JP2008096033A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2008096033A
JP2008096033A JP2006278522A JP2006278522A JP2008096033A JP 2008096033 A JP2008096033 A JP 2008096033A JP 2006278522 A JP2006278522 A JP 2006278522A JP 2006278522 A JP2006278522 A JP 2006278522A JP 2008096033 A JP2008096033 A JP 2008096033A
Authority
JP
Japan
Prior art keywords
hot gas
gas bypass
valve
compressor
defrosting operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006278522A
Other languages
Japanese (ja)
Inventor
Kazumiki Urata
和幹 浦田
Kenichi Nakamura
憲一 中村
Shinichiro Nagamatsu
信一郎 永松
Naonari Shimoda
直成 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006278522A priority Critical patent/JP2008096033A/en
Publication of JP2008096033A publication Critical patent/JP2008096033A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device capable of reducing a time necessary for a defrosting operation and immediately starting a substantial heating operation after the termination of the defrosting operation. <P>SOLUTION: This refrigerating device 20 forming a refrigerating cycle is provided with a hot gas bypass passage 13 connecting a discharge side of a compressor 1 and an upstream side of an evaporator, a hot gas bypass opening and closing valve 12 for opening and closing the hot gas bypass passage 13, and a defrost controlling means 32 performing the defrosting operation of the evaporator. Further a heat storage amount detecting means is disposed to detect a heat storage amount of piping from the compressor 1 to an expansion valve through a four-way valve 2 and a condenser, and the defrost controlling means 32 switches the four-way valve 2 to perform an inverse cycle defrosting operation when the defrosting of the evaporator is detected, and switches the four-way valve 2 to a normal cycle side when the piping heat storage amount detected by the heat storage amount detecting means becomes less than a set value, and opens the hot gas bypass opening and closing valve 12 to perform a hot gas bypass defrosting operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍サイクルを形成してなる冷凍装置に係り、特に、蒸発器に付着した霜を融解させる除霜運転をおこなう冷凍装置に関する。   The present invention relates to a refrigeration apparatus that forms a refrigeration cycle, and more particularly to a refrigeration apparatus that performs a defrosting operation for melting frost adhering to an evaporator.

圧縮機、四方弁、凝縮器、膨張弁、蒸発器などで冷凍サイクルを形成して負荷の冷却や加熱をおこなう冷凍機や空気調和機などの冷凍装置において、蒸発器に着霜すると逆サイクル除霜運転をおこなうことが従来から知られている。   In a refrigeration system such as a refrigerator or air conditioner that cools and heats a load by forming a refrigeration cycle with a compressor, four-way valve, condenser, expansion valve, evaporator, etc. It is conventionally known to perform frost operation.

逆サイクル除霜運転は、例えば特許文献1に開示されるように、暖房運転中に除霜指令を受けたら四方弁を逆サイクル側に切替え、高温高圧のガス冷媒を室外熱交換器に導入することにより、蒸発器として作用していた室外熱交換器を凝縮器として作用させ、熱交換器に付着した霜を融解する方法である。これによれば、室外熱交換器を通過した冷媒は、除霜運転前に室内熱交換器及び室内熱交換器の入口側、出口側の配管など(以下、室内熱交換器側の配管という。)に蓄積された熱を回収しながら圧縮機に吸込まれることとなる。
一方、逆サイクル除霜運転とは異なる除霜運転として、例えば特許文献2に開示されているようなホットガスバイパス除霜運転も知られている。これは、サイクル切替え手段を正サイクル側のままとして、冷媒回路の圧縮機吐出側配管から蒸発器として作用する室外熱交換器入口側の液管に圧縮機吐出ガス冷媒を導入する除霜用バイパス路を設け、室外熱交換器にホットガスの一部を直接導入して付着した霜を融解する方法である。
In the reverse cycle defrosting operation, for example, as disclosed in Patent Document 1, when a defrosting instruction is received during the heating operation, the four-way valve is switched to the reverse cycle side, and high-temperature and high-pressure gas refrigerant is introduced into the outdoor heat exchanger. By this, it is the method of making the outdoor heat exchanger which acted as an evaporator act as a condenser, and melting frost adhering to a heat exchanger. According to this, the refrigerant that has passed through the outdoor heat exchanger is referred to as piping on the inlet side and outlet side of the indoor heat exchanger and the indoor heat exchanger before the defrosting operation (hereinafter referred to as piping on the indoor heat exchanger side). ) And is sucked into the compressor while collecting the heat accumulated.
On the other hand, as a defrosting operation different from the reverse cycle defrosting operation, for example, a hot gas bypass defrosting operation as disclosed in Patent Document 2 is also known. This is a defrosting bypass in which the compressor discharge gas refrigerant is introduced from the compressor discharge side piping of the refrigerant circuit to the liquid pipe on the inlet side of the outdoor heat exchanger that acts as an evaporator while the cycle switching means remains on the positive cycle side. In this method, a path is provided, and a part of hot gas is directly introduced into the outdoor heat exchanger to melt the attached frost.

特開2004−233015号公報Japanese Patent Application Laid-Open No. 2004-233015 特開平3−152374号公報JP-A-3-152374

しかしながら、上記特許文献1、2に記載された2つの除霜運転はいずれも除霜運転に要する時間を短縮することに関して十分考慮されていない。   However, the two defrosting operations described in Patent Documents 1 and 2 are not sufficiently considered for reducing the time required for the defrosting operation.

