characterized by being configured to open and perform defrost control.
  3. 【請求項3】 非共沸混合冷媒を使用し、冷、暖房時に
    おける冷媒順路を設定する四方弁を備えた冷凍サイクル
    を有する空気調和装置において、室外機には室外送風機
    による送風に対し風上に位置させた第1の室外熱交換器
    と風下に位置させた第2の室外熱交換器とを設けるとと
    もに該第1、第2の室外熱交換器を並列に接続し、暖房
    時に前記第2の室外熱交換器の入口温度或いは室外温度
    を基に前記四方弁を反転し、前記第2の室外熱交換器に
    圧縮機吐出ガスを導いて除霜制御を行うように構成して
    なることを特徴とする空気調和装置。
    3. An air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant and having a four-way valve for setting a refrigerant path during cooling and heating, wherein the outdoor unit is upwind with respect to the air blown by an outdoor blower. And a second outdoor heat exchanger located leeward are provided, and the first and second outdoor heat exchangers are connected in parallel, and the second outdoor heat exchanger is connected during heating. The four-way valve is reversed based on the inlet temperature or the outdoor temperature of the outdoor heat exchanger, and the compressor discharge gas is guided to the second outdoor heat exchanger to perform defrost control. A characteristic air conditioner.
  4. 【請求項4】 非共沸混合冷媒を使用し、室内熱交換器
    と室外熱交換器側との間に冷媒流れを絞る絞り装置を備
    えた冷凍サイクルを有する空気調和装置において、室外
    機には室外送風機による送風に対し風上に位置させた第
    1の室外熱交換器と風下に位置させた第2の室外熱交換
    器とを設けるとともに該第1、第2の室外熱交換器を並
    列に接続し、暖房時に前記第2の室外熱交換器の入口温
    度或いは室外温度を基に前記絞り装置の絞りを緩めて除
    霜制御を行うように構成してなることを特徴とする空気
    調和装置。
    4. An air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant and having a throttle device for restricting the refrigerant flow between the indoor heat exchanger and the outdoor heat exchanger side. A first outdoor heat exchanger located on the windward side and a second outdoor heat exchanger located on the leeward side are provided for the air blown by the outdoor blower, and the first and second outdoor heat exchangers are arranged in parallel. An air conditioner that is connected and configured to loosen a throttle of the expansion device and perform defrosting control based on an inlet temperature or an outdoor temperature of the second outdoor heat exchanger during heating.
  5. 【請求項5】 非共沸混合冷媒を使用し、冷、暖房時に
    おける冷媒順路を設定する四方弁を備えた冷凍サイクル
    を有する空気調和装置において、室外機には室外送風機
    による送風に対し風上に位置させた第1の室外熱交換器
    と風下に位置させた第2の室外熱交換器とを設けるとと
    もに暖房時の冷媒流れに対し前記第1の室外熱交換器が
    上流側となるように前記第1、第2の室外熱交換器を直
    列に接続し、暖房時に前記第1の室外熱交換器の入口温
    度或いは室外温度を基に前記四方弁を冷房時の冷媒流れ
    側に反転して除霜制御を行うように構成してなることを
    特徴とする空気調和装置。
    5. An air conditioner having a refrigeration cycle using a non-azeotropic mixed refrigerant and having a four-way valve for setting a refrigerant path during cooling and heating, wherein the outdoor unit is upwind with respect to air blown by an outdoor blower. And a second outdoor heat exchanger located leeward, so that the first outdoor heat exchanger is upstream with respect to the refrigerant flow during heating. The first and second outdoor heat exchangers are connected in series, and the four-way valve is inverted to the refrigerant flow side during cooling based on the inlet temperature or the outdoor temperature of the first outdoor heat exchanger during heating. An air conditioner characterized by being configured to perform defrost control.
  6. 【請求項6】 非共沸混合冷媒を使用し、室内熱交換器
    と室外熱交換器側との間に冷媒流れを絞る絞り装置を備
    えた冷凍サイクルを有する空気調和装置において、室外
    機には室外送風機による送風に対し風上に位置させた第
    1の室外熱交換器と風下に位置させた第2の室外熱交換
    器とを設けるとともに暖房時の冷媒流れに対し前記第1
    の室外熱交換器が上流側となるように前記第1、第2の
    室外熱交換器を直列に接続し、暖房時に前記第1の室外
    熱交換器の入口温度或いは室外温度を基に前記絞り装置
    の絞りを緩めて除霜制御を行うように構成してなること
    を特徴とする空気調和装置。
    6. An air conditioner having a refrigeration cycle, which uses a non-azeotropic mixed refrigerant and is provided with a throttle device for narrowing the flow of the refrigerant between the indoor heat exchanger and the outdoor heat exchanger side. The first outdoor heat exchanger located on the windward side and the second outdoor heat exchanger located on the leeward side are provided for the air blown by the outdoor blower, and the first outdoor heat exchanger is provided for the refrigerant flow during heating.
    The first and second outdoor heat exchangers are connected in series so that the outdoor heat exchanger of FIG. 1 is on the upstream side, and the throttle is based on the inlet temperature or the outdoor temperature of the first outdoor heat exchanger during heating. An air conditioner characterized by being configured so that defrosting control is performed by loosening a diaphragm of the device.
JP5753294A 1993-03-30 1994-03-28 Air-conditioning equipment Pending JPH074794A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7248493 1993-03-30
JP5-72484 1993-03-30
JP5753294A JPH074794A (en) 1993-03-30 1994-03-28 Air-conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5753294A JPH074794A (en) 1993-03-30 1994-03-28 Air-conditioning equipment

