JP2011085320A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2011085320A
JP2011085320A JP2009238244A JP2009238244A JP2011085320A JP 2011085320 A JP2011085320 A JP 2011085320A JP 2009238244 A JP2009238244 A JP 2009238244A JP 2009238244 A JP2009238244 A JP 2009238244A JP 2011085320 A JP2011085320 A JP 2011085320A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
liquid refrigerant
compressor
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238244A
Other languages
Japanese (ja)
Other versions
JP5434460B2 (en
Inventor
Makoto Saito
信 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009238244A priority Critical patent/JP5434460B2/en
Publication of JP2011085320A publication Critical patent/JP2011085320A/en
Application granted granted Critical
Publication of JP5434460B2 publication Critical patent/JP5434460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device defrosting in a short period of time and improving startability in restarting heating. <P>SOLUTION: When a frost formation detecting means 15 detects frost formation on an outdoor heat exchanger 10, a reverse cycle defrosting operation for switching a four-way switch valve 6 to a cooling side is carried out. A pump-down operation for switching the four-way switch valve 6 to a heating side and closing a throttle means 9 is carried out when a refrigerant temperature near an indoor heat exchanger 10 becomes lower than a prescribed temperature. A hot gas bypass defrosting operation for opening a bypass valve 13 is carried out when a liquid refrigerant discharge detecting means 14 detects discharge of liquid refrigerant from the outdoor heat exchanger 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、冷媒を循環させる冷凍サイクルを形成して熱交換を行うヒートポンプ装置に関するものであり、特に、蒸発器に付着した霜を融解させる除霜運転を行うヒートポンプ装置に関する。   The present invention relates to a heat pump device that performs heat exchange by forming a refrigeration cycle that circulates refrigerant, and more particularly, to a heat pump device that performs a defrosting operation for melting frost adhering to an evaporator.

外気から採熱して室内空間を暖房する空気調和機などのヒートポンプ装置では、蒸発器として動作する室外熱交換器に着霜するような外気条件の場合、一時的に暖房運転を停止して除霜運転を行うが、暖房運転が停止されることによる室温低下がしばしば問題となる。   In a heat pump device such as an air conditioner that collects heat from the outside air and heats the indoor space, in the case of an outside air condition that forms frost on the outdoor heat exchanger that operates as an evaporator, the heating operation is temporarily stopped to defrost Although the operation is performed, a decrease in room temperature due to the heating operation being stopped is often a problem.

除霜方式には、圧縮機を出た高温の吐出ガス冷媒を蒸発器入口に直接流入させるホットガスバイパス方式や、冷媒回路を冷房運転と同じように切替えて室外熱交換器を凝縮器として運転するリバースサイクル方式があり、さらに、除霜時間を短縮する目的で、この2つの除霜方式を組み合わせて行う方法が知られている(例えば、特許文献1参照)。   The defrosting method includes a hot gas bypass method in which the high-temperature discharged gas refrigerant discharged from the compressor flows directly into the evaporator inlet, and the refrigerant circuit is switched in the same way as the cooling operation to operate the outdoor heat exchanger as a condenser. There is a reverse cycle method, and a method of combining these two defrosting methods for the purpose of shortening the defrosting time is known (for example, see Patent Document 1).

また、リバースサイクル方式で除霜を行っているとき、その除霜熱源である冷媒配管の蓄熱量を検出し、適正なタイミングでホットガスバイパス方式に切替えることで、除霜時間の短縮に加えて暖房運転に復帰した後の暖房能力の立ち上がり性を向上する方法が知られている(例えば、特許文献2参照)。   In addition, when defrosting is performed using the reverse cycle method, the amount of heat stored in the refrigerant piping that is the defrosting heat source is detected and switched to the hot gas bypass method at an appropriate timing, in addition to shortening the defrosting time. There is known a method for improving the rising performance of the heating capacity after returning to the heating operation (see, for example, Patent Document 2).

特開平6−201233号公報([0008]段落、図1)Japanese Patent Laid-Open No. 6-201233 (paragraph [0008], FIG. 1) 特開2008−96033号公報([0010]段落、図3)Japanese Patent Laying-Open No. 2008-96033 (paragraph [0010], FIG. 3)

しかしながら、特許文献1のようなヒートポンプ装置の除霜方法では、リバースサイクル除霜で霜を融かし終わる直前の状況では、室外熱交換器がある程度高温状態となっているので、室外熱交換器で冷媒が凝縮液化しなくなり、冷媒回路全体が気液二相状態で循環するようになる。すると、ガス冷媒が冷媒回路内の液冷媒を押出してしまい、圧縮機に多くの液冷媒が戻ってきてしまうため、信頼性を損なうという問題がある。   However, in the defrosting method of the heat pump device as in Patent Document 1, the outdoor heat exchanger is in a high temperature state to some extent in the situation immediately before the frost is completely melted by reverse cycle defrosting. As a result, the refrigerant no longer condenses and liquefies, and the entire refrigerant circuit circulates in a gas-liquid two-phase state. As a result, the gas refrigerant pushes out the liquid refrigerant in the refrigerant circuit, and a large amount of liquid refrigerant returns to the compressor, which impairs reliability.

特許文献2のように、ガス配管を高温のまま保持するように除霜運転をリバースサイクル方式からホットガスバイパス方式に切替えたとしても、切替直後に圧縮機の吐出圧力が氷温0℃に近い状態となること、また、除霜終了直前ではやはり液冷媒が圧縮機に戻ることで、圧縮機そのものが低温となり暖房復帰時の立ち上がり性が損なわれるという問題がある。   Even if the defrosting operation is switched from the reverse cycle method to the hot gas bypass method so as to keep the gas piping at a high temperature as in Patent Document 2, the discharge pressure of the compressor is close to the ice temperature of 0 ° C. immediately after the switching. In addition, there is a problem that the liquid refrigerant returns to the compressor just before the defrosting is finished, and the compressor itself becomes a low temperature and the rising property at the time of returning to heating is impaired.

この発明の目的は、上記のような課題を解決するためになされたもので、短時間で除霜を行うことができるとともに、暖房復帰時の立ち上がり性を向上させたヒートポンプ装置を得ることを目的としている。   An object of the present invention is to solve the above-described problems, and an object of the present invention is to obtain a heat pump device that can perform defrosting in a short time and has improved start-up performance when returning to heating. It is said.

