JP2011012844A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2011012844A
JP2011012844A JP2009154977A JP2009154977A JP2011012844A JP 2011012844 A JP2011012844 A JP 2011012844A JP 2009154977 A JP2009154977 A JP 2009154977A JP 2009154977 A JP2009154977 A JP 2009154977A JP 2011012844 A JP2011012844 A JP 2011012844A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
heat exchanger
auxiliary heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009154977A
Other languages
Japanese (ja)
Inventor
Noriho Okaza
典穂 岡座
Yoshiki Yamaoka
由樹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009154977A priority Critical patent/JP2011012844A/en
Publication of JP2011012844A publication Critical patent/JP2011012844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating cycle device free from radiation of heat in an internal heat exchanger during a defrosting operation without increasing manufacturing cost.SOLUTION: This refrigerating cycle device has a refrigerant circuit formed by successively connecting a compressor 21, a radiator 22, a pressure reducing means 23 and an evaporator 24, an air distributing means 27 for distributing the air to the evaporator 24, and an auxiliary heat exchanger 31 for heating at least a part of the air distributed by the air distributing means 27 by a refrigerant flowing out of the radiator 22. The refrigerant is successively circulated in the compressor 21, the radiator 22, the pressure reducing means 23 and the evaporator 24, the motion of the defrosting operation reduced in rotational frequency of the air distributing means 27, is performed, and the refrigerant at an outlet section of the evaporator 24 is heated by the air heated by the auxiliary heat exchanger 31.

Description

本発明は、低温の流体を加熱して高温の流体を生成するヒートポンプ式給湯機、ヒートポンプ式温水暖房機などに利用される冷凍サイクル装置に関し、特に蒸発器の除霜を効率よく実施できる冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus used in a heat pump type hot water heater, a heat pump type hot water heater, and the like that generates a high temperature fluid by heating a low temperature fluid, and in particular, a refrigeration cycle that can efficiently perform defrosting of an evaporator. Relates to the device.

ヒートポンプ式給湯機、ヒートポンプ式温水暖房機などに利用される冷凍サイクル装置において、内部熱交換器を設け、この内部熱交換器によって、放熱器から膨張弁に供給される冷媒と蒸発器から圧縮機に供給される冷媒との熱交換を行い、圧縮機に吸入される冷媒温度を高めることで、圧縮機の吐出温度を高め、その結果、放熱器で生成される被加熱流体(例えば、湯や不凍液)の温度を高めるものが提案されている(例えば、特許文献1参照)。   An internal heat exchanger is provided in a refrigeration cycle apparatus used for a heat pump type hot water heater, a heat pump type hot water heater, and the like. By this internal heat exchanger, a refrigerant supplied from a radiator to an expansion valve and an evaporator to a compressor Heat exchange with the refrigerant supplied to the compressor, and the refrigerant temperature sucked into the compressor is increased to increase the discharge temperature of the compressor. As a result, the fluid to be heated (for example, hot water or The thing which raises the temperature of an antifreeze liquid is proposed (for example, refer patent document 1).

図5に内部熱交換器を用いた冷凍サイクル装置の概略図を示す。図5において、冷凍サイクル装置10は、圧縮機11、放熱器12、膨張弁13、及び蒸発器14を配管で接続して冷凍サイクルが構成されている。内部熱交換器15は、蒸発器14から圧縮機11に至る低圧側流路15Aを流れる低圧側冷媒と、放熱器12から膨張弁13に至る高圧側流路15Bを流れる高圧冷媒との間で熱交換を行うように構成されている。   FIG. 5 shows a schematic diagram of a refrigeration cycle apparatus using an internal heat exchanger. In FIG. 5, the refrigeration cycle apparatus 10 has a refrigeration cycle in which a compressor 11, a radiator 12, an expansion valve 13, and an evaporator 14 are connected by piping. The internal heat exchanger 15 is between the low-pressure side refrigerant flowing through the low-pressure side flow path 15A from the evaporator 14 to the compressor 11 and the high-pressure refrigerant flowing through the high-pressure side flow path 15B from the radiator 12 to the expansion valve 13. It is configured to perform heat exchange.

このような冷凍サイクル装置において、低温の被加熱流体を高温に加熱する加熱運転を継続すると、外気温度が低い場合には蒸発器14に着霜が生じ、加熱能力が低下することがある。   In such a refrigeration cycle apparatus, if the heating operation for heating the low-temperature fluid to be heated is continued, frosting may occur in the evaporator 14 when the outside air temperature is low, and the heating capacity may be reduced.

従来、蒸発器14についた霜を除霜する方法として、放熱器12に流体を搬送する搬送ポンプ18を停止するとともに膨張弁13の開度を通常運転時より大きくする方法が提案されている(例えば、特許文献2参照)。   Conventionally, as a method for defrosting the frost on the evaporator 14, a method has been proposed in which the transport pump 18 that transports fluid to the radiator 12 is stopped and the opening of the expansion valve 13 is made larger than that during normal operation ( For example, see Patent Document 2).

これによれば、圧縮機11より吐出された高温冷媒が放熱器12で放熱する熱エネルギー量を少なくでき、かつ、膨張弁13での減圧による温度低下を小さくできるために、圧縮機11より吐出された高温冷媒が大きく温度低下することなく蒸発器14まで到達して、除霜を行うことができるとされている。   According to this, since the amount of heat energy that the high-temperature refrigerant discharged from the compressor 11 dissipates in the radiator 12 can be reduced and the temperature drop due to the decompression at the expansion valve 13 can be reduced, the refrigerant discharged from the compressor 11 is discharged. It is said that defrosting can be performed by the high-temperature refrigerant that has reached the evaporator 14 without greatly decreasing the temperature.

また、別の従来の除霜方法として、放熱器12を通さずに圧縮機11の冷媒出口から蒸発器14に高圧冷媒が流れるようにバイパス回路を構成し、さらにバイパス回路に電磁弁等の流量調整弁を配置し、除霜運転時にはこの流量調整弁を開とし、高温冷媒を蒸発器14に導入させる除霜方法も提案されている(例えば、特許文献3参照)。   As another conventional defrosting method, a bypass circuit is configured so that high-pressure refrigerant flows from the refrigerant outlet of the compressor 11 to the evaporator 14 without passing through the radiator 12, and the flow rate of an electromagnetic valve or the like is further provided in the bypass circuit. There has also been proposed a defrosting method in which a regulating valve is arranged and the flow rate regulating valve is opened during a defrosting operation to introduce a high-temperature refrigerant into the evaporator 14 (see, for example, Patent Document 3).