すなわち、逆サイクル除霜運転中の霜の融解熱源は、圧縮機に加えられる電力及び圧縮機、室内熱交換器、室内熱交換器側の配管等に蓄積された蓄熱であるため、除霜運転の初期は、蓄熱を利用して霜の融解熱源を大きくとることができる。しかし、室内熱交換器や室内熱交換器側の配管の蓄熱を全て利用しても霜が完全に溶けない場合は、圧縮機の吸入側の圧力が低下し圧縮機に加えられる電力量が少なくなるため除霜時間が長くなる。   That is, the frost melting heat source during the reverse cycle defrosting operation is the electric power applied to the compressor and the heat storage accumulated in the compressor, the indoor heat exchanger, the piping on the indoor heat exchanger side, etc. In the initial stage, the heat source for melting frost can be increased using heat storage. However, if the frost does not melt completely even if all the heat stored in the indoor heat exchanger and the piping on the indoor heat exchanger side is used, the pressure on the suction side of the compressor decreases and the amount of power applied to the compressor is small. Therefore, the defrosting time becomes longer.

また、除霜運転を終了して暖房運転を再開する場合、室内熱交換器及び室内熱交換器側の配管は低温となっているため、まず室内熱交換器及び室内熱交換器側の配管の温度を上昇させることに暖房熱源が使われ、実質的な暖房運転の開始が遅くなるという問題もある。   In addition, when the defrosting operation is terminated and the heating operation is restarted, the piping on the indoor heat exchanger and the indoor heat exchanger side is at a low temperature. There is also a problem that a heating heat source is used to raise the temperature, and the start of substantial heating operation is delayed.

一方、ホットガスバイパス除霜運転中の霜の融解熱源は、圧縮機に加えられる電力及び圧縮機に蓄積された蓄熱のみであるため、逆サイクル除霜運転と比較すると、霜の融解熱源が少なく、除霜運転時間が長くなる。   On the other hand, the frost melting heat source during the hot gas bypass defrosting operation is only the electric power applied to the compressor and the heat storage stored in the compressor, and therefore, compared with the reverse cycle defrosting operation, the frost melting heat source is less. The defrosting operation time becomes longer.

本発明は、除霜運転に要する時間を抑制し、かつ除霜運転終了後に迅速に実質的な暖房運転を開始する冷凍装置を実現することを課題とする。   This invention makes it a subject to implement | achieve the freezing apparatus which suppresses the time which a defrost operation requires, and starts a substantial heating operation rapidly after completion | finish of a defrost operation.

上記課題を解決するため、本発明の冷凍装置は、冷媒を循環させる配管に、圧縮機と、四方弁と、凝縮器と、膨張弁と、蒸発器とを設けて冷凍サイクルを形成し、圧縮機の吐出側と蒸発器の上流側とを接続するホットガスバイパス路と、ホットガスバイパス路を開閉するホットガスバイパス開閉弁と、蒸発器の除霜運転をおこなう除霜制御手段とを備えている。そして、圧縮機から四方弁と凝縮器を経て膨張弁に至る配管の蓄熱量を検出する蓄熱量検出手段を設け、除霜制御手段は、蒸発器の着霜を検出すると、四方弁を切替えて逆サイクル除霜運転をおこない、蓄熱量検出手段により検出される配管蓄熱量が設定値以下になったら四方弁を正サイクル側に切替えると共にホットガスバイパス開閉弁を開いてホットガスバイパス除霜運転をおこなうことを特徴とする。   In order to solve the above problems, the refrigeration apparatus of the present invention is provided with a compressor, a four-way valve, a condenser, an expansion valve, and an evaporator in a pipe for circulating a refrigerant to form a refrigeration cycle, and compression A hot gas bypass passage that connects the discharge side of the machine and the upstream side of the evaporator, a hot gas bypass on-off valve that opens and closes the hot gas bypass passage, and a defrost control means that performs a defrosting operation of the evaporator Yes. And the heat storage amount detection means which detects the heat storage amount of the piping from the compressor to the expansion valve through the four-way valve and the condenser is provided, and when the defrost control means detects the frost formation of the evaporator, the four-way valve is switched. Reverse cycle defrosting operation is performed, and when the heat storage amount detected by the heat storage amount detection means falls below the set value, the four-way valve is switched to the forward cycle side and the hot gas bypass on / off valve is opened to perform hot gas bypass defrosting operation. It is characterized by performing.

すなわち、除霜運転の開始時は逆サイクル除霜運転をおこない、元々凝縮器として作用していた室内熱交換器や、室内熱交換器側の配管(凝縮器側の配管)の蓄熱を利用するので、ホットガスバイパス除霜運転に比べて霜の融解熱源を大きくとることができる。そして、この蓄熱は除霜運転を続けるにつれて除々に低下していくが、蓄熱量検出手段によって圧縮機から四方弁と凝縮器を経て膨張弁に至る配管の蓄熱量を検出し、検出値が設定値より低下したら逆サイクル除霜運転からホットガスバイパス除霜運転に切替える。これにより、除霜に利用可能な蓄熱を使い切っても霜が完全に融解しない場合は、より効率の良いホットガスバイパス除霜運転に切替えて除霜運転の全体の時間の短縮を図ることができる。また、ホットガスバイパス除霜運転は、正サイクル側で冷媒を循環するため、除霜運転を終了して暖房運転を再開する時には、室内熱交換器及び室内熱交換器側の配管は暖められており、迅速に実質的な暖房運転を開始することができる。   That is, at the start of the defrosting operation, the reverse cycle defrosting operation is performed, and the heat storage of the indoor heat exchanger that originally acted as a condenser or the indoor heat exchanger side pipe (the condenser side pipe) is used. Therefore, the frost melting heat source can be increased as compared with the hot gas bypass defrosting operation. This heat storage gradually decreases as the defrosting operation is continued, but the heat storage amount detection means detects the heat storage amount of the pipe from the compressor to the expansion valve through the four-way valve and the condenser, and the detection value is set. If it falls below the value, the reverse cycle defrosting operation is switched to the hot gas bypass defrosting operation. Accordingly, when the frost is not completely melted even if the heat storage available for defrosting is used up, it is possible to reduce the overall time of the defrosting operation by switching to a more efficient hot gas bypass defrosting operation. . Moreover, since the hot gas bypass defrosting operation circulates the refrigerant on the positive cycle side, when the defrosting operation is finished and the heating operation is restarted, the indoor heat exchanger and the piping on the indoor heat exchanger side are warmed. Thus, substantial heating operation can be started quickly.