この発明に係るヒートポンプ装置は、冷媒を循環させる配管に、圧縮機と、四方切替弁と、室内熱交換器と、絞り手段と、室外熱交換器とを順次接続してなる冷媒回路と、圧縮機の吐出側と室外熱交換器の絞り手段側の入口とを接続するバイパス配管と、バイパス配管を開閉するバイパス弁と、を備えてなるヒートポンプ装置において、室外熱交換器の着霜を検出する着霜検出手段と、室外熱交換器から液冷媒が排出されたことを検出する液冷媒排出検出手段と、四方切替弁、及び絞り手段の制御を行う制御部と、を備え、制御部は、着霜検出手段が室外熱交換器の着霜を検出したときに、四方切替弁を冷房側に切替えるリバースサイクル除霜運転と、室内熱交換器近傍の冷媒温度が所定温度よりも低温となったときに、四方切替弁を暖房側に切替えるとともに絞り手段を閉止するポンプダウン運転と、液冷媒排出検出手段が室外熱交換器からの液冷媒排出を検出したときに、バイパス弁を開放するホットガスバイパス除霜運転と、を行うものである。   A heat pump device according to the present invention includes a refrigerant circuit formed by sequentially connecting a compressor, a four-way switching valve, an indoor heat exchanger, an expansion means, and an outdoor heat exchanger to a pipe for circulating the refrigerant, Detecting frost formation on an outdoor heat exchanger in a heat pump device comprising a bypass pipe connecting the discharge side of the machine and an inlet on the throttle means side of the outdoor heat exchanger and a bypass valve opening and closing the bypass pipe A frosting detection means, a liquid refrigerant discharge detection means for detecting that the liquid refrigerant has been discharged from the outdoor heat exchanger, a four-way switching valve, and a control unit for controlling the throttling means, the control unit, When the frosting detection means detects frosting of the outdoor heat exchanger, the reverse cycle defrosting operation for switching the four-way switching valve to the cooling side, and the refrigerant temperature near the indoor heat exchanger became lower than the predetermined temperature. When the four-way selector valve is on the heating side The pump down operation for switching and closing the throttle means and the hot gas bypass defrosting operation for opening the bypass valve when the liquid refrigerant discharge detecting means detects the discharge of the liquid refrigerant from the outdoor heat exchanger. is there.

ヒートポンプ装置の除霜運転の際、ガス側接続配管を高温に保つとともに、圧縮機も高温のまま保持できるので、短時間で除霜を行うことができるとともに、暖房復帰時の立ち上がり性を向上させたヒートポンプ装置を得ることができる。   During the defrosting operation of the heat pump device, the gas side connection pipe is kept at a high temperature and the compressor can also be kept at a high temperature, so that the defrosting can be performed in a short time and the start-up property at the time of heating return is improved. A heat pump device can be obtained.

実施の形態1に係るヒートポンプ装置の冷媒回路図である。3 is a refrigerant circuit diagram of the heat pump device according to Embodiment 1. FIG. 実施の形態1に係るヒートポンプ装置の除霜運転制御の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the defrost operation control of the heat pump apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係るヒートポンプ装置の冷媒回路図である。4 is a refrigerant circuit diagram of a heat pump device according to Embodiment 2. FIG.

実施の形態1.
図1は、実施の形態1に係るヒートポンプ装置の冷媒回路図である。実施の形態1に係るヒートポンプ装置は、室外ユニット1と、室内ユニット2及びそれらを接続するガス側の接続配管3と、液側の接続配管4とから構成されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of the heat pump device according to the first embodiment. The heat pump device according to Embodiment 1 includes an outdoor unit 1, an indoor unit 2, a gas side connection pipe 3 connecting them, and a liquid side connection pipe 4.

室外ユニット1には、圧縮機5、四方切替弁6、室外熱交換器10、絞り手段である膨張弁9が配管にて順次接続されている。四方切替弁6は、暖房運転時には図1の実線で示すように配管を接続している。すなわち、圧縮機5の吐出側は、四方切替弁6を経由して接続配管3に接続され、圧縮機5の吸込側は、四方切替弁6、室外熱交換器10、膨張弁9を経由して接続配管4に接続されている。   To the outdoor unit 1, a compressor 5, a four-way switching valve 6, an outdoor heat exchanger 10, and an expansion valve 9 as a throttle means are sequentially connected by piping. The four-way switching valve 6 is connected to a pipe as shown by the solid line in FIG. 1 during heating operation. That is, the discharge side of the compressor 5 is connected to the connection pipe 3 via the four-way switching valve 6, and the suction side of the compressor 5 is routed via the four-way switching valve 6, the outdoor heat exchanger 10, and the expansion valve 9. Connected to the connecting pipe 4.

なお、以下の説明では便宜的に、暖房運転時の冷媒の流れに基づき、室外熱交換器10及び後述する室内熱交換器7の入口あるいは出口を定義する。すなわち、室外熱交換器10では、暖房運転時に図の下から上に冷媒が流れるので、図の下側が入口、図の上側が出口とする。また、後述する室内熱交換器7では、図の上から下に冷媒が流れるので、図の上側が入口、図の下側が出口とする。   In the following description, for the sake of convenience, the inlet or outlet of the outdoor heat exchanger 10 and an indoor heat exchanger 7 described later is defined based on the refrigerant flow during the heating operation. That is, in the outdoor heat exchanger 10, since the refrigerant flows from the bottom to the top during the heating operation, the lower side in the figure is the inlet and the upper side in the figure is the outlet. Further, in the indoor heat exchanger 7 to be described later, since the refrigerant flows from the top to the bottom of the figure, the upper side of the figure is the inlet and the lower side of the figure is the outlet.

また、圧縮機5の吐出側で分岐したバイパス配管12は、バイパス弁13を経由して、室外熱交換器10の入口近傍に接続されている。バイパス弁13は、バイパス配管12を開閉する。また、圧縮機5の吐出側近傍には温度センサ14、室外熱交換器10の入口近傍には温度センサ15、室外熱交換器10の出口近傍には温度センサ16、がそれぞれ設けられ、各所の冷媒温度を検出する。また、室外熱交換器10の近傍には、室外熱交換器10に送風するための室外ファン11が設けられている。   The bypass pipe 12 branched on the discharge side of the compressor 5 is connected to the vicinity of the inlet of the outdoor heat exchanger 10 via the bypass valve 13. The bypass valve 13 opens and closes the bypass pipe 12. A temperature sensor 14 is provided near the discharge side of the compressor 5, a temperature sensor 15 is provided near the inlet of the outdoor heat exchanger 10, and a temperature sensor 16 is provided near the outlet of the outdoor heat exchanger 10. Detect the refrigerant temperature. An outdoor fan 11 for blowing air to the outdoor heat exchanger 10 is provided in the vicinity of the outdoor heat exchanger 10.

室内ユニット2には、室内熱交換器7が設けられており、その入口は接続配管3、出口は接続配管4と接続されている。また、室内熱交換器7の出口近傍には、冷媒温度を検出する温度センサ17が設けられている。また、室内熱交換器7の近傍には、室内熱交換器7に送風するための室内ファン8が設けられている。   The indoor unit 2 is provided with an indoor heat exchanger 7 whose inlet is connected to the connecting pipe 3 and whose outlet is connected to the connecting pipe 4. A temperature sensor 17 for detecting the refrigerant temperature is provided in the vicinity of the outlet of the indoor heat exchanger 7. An indoor fan 8 for sending air to the indoor heat exchanger 7 is provided in the vicinity of the indoor heat exchanger 7.

このようにして構成された冷媒回路内には冷媒として、例えばR410Aが封入されて冷媒回路内を循環している。   In the refrigerant circuit thus configured, for example, R410A is sealed as a refrigerant and circulates in the refrigerant circuit.