特開平11−193958号公報Japanese Patent Laid-Open No. 11-193958 特開2001−82802号公報JP 2001-82802 A 特開2001−108256号公報JP 2001-108256 A

近年、省エネルギー化の観点から、除霜運転を短時間に効率よく実施することが求められている。内部熱交換器を有する冷凍サイクル装置において、特許文献2に記載の技術に
よる除霜運転を行えば、除霜運転時に、圧縮機から吐出された高温冷媒は、内部熱交換器内で蒸発器を出た低温の冷媒に熱を奪われてしまうために、蒸発器に与えられる熱量が減少し、除霜運転時間が長くなるという課題がある。
In recent years, from the viewpoint of energy saving, it has been required to efficiently perform a defrosting operation in a short time. In a refrigeration cycle apparatus having an internal heat exchanger, if the defrosting operation is performed by the technique described in Patent Document 2, the high-temperature refrigerant discharged from the compressor during the defrosting operation is caused to pass through the evaporator in the internal heat exchanger. Since the low-temperature refrigerant that has come out is deprived of heat, there is a problem that the amount of heat given to the evaporator decreases and the defrosting operation time becomes longer.

一方、特許文献3に記載の技術によれば、圧縮機から吐出された高温冷媒は、内部熱交換器を通ることなく、蒸発器に供給されるために、内部熱交換器内で熱を奪われることはないが、バイパス回路や電磁弁等を設置する必要があるため、製造コストが増加するという課題がある。   On the other hand, according to the technique described in Patent Document 3, the high-temperature refrigerant discharged from the compressor is supplied to the evaporator without passing through the internal heat exchanger, so that heat is taken away in the internal heat exchanger. However, there is a problem that the manufacturing cost increases because it is necessary to install a bypass circuit, a solenoid valve, or the like.

上記事情に鑑み、本発明は、製造コストを増加させることなく、除霜運転中に内部熱交換器で熱を放熱することのない冷凍サイクル装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a refrigeration cycle apparatus that does not dissipate heat in an internal heat exchanger during a defrosting operation without increasing manufacturing costs.

上記課題を解決するために、本発明の冷凍サイクル装置は、圧縮機、放熱器、減圧手段、蒸発器を順に接続して形成した冷媒回路と、前記蒸発器に空気を送風する送風手段と、前記放熱器から流出した冷媒が前記送風手段により送風される空気の少なくとも一部を加熱する補助熱交換器と備え、冷媒を前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に循環させ、かつ、前記送風手段の回転数を低減させた除霜運転動作を行うとともに、前記補助熱交換器により加熱された空気が、前記蒸発器出口部の冷媒を加熱するように構成したことを特徴とするもので、加熱運転時には、従来の内部熱交換器と同等の効果を得ることができ、かつ、除霜運転時には、ファンの回転数を低減することで、補助熱交換器に供給される空気量を低減し、補助熱交換器と蒸発器出口部の熱交換量が低減できるために、従来の内部熱交換器のように、蒸発器出口の低温の冷媒に熱を奪われることがなく、圧縮機から吐出された冷媒の熱を効果的に蒸発器に供給できるために、効率のよい除霜運転が行える。   In order to solve the above problems, a refrigeration cycle apparatus of the present invention includes a refrigerant circuit formed by connecting a compressor, a radiator, a decompression unit, and an evaporator in order, and a blowing unit that blows air to the evaporator, The refrigerant that has flowed out of the radiator includes an auxiliary heat exchanger that heats at least a part of the air blown by the blowing unit, and the refrigerant is circulated in the order of the compressor, the radiator, the pressure reducing unit, and the evaporator. And a defrosting operation operation in which the number of rotations of the blowing unit is reduced, and the air heated by the auxiliary heat exchanger is configured to heat the refrigerant at the outlet portion of the evaporator. It is characterized by being able to obtain the same effect as a conventional internal heat exchanger during heating operation, and is supplied to the auxiliary heat exchanger by reducing the rotation speed of the fan during defrosting operation. Reducing the amount of air Since the amount of heat exchange between the auxiliary heat exchanger and the evaporator outlet can be reduced, unlike the conventional internal heat exchanger, heat is not taken away by the low-temperature refrigerant at the evaporator outlet, and is discharged from the compressor. Since the heat of the refrigerant can be effectively supplied to the evaporator, an efficient defrosting operation can be performed.

本発明によれば、製造コストを増大させることなく、効率のよい除霜運転が行えるために、効率よく流体を加熱できる冷凍サイクル装置を提供できる。   According to the present invention, since an efficient defrosting operation can be performed without increasing the manufacturing cost, a refrigeration cycle apparatus capable of efficiently heating a fluid can be provided.

本発明の実施の形態1におけるヒートポンプ給湯機の概略構成図1 is a schematic configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. 同除霜運転前後のタイムチャートTime chart before and after the defrosting operation 同蒸発器および補助熱交換器の概略正面図Schematic front view of the evaporator and auxiliary heat exchanger 同蒸発器および補助熱交換器の概略側面図Schematic side view of the evaporator and auxiliary heat exchanger 従来の冷凍サイクル装置の概略構成図Schematic configuration diagram of a conventional refrigeration cycle apparatus

第1の発明は、圧縮機、放熱器、減圧手段、蒸発器を順に接続して形成した冷媒回路と、前記蒸発器に空気を送風する送風手段と、前記放熱器から流出した冷媒が前記送風手段により送風される空気の少なくとも一部を加熱する補助熱交換器と備え、冷媒を前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に循環させ、かつ、前記送風手段の回転数を低減させた除霜運転動作を行うとともに、前記補助熱交換器により加熱された空気が、前記蒸発器出口部の冷媒を加熱するように構成したことを特徴とするもので、加熱運転時には、従来の内部熱交換器と同等の効果を得ることができ、かつ、除霜運転時には、ファンの回転数を低減することで、補助熱交換器に供給される空気量を低減し、補助熱交換器と蒸発器出口部の熱交換量が低減できるために、従来の内部熱交換器のように、蒸発器出口の低温の冷媒に熱を奪われることがなく、圧縮機から吐出された冷媒の熱を効果的に蒸発器に供給できるために、効率のよい除霜運転が行える。   A first aspect of the present invention is a refrigerant circuit formed by connecting a compressor, a radiator, a decompression unit, and an evaporator in order, a blowing unit that blows air to the evaporator, and a refrigerant that flows out of the radiator An auxiliary heat exchanger for heating at least a part of the air blown by the means, circulating the refrigerant in the order of the compressor, the radiator, the pressure reducing means, and the evaporator, and the number of rotations of the blower means In the heating operation, the defrosting operation is performed while the air heated by the auxiliary heat exchanger is configured to heat the refrigerant at the outlet of the evaporator. The same effect as a conventional internal heat exchanger can be obtained, and during the defrosting operation, the amount of air supplied to the auxiliary heat exchanger can be reduced by reducing the number of rotations of the fan, and auxiliary heat exchange The amount of heat exchange between the Because it can be reduced, the heat of the refrigerant discharged from the compressor can be effectively supplied to the evaporator without being deprived of heat by the low-temperature refrigerant at the outlet of the evaporator unlike the conventional internal heat exchanger. In addition, an efficient defrosting operation can be performed.