この場合において、蓄熱量検出手段は、圧縮機から四方弁と凝縮器を経て膨張弁に至る配管の温度を検出する温度検出手段とすることができるし、また、圧縮機から四方弁と凝縮器を経て膨張弁に至る配管の圧力を検出する圧力検出手段とすることもできる。これによれば、温度の高低又は圧力の高低と、蓄熱量の多少は相関性があるので、温度又は圧力をセンサなどで簡易に検出することにより蓄熱量の多少を判断して逆サイクル除霜運転からホットガスバイパス除霜運転への切替えが可能となる。   In this case, the heat storage amount detection means can be a temperature detection means for detecting the temperature of the pipe from the compressor to the expansion valve via the four-way valve and the condenser, and from the compressor to the four-way valve and the condenser. It can also be set as the pressure detection means which detects the pressure of piping which reaches an expansion valve via. According to this, since the temperature level or pressure level is somewhat correlated with the amount of heat storage, the reverse cycle defrosting is determined by simply detecting the temperature or pressure with a sensor or the like to determine the amount of heat storage. Switching from operation to hot gas bypass defrost operation is possible.

さらに、圧縮機の吐出側と吸入側とを接続する吐出バイパス路と、吐出バイパス路を開閉する吐出バイパス開閉弁とを備え、除霜制御手段は、蒸発器の着霜を検出すると、吐出バイパス開閉弁を開いて逆サイクル除霜運転及びホットガスバイパス除霜運転をおこなうことができる。   Furthermore, a discharge bypass passage for connecting the discharge side and the suction side of the compressor and a discharge bypass on / off valve for opening and closing the discharge bypass passage are provided. A reverse cycle defrosting operation and a hot gas bypass defrosting operation can be performed by opening the on-off valve.

これによれば、逆サイクル除霜運転中に吐出バイパス路に吐出ガス冷媒を流して圧縮機吸入側に導くことにより、吸入圧力を高く保持して、圧縮機への電気入力量を増加させることが可能となるため、除霜時間を短縮することが可能となる。また、逆サイクル除霜運転及びホットガスバイパス除霜運転中には、圧縮機の吸入側に液冷媒が多く戻ってくるため、液圧縮による圧縮機の信頼性が低下する問題があるが、これによれば、圧縮機吸入側に吐出ガス冷媒をバイパスするため、除霜運転中の吸入側の冷媒かわき度が大きくなり、液圧縮の危険性を回避して圧縮機の信頼性を向上することができる。   According to this, by flowing the discharge gas refrigerant through the discharge bypass passage during the reverse cycle defrosting operation and guiding it to the compressor suction side, the suction pressure is kept high and the electric input amount to the compressor is increased. Therefore, the defrosting time can be shortened. In addition, during the reverse cycle defrosting operation and the hot gas bypass defrosting operation, a large amount of liquid refrigerant returns to the suction side of the compressor, so there is a problem that the reliability of the compressor due to liquid compression decreases. According to the present invention, since the discharge gas refrigerant is bypassed to the compressor suction side, the degree of suction of the refrigerant on the suction side during the defrosting operation is increased, and the reliability of the compressor is improved by avoiding the risk of liquid compression. Can do.

本発明によれば、除霜運転に要する時間を抑制し、かつ除霜運転終了後に迅速に実質的な暖房運転を開始する冷凍装置を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigeration apparatus which suppresses the time which a defrost operation requires and starts a substantial heating operation rapidly after completion | finish of a defrost operation is realizable.

以下、本発明を適用してなる冷凍装置の実施形態を図1〜図7を用いて説明する。なお、以下の説明では、冷凍装置の一例として空気調和機を用いて実施形態を説明するが、本発明はこれに限らず、四方弁などのサイクル切替え手段を有する冷凍機など種々の冷凍装置に適用可能である。また、同一機能部品については同一符号を付して重複説明を省略する。   Hereinafter, an embodiment of a refrigeration apparatus to which the present invention is applied will be described with reference to FIGS. In the following description, an embodiment is described using an air conditioner as an example of a refrigeration apparatus. However, the present invention is not limited to this, and various refrigeration apparatuses such as a refrigerator having cycle switching means such as a four-way valve are used. Applicable. The same functional parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の第1実施例の空気調和機の全体構成を示すブロック図である。図1に示すように、空気調和機20は、圧縮機1、四方弁2、室外熱交換器3、室外膨張弁4、受液器5などを冷媒配管で接続して形成される室外機40と、室内膨張弁6、室内熱交換器7などを冷媒配管で接続して形成される室内機50とで構成されている。室外機40と室内機50は、液阻止弁8とガス阻止弁9を介して液接続管10とガス接続管11で配管接続されている。   FIG. 1 is a block diagram showing an overall configuration of an air conditioner according to a first embodiment of the present invention. As shown in FIG. 1, an air conditioner 20 includes an outdoor unit 40 formed by connecting a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an outdoor expansion valve 4, a liquid receiver 5 and the like with refrigerant pipes. And an indoor unit 50 formed by connecting the indoor expansion valve 6, the indoor heat exchanger 7 and the like with refrigerant pipes. The outdoor unit 40 and the indoor unit 50 are connected by a liquid connection pipe 10 and a gas connection pipe 11 via a liquid blocking valve 8 and a gas blocking valve 9.