また、図示していないが、室外ユニット1には、制御部が設けられている。この制御部は、上述した各温度センサからの情報を読み取るとともに、圧縮機5、四方切替弁6、バイパス弁13、膨張弁9、室外ファン11、及び室内ファン8の制御を行う。なお、制御部は、必ずしも室外ユニット1内に設けなくてもよく、上記の制御ができればどこに設けても良い。   Although not shown, the outdoor unit 1 is provided with a control unit. The control unit reads information from each temperature sensor described above and controls the compressor 5, the four-way switching valve 6, the bypass valve 13, the expansion valve 9, the outdoor fan 11, and the indoor fan 8. The control unit does not necessarily have to be provided in the outdoor unit 1 and may be provided anywhere as long as the above control can be performed.

次に、ヒートポンプ装置の暖房運転時の動作について説明する。   Next, the operation | movement at the time of the heating operation of a heat pump apparatus is demonstrated.

四方切替弁6は暖房側、すなわち圧縮機5から吐出されるガス冷媒が室内熱交換器7に流れる方向に設定する。また、バイパス弁13は閉止されている。圧縮機5から吐出され、接続配管3を経由して室内熱交換器7に流入した高温高圧のガス冷媒は、室内ファン8で送風される室内空気と熱交換を行い凝縮液化して高圧液冷媒となる。   The four-way switching valve 6 is set on the heating side, that is, in the direction in which the gas refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 7. The bypass valve 13 is closed. The high-temperature and high-pressure gas refrigerant discharged from the compressor 5 and flowing into the indoor heat exchanger 7 via the connection pipe 3 exchanges heat with the indoor air blown by the indoor fan 8 to be condensed and liquefied to be high-pressure liquid refrigerant. It becomes.

この高圧液冷媒は、接続配管4を通って室外ユニット1に戻り、膨張弁9で減圧され、気液二相状態の冷媒となる。この気液二相状態の冷媒は室外熱交換器10に流入し、室外ファン11から送風される室外空気から熱を受け取って蒸発し、低圧ガス冷媒となる。この低圧ガス冷媒は、四方切替弁6を経由して再び圧縮機5に吸入される。   This high-pressure liquid refrigerant returns to the outdoor unit 1 through the connection pipe 4, is decompressed by the expansion valve 9, and becomes a gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 10, receives heat from the outdoor air blown from the outdoor fan 11, evaporates, and becomes a low-pressure gas refrigerant. This low-pressure gas refrigerant is again sucked into the compressor 5 via the four-way switching valve 6.

この暖房運転において、圧縮機5は、室内空気温度がその居住者が要求している温度になるように回転数が調整され、膨張弁9は、室外熱交換器10の出口側の低圧ガス冷媒に2[deg]程度の過熱度がつくようにその流動抵抗が調整されている。あるいは、室内熱交換器7の出口側に10[deg]程度の過冷却度がつくように調整してもよい。   In this heating operation, the compressor 5 is adjusted in rotation speed so that the indoor air temperature becomes the temperature required by the occupant, and the expansion valve 9 is a low-pressure gas refrigerant on the outlet side of the outdoor heat exchanger 10. The flow resistance is adjusted so that the degree of superheat is about 2 [deg]. Or you may adjust so that the supercooling degree of about 10 [deg] may be attached to the exit side of the indoor heat exchanger 7.

ここで、室外空気温度が5℃を下回る程度に低い運転条件では、蒸発器として動作する室外熱交換器10の蒸発温度は0℃以下となり、室外熱交換器10の表面に霜が成長する。霜の成長は室外空気からの採熱を阻害して暖房運転効率を低下させ、また、さらに蒸発温度を下げることとなって霜の成長を加速させる。よって、蒸発器に着霜した場合には除霜運転を行う必要がある。   Here, under an operating condition where the outdoor air temperature is as low as less than 5 ° C., the evaporation temperature of the outdoor heat exchanger 10 operating as an evaporator becomes 0 ° C. or less, and frost grows on the surface of the outdoor heat exchanger 10. The growth of frost hinders heat collection from outdoor air to lower the heating operation efficiency, and further lowers the evaporation temperature to accelerate the growth of frost. Therefore, when the evaporator is frosted, it is necessary to perform a defrosting operation.

続いて、除霜運転時の動作について説明する。   Then, the operation | movement at the time of a defrost operation is demonstrated.

図2は、実施の形態1に係るヒートポンプ装置の除霜運転制御の流れを示すフローチャート図である。図1及び図2を参照して除霜運転時の動作について説明する。   FIG. 2 is a flowchart showing a flow of defrosting operation control of the heat pump device according to the first embodiment. The operation during the defrosting operation will be described with reference to FIGS. 1 and 2.

S1は暖房運転を行っている状態であり、S2は除霜運転の開始判定を行うステップである。図2の例では、着霜検出手段として、温度センサ15あるいは温度センサ16を用いている。すなわち、除霜運転開始の判定条件として、温度センサ15又は温度センサ16が−5℃以下である状態が所定時間(図2では5分間)継続したこととしており、制御部は、この条件が満たされたときに着霜したと判定して、除霜運転モードに移行する。なお、除霜運転開始の判定条件についてはこれに限るものではなく、外気温度が所定温度以下となる状態が所定時間以上継続することや、圧縮機回転数を考慮して着霜の有無を判断してもよい。   S1 is a state in which the heating operation is performed, and S2 is a step in which the start determination of the defrosting operation is performed. In the example of FIG. 2, the temperature sensor 15 or the temperature sensor 16 is used as frost detection means. That is, as a determination condition for starting the defrosting operation, the state where the temperature sensor 15 or the temperature sensor 16 is −5 ° C. or lower continues for a predetermined time (5 minutes in FIG. 2), and the control unit satisfies this condition. When it is done, it is determined that frost has been formed, and the defrosting operation mode is entered. Note that the determination condition for starting the defrosting operation is not limited to this, and it is determined whether or not frost formation has occurred in consideration of the state in which the outside air temperature is equal to or lower than the predetermined temperature for a predetermined period of time or the compressor rotation speed. May be.

S3はリバースサイクル方式の除霜運転を行うステップである。制御部は、室内ファン8及び室外ファン11を停止して、四方切替弁6を冷房側、すなわち圧縮機5から吐出されるガス冷媒が室外熱交換器10に流れる方向(図1中の破線方向)に設定する。このとき、圧縮機5の吸込側は四方切替弁6を経由して接続配管3に接続される。なお、圧縮機回転数は除霜運転を行うのに適した回転数に設定する。   S3 is a step for performing a reverse cycle defrosting operation. The control unit stops the indoor fan 8 and the outdoor fan 11, and turns the four-way switching valve 6 to the cooling side, that is, the direction in which the gas refrigerant discharged from the compressor 5 flows into the outdoor heat exchanger 10 (the direction of the broken line in FIG. 1). ). At this time, the suction side of the compressor 5 is connected to the connection pipe 3 via the four-way switching valve 6. The compressor rotation speed is set to a rotation speed suitable for performing the defrosting operation.