第2の発明は、第1の発明において、補助熱交換器を、蒸発器と一体に形成したことを特徴とするもので、補助熱交換器を蒸発器と類似の部材で、構成できるために、製造コストを増大させることなく、効率のよい除霜運転が行える。   The second invention is characterized in that, in the first invention, the auxiliary heat exchanger is formed integrally with the evaporator, and the auxiliary heat exchanger can be constituted by a member similar to the evaporator. Efficient defrosting operation can be performed without increasing the manufacturing cost.

第3の発明は、第1または第2の発明において、補助熱交換器は、蒸発器と熱伝導による伝熱が生じないように構成したことを特徴とするもので、除霜運転時には、冷媒の熱が、補助熱交換器から蒸発器に熱伝導により移動することなく、圧縮機から吐出された冷媒の熱を効果的に蒸発器に供給できるために、効率のよい除霜運転が行える。   A third invention is characterized in that, in the first or second invention, the auxiliary heat exchanger is configured such that heat transfer by heat conduction with the evaporator does not occur. Since the heat of the refrigerant discharged from the compressor can be effectively supplied to the evaporator without transferring the heat from the auxiliary heat exchanger to the evaporator by heat conduction, an efficient defrosting operation can be performed.

第4の発明は、第1または第2の発明において、補助熱交換器は、蒸発器の送風流路上流側に配設したことを特徴とするもので、除霜運転時には、ファンが完全に停止していない場合であっても、補助熱交換器を流れる空気は、蒸発器で冷却された空気ではなく、外気であるために、補助熱交換器において冷媒の熱が奪われる量を低減でき、圧縮機から吐出された冷媒の熱を効果的に蒸発器に供給できるために、効率のよい除霜運転が行える。   A fourth invention is characterized in that, in the first or second invention, the auxiliary heat exchanger is arranged on the upstream side of the air flow path of the evaporator, and the fan is completely operated during the defrosting operation. Even if it is not stopped, the air flowing through the auxiliary heat exchanger is not the air cooled by the evaporator but the outside air, so that the amount of heat taken from the refrigerant in the auxiliary heat exchanger can be reduced. Since the heat of the refrigerant discharged from the compressor can be effectively supplied to the evaporator, an efficient defrosting operation can be performed.

第5の発明は、第1または第2の発明において、補助熱交換器を、蒸発器の下方に配設するとともに、前記蒸発器の結露水が前記補助熱交換器に付着することを防止するための防止部材を設けたことを特徴とするもので、補助熱交換器において冷媒の熱が、ドレイン水に奪われることなく、圧縮機から吐出された冷媒の熱を効果的に蒸発器に供給できるために、効率のよい除霜運転が行える。   According to a fifth invention, in the first or second invention, the auxiliary heat exchanger is disposed below the evaporator, and the condensed water of the evaporator is prevented from adhering to the auxiliary heat exchanger. For preventing the heat of the refrigerant in the auxiliary heat exchanger from being taken away by the drain water, and effectively supplying the heat of the refrigerant discharged from the compressor to the evaporator. Therefore, efficient defrosting operation can be performed.

以下、添付の図面を参照しつつ、本発明の実施の形態について説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態にかかる冷凍サイクル装置の構成概略図である。冷凍サイクル装置20は、冷媒を高温、高圧に圧縮する圧縮機21と、圧縮機21で圧縮された冷媒により低温の水を加熱する放熱器22と、放熱器22で冷却された冷媒を外気によりさらに冷却する補助熱交換器31と、補助熱交換器31を流出した冷媒を減圧する膨張弁23と、膨張弁23で減圧した冷媒を蒸発させる蒸発器24とを備えている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to the present embodiment. The refrigeration cycle apparatus 20 includes a compressor 21 that compresses a refrigerant to a high temperature and a high pressure, a radiator 22 that heats low-temperature water using the refrigerant compressed by the compressor 21, and a refrigerant that is cooled by the radiator 22 by outside air. Furthermore, an auxiliary heat exchanger 31 for cooling, an expansion valve 23 for reducing the pressure of the refrigerant flowing out of the auxiliary heat exchanger 31, and an evaporator 24 for evaporating the refrigerant reduced by the expansion valve 23 are provided.

圧縮機21、放熱器22、補助熱交換器31、膨張弁23および蒸発器24は、この順番で冷媒が循環するように冷媒配管26によって相互に接続され冷凍サイクル回路を構成している。冷凍サイクル回路には、二酸化炭素(R744)が冷媒として充填されている。蒸発器24の近傍にはファン27が設けられている。ファン27は、蒸発器24で冷媒と熱交換するべき空気を蒸発器24に供給する。また、搬送ポンプ28は、放熱器22で冷媒と熱交換するべき被加熱流体(たとえば、水)を、被加熱流体配管29を介して放熱器22に供給する。   The compressor 21, the radiator 22, the auxiliary heat exchanger 31, the expansion valve 23, and the evaporator 24 are connected to each other by a refrigerant pipe 26 so that the refrigerant circulates in this order to constitute a refrigeration cycle circuit. The refrigeration cycle circuit is filled with carbon dioxide (R744) as a refrigerant. A fan 27 is provided in the vicinity of the evaporator 24. The fan 27 supplies air to be exchanged with the refrigerant in the evaporator 24 to the evaporator 24. Further, the transport pump 28 supplies a heated fluid (for example, water) to be heat-exchanged with the refrigerant by the radiator 22 to the radiator 22 via the heated fluid pipe 29.

補助熱交換器31は、蒸発器24と同様に、フィンチューブ型熱交換器に代表される空気熱交換器である。補助熱交換器31と蒸発器24は、ファン27により送風される送風回路32の中に設置されており、補助熱交換器31を通過する際に加熱された空気が、蒸発器24の冷媒出口部24aを流れる冷媒を加熱するように構成されている。   The auxiliary heat exchanger 31 is an air heat exchanger represented by a fin tube type heat exchanger, like the evaporator 24. The auxiliary heat exchanger 31 and the evaporator 24 are installed in a blower circuit 32 that is blown by a fan 27, and air heated when passing through the auxiliary heat exchanger 31 is used as a refrigerant outlet of the evaporator 24. The refrigerant flowing through the portion 24a is heated.