室外機40には、圧縮機1の吐出側と四方弁2とを接続する配管から、室外膨張弁4と室外熱交換器3とを接続する配管に対して、圧縮機1の吐出ガス冷媒をバイパスするためのホットガスバイパス路13が設けられている。また、ホットガスバイパス路13には、圧縮機1の吐出ガス冷媒を適宜に流すようにホットガスバイパス開閉弁12が設けられている。   In the outdoor unit 40, the discharge gas refrigerant of the compressor 1 is supplied from the pipe connecting the discharge side of the compressor 1 to the four-way valve 2 to the pipe connecting the outdoor expansion valve 4 and the outdoor heat exchanger 3. A hot gas bypass passage 13 for bypassing is provided. The hot gas bypass passage 13 is provided with a hot gas bypass on-off valve 12 so that the discharged gas refrigerant of the compressor 1 flows appropriately.

室内機50には、室内熱交換器7、液接続管10及びガス接続管11などに蓄積された蓄熱量を検出する蓄熱量検出手段として、室内熱交換器7のガス側配管部の温度を検出する配管温度サーミスタ14が取り付けられている。ただし、配管温度サーミスタ14は、室内熱交換器7の液側配管部に設けられていてもよい。   In the indoor unit 50, the temperature of the gas side piping part of the indoor heat exchanger 7 is used as a heat storage amount detecting means for detecting the heat storage amount accumulated in the indoor heat exchanger 7, the liquid connection pipe 10, the gas connection pipe 11, and the like. A pipe temperature thermistor 14 to be detected is attached. However, the pipe temperature thermistor 14 may be provided in the liquid side pipe part of the indoor heat exchanger 7.

配管温度サーミスタ14の出力信号は、除霜制御手段32に取り込まれ、除霜制御手段32に予め設定されている値(例えば、0℃)と比較される。そして、この比較結果は、四方弁切替え手段30及び開閉弁駆動手段31に送られるように構成されている。また、四方弁切替え手段30は四方弁2の駆動装置に接続され、開閉弁駆動手段31はホットガスバイパス開閉弁12の駆動装置に接続されている。   The output signal of the pipe temperature thermistor 14 is taken into the defrost control means 32 and compared with a value (for example, 0 ° C.) preset in the defrost control means 32. The comparison result is sent to the four-way valve switching means 30 and the on-off valve driving means 31. The four-way valve switching means 30 is connected to the driving device for the four-way valve 2, and the on-off valve driving means 31 is connected to the driving device for the hot gas bypass on-off valve 12.

次に、本発明の空気調和機の冷凍サイクルの運転モードについて説明する。図1に示す実線矢印は暖房運転時及びホットガスバイパス除霜運転時における冷媒の流れを示し、破線矢印は逆サイクル除霜運転における冷媒の流れを示している。暖房運転時は、圧縮機1で圧縮された高温高圧の冷媒は、四方弁2、ガス阻止弁9を通過して室内熱交換器7に流入し、室内熱交換器7を通過する空気と熱交換して凝縮液化し、室内膨張弁6に流入する。   Next, the operation mode of the refrigeration cycle of the air conditioner of the present invention will be described. The solid line arrows shown in FIG. 1 indicate the refrigerant flow during the heating operation and the hot gas bypass defrosting operation, and the broken line arrows indicate the refrigerant flow during the reverse cycle defrosting operation. During the heating operation, the high-temperature and high-pressure refrigerant compressed by the compressor 1 passes through the four-way valve 2 and the gas blocking valve 9 and flows into the indoor heat exchanger 7, and air and heat passing through the indoor heat exchanger 7. It is exchanged to be condensed and liquefied, and flows into the indoor expansion valve 6.

そして、室内膨張弁6により、室内熱交換器7出口の冷媒過冷却量をある一定値となるように調整され、液阻止弁8を通り受液器5に送られ、冷凍サイクルで不要となった液冷媒は受液器5に貯留される。そして、受液器5下部の液冷媒を吸出して室外膨張弁4に送られた冷媒は、室外熱交換器3で蒸発できる圧力まで減圧された後室外熱交換器3に流入し、室外熱交換器3を通過する空気と熱交換して蒸発ガス化し、四方弁2を通過して圧縮機1に戻る。   Then, the indoor expansion valve 6 adjusts the refrigerant supercooling amount at the outlet of the indoor heat exchanger 7 so as to become a certain constant value, passes through the liquid blocking valve 8 and is sent to the liquid receiver 5, and becomes unnecessary in the refrigeration cycle. The liquid refrigerant is stored in the liquid receiver 5. The refrigerant sucked out from the lower part of the liquid receiver 5 and sent to the outdoor expansion valve 4 flows into the rear outdoor heat exchanger 3 that has been depressurized to a pressure at which the outdoor heat exchanger 3 can evaporate. It exchanges heat with the air passing through the vessel 3 to evaporate, passes through the four-way valve 2 and returns to the compressor 1.

ここで、室外熱交換器3を通過する空気の温度が低く、室外熱交換器3の蒸発温度が低下し0℃以下となると空気中の水分が霜となって室外熱交換器3のフィン表面に付着し、室外熱交換器3を通過する空気の抵抗となるため、室外熱交換器3を通過する空気の風量が低下し蒸発性能が低下する。これに伴い、室内熱交換器7での放熱量も低下するため暖房能力が低下する。そこで、ある程度室外熱交換器3に霜が付着した段階で室外熱交換器3の霜を融解するための除霜運転がおこなわれる。   Here, when the temperature of the air passing through the outdoor heat exchanger 3 is low and the evaporation temperature of the outdoor heat exchanger 3 decreases to 0 ° C. or less, the moisture in the air becomes frost and the fin surface of the outdoor heat exchanger 3 Since it adheres to and becomes resistance of the air passing through the outdoor heat exchanger 3, the air volume of the air passing through the outdoor heat exchanger 3 is reduced, and the evaporation performance is reduced. Along with this, the amount of heat dissipated in the indoor heat exchanger 7 is also reduced, so that the heating capacity is lowered. Therefore, a defrosting operation for melting the frost in the outdoor heat exchanger 3 is performed when frost has adhered to the outdoor heat exchanger 3 to some extent.