S4はリバースサイクル除霜の終了判定を行うステップである。リバースサイクル除霜運転は、接続配管3が低温になる前に終了させる。図2の例では、リバースサイクル除霜の終了判定は、室内熱交換器7の出口温度センサ17が低温(図2では、0℃未満)を検出したこととしている。すなわち、低圧二相冷媒が室内熱交換器7に到達したことでリバースサイクル除霜の終了としている。   S4 is a step for determining the end of the reverse cycle defrosting. The reverse cycle defrosting operation is terminated before the connection pipe 3 becomes low temperature. In the example of FIG. 2, the end determination of the reverse cycle defrosting is based on the fact that the outlet temperature sensor 17 of the indoor heat exchanger 7 has detected a low temperature (in FIG. 2, less than 0 ° C.). That is, the reverse cycle defrosting is terminated when the low-pressure two-phase refrigerant reaches the indoor heat exchanger 7.

リバースサイクル除霜の終了判定をこのようにした理由を以下に説明する。
リバースサイクル除霜を開始した直後の冷媒状態は、圧縮機5を出た高温の吐出ガス冷媒が、霜に覆われた室外熱交換器10に流入するので、吐出ガス冷媒圧力が飽和温度0℃付近まで一気に低下する。それに伴って圧縮機5の吸込側圧力も飽和温度−20℃以下に低下する。ただし、接続配管4、室内熱交換器7、接続配管3は除霜開始直前まで高温高圧冷媒が流通していたために依然として高温であり、室外熱交換器10で一旦液化した冷媒は、室内ユニット2を経由する間に再び大きな過熱度をもった低圧ガス冷媒となって圧縮機5に戻ってくる。
The reason for determining the end of the reverse cycle defrosting in this way will be described below.
The refrigerant state immediately after the start of the reverse cycle defrosting is such that the high-temperature discharge gas refrigerant that has exited the compressor 5 flows into the outdoor heat exchanger 10 that is covered with frost, so that the discharge gas refrigerant pressure is saturated at 0 ° C. It drops at a stretch to the vicinity. Along with this, the suction side pressure of the compressor 5 also decreases to a saturation temperature of −20 ° C. or lower. However, the connection pipe 4, the indoor heat exchanger 7, and the connection pipe 3 are still hot because the high-temperature and high-pressure refrigerant has circulated until immediately before the start of defrosting, and the refrigerant once liquefied in the outdoor heat exchanger 10 is the indoor unit 2 The refrigerant returns to the compressor 5 as a low-pressure gas refrigerant having a large degree of superheat again.

そして、除霜が進行するに従って、徐々に室外熱交換器10での凝縮が行われなくなり、室外熱交換器10を押し出された液冷媒が膨張弁9を超えて低温の気液二相冷媒となって接続配管4、室内熱交換器7に向かう。よって、高温であった接続配管4は徐々に低圧飽和温度−20℃程度となり、さらにこの低温の液冷媒が室内ユニット2へと進行していってしまう。   As the defrosting progresses, the condensation in the outdoor heat exchanger 10 is gradually not performed, and the liquid refrigerant pushed out of the outdoor heat exchanger 10 passes through the expansion valve 9 and has a low-temperature gas-liquid two-phase refrigerant. It goes to the connection pipe 4 and the indoor heat exchanger 7. Therefore, the connection pipe 4 that has been at a high temperature gradually reaches a low pressure saturation temperature of about −20 ° C., and this low-temperature liquid refrigerant proceeds to the indoor unit 2.

このままリバースサイクル除霜を継続して接続配管3まで低温になってしまうと、やがて圧縮機5に液冷媒が戻って来てしまい信頼性を悪化させるし、除霜を終了して暖房運転に復帰した後もしばらくの間、吐出ガス冷媒の熱がこの接続配管3を加熱することに費やされ、暖房能力が発揮されない状態となり、室内空間の快適性を悪化させる。   If the reverse cycle defrosting continues and the temperature of the connection pipe 3 becomes low, the liquid refrigerant will eventually return to the compressor 5 to deteriorate the reliability, and the defrosting is completed and the heating operation is resumed. After a while, the heat of the discharged gas refrigerant is consumed for heating the connection pipe 3, and the heating capacity is not exhibited, thereby deteriorating the comfort of the indoor space.

これを防ぐため、リバースサイクル除霜終了判定S4においては、少なくとも接続配管3が高温状態を保持できるように、室内熱交換器7の出口温度センサ17が所定温度よりも低温を検出することでリバースサイクル除霜の終了としている。なお、室内熱交換器7の冷媒温度を検出する手段としては、必ずしも出口側の温度センサによる必要はなく、入口側に温度センサ設けてもよい。この場合には、接続配管3が高温状態を保持できるようにするために、低温か否かの判断基準となる温度を、出口温度センサ17を用いるときよりも高めに設定すればよい。   In order to prevent this, in the reverse cycle defrosting end determination S4, the outlet temperature sensor 17 of the indoor heat exchanger 7 detects the lower temperature than the predetermined temperature so that at least the connection pipe 3 can maintain a high temperature state. End of cycle defrosting. The means for detecting the refrigerant temperature of the indoor heat exchanger 7 is not necessarily required by the temperature sensor on the outlet side, and may be provided on the inlet side. In this case, in order to maintain the connection pipe 3 in a high temperature state, a temperature that is a criterion for determining whether or not the connection pipe 3 is low may be set higher than when the outlet temperature sensor 17 is used.

S5はポンプダウン運転を行うステップである。動作としては、圧縮機5の運転を継続したまま、制御部によって、四方切替弁6を暖房側(図1中の実線方向)に切替えるとともに、絞り手段である膨張弁9を閉止する。   S5 is a step for performing a pump-down operation. As an operation, while the operation of the compressor 5 is continued, the control unit switches the four-way switching valve 6 to the heating side (in the direction of the solid line in FIG. 1) and closes the expansion valve 9 which is a throttle means.

ポンプダウン運転を行うことにより、室外熱交換器10に存在していた冷媒が室内ユニット2側に押し込まれるため、リバースサイクル除霜で一旦低下した圧縮機高圧側の圧力が再び上昇する。   By performing the pump-down operation, the refrigerant that has been present in the outdoor heat exchanger 10 is pushed into the indoor unit 2 side, so that the pressure on the compressor high-pressure side once reduced by reverse cycle defrosting increases again.

また、このとき室外ファン11を稼動させてもよい。室外ファン11の稼動で外気との熱交換を促進することで、室外熱交換器10に残留する可能性のある液冷媒を完全に蒸発させることができる。   At this time, the outdoor fan 11 may be operated. By promoting the heat exchange with the outside air by the operation of the outdoor fan 11, the liquid refrigerant that may remain in the outdoor heat exchanger 10 can be completely evaporated.