なお、圧縮機21には、スクロール式、レシプロ式、ロータリ式などの容積式の流体機構を採用できる。放熱器22には、二重管式、プレート式などの熱交換器が採用できる。膨張弁23には電動膨張弁が採用できる。   The compressor 21 may employ a positive displacement fluid mechanism such as a scroll type, a reciprocating type, or a rotary type. A heat exchanger such as a double tube type or a plate type can be adopted as the radiator 22. An electric expansion valve can be adopted as the expansion valve 23.

次に、上述のように構成された冷凍サイクル装置の動作について説明する。まず、通常の冷凍サイクル装置20の運転状態である、低温の被加熱流体を高温に加熱する加熱運転
について説明する。
Next, the operation of the refrigeration cycle apparatus configured as described above will be described. First, a heating operation for heating a low-temperature fluid to be heated to a high temperature, which is an operation state of the normal refrigeration cycle apparatus 20, will be described.

圧縮機21により圧縮された冷媒は、高温高圧状態となり、放熱器22の冷媒流路22aを流れる際に、放熱器22の被加熱流体流路22bを流れる水に放熱し冷却される。放熱器22を流出した冷媒は補助熱交換器31に供給される。補助熱交換器31で、冷媒はファン27によって送り込まれる空気により、さらに冷却される。   The refrigerant compressed by the compressor 21 is in a high-temperature and high-pressure state, and when flowing through the refrigerant flow path 22a of the radiator 22, it dissipates heat to the water flowing through the heated fluid flow path 22b of the radiator 22 and is cooled. The refrigerant that has flowed out of the radiator 22 is supplied to the auxiliary heat exchanger 31. In the auxiliary heat exchanger 31, the refrigerant is further cooled by the air sent by the fan 27.

一方、ファン27によって送り込まれる空気は、補助熱交換器31を流れる冷媒により加熱され、蒸発器冷媒出口部24aに供給される。その後、冷媒は膨張弁23で減圧され低温低圧の気液二相状態となり、蒸発器24に供給される。蒸発器24で、冷媒はファン27によって送り込まれる空気によって加熱され、気液二相またはガス状態となる。また、蒸発器冷媒出口部24aでは、補助熱交換器31を通過する際に加熱された空気により、冷媒はさらに加熱される。その後、蒸発器24を流出した冷媒は、再び、圧縮機21に吸入される。   On the other hand, the air sent by the fan 27 is heated by the refrigerant flowing through the auxiliary heat exchanger 31 and supplied to the evaporator refrigerant outlet 24a. Thereafter, the refrigerant is depressurized by the expansion valve 23 to be in a low-temperature and low-pressure gas-liquid two-phase state and supplied to the evaporator 24. In the evaporator 24, the refrigerant is heated by the air sent by the fan 27, and enters a gas-liquid two-phase or gas state. Further, at the evaporator refrigerant outlet portion 24a, the refrigerant is further heated by the air heated when passing through the auxiliary heat exchanger 31. Thereafter, the refrigerant that has flowed out of the evaporator 24 is again sucked into the compressor 21.

一方、被加熱流体である水は、搬送ポンプ28により放熱器22の被加熱流体流路22bへ送り込まれ、放熱器22の冷媒流路22aを流れる冷媒により加熱され、高温のお湯となる。これらのお湯は、図示しない機器に供給され、給湯、暖房などに利用される。   On the other hand, the water to be heated is sent to the heated fluid flow path 22b of the radiator 22 by the transfer pump 28, and is heated by the refrigerant flowing through the refrigerant flow path 22a of the radiator 22 to become hot hot water. These hot water is supplied to equipment (not shown) and used for hot water supply, heating, and the like.

ここで、補助熱交換器31の効果について述べる。補助熱交換器31は、供給される空気を介して、放熱器22から膨張弁23に供給される冷媒と蒸発器24から圧縮機21に供給される冷媒との熱交換を行うものであり、従来の内部熱交換器と同等の効果を有する。   Here, the effect of the auxiliary heat exchanger 31 will be described. The auxiliary heat exchanger 31 performs heat exchange between the refrigerant supplied from the radiator 22 to the expansion valve 23 and the refrigerant supplied from the evaporator 24 to the compressor 21 through the supplied air. It has the same effect as a conventional internal heat exchanger.

すなわち、圧縮機21に吸入される冷媒の温度を高めることで、圧縮機21の吐出温度を高め、その結果、放熱器22で生成される被加熱流体である湯の温度を高めることができるために、冷凍サイクル装置を効率よく運転することができる。   That is, by increasing the temperature of the refrigerant sucked into the compressor 21, the discharge temperature of the compressor 21 can be increased, and as a result, the temperature of hot water that is the heated fluid generated by the radiator 22 can be increased. In addition, the refrigeration cycle apparatus can be operated efficiently.

次に、除霜運転について説明する。冷凍サイクル装置20は、加熱運転を継続すると、外気温度が低い場合には蒸発器24に着霜が生じ、加熱能力が低下することがある。除霜運転とは、そのような場合に、蒸発器24の霜を融解する運転である。   Next, the defrosting operation will be described. When the refrigeration cycle apparatus 20 continues the heating operation, when the outside air temperature is low, frost forms in the evaporator 24, and the heating capacity may decrease. The defrosting operation is an operation for melting the frost of the evaporator 24 in such a case.

外気温度を検知する外気温度検知手段(図示せず)や蒸発器温度検知手段(図示せず)などの信号により、電子制御手段(図示せず)が蒸発器24の除霜が必要と判断した場合には、加熱運転から除霜運転に切り換えられ、ファン27、搬送ポンプ28、膨張弁23などに制御信号が送られる。   The electronic control means (not shown) determines that the evaporator 24 needs to be defrosted based on signals from an outside temperature detecting means (not shown) for detecting the outside air temperature and an evaporator temperature detecting means (not shown). In this case, the heating operation is switched to the defrosting operation, and a control signal is sent to the fan 27, the transfer pump 28, the expansion valve 23, and the like.

ファン27、搬送ポンプ28、膨張弁23の動作について、図2を用いて説明する。除霜運転に切り換わると、ファン27の回転数(Frpm2)を、加熱運転時の平均的な回転数(Frpm1)より小さくするとともに、搬送ポンプ28の回転数(Prpm2)を、加熱運転時の平均的な回転数(Prpm1)より小さくする。また、膨張弁23の開度を加熱運転時の平均的な開度(pls1)より大きい所定開度(pls2)に変更する。   Operations of the fan 27, the transport pump 28, and the expansion valve 23 will be described with reference to FIG. When switching to the defrosting operation, the rotation speed (Frpm2) of the fan 27 is made smaller than the average rotation speed (Frpm1) during the heating operation, and the rotation speed (Prpm2) of the transport pump 28 is changed during the heating operation. It is made smaller than the average rotation speed (Prpm1). Moreover, the opening degree of the expansion valve 23 is changed to a predetermined opening degree (pls2) larger than the average opening degree (pls1) during the heating operation.