以下、本発明の空気調和機の特徴部である除霜運転について説明する。図2は、本実施例の除霜運転のタイムチャート図である。また、図3は、本実施例の除霜運転のフローチャート図である。   Hereinafter, the defrosting operation which is a characteristic part of the air conditioner of the present invention will be described. FIG. 2 is a time chart of the defrosting operation of the present embodiment. Moreover, FIG. 3 is a flowchart figure of the defrost operation of a present Example.

図2に示すように、暖房運転中は、室外膨張弁4で圧縮機1吐出側の冷媒過熱度を制御し、室内膨張弁6で室内熱交換器7の冷媒過冷却度を制御している(サブクール制御)。そして、図2、3に示すように、暖房運転中に(S0)、室外熱交換器4の温度を検出したり、圧縮機1の吸入圧力を検出したりするなどの公知の手段で着霜を検出して、除霜運転を開始するか否かを判定する(S1)。除霜運転開始の指令を受けた場合は(S1でYes)、まず、圧縮機運転周波数を最低周波数まで下げ吐出圧力と吸入圧力の差を小さくする(S2)。   As shown in FIG. 2, during the heating operation, the outdoor expansion valve 4 controls the refrigerant superheating degree on the discharge side of the compressor 1, and the indoor expansion valve 6 controls the refrigerant supercooling degree of the indoor heat exchanger 7. (Subcool control). 2 and 3, during heating operation (S0), frosting is performed by a known means such as detecting the temperature of the outdoor heat exchanger 4 or detecting the suction pressure of the compressor 1. Is detected to determine whether or not to start the defrosting operation (S1). When a defrosting operation start command is received (Yes in S1), first, the compressor operating frequency is lowered to the lowest frequency to reduce the difference between the discharge pressure and the suction pressure (S2).

その状態で四方弁2を暖房モード(正サイクル)から冷房モード(逆サイクル)に切替え、室内ファン及び室外ファンを停止し、室内膨張弁6及び室外膨張弁4を逆サイクル除霜運転での所定開度(例えば、全開もしくは開き気味状態)にして逆サイクル除霜運転を行う(S3)。冷凍サイクルの切替え後は、圧縮機1への電気入力量を増加させるため、例えば圧縮機運転周波数を最大にするなど、圧縮機運転周波数をできる限り高く保つように制御する(S4)。   In this state, the four-way valve 2 is switched from the heating mode (forward cycle) to the cooling mode (reverse cycle), the indoor fan and the outdoor fan are stopped, and the indoor expansion valve 6 and the outdoor expansion valve 4 are predetermined in the reverse cycle defrosting operation. The reverse cycle defrosting operation is performed with the opening degree (for example, fully open or open) (S3). After switching the refrigeration cycle, in order to increase the electric input amount to the compressor 1, control is performed so as to keep the compressor operating frequency as high as possible, for example, by maximizing the compressor operating frequency (S4).

次に、室内熱交換器のガス管側に取り付けた配管温度サーミスタ14により検出される室内ガス管温度が例えば0℃以下となるかを判定して(S5)、0℃以下となったら、四方弁2を冷房モード(逆サイクル)から暖房モード(正サイクル)に切替えると共に、ホットガスバイパス開閉弁12を開いてホットガスバイパス除霜運転をおこなう(S6)。   Next, it is determined whether the indoor gas pipe temperature detected by the pipe temperature thermistor 14 attached to the gas pipe side of the indoor heat exchanger is, for example, 0 ° C. or lower (S5). The valve 2 is switched from the cooling mode (reverse cycle) to the heating mode (forward cycle), and the hot gas bypass on / off valve 12 is opened to perform the hot gas bypass defrosting operation (S6).

ホットガスバイパス除霜運転中は、室外膨張弁4の開度を制御することにより圧縮機1吐出側の冷媒過熱度を制御し、室外熱交換器3の温度又は圧縮機1の吸入圧力などに応じて除霜運転を終了するか否かを判定する(S7)。除霜運転終了の指令がなされたら(S7でYes)、ホットガスバイパス開閉弁12を閉じて室外膨張弁4及び室内膨張弁6を暖房始動初期開度に設定し、室内ファン及び室外ファンを所定の風量が出るように運転することで暖房運転が再開される(S8、S9)。   During the hot gas bypass defrosting operation, the degree of refrigerant superheating on the discharge side of the compressor 1 is controlled by controlling the opening degree of the outdoor expansion valve 4, so that the temperature of the outdoor heat exchanger 3 or the suction pressure of the compressor 1 is controlled. Accordingly, it is determined whether or not to end the defrosting operation (S7). When a command to end the defrosting operation is given (Yes in S7), the hot gas bypass on-off valve 12 is closed, the outdoor expansion valve 4 and the indoor expansion valve 6 are set to the heating start initial opening degree, and the indoor fan and the outdoor fan are set as predetermined. The heating operation is resumed by operating so that the air volume of the air is output (S8, S9).