Publications (1)

Publication Number Publication Date
JPH074794A true JPH074794A (en) 1995-01-10

Family

ID=26398595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5753294A Pending JPH074794A (en) 1993-03-30 1994-03-28 Air-conditioning equipment

Country Status (1)

Country Link
JP (1) JPH074794A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
JP2008249236A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2011012844A (en) * 2009-06-30 2011-01-20 Panasonic Corp Refrigerating cycle device
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
KR101381372B1 (en) * 2008-06-12 2014-04-04 엘지전자 주식회사 Air conditioner
US8852391B2 (en) 2010-06-21 2014-10-07 Brewer Science Inc. Method and apparatus for removing a reversibly mounted device wafer from a carrier substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
JP2008249236A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner
KR101381372B1 (en) * 2008-06-12 2014-04-04 엘지전자 주식회사 Air conditioner
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2011012844A (en) * 2009-06-30 2011-01-20 Panasonic Corp Refrigerating cycle device
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
US8852391B2 (en) 2010-06-21 2014-10-07 Brewer Science Inc. Method and apparatus for removing a reversibly mounted device wafer from a carrier substrate

Similar Documents

Publication Publication Date Title
US8567203B2 (en) Air conditioner and defrosting operation method of the same
WO1997044625A1 (en) Heat pump systems and methods incorporating subcoolers for conditioning air
WO2007052898A1 (en) Air conditioning system for communication equipment and controlling method thereof
KR100186526B1 (en) Defrosting apparatus of heat pump
KR100225636B1 (en) Airconditioner for both cooling and warming
JP2001355941A (en) Heat pump system
JPH074794A (en) Air-conditioning equipment
JP3155645B2 (en) Air conditioner
JP2002188873A (en) Refrigerating equipment of air conditioner
KR100595554B1 (en) Heat-pump type airconditioner
KR100591323B1 (en) Heat pump type air conditioner
JP3724011B2 (en) Air conditioner
JP3723824B2 (en) Air conditioner
JPH09119754A (en) Air conditioner
JP2008121995A (en) Air conditioner
JPH10196984A (en) Air conditioner
JPH05340643A (en) Air conditioner
CN109959180B (en) Air conditioning system and defrosting method thereof
JP2653749B2 (en) Heat pump package
JP2001330347A (en) Air-conditioner
JPH07180927A (en) Multi-chamber type cooling and heating device
JPH06337176A (en) Air-conditioner
JPH07103622A (en) Air-conditioner
JP2000337720A (en) Air conditioner
JPH08320172A (en) Air conditioner