S6はポンプダウン運転の終了判定を行うステップである。このポンプダウン運転の終了判定は、室外熱交換器10に液冷媒が存在しなくなったこととしている。圧縮機5の低圧側の冷媒が少なくなるにしたがい、低圧側圧力は真空レベルに接近し、圧縮比の増大と、冷却材としての冷媒循環量の低下とによって吐出ガス冷媒の温度上昇が起こるので、圧縮機5の吐出側の温度を測定することにより、室外熱交換器10に液冷媒が存在しなくなったことを判定することができる。   S6 is a step for determining the end of the pump-down operation. The end determination of the pump-down operation is based on the fact that no liquid refrigerant is present in the outdoor heat exchanger 10. As the refrigerant on the low-pressure side of the compressor 5 decreases, the pressure on the low-pressure side approaches the vacuum level, and the temperature of the discharged gas refrigerant rises due to an increase in the compression ratio and a decrease in the amount of refrigerant circulating as the coolant. By measuring the temperature on the discharge side of the compressor 5, it can be determined that the liquid refrigerant no longer exists in the outdoor heat exchanger 10.

図2に示した判定条件では、液冷媒排出検出手段として、温度センサ14が100℃を超える温度を検出することとしているが、これに限ったものではなく、低圧側に圧力センサを設置して直接的に所定圧力以下となることを検出してもよいし、あるいは、室外熱交換器10の内容積と、圧縮機5の押しのけ容積と回転数を考慮して、冷媒回収が完了できる時間を設定してもよい。このようにして、室外熱交換器10から液冷媒が排出されたことを検出する。   In the determination condition shown in FIG. 2, the temperature sensor 14 detects a temperature exceeding 100 ° C. as the liquid refrigerant discharge detecting means. However, the present invention is not limited to this, and a pressure sensor is installed on the low pressure side. It may be detected that the pressure is not more than the predetermined pressure directly, or the time for which the refrigerant recovery can be completed is considered in consideration of the internal volume of the outdoor heat exchanger 10, the displacement volume of the compressor 5 and the rotational speed. It may be set. In this way, it is detected that the liquid refrigerant has been discharged from the outdoor heat exchanger 10.

このポンプダウン運転では、接続配管4が−20℃程度に冷却された状態であるので、高圧側からの冷媒の凝縮が速やかに行われる。また、低圧と連通する室外熱交換器10でもある程度まで除霜が進行して高温部分を有しており、液冷媒が多量に残留していることはないので、このポンプダウン運転は短時間に終了する。   In this pump-down operation, since the connection pipe 4 is cooled to about −20 ° C., the refrigerant is quickly condensed from the high pressure side. Further, even in the outdoor heat exchanger 10 communicating with the low pressure, the defrosting proceeds to some extent and has a high temperature portion, so that a large amount of liquid refrigerant does not remain. finish.

S7はホットガスバイパス除霜運転を行うステップである。操作としては、制御部により、バイパス弁13を開放する。膨張弁9は閉止したままとする。この操作によって、高温となっている吐出ガス冷媒が室外熱交換器10の入口側から流入することとなる。   S7 is a step for performing a hot gas bypass defrosting operation. As an operation, the bypass valve 13 is opened by the control unit. The expansion valve 9 is kept closed. By this operation, the discharged gas refrigerant having a high temperature flows in from the inlet side of the outdoor heat exchanger 10.

ホットガスバイパス除霜は、室外熱交換器10の除霜を完全に終了させるために行う。すなわち、前述のリバースサイクル除霜の終了判定は、液冷媒が室内ユニット2に到達したこととしているので、室外熱交換器10の除霜が完全に終了していることは保証されていない。そのため、ここでは霜残りの可能性が高い室外熱交換器10の入口側、すなわちリバースサイクル除霜とは反対側から吐出ガス冷媒を流入させることで霜残りを回避する。   The hot gas bypass defrosting is performed in order to completely end the defrosting of the outdoor heat exchanger 10. That is, since the above-described reverse cycle defrosting end determination is that the liquid refrigerant has reached the indoor unit 2, it is not guaranteed that the defrosting of the outdoor heat exchanger 10 has been completely completed. Therefore, the frost residue is avoided here by flowing the discharge gas refrigerant from the inlet side of the outdoor heat exchanger 10 where the possibility of frost residue is high, that is, the opposite side to the reverse cycle defrosting.

前述のポンプダウン運転によって、バイパス弁13の開放直前には、圧縮機5の吐出側圧力、温度ともに十分高い状態となっているので、除霜のための吐出ガス冷媒温度は高温を保持しやすい。また、バイパス弁13開放直後には室内ユニット2側の高温液冷媒の沸騰によってガス冷媒がホットガスバイパス除霜サイクル側に適度に供給されるので、冷媒不足運転になりにくい。   Due to the pump-down operation described above, both the discharge-side pressure and temperature of the compressor 5 are sufficiently high immediately before the bypass valve 13 is opened, so that the discharge gas refrigerant temperature for defrosting tends to maintain a high temperature. . Further, immediately after the bypass valve 13 is opened, the gas refrigerant is appropriately supplied to the hot gas bypass defrosting cycle side by the boiling of the high-temperature liquid refrigerant on the indoor unit 2 side, so that the refrigerant shortage operation is unlikely.

なお、ホットガスバイパス除霜運転で冷媒が不足する場合には、液バックによる不具合が生じない程度に移動させてもよい。具体的な方法としては、膨張弁9を僅かに開放する。この操作により、接続配管4に格納されている液冷媒の一部をホットガスバイパスサイクル側に移動させることができる。   In addition, when a refrigerant | coolant runs short in a hot gas bypass defrost operation, you may move to such an extent that the malfunction by a liquid back does not arise. As a specific method, the expansion valve 9 is slightly opened. By this operation, a part of the liquid refrigerant stored in the connection pipe 4 can be moved to the hot gas bypass cycle side.

通常のホットガスバイパス除霜においては、蒸発熱源が存在しないので、霜を融かすことで凝縮液化した冷媒がそのまま圧縮機5に戻ることで信頼性を悪化させていた。また、除霜運転終盤にはこの液バックにより圧縮機5が低温となってしまうために暖房運転に復帰した後の高圧側圧力の上昇にも時間を要していた。   In normal hot gas bypass defrosting, since there is no evaporation heat source, the refrigerant condensed and liquefied by melting the frost returns to the compressor 5 as it is, and the reliability is deteriorated. Further, at the end of the defrosting operation, the compressor 5 becomes low temperature due to the liquid back, so that it takes time to increase the high-pressure side pressure after returning to the heating operation.

しかし、この実施の形態においては、前述のポンプダウン運転によって、ホットガスバイパス除霜運転の直前に室内ユニット2側に冷媒を回収しているので、ホットガスバイパス除霜運転を比較的長い時間行っても液冷媒が圧縮機5に戻る心配が無く、高い信頼性を保持しながら、暖房起動時間も短くなる。   However, in this embodiment, since the refrigerant is recovered to the indoor unit 2 immediately before the hot gas bypass defrosting operation by the above-described pump down operation, the hot gas bypass defrosting operation is performed for a relatively long time. However, there is no fear that the liquid refrigerant returns to the compressor 5, and the heating start-up time is shortened while maintaining high reliability.