以上説明したように、本発明では、除霜運転の初期段階では逆サイクル除霜運転を行い、暖房運転中に高温となっていた室内熱交換器7、液接続管10及びガス接続管11などに蓄積された配管蓄熱量を使い、室外熱交換器3で放熱し液化した冷媒を蒸発させ圧縮機に吸込ませるため、蓄熱量が多い場合は圧縮機1の吸入圧力を高く保つことが可能となり、冷凍サイクル内を流れる冷媒循環量を多く保てると共に、圧縮機1の電気入力量を増加させることが可能となり、ひいては霜の融解熱源を多く抽出することが可能となる。   As described above, in the present invention, the reverse cycle defrosting operation is performed in the initial stage of the defrosting operation, and the indoor heat exchanger 7, the liquid connection pipe 10, the gas connection pipe 11, and the like that have become high temperature during the heating operation. The amount of heat stored in the pipe is used to evaporate the refrigerant that is radiated and liquefied by the outdoor heat exchanger 3 and sucks it into the compressor. Therefore, when the amount of heat is large, the suction pressure of the compressor 1 can be kept high. In addition, it is possible to maintain a large amount of refrigerant circulating in the refrigeration cycle, increase the electric input amount of the compressor 1, and thus extract a large amount of frost melting heat source.

また、配管蓄熱量が少なくなる場合は、室外熱交換器3で放熱し液化した冷媒を蒸発させられないため、圧縮機1の吸入圧力が低くなり、冷凍サイクル内を流れる冷媒循環量が減少し、かつ圧縮機1の電気入力量も減少し、ひいては霜の融解熱源が減少する。本発明では、配管蓄熱量の検出を蓄熱量と相関のある室内熱交換器7のガス管側に取り付けられた配管温度サーミスタ14で検出しているため、配管蓄熱量が減少し霜の融解熱源が減少するタイミングを検出可能となる。配管蓄熱量が減少する除霜運転の後半段階は、ホットガスバイパス除霜運転をおこなうことで、逆サイクル除霜運転よりも圧縮機1の吸入圧力が上昇するため、冷凍サイクル内を流れる冷媒循環量を増加させ、かつ圧縮機1の電気入力量を増加させることが可能となり、ひいては霜の融解熱源を増加させることが可能となる。   Further, when the amount of heat stored in the pipe is reduced, the refrigerant radiated and liquefied by the outdoor heat exchanger 3 cannot be evaporated, so the suction pressure of the compressor 1 is lowered, and the amount of refrigerant circulating in the refrigeration cycle is reduced. In addition, the electric input amount of the compressor 1 is also reduced, and consequently the heat source for melting frost is reduced. In the present invention, since the pipe heat storage amount is detected by the pipe temperature thermistor 14 attached to the gas pipe side of the indoor heat exchanger 7 having a correlation with the heat storage quantity, the pipe heat storage quantity decreases and the frost melting heat source. Can be detected. In the latter half of the defrosting operation in which the amount of heat stored in the pipe is reduced, the suction pressure of the compressor 1 is increased by performing the hot gas bypass defrosting operation compared to the reverse cycle defrosting operation. It is possible to increase the amount and increase the electric input amount of the compressor 1, and consequently increase the frost melting heat source.

つまり、配管蓄熱量を検出し、蓄熱量の変化によって除霜運転を逆サイクル除霜運転からホットガスバイパス除霜運転に切り替えることにより、除霜運転の全般にわたり霜の融解熱源を最大に引き出すことが可能となり、除霜運転を短縮することができる。   In other words, by detecting the amount of heat stored in the pipe and switching the defrosting operation from the reverse cycle defrosting operation to the hot gas bypass defrosting operation according to the change in the heat storage amount, the heat source for melting frost can be maximized throughout the entire defrosting operation. And the defrosting operation can be shortened.

また、除霜運転の後半がホットガスバイパス除霜運転であるため、暖房運転再開直前の室内熱交換器7、液接続管10やガス接続管11の圧力は、圧縮機吐出側の圧力状態となり、各部の温度も高い状態となるため、暖房運転を再開した場合の立ち上りが早くなり、実質的な暖房運転を迅速におこなうことができる。   In addition, since the second half of the defrosting operation is the hot gas bypass defrosting operation, the pressures in the indoor heat exchanger 7, the liquid connection pipe 10 and the gas connection pipe 11 immediately before resuming the heating operation become the pressure state on the compressor discharge side. And since the temperature of each part will also be in a high state, the rise at the time of restarting heating operation becomes quick, and substantial heating operation can be performed rapidly.

ここで、配管温度サーミスタ14の設定値は0℃に限らず、適宜設定することができる。例えば0℃以上の3℃や5℃に設定した場合は、逆サイクル除霜運転中の室内熱交換器7の凍結防止も可能となる。   Here, the set value of the pipe temperature thermistor 14 is not limited to 0 ° C. and can be set as appropriate. For example, when set to 3 ° C. or 5 ° C. above 0 ° C., it is possible to prevent the indoor heat exchanger 7 from being frozen during the reverse cycle defrosting operation.

図4は、本発明の第2実施例の空気調和機の全体構成を示すブロック図である。図4において、図1と同符号のものは同一のものを示す。本実施例では、図1に示す室内熱交換器7、液接続管10及びガス接続管11に蓄積された蓄熱量を検出する蓄熱量検出手段として、蓄熱量と相関のある圧縮機吸入側の圧力を検出する吸入圧力センサ15を用いて、吸入圧力センサ15の出力を除霜制御手段32に入力している。そして、除霜制御手段32は、予め設定された設定値と吸入圧力センサ15の出力値とを比較して、比較結果を四方弁切替え手段30及び開閉弁駆動手段31へ出力するようになっている。それ以外の構成は、図1に示す冷凍サイクルと同様なので、説明は省略する。   FIG. 4 is a block diagram showing the overall configuration of the air conditioner of the second embodiment of the present invention. In FIG. 4, the same reference numerals as those in FIG. In this embodiment, as a heat storage amount detection means for detecting the heat storage amount accumulated in the indoor heat exchanger 7, the liquid connection pipe 10 and the gas connection pipe 11 shown in FIG. 1, the compressor suction side correlated with the heat storage amount is used. The output of the suction pressure sensor 15 is input to the defrost control means 32 using the suction pressure sensor 15 that detects the pressure. The defrosting control means 32 compares the set value set in advance with the output value of the suction pressure sensor 15 and outputs the comparison result to the four-way valve switching means 30 and the on-off valve driving means 31. Yes. The other configuration is the same as that of the refrigeration cycle shown in FIG.