この結果、除霜運転中には、圧縮機21を出た高温の冷媒は、放熱器22、補助熱交換器31、膨張弁23を流れて、蒸発器24に供給される。蒸発器24で、高温の冷媒の熱により霜を融かす。そして、蒸発器24を流出した冷媒は、再び、圧縮機21に吸入される。   As a result, during the defrosting operation, the high-temperature refrigerant that has exited the compressor 21 flows through the radiator 22, the auxiliary heat exchanger 31, and the expansion valve 23 and is supplied to the evaporator 24. In the evaporator 24, frost is melted by the heat of the high-temperature refrigerant. Then, the refrigerant that has flowed out of the evaporator 24 is again sucked into the compressor 21.

本実施の形態では、ファン27の回転数を低減することで、補助熱交換器31に供給される空気の量が少なくなる。このために、圧縮機21より吐出された高温の冷媒は、補助
熱交換器31で空気に熱を奪われることなく、蒸発器24に供給される。したがって、高温の冷媒を、蒸発器24に供給でき、除霜運転を短時間で行うことが可能である。
In the present embodiment, the amount of air supplied to the auxiliary heat exchanger 31 is reduced by reducing the rotational speed of the fan 27. For this reason, the high-temperature refrigerant discharged from the compressor 21 is supplied to the evaporator 24 without the heat being taken away by the auxiliary heat exchanger 31. Therefore, a high-temperature refrigerant can be supplied to the evaporator 24, and the defrosting operation can be performed in a short time.

なお、除霜運転中の搬送ポンプ28の回転数を低減することで、被加熱流体流路22bに供給される水の量が少なくなり、圧縮機21より吐出された高温の冷媒が、放熱器22で熱を奪われることがないこと、また、膨張弁23の開度を増加させることで、圧縮機21より吐出された高温の冷媒が、膨張弁23での減圧による温度低下することを低減できること、さらに、ファン27の回転数を低減することで、蒸発器24で冷媒と空気が熱交換することを低減でき、蒸発器24に付着した霜へ冷媒の熱を効率よく伝えることができることについては、従来の技術と同様である。   In addition, by reducing the rotation speed of the conveyance pump 28 during the defrosting operation, the amount of water supplied to the heated fluid flow path 22b is reduced, and the high-temperature refrigerant discharged from the compressor 21 becomes a radiator. 22 is not deprived of heat, and the opening degree of the expansion valve 23 is increased, so that the high-temperature refrigerant discharged from the compressor 21 is prevented from lowering the temperature due to the decompression of the expansion valve 23. Further, it is possible to reduce heat exchange between the refrigerant and the air in the evaporator 24 by reducing the number of rotations of the fan 27, and to efficiently transfer the heat of the refrigerant to the frost attached to the evaporator 24. Is the same as the conventional technique.

以上述べたように、本実施の形態では、放熱器22から膨張弁23に供給される冷媒と蒸発器24から圧縮機21に供給される冷媒との熱交換を行う内部熱交換器を廃止し、補助熱交換器31により加熱された空気が、蒸発器出口部24aの冷媒を加熱するように構成することで、加熱運転時には、従来の内部熱交換器と同等の効果を得ることができ、かつ、除霜運転時には、ファン27の回転数を低減し、補助熱交換器31に供給される空気量を低減することで、補助熱交換器31と蒸発器出口部24aの熱交換量が低減できるために、従来の内部熱交換器のように、蒸発器24出口の低温の冷媒に熱を奪われて、除霜運転が長時間化する課題を解決できる。さらに、バイパス回路や電磁弁等を設置する必要がないから、製造コストが低減できる。   As described above, in this embodiment, the internal heat exchanger that performs heat exchange between the refrigerant supplied from the radiator 22 to the expansion valve 23 and the refrigerant supplied from the evaporator 24 to the compressor 21 is eliminated. Since the air heated by the auxiliary heat exchanger 31 is configured to heat the refrigerant at the evaporator outlet portion 24a, an effect equivalent to that of the conventional internal heat exchanger can be obtained during the heating operation. At the time of the defrosting operation, the number of heat exchange between the auxiliary heat exchanger 31 and the evaporator outlet portion 24a is reduced by reducing the rotation speed of the fan 27 and reducing the amount of air supplied to the auxiliary heat exchanger 31. Therefore, the problem that the defrosting operation takes a long time due to heat being taken away by the low-temperature refrigerant at the outlet of the evaporator 24 as in the conventional internal heat exchanger can be solved. Furthermore, since it is not necessary to install a bypass circuit or a solenoid valve, the manufacturing cost can be reduced.

次に、本実施の形態の特徴である補助熱交換器31について、さらに詳しく述べる。図3は、蒸発器24と一体に形成された補助熱交換器31の概略正面図であり、図4は、その概略側面図である。図3および図4において、白抜きの矢印は蒸発器24および補助熱交換器31における空気の流れ方向を、実線の矢印は蒸発器24における冷媒の流れ方向を、破線の矢印は補助熱交換器31における冷媒の流れ方向を、それぞれ示している。   Next, the auxiliary heat exchanger 31 that is a feature of the present embodiment will be described in more detail. FIG. 3 is a schematic front view of the auxiliary heat exchanger 31 formed integrally with the evaporator 24, and FIG. 4 is a schematic side view thereof. 3 and 4, the white arrow indicates the air flow direction in the evaporator 24 and the auxiliary heat exchanger 31, the solid line arrow indicates the refrigerant flow direction in the evaporator 24, and the broken arrow indicates the auxiliary heat exchanger. The flow direction of the refrigerant | coolant in 31 is each shown.

蒸発器24は、伝熱管41と複数枚のフィン42(一部のフィンは図の記載を省略)とで構成されたフィンチューブ型熱交換器であり、空気の流れ方向の風上側の列である第1列241と風下側の列である第2列242で構成された2列の空気熱交換器である。   The evaporator 24 is a fin tube type heat exchanger composed of a heat transfer tube 41 and a plurality of fins 42 (some fins are not shown in the figure). This is a two-row air heat exchanger composed of a certain first row 241 and a second row 242 which is a leeward row.