S8はホットガスバイパス除霜の終了判定を行うステップである。ホットガスバイパス除霜運転は、室外熱交換器10の除霜が完全に除去できたことを終了判定条件としており、図2に示した例では、室外熱交換器10の出口側に設置された温度センサ16が10℃を超える温度を検出したこととしている。これは、高温の吐出ガス冷媒がバイパス配管12から室外熱交換器10に流入し、霜を融かしながら進行するが、室外熱交換器10から流出した時点でなお10℃以上の温度が確保されていれば、霜がほぼ完全に除去できていると判断できるからである。   S8 is a step for determining the end of hot gas bypass defrosting. The hot gas bypass defrosting operation is based on the end determination condition that the defrosting of the outdoor heat exchanger 10 has been completely removed. In the example shown in FIG. 2, the hot gas bypass defrosting operation is installed on the outlet side of the outdoor heat exchanger 10. It is assumed that the temperature sensor 16 has detected a temperature exceeding 10 ° C. This is because the high-temperature discharged gas refrigerant flows from the bypass pipe 12 into the outdoor heat exchanger 10 and proceeds while melting the frost, but when the refrigerant flows out of the outdoor heat exchanger 10, a temperature of 10 ° C. or higher is still secured. This is because it can be determined that frost has been almost completely removed.

S9は除霜を完了して暖房運転に復帰するステップである。制御部により、バイパス弁13を閉止し、膨張弁9の制御を暖房運転の制御に戻す。   S9 is a step of completing the defrosting and returning to the heating operation. The bypass valve 13 is closed by the control unit, and the control of the expansion valve 9 is returned to the control of the heating operation.

このとき、前述のポンプダウン運転によって、接続配管4や室内熱交換器7に液冷媒が十分確保されているし、一方、室外熱交換器10には液冷媒がほとんどなく、また、圧縮機5や接続配管3は十分高温を保持しているので、暖房開始後の暖房能力は速やかに立ち上がる。   At this time, the above-described pump-down operation ensures sufficient liquid refrigerant in the connecting pipe 4 and the indoor heat exchanger 7, while the outdoor heat exchanger 10 has almost no liquid refrigerant, and the compressor 5 Since the connecting pipe 3 maintains a sufficiently high temperature, the heating capacity after heating starts up quickly.

実施の形態1によれば、ガス側の接続配管3を高温に保ったままリバースサイクル除霜を完了することができ、ホットガスバイパス除霜の前にポンプダウン運転を行うことにより、液冷媒を室内ユニット2に回収するとともに圧縮機5も高温を保持することができるので、短時間で除霜を行うことができるとともに、暖房復帰時の立ち上がり性を向上させたヒートポンプ装置を得ることができるという効果がある。   According to the first embodiment, the reverse cycle defrosting can be completed while keeping the gas-side connection pipe 3 at a high temperature, and the liquid refrigerant is obtained by performing the pump-down operation before the hot gas bypass defrosting. Since it can collect | recover in the indoor unit 2 and the compressor 5 can also hold | maintain high temperature, while being able to perform a defrost in a short time, the heat pump apparatus which improved the standup property at the time of heating return can be obtained. effective.

実施の形態2.
図3は、実施の形態2に係るヒートポンプ装置を示す冷媒回路図である。これは、1つの室外ユニット1に対して、複数の室内ユニット2が並列に接続されるような規模の大きいヒートポンプ装置の構成例である。
Embodiment 2. FIG.
FIG. 3 is a refrigerant circuit diagram illustrating the heat pump device according to the second embodiment. This is a configuration example of a large-scale heat pump apparatus in which a plurality of indoor units 2 are connected in parallel to one outdoor unit 1.

図1との差異について説明する。規模の大きいヒートポンプ装置では、冷媒回路を流れる冷媒の量も多くなる。この冷媒により圧縮機5の潤滑油が希釈されるのを防ぐために、圧縮機5の吸込側にアキュムレータ21を設けている。また、室内熱交換器7ごとに制御を行うために、室内熱交換器7ごとに膨張弁9が設けられている。また、上述したポンプダウン運転の際に、接続配管4から室外熱交換器10に液冷媒が流入するのを防ぐため、室外熱交換器10の出口と接続配管4との間に絞り手段として電磁弁22が設けられている。   Differences from FIG. 1 will be described. In a large-scale heat pump device, the amount of refrigerant flowing through the refrigerant circuit also increases. In order to prevent the lubricating oil of the compressor 5 from being diluted by this refrigerant, an accumulator 21 is provided on the suction side of the compressor 5. In addition, in order to perform control for each indoor heat exchanger 7, an expansion valve 9 is provided for each indoor heat exchanger 7. In order to prevent liquid refrigerant from flowing into the outdoor heat exchanger 10 from the connection pipe 4 during the pump-down operation described above, an electromagnetic as a throttle means is provided between the outlet of the outdoor heat exchanger 10 and the connection pipe 4. A valve 22 is provided.

図3の構成における除霜運転の違いは、ポンプダウン運転時に膨張弁9ではなく絞り手段である電磁弁22を閉止することであり、他は実施の形態1と同様である。室内熱交換器7ごとに膨張弁9が設けられている構成であっても、ポンプダウン運転時に電磁弁22を閉止することで、室外熱交換器10への液冷媒流入を防ぐことができる。   The difference in the defrosting operation in the configuration of FIG. 3 is that the expansion valve 9 is closed instead of the expansion valve 9 during the pump-down operation, and the rest is the same as in the first embodiment. Even if the expansion valve 9 is provided for each indoor heat exchanger 7, the liquid refrigerant can be prevented from flowing into the outdoor heat exchanger 10 by closing the electromagnetic valve 22 during the pump-down operation.

図3のように規模の大きいヒートポンプ装置においては、除霜終了直前に液バックが発生してアキュムレータに液冷媒が一旦滞留してしまうと、暖房復帰してもそれを蒸発させるための熱が得にくく、暖房復帰後しばらくの間、冷媒不足状態が続いてしまう。しかし、本発明によれば、除霜終了前に液バックすることがなく、このような冷媒不足状態とはならないので、規模の大きいヒートポンプ装置に本発明を適用するメリットは大きい。   In a heat pump apparatus having a large scale as shown in FIG. 3, when a liquid back is generated immediately before the end of the defrosting and the liquid refrigerant once accumulates in the accumulator, heat for evaporating it is obtained even after heating is restored. It is difficult, and the refrigerant shortage will continue for a while after returning to heating. However, according to the present invention, liquid back does not occur before completion of defrosting, and such a refrigerant shortage state does not occur. Therefore, the merit of applying the present invention to a large-scale heat pump device is great.

実施の形態2によれば、規模の大きいヒートポンプ装置においても、実施の形態1と同様の効果を得ることができる。   According to the second embodiment, the same effect as in the first embodiment can be obtained even in a large-scale heat pump apparatus.

本発明に係るヒートポンプ装置は、空気調和機に限らず給湯装置や冷蔵庫等ヒートポンプを使用する他の製品に適用可能である。   The heat pump device according to the present invention is not limited to an air conditioner and can be applied to other products using a heat pump such as a hot water supply device and a refrigerator.