まず、除霜制御手段32は、実施例1と同様に暖房運転中に蒸発器として作用する室外熱交換器3の着霜を検出すると、四方弁2を切替えて逆サイクル除霜運転をおこなう。逆サイクル除霜運転中は、室内熱交換器7、液接続管10及びガス接続管11に蓄積された蓄熱量が十分にある場合は、この蓄熱を吸熱して冷媒を蒸発できるため吸入圧力が高くなるが、蓄熱量が少なくなると吸熱量が低減し吸入圧力が低下する。このため、吸入圧力値がある一定値(例えば、0.3MPa)以下となった時点で四方弁2を冷房モード(逆サイクル)から暖房モード(正サイクル)に切替えると共に、ホットガスバイパス開閉弁12を開いてホットガスバイパス除霜運転を行うように制御する。   First, when the defrost control means 32 detects the frost formation of the outdoor heat exchanger 3 acting as an evaporator during the heating operation as in the first embodiment, the four-way valve 2 is switched to perform the reverse cycle defrost operation. During the reverse cycle defrosting operation, when there is a sufficient amount of heat stored in the indoor heat exchanger 7, the liquid connection pipe 10, and the gas connection pipe 11, the suction pressure is reduced because the heat can be absorbed to evaporate the refrigerant. However, when the amount of stored heat decreases, the amount of heat absorbed decreases and the suction pressure decreases. Therefore, when the suction pressure value becomes a certain value (for example, 0.3 MPa) or less, the four-way valve 2 is switched from the cooling mode (reverse cycle) to the heating mode (forward cycle), and the hot gas bypass on-off valve 12 And control to perform hot gas bypass defrosting operation.

これにより、除霜運転の全般にわたって霜の融解熱源を最大に引き出すことが可能となり、除霜運転を短縮することができる。また、ホットガスバイパス除霜運転中の吸入圧力は、室外熱交換器3の凝縮圧力を表わしており、この圧力値が霜の融解できる温度(例えば、5℃)以上の飽和圧力値となった時点で、ホットガスバイパス除霜運転を終了するようにすれば、除霜終了の判定と配管蓄熱量の検出を一つのセンサで行うことが可能となり、製造コストの低減が可能となる。   Thereby, it becomes possible to draw the frost melting heat source to the maximum throughout the defrosting operation, and the defrosting operation can be shortened. Further, the suction pressure during the hot gas bypass defrosting operation represents the condensation pressure of the outdoor heat exchanger 3, and this pressure value is a saturation pressure value equal to or higher than a temperature at which frost can be melted (for example, 5 ° C.). If the hot gas bypass defrosting operation is terminated at the time, it is possible to perform the defrosting end determination and the pipe heat storage amount detection with a single sensor, and the manufacturing cost can be reduced.

なお、本実施例では、吸入圧力センサ15を、圧縮機1の吸入側の直近に設けているが、これに限らず、室内熱交換器7の上流側又は下流側の配管などに設けても同様に課題を解決することができる。   In the present embodiment, the suction pressure sensor 15 is provided in the immediate vicinity of the suction side of the compressor 1. However, the present invention is not limited to this, and the suction pressure sensor 15 may be provided in a pipe on the upstream side or downstream side of the indoor heat exchanger 7 or the like. Similarly, the problem can be solved.

図5は、本発明の第3実施例の空気調和機の全体構成のブロック図である。図5において、図1又は図4と同符号のものは同一のものを示す。本実施例は、図1又は図4に示す空気調和機に対して、圧縮機1の吐出側配管から圧縮機1の吸入側配管にガス冷媒をバイパスする吐出バイパス路17を設け、吐出バイパス路17に圧縮機1の吐出ガス冷媒を適宜に流すように吐出バイパス開閉弁16が設けられた構成となっている。それ以外の構成は、図1又は図4に示す空気調和機と同様であるので、説明は省略する。   FIG. 5 is a block diagram of the overall configuration of an air conditioner according to a third embodiment of the present invention. In FIG. 5, the same reference numerals as those in FIG. 1 or 4 indicate the same components. In the present embodiment, a discharge bypass passage 17 for bypassing the gas refrigerant from the discharge side piping of the compressor 1 to the suction side piping of the compressor 1 is provided in the air conditioner shown in FIG. 1 or FIG. A discharge bypass opening / closing valve 16 is provided in 17 so that the discharge gas refrigerant of the compressor 1 flows appropriately. Since the other structure is the same as that of the air conditioner shown in FIG. 1 or FIG. 4, description is abbreviate | omitted.