補助熱交換器31は、蒸発器24と同様に、伝熱管51と複数枚のフィン52(一部のフィンは図の記載を省略)とで構成されたフィンチューブ型熱交換器の空気熱交換器である。補助熱交換器31は、蒸発器24の第1列241と略並列で、第1列241の下部であって、蒸発器24の第2列242に設けられた冷媒出口管51b近傍、すなわち、蒸発器冷媒出口部24aを、補助熱交換器31から流出した空気が加熱できる位置に設置されている。   As with the evaporator 24, the auxiliary heat exchanger 31 is an air heat exchange of a finned tube heat exchanger composed of a heat transfer tube 51 and a plurality of fins 52 (some fins are not shown). It is a vessel. The auxiliary heat exchanger 31 is substantially in parallel with the first row 241 of the evaporator 24 and is below the first row 241 and in the vicinity of the refrigerant outlet pipe 51b provided in the second row 242 of the evaporator 24, that is, The evaporator refrigerant outlet 24a is installed at a position where the air flowing out from the auxiliary heat exchanger 31 can be heated.

さらに、補助熱交換器31の複数枚のフィン52と、蒸発器24の複数枚のフィン42との間には、スリット60が設けられており、補助熱交換器31と蒸発器24とは、熱伝導による伝熱が生じないように構成されている。また、補助熱交換器31の複数枚のフィン52の上部には、ドレイン水ガイド板61が備えられている。ドレイン水ガイド板61は、蒸発器24の第2列242側に向かって下がっていく勾配を有しており、蒸発器24のドレイン水が補助熱交換器31に達することを防止する
次に、蒸発器24、および、補助熱交換器31の動作について説明する。まず、加熱運転の場合を説明する。
Furthermore, a slit 60 is provided between the plurality of fins 52 of the auxiliary heat exchanger 31 and the plurality of fins 42 of the evaporator 24, and the auxiliary heat exchanger 31 and the evaporator 24 are It is configured so that heat transfer due to heat conduction does not occur. In addition, a drain water guide plate 61 is provided above the plurality of fins 52 of the auxiliary heat exchanger 31. The drain water guide plate 61 has a slope that decreases toward the second row 242 side of the evaporator 24, and prevents the drain water of the evaporator 24 from reaching the auxiliary heat exchanger 31. Operations of the evaporator 24 and the auxiliary heat exchanger 31 will be described. First, the case of heating operation will be described.

圧縮機21により圧縮された冷媒は、高温高圧状態となり、放熱器22の冷媒流路22aを流れる際に、放熱器22の被加熱流体流路22bを流れる水に放熱し冷却される。放熱器22を流出した冷媒は補助熱交換器31に供給される。補助熱交換器31において、
冷媒は冷媒入口管51aから流入し、伝熱管51を流れる際に、複数枚のフィン52の間を流れる空気により冷却されたのち、冷媒出口管51bから流出する。一方、複数枚のフィン52の間を流れる空気は、伝熱管51を流れる冷媒により加熱される。
The refrigerant compressed by the compressor 21 is in a high-temperature and high-pressure state, and when flowing through the refrigerant flow path 22a of the radiator 22, it dissipates heat to the water flowing through the heated fluid flow path 22b of the radiator 22 and is cooled. The refrigerant that has flowed out of the radiator 22 is supplied to the auxiliary heat exchanger 31. In the auxiliary heat exchanger 31,
The refrigerant flows in from the refrigerant inlet pipe 51a, and when flowing through the heat transfer pipe 51, the refrigerant is cooled by the air flowing between the plurality of fins 52 and then flows out from the refrigerant outlet pipe 51b. On the other hand, the air flowing between the plurality of fins 52 is heated by the refrigerant flowing through the heat transfer tubes 51.

その後、冷媒は膨張弁23で減圧され低温低圧の気液二相状態となり、蒸発器24に供給される。蒸発器24において、冷媒は第1列241に設けられた冷媒入口管41aから流入し、伝熱管41を流れる際に、複数枚のフィン42の間を流れる空気により加熱される。加えて、蒸発器冷媒出口部24aでは、複数枚のフィン52の間を流れて加熱された空気により、冷媒はさらに加熱される。その後、蒸発器24を流出した冷媒は、再び、圧縮機21に吸入される。   Thereafter, the refrigerant is depressurized by the expansion valve 23 to be in a low-temperature and low-pressure gas-liquid two-phase state and supplied to the evaporator 24. In the evaporator 24, the refrigerant flows in from the refrigerant inlet pipe 41 a provided in the first row 241 and is heated by the air flowing between the plurality of fins 42 when flowing through the heat transfer pipe 41. In addition, at the evaporator refrigerant outlet 24a, the refrigerant is further heated by the air heated between the plurality of fins 52 and heated. Thereafter, the refrigerant that has flowed out of the evaporator 24 is again sucked into the compressor 21.

つまり、補助熱交換器31は、供給される空気を介して、放熱器22から膨張弁23に供給される冷媒と蒸発器24から圧縮機21に供給される冷媒との熱交換を行うものであり、従来の内部熱交換器と同等の効果を有する。すなわち、圧縮機21に吸入される冷媒の温度を高めることで、圧縮機21の吐出温度を高め、その結果、放熱器22で生成される被加熱流体である湯の温度を高めることができるために、冷凍サイクル装置を効率よく運転することができる。   That is, the auxiliary heat exchanger 31 exchanges heat between the refrigerant supplied from the radiator 22 to the expansion valve 23 and the refrigerant supplied from the evaporator 24 to the compressor 21 via the supplied air. Yes, it has the same effect as a conventional internal heat exchanger. That is, by increasing the temperature of the refrigerant sucked into the compressor 21, the discharge temperature of the compressor 21 can be increased, and as a result, the temperature of hot water that is the heated fluid generated by the radiator 22 can be increased. In addition, the refrigeration cycle apparatus can be operated efficiently.

次に、除霜運転の場合を説明する。外気温度を検知する外気温度検知手段(図示せず)や蒸発器温度検知手段(図示せず)などの信号により、電子制御手段(図示せず)が蒸発器24の除霜が必要と判断した場合には、加熱運転から除霜運転に切り換えられ、ファン27、搬送ポンプ28、膨張弁23などに制御信号が送られる。除霜運転に切り換わると、ファン27の回転数を、加熱運転時の平均的な回転数より小さくするとともに、搬送ポンプ28の回転数を、加熱運転時の平均的な回転数より小さくする。   Next, the case of defrosting operation will be described. The electronic control means (not shown) determines that the evaporator 24 needs to be defrosted based on signals from an outside temperature detecting means (not shown) for detecting the outside air temperature and an evaporator temperature detecting means (not shown). In this case, the heating operation is switched to the defrosting operation, and a control signal is sent to the fan 27, the transfer pump 28, the expansion valve 23, and the like. When switching to the defrosting operation, the rotational speed of the fan 27 is made smaller than the average rotational speed during the heating operation, and the rotational speed of the transport pump 28 is made smaller than the average rotational speed during the heating operation.