1 室外ユニット
2 室内ユニット
3、4 接続配管
5 圧縮機
6 四方切替弁
7 室内熱交換器
8 室内ファン
9 膨張弁
10 室外熱交換器
11 室外ファン
12 バイパス配管
13 バイパス弁
14〜17 温度センサ
21 アキュムレータ
22 電磁弁
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 3, 4 Connection piping 5 Compressor 6 Four-way switching valve 7 Indoor heat exchanger 8 Indoor fan 9 Expansion valve 10 Outdoor heat exchanger 11 Outdoor fan 12 Bypass piping 13 Bypass valves 14-17 Temperature sensor 21 Accumulator 22 Solenoid valve

Claims (7)

冷媒を循環させる配管に、圧縮機と、四方切替弁と、室内熱交換器と、絞り手段と、室外熱交換器とを順次接続してなる冷媒回路と、
前記圧縮機の吐出側と前記室外熱交換器の前記絞り手段側の入口とを接続するバイパス配管と、
前記バイパス配管を開閉するバイパス弁と、を備えてなるヒートポンプ装置において、
前記室外熱交換器の着霜を検出する着霜検出手段と、
前記室外熱交換器から液冷媒が排出されたことを検出する液冷媒排出検出手段と、
前記四方切替弁、及び前記絞り手段の制御を行う制御部と、
を備え、
前記制御部は、前記着霜検出手段が前記室外熱交換器の着霜を検出したときに、前記四方切替弁を冷房側に切替えるリバースサイクル除霜運転と、
前記室内熱交換器近傍の冷媒温度が所定温度よりも低温となったときに、前記四方切替弁を暖房側に切替えるとともに前記絞り手段を閉止するポンプダウン運転と、
前記液冷媒排出検出手段が前記室外熱交換器からの液冷媒排出を検出したときに、前記バイパス弁を開放するホットガスバイパス除霜運転と、を行うヒートポンプ装置。
A refrigerant circuit formed by sequentially connecting a compressor, a four-way switching valve, an indoor heat exchanger, a throttle means, and an outdoor heat exchanger to a pipe for circulating the refrigerant;
A bypass pipe connecting the discharge side of the compressor and the inlet of the throttle means side of the outdoor heat exchanger;
In a heat pump device comprising a bypass valve that opens and closes the bypass pipe,
Frost detection means for detecting frost formation of the outdoor heat exchanger;
Liquid refrigerant discharge detecting means for detecting that liquid refrigerant has been discharged from the outdoor heat exchanger;
A controller for controlling the four-way switching valve and the throttle means;
With
The control unit, when the frost detection means detects frost formation of the outdoor heat exchanger, reverse cycle defrosting operation for switching the four-way switching valve to the cooling side,
A pump-down operation for switching the four-way switching valve to a heating side and closing the throttle means when the refrigerant temperature in the vicinity of the indoor heat exchanger becomes lower than a predetermined temperature;
A heat pump device that performs a hot gas bypass defrosting operation that opens the bypass valve when the liquid refrigerant discharge detecting means detects the discharge of the liquid refrigerant from the outdoor heat exchanger.
前記着霜検出手段は、前記室外熱交換器近傍の冷媒温度が所定温度以下となった状態が所定時間以上続いたことを検出条件として、着霜を検出する請求項1記載のヒートポンプ装置。 2. The heat pump device according to claim 1, wherein the frost detection means detects frost on the condition that a state in which the refrigerant temperature in the vicinity of the outdoor heat exchanger has become equal to or lower than a predetermined temperature continues for a predetermined time or longer. 前記着霜検出手段は、前記室外熱交換器近傍の空気温度が所定温度以下となった状態が所定時間以上続いたことを検出条件として、着霜を検出する請求項1記載のヒートポンプ装置。 2. The heat pump device according to claim 1, wherein the frost detection means detects frost on the condition that a state in which an air temperature in the vicinity of the outdoor heat exchanger has become equal to or lower than a predetermined temperature continues for a predetermined time or longer. 前記液冷媒排出検出手段は、前記圧縮機の吐出温度が所定温度以上となったことを検出条件として、液冷媒排出を検出する請求項1乃至3のいずれかに記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 3, wherein the liquid refrigerant discharge detection means detects liquid refrigerant discharge on the condition that the discharge temperature of the compressor has become a predetermined temperature or higher. 前記液冷媒排出検出手段は、前記圧縮機の吸込圧力が所定圧力以下となったことを検出条件として、液冷媒排出を検出する請求項1乃至3のいずれかに記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 3, wherein the liquid refrigerant discharge detecting means detects liquid refrigerant discharge on the condition that the suction pressure of the compressor is equal to or lower than a predetermined pressure. 前記液冷媒排出検出手段は、前記圧縮機の1回転あたりの押しのけ容積と前記圧縮機の回転数との積が、所定値以上となったことを検出条件として、液冷媒排出を検出する請求項1乃至3のいずれかに記載のヒートポンプ装置。 The liquid refrigerant discharge detecting means detects liquid refrigerant discharge on the condition that a product of a displacement volume per rotation of the compressor and a rotation speed of the compressor becomes a predetermined value or more. The heat pump device according to any one of 1 to 3. 前記室外熱交換器の近傍に配置され、前記室外熱交換器に送風する室外ファンを備え、
前記制御部は、前記ポンプダウン運転時に前記室外ファンを稼動する制御を行う請求項1乃至6のいずれかに記載のヒートポンプ装置。
An outdoor fan that is disposed in the vicinity of the outdoor heat exchanger and blows air to the outdoor heat exchanger;
The heat pump device according to any one of claims 1 to 6, wherein the control unit performs control for operating the outdoor fan during the pump-down operation.
JP2009238244A 2009-10-15 2009-10-15 Heat pump equipment Active JP5434460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238244A JP5434460B2 (en) 2009-10-15 2009-10-15 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238244A JP5434460B2 (en) 2009-10-15 2009-10-15 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2011085320A true JP2011085320A (en) 2011-04-28
JP5434460B2 JP5434460B2 (en) 2014-03-05

Family

ID=44078393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238244A Active JP5434460B2 (en) 2009-10-15 2009-10-15 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP5434460B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070881A (en) * 2012-10-02 2014-04-21 Panasonic Corp Refrigeration cycle device and air conditioner including the same
JP2014077578A (en) * 2012-10-10 2014-05-01 Panasonic Corp Refrigeration cycle device and air conditioner including the same
JP2014169802A (en) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp Air conditioning device
WO2015059792A1 (en) * 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
JP2015098953A (en) * 2013-11-18 2015-05-28 株式会社東芝 Air conditioner
JP5826439B1 (en) * 2014-09-17 2015-12-02 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner
JP5826438B1 (en) * 2014-09-17 2015-12-02 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner
CN108375248A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
WO2019008742A1 (en) * 2017-07-07 2019-01-10 三菱電機株式会社 Refrigeration cycle device
CN109357343A (en) * 2018-10-24 2019-02-19 青岛海尔空调器有限总公司 Air conditioner
CN110332651A (en) * 2019-07-25 2019-10-15 宁波奥克斯电气股份有限公司 A kind of defrosting control method, device and air conditioner

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284157A (en) * 1986-06-02 1987-12-10 松下冷機株式会社 Heat pump type air conditioner
JPS63153378A (en) * 1986-12-17 1988-06-25 ダイキン工業株式会社 Refrigerator
JPH05118715A (en) * 1991-10-31 1993-05-14 Daikin Ind Ltd Operation controller of refrigerator
JPH05264134A (en) * 1992-03-23 1993-10-12 Daikin Ind Ltd Operation controller for refrigerating machine
JPH062996A (en) * 1992-06-19 1994-01-11 Daikin Ind Ltd Air conditioner
JPH06331202A (en) * 1993-05-21 1994-11-29 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner
JPH074794A (en) * 1993-03-30 1995-01-10 Toshiba Corp Air-conditioning equipment
JPH09229520A (en) * 1996-02-21 1997-09-05 Matsushita Electric Ind Co Ltd Separate freezing cycle
JP2000039237A (en) * 1998-07-22 2000-02-08 Mitsubishi Electric Corp Method for determining refrigerant filling quantity for air conditioner, method for controlling refrigerant of air conditioner, and air conditioner
JP2001133088A (en) * 1999-11-04 2001-05-18 Sharp Corp Air-conditioner
JP2006336930A (en) * 2005-06-01 2006-12-14 Mitsubishi Electric Corp Refrigerating cycle device
JP2007085643A (en) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd Cleaning method for air conditioning system, and outdoor unit used therein
JP2008096033A (en) * 2006-10-12 2008-04-24 Hitachi Appliances Inc Refrigerating device
JP2008209022A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Multi-air conditioner

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284157A (en) * 1986-06-02 1987-12-10 松下冷機株式会社 Heat pump type air conditioner
JPS63153378A (en) * 1986-12-17 1988-06-25 ダイキン工業株式会社 Refrigerator
JPH05118715A (en) * 1991-10-31 1993-05-14 Daikin Ind Ltd Operation controller of refrigerator
JPH05264134A (en) * 1992-03-23 1993-10-12 Daikin Ind Ltd Operation controller for refrigerating machine
JPH062996A (en) * 1992-06-19 1994-01-11 Daikin Ind Ltd Air conditioner
JPH074794A (en) * 1993-03-30 1995-01-10 Toshiba Corp Air-conditioning equipment
JPH06331202A (en) * 1993-05-21 1994-11-29 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner
JPH09229520A (en) * 1996-02-21 1997-09-05 Matsushita Electric Ind Co Ltd Separate freezing cycle
JP2000039237A (en) * 1998-07-22 2000-02-08 Mitsubishi Electric Corp Method for determining refrigerant filling quantity for air conditioner, method for controlling refrigerant of air conditioner, and air conditioner
JP2001133088A (en) * 1999-11-04 2001-05-18 Sharp Corp Air-conditioner
JP2006336930A (en) * 2005-06-01 2006-12-14 Mitsubishi Electric Corp Refrigerating cycle device
JP2007085643A (en) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd Cleaning method for air conditioning system, and outdoor unit used therein
JP2008096033A (en) * 2006-10-12 2008-04-24 Hitachi Appliances Inc Refrigerating device
JP2008209022A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Multi-air conditioner

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070881A (en) * 2012-10-02 2014-04-21 Panasonic Corp Refrigeration cycle device and air conditioner including the same
JP2014077578A (en) * 2012-10-10 2014-05-01 Panasonic Corp Refrigeration cycle device and air conditioner including the same
JP2014169802A (en) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp Air conditioning device
JP5992112B2 (en) * 2013-10-24 2016-09-14 三菱電機株式会社 Air conditioner
WO2015059792A1 (en) * 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
JPWO2015059792A1 (en) * 2013-10-24 2017-03-09 三菱電機株式会社 Air conditioner
JP2015098953A (en) * 2013-11-18 2015-05-28 株式会社東芝 Air conditioner
GB2545828A (en) * 2014-09-17 2017-06-28 Mitsubishi Electric Corp Refrigeration cycle device and air-conditioning device
US10222086B2 (en) 2014-09-17 2019-03-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus and air-conditioning apparatus
WO2016042612A1 (en) * 2014-09-17 2016-03-24 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
JP5826438B1 (en) * 2014-09-17 2015-12-02 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner
GB2544677A (en) * 2014-09-17 2017-05-24 Mitsubishi Electric Corp Refrigeration cycle device and air-conditioning device
JP5826439B1 (en) * 2014-09-17 2015-12-02 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner
US20170234590A1 (en) * 2014-09-17 2017-08-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus and air-conditioning apparatus
GB2544677B (en) * 2014-09-17 2020-05-13 Mitsubishi Electric Corp Refrigeration cycle apparatus and air-conditioning apparatus
GB2545828B (en) * 2014-09-17 2020-06-17 Mitsubishi Electric Corp Refrigeration cycle apparatus and air-conditioning apparatus
WO2016042613A1 (en) * 2014-09-17 2016-03-24 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
US10302330B2 (en) 2014-09-17 2019-05-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus and air-conditioning apparatus
JPWO2019008742A1 (en) * 2017-07-07 2020-05-21 三菱電機株式会社 Refrigeration cycle equipment
WO2019008742A1 (en) * 2017-07-07 2019-01-10 三菱電機株式会社 Refrigeration cycle device
WO2019128518A1 (en) * 2017-12-29 2019-07-04 青岛海尔空调器有限总公司 Air conditioner system
CN108375248A (en) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 Air-conditioner system
CN109357343A (en) * 2018-10-24 2019-02-19 青岛海尔空调器有限总公司 Air conditioner
CN110332651A (en) * 2019-07-25 2019-10-15 宁波奥克斯电气股份有限公司 A kind of defrosting control method, device and air conditioner

Also Published As

Publication number Publication date
JP5434460B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5434460B2 (en) Heat pump equipment
JP6141425B2 (en) Refrigeration cycle equipment
JP4812606B2 (en) Air conditioner
JP4906894B2 (en) Heat pump device and outdoor unit of heat pump device
KR101161240B1 (en) Air conditioner
JP4100135B2 (en) Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
US20190154322A1 (en) Refrigeration cycle apparatus
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP4905018B2 (en) Refrigeration equipment
JP5641875B2 (en) Refrigeration equipment
JP2008096033A (en) Refrigerating device
JP2001227823A (en) Refrigerating device
JP5449266B2 (en) Refrigeration cycle equipment
JP5062039B2 (en) Refrigeration equipment
JP2008138914A (en) Refrigerating device and method of returning refrigerating machine oil
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
JPWO2017037891A1 (en) Refrigeration cycle equipment
WO2021245795A1 (en) Refrigeration cycle device
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP4823131B2 (en) Air conditioner
JP4023387B2 (en) Refrigeration equipment
JP6766239B2 (en) Refrigeration cycle equipment
JP4120471B2 (en) Refrigeration equipment
JP6029569B2 (en) Heat pump system and heat pump type water heater
JP7505615B1 (en) Refrigeration Cycle Equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5434460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250