また、膨張弁23の開度を加熱運転時の平均的な開度より大きい所定開度に変更する。この結果、除霜運転中には、圧縮機21を出た高温の冷媒は、放熱器22、補助熱交換器31、膨張弁23を流れて、蒸発器24に供給される。蒸発器24で、高温の冷媒の熱により霜を融かす。そして、蒸発器24を流出した冷媒は、再び、圧縮機21に吸入される。   Moreover, the opening degree of the expansion valve 23 is changed to a predetermined opening degree that is larger than the average opening degree during the heating operation. As a result, during the defrosting operation, the high-temperature refrigerant that has exited the compressor 21 flows through the radiator 22, the auxiliary heat exchanger 31, and the expansion valve 23 and is supplied to the evaporator 24. In the evaporator 24, frost is melted by the heat of the high-temperature refrigerant. Then, the refrigerant that has flowed out of the evaporator 24 is again sucked into the compressor 21.

一方、蒸発器24において、霜が融けてできた水であるドレイン水は、フィン42の間を滴下し、ドレイン水ガイド板61に集められ、ドレイン水ガイド61に設けられた勾配により、蒸発器24の第2列242側に排出される。   On the other hand, in the evaporator 24, drain water, which is water formed by melting frost, drops between the fins 42, is collected on the drain water guide plate 61, and the evaporator has a gradient provided in the drain water guide 61. 24 is discharged to the second row 242 side.

本実施の形態では、ファン27の回転数を低減することで、補助熱交換器31の複数枚のフィン52の間を流れる空気の量が少なくなる。このために、圧縮機21より吐出された高温の冷媒は、補助熱交換器31で空気に熱を奪われることなく、蒸発器14に供給される。したがって、高温の冷媒を、蒸発器24に供給でき、除霜運転を短時間で行うことが可能である。   In the present embodiment, the amount of air flowing between the plurality of fins 52 of the auxiliary heat exchanger 31 is reduced by reducing the rotational speed of the fan 27. For this reason, the high-temperature refrigerant discharged from the compressor 21 is supplied to the evaporator 14 without the heat being taken away by the auxiliary heat exchanger 31. Therefore, a high-temperature refrigerant can be supplied to the evaporator 24, and the defrosting operation can be performed in a short time.

つまり、放熱器22から膨張弁23に供給される冷媒と蒸発器24から圧縮機21に供給される冷媒との熱交換を行う内部熱交換器を廃止し、補助熱交換器31により加熱された空気が、蒸発器出口部24aの冷媒を加熱するように構成し、補助熱交換器31と蒸発器24との間に、スリット60を設けたこと、補助熱交換器31を蒸発器24の風上側に設けたこと、蒸発器24のドレイン水が補助熱交換器31に達することを防止するドレイン水ガイド61を設けたことにより、加熱運転時には、従来の内部熱交換器と同等の効果を得ることができ、かつ、除霜運転時には、補助熱交換器31の熱が、蒸発器24に熱伝導により移動することなく、ファン27が完全に停止していない場合であっても、補助熱交換器31を流れる空気は、蒸発器24で冷却された空気ではなく、外気であるために、
補助熱交換器31において冷媒の熱が奪われる量を低減し、補助熱交換器31において冷媒の熱が、ドレイン水に奪われることなく、圧縮機21から吐出された冷媒の熱を効果的に発器24に供給できる。
That is, the internal heat exchanger that performs heat exchange between the refrigerant supplied from the radiator 22 to the expansion valve 23 and the refrigerant supplied from the evaporator 24 to the compressor 21 is abolished, and is heated by the auxiliary heat exchanger 31. The air is configured to heat the refrigerant at the evaporator outlet 24 a, and the slit 60 is provided between the auxiliary heat exchanger 31 and the evaporator 24. By providing the drain water guide 61 that is provided on the upper side and prevents the drain water of the evaporator 24 from reaching the auxiliary heat exchanger 31, an effect equivalent to that of the conventional internal heat exchanger is obtained during the heating operation. In addition, during the defrosting operation, the heat of the auxiliary heat exchanger 31 does not move to the evaporator 24 due to heat conduction, and even if the fan 27 is not completely stopped, auxiliary heat exchange is possible. The air flowing through the vessel 31 is steamed Rather than cooled air in vessel 24, to be the outside air,
The amount of heat deprived of the refrigerant in the auxiliary heat exchanger 31 is reduced, and the heat of the refrigerant in the auxiliary heat exchanger 31 is effectively taken away by the drain water, and the heat of the refrigerant discharged from the compressor 21 is effectively reduced. It can be supplied to the generator 24.

さらに、バイパス回路や電磁弁等を設置する必要がないこと、蒸発器24と類似の部材で、蒸発器24と一体に形成できることから、製造コストが低減できる。このために、除霜運転が長時間化する課題を、製造コストをあまり増加させることなく解決できる。   Furthermore, since it is not necessary to install a bypass circuit, a solenoid valve, or the like, and it can be formed integrally with the evaporator 24 by a member similar to the evaporator 24, the manufacturing cost can be reduced. For this reason, the subject that the defrosting operation takes a long time can be solved without significantly increasing the manufacturing cost.

本発明の冷凍サイクル装置は、低温の流体を加熱して高温の流体を生成するヒートポンプ式給湯機、ヒートポンプ式温水暖房機など、家庭用、業務用を問わず広い用途に適用することができる。   The refrigeration cycle apparatus of the present invention can be applied to a wide range of uses, such as heat pump hot water heaters and heat pump hot water heaters that heat a low-temperature fluid to generate a high-temperature fluid, regardless of whether it is for home use or business use.

21 圧縮機
22 放熱器
23 減圧手段(膨張弁)
24 蒸発器
27 送風手段(ファン)
31 補助熱交換器
21 Compressor 22 Radiator 23 Pressure reducing means (expansion valve)
24 Evaporator 27 Blower (fan)
31 Auxiliary heat exchanger

Claims (5)

圧縮機、放熱器、減圧手段、蒸発器を順に接続して形成した冷媒回路と、前記蒸発器に空気を送風する送風手段と、前記放熱器から流出した冷媒が前記送風手段により送風される空気の少なくとも一部を加熱する補助熱交換器と備え、冷媒を前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に循環させ、かつ、前記送風手段の回転数を低減させた除霜運転動作を行うとともに、前記補助熱交換器により加熱された空気が、前記蒸発器出口部の冷媒を加熱するように構成したことを特徴とする冷凍サイクル装置。 A refrigerant circuit formed by sequentially connecting a compressor, a radiator, a decompression unit, and an evaporator, a blowing unit that blows air to the evaporator, and an air that is blown by the blowing unit after the refrigerant has flowed out of the radiator And an auxiliary heat exchanger that heats at least a part of the refrigerant, the refrigerant is circulated in the order of the compressor, the heat radiator, the pressure reducing means, and the evaporator, and the number of revolutions of the air blowing means is reduced. A refrigeration cycle apparatus configured to perform an operation and to be configured such that air heated by the auxiliary heat exchanger heats a refrigerant at an outlet of the evaporator. 補助熱交換器を、蒸発器と一体に形成したことを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the auxiliary heat exchanger is formed integrally with the evaporator. 補助熱交換器は、蒸発器と熱伝導による伝熱が生じないように構成したことを特徴とする請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the auxiliary heat exchanger is configured not to generate heat transfer by heat conduction with the evaporator. 補助熱交換器は、蒸発器の送風流路上流側に配設したことを特徴とする請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the auxiliary heat exchanger is disposed on the upstream side of the air flow path of the evaporator. 補助熱交換器を、蒸発器の下方に配設するとともに、前記蒸発器の結露水が前記補助熱交換器に付着することを防止するための防止部材を設けたことを特徴とする請求項1または2に記載の冷凍サイクル装置。 The auxiliary heat exchanger is disposed below the evaporator, and a prevention member for preventing the condensed water of the evaporator from adhering to the auxiliary heat exchanger is provided. Or the refrigeration cycle apparatus of 2.
JP2009154977A 2009-06-30 2009-06-30 Refrigerating cycle device Pending JP2011012844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154977A JP2011012844A (en) 2009-06-30 2009-06-30 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154977A JP2011012844A (en) 2009-06-30 2009-06-30 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2011012844A true JP2011012844A (en) 2011-01-20

Family

ID=43591934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154977A Pending JP2011012844A (en) 2009-06-30 2009-06-30 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2011012844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857976A (en) * 2011-10-03 2014-06-11 三菱电机株式会社 Refrigeration cycle device
CN110470014A (en) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
CN112432404A (en) * 2020-11-04 2021-03-02 珠海格力电器股份有限公司 Defrosting control method and device for heat pump air conditioning unit, controller and air conditioning system
CN112944594A (en) * 2021-01-29 2021-06-11 青岛海尔空调器有限总公司 Method and device for defrosting control of air conditioner and air conditioner

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107767A (en) * 1978-02-28 1978-09-20 Daikin Ind Ltd Air-cooled heat pump type cooling/heating device
JPS55169965U (en) * 1979-05-23 1980-12-06
JPS57182061U (en) * 1981-05-15 1982-11-18
JPH03117866A (en) * 1989-09-29 1991-05-20 Toshiba Corp Heat pump type refrigerating cycle
JPH03177726A (en) * 1989-12-07 1991-08-01 Mitsubishi Electric Corp Out door unit for air conditioner
JPH074794A (en) * 1993-03-30 1995-01-10 Toshiba Corp Air-conditioning equipment
JPH09217972A (en) * 1996-02-14 1997-08-19 Daikin Ind Ltd Refrigerating device
JP2004218861A (en) * 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2005069593A (en) * 2003-08-26 2005-03-17 Matsushita Electric Ind Co Ltd Electricity storage type air conditioner
JP2005241147A (en) * 2004-02-26 2005-09-08 Toshiba Kyaria Kk Air conditioner
JP2008057910A (en) * 2006-09-01 2008-03-13 Mitsubishi Electric Corp Heat pump hot water supply device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107767A (en) * 1978-02-28 1978-09-20 Daikin Ind Ltd Air-cooled heat pump type cooling/heating device
JPS55169965U (en) * 1979-05-23 1980-12-06
JPS57182061U (en) * 1981-05-15 1982-11-18
JPH03117866A (en) * 1989-09-29 1991-05-20 Toshiba Corp Heat pump type refrigerating cycle
JPH03177726A (en) * 1989-12-07 1991-08-01 Mitsubishi Electric Corp Out door unit for air conditioner
JPH074794A (en) * 1993-03-30 1995-01-10 Toshiba Corp Air-conditioning equipment
JPH09217972A (en) * 1996-02-14 1997-08-19 Daikin Ind Ltd Refrigerating device
JP2004218861A (en) * 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2005069593A (en) * 2003-08-26 2005-03-17 Matsushita Electric Ind Co Ltd Electricity storage type air conditioner
JP2005241147A (en) * 2004-02-26 2005-09-08 Toshiba Kyaria Kk Air conditioner
JP2008057910A (en) * 2006-09-01 2008-03-13 Mitsubishi Electric Corp Heat pump hot water supply device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857976A (en) * 2011-10-03 2014-06-11 三菱电机株式会社 Refrigeration cycle device
US20140216092A1 (en) * 2011-10-03 2014-08-07 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN103857976B (en) * 2011-10-03 2016-08-17 三菱电机株式会社 Refrigerating circulatory device
US9958194B2 (en) 2011-10-03 2018-05-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus with a heating unit for melting frost occurring in a heat exchanger
CN110470014A (en) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
CN112432404A (en) * 2020-11-04 2021-03-02 珠海格力电器股份有限公司 Defrosting control method and device for heat pump air conditioning unit, controller and air conditioning system
CN112944594A (en) * 2021-01-29 2021-06-11 青岛海尔空调器有限总公司 Method and device for defrosting control of air conditioner and air conditioner

Similar Documents

Publication Publication Date Title
JP6644154B2 (en) Air conditioner
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
JP5595140B2 (en) Heat pump type hot water supply / air conditioner
JP6538290B1 (en) Air conditioner
JP2010139097A (en) Air conditioner
JP4428341B2 (en) Refrigeration cycle equipment
CN104204690A (en) Air-conditioning device
JP2011127792A (en) Air heat source heat pump hot water supply and air conditioning device
KR101737365B1 (en) Air conditioner
JP5404761B2 (en) Refrigeration equipment
JP2007322024A (en) Large temperature difference air conditioning system
JP2011012844A (en) Refrigerating cycle device
JP6420677B2 (en) Air conditioner
EP2375187B1 (en) Heat pump apparatus and operation control method of heat pump apparatus
US20100192622A1 (en) Refrigerating system
JP6636200B2 (en) Air conditioner
JP5447438B2 (en) refrigerator
WO2019026234A1 (en) Refrigeration cycle device
JP2009109069A (en) Heat pump water heater
JP4275570B2 (en) Heating tower defrosting method and water-cooled heat pump system
JP2017133727A (en) Heat pump type water heater
JP5267614B2 (en) refrigerator
JP2014066420A (en) Freezer
JP2011133132A (en) Refrigerating device
JP2010255981A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723