図6は、本実施例での除霜運転のフローチャート図である。実施例1と同様に暖房運転中に(S0)、除霜運転開始の指令を受けた場合は(S1でYes)、まず、圧縮機運転周波数を最低周波数まで下げ吐出圧力と吸入圧力の差を小さくする(S2)。そして、この状態で四方弁2を暖房モード(正サイクル)から冷房モード(逆サイクル)に切替え、室内ファン及び室外ファンを停止し、室内膨張弁6及び室外膨張弁4を逆サイクル除霜運転での所定開度(例えば、全開もしくは開き気味状態)にして、さらに吐出バイパス開閉弁16も開いて逆サイクル除霜運転をおこなう(S3)。   FIG. 6 is a flowchart of the defrosting operation in the present embodiment. As in the first embodiment, during the heating operation (S0), when a command to start the defrosting operation is received (Yes in S1), first, the compressor operating frequency is lowered to the lowest frequency, and the difference between the discharge pressure and the suction pressure is reduced. Decrease (S2). In this state, the four-way valve 2 is switched from the heating mode (forward cycle) to the cooling mode (reverse cycle), the indoor fan and the outdoor fan are stopped, and the indoor expansion valve 6 and the outdoor expansion valve 4 are operated in the reverse cycle defrosting operation. And a discharge bypass on / off valve 16 is also opened to perform the reverse cycle defrosting operation (S3).

逆サイクル除霜運転中は、圧縮機1への電気入力量を増加させるため、圧縮機運転周波数をできる限り高く保つように制御する(S4)。その後、室内熱交換器のガス管側に取り付けた配管温度サーミスタ14により検出される室内ガス管温度が例えば0℃以下となったら(S5でYes)、四方弁2を冷房モード(逆サイクル)から暖房モード(正サイクル)に切替えると共に、ホットガスバイパス開閉弁12を開いてホットガスバイパス除霜運転をおこなう(S6)。   During the reverse cycle defrosting operation, in order to increase the electric input amount to the compressor 1, the compressor operating frequency is controlled to be kept as high as possible (S4). Thereafter, when the indoor gas pipe temperature detected by the pipe temperature thermistor 14 attached to the gas pipe side of the indoor heat exchanger becomes, for example, 0 ° C. or lower (Yes in S5), the four-way valve 2 is switched from the cooling mode (reverse cycle). While switching to heating mode (forward cycle), the hot gas bypass on-off valve 12 is opened to perform the hot gas bypass defrosting operation (S6).

ホットガスバイパス除霜運転中は、室外膨張弁4の開度を制御することにより圧縮機1吐出側の冷媒過熱度を制御し、吸入圧力センサで検出される吸入圧力値が所定の値(例えば、5℃の飽和圧力値)以上となったら(S7でYes)除霜運転終了の指令を発する。これを受けて、ホットガスバイパス開閉弁12及び吐出バイパス開閉弁16を閉じて室外膨張弁4及び室内膨張弁6を暖房始動初期開度に設定し、室内ファン及び室外ファンを所定の風量が出るように運転することで暖房運転が再開される(S8、S9)。   During the hot gas bypass defrosting operation, the degree of refrigerant superheating on the discharge side of the compressor 1 is controlled by controlling the opening degree of the outdoor expansion valve 4, and the suction pressure value detected by the suction pressure sensor is a predetermined value (for example, When the pressure reaches 5 ° C. (saturation pressure value) or more (Yes in S7), a command to end the defrosting operation is issued. In response to this, the hot gas bypass on-off valve 12 and the discharge bypass on-off valve 16 are closed, the outdoor expansion valve 4 and the indoor expansion valve 6 are set to the heating start initial opening degree, and a predetermined air volume is generated from the indoor fan and the outdoor fan. The heating operation is resumed by operating in this manner (S8, S9).

本実施例によれば、逆サイクル除霜運転中に吐出バイパス路17に吐出ガス冷媒を流して圧縮機吸入側に導くことにより、吸入圧力が高く保持され、圧縮機1への電気入力量が増加する。その結果、除霜時間を短縮することが可能となる。また、逆サイクル除霜運転中及びホットガスバイパス除霜運転中は、圧縮機1の吸入側に対して液冷媒が多く戻ってくるため、液圧縮による圧縮機1の信頼性が低下する問題があるが、本実施例では、圧縮機吸入側に吐出ガス冷媒をバイパスするため、除霜運転中の吸入側の冷媒かわき度が大きくなり、液圧縮の危険性を回避して圧縮機1の信頼性を向上することができる。   According to the present embodiment, during the reverse cycle defrosting operation, the discharge gas refrigerant flows through the discharge bypass passage 17 and is led to the compressor suction side, whereby the suction pressure is kept high and the electric input amount to the compressor 1 is reduced. To increase. As a result, the defrosting time can be shortened. Further, during the reverse cycle defrosting operation and the hot gas bypass defrosting operation, a large amount of liquid refrigerant returns to the suction side of the compressor 1, so that the reliability of the compressor 1 due to liquid compression decreases. However, in this embodiment, since the discharge gas refrigerant is bypassed to the compressor suction side, the suction degree of the refrigerant on the suction side during the defrosting operation is increased, thereby avoiding the risk of liquid compression and the reliability of the compressor 1. Can be improved.

ここで、上述の実施例1〜3では、ホットガスバイパス路13を室外膨張弁4と室外熱交換器3とを接続する配管にバイパスするように構成したが、図7に示すように受液器5と室外膨張弁4とを接続する配管にバイパスするように構成し、ホットガスバイパス除霜運転中の吐出ガス過熱度制御を室外膨張弁4から室内膨張弁6に変更し、かつ室外膨張弁4を全開で使用することで達成することが可能であり、本発明の域を脱するものではない。   Here, in Examples 1 to 3 described above, the hot gas bypass passage 13 is configured to be bypassed to a pipe connecting the outdoor expansion valve 4 and the outdoor heat exchanger 3, but as shown in FIG. It is configured to bypass to the pipe connecting the vessel 5 and the outdoor expansion valve 4, the discharge gas superheat control during the hot gas bypass defrosting operation is changed from the outdoor expansion valve 4 to the indoor expansion valve 6, and the outdoor expansion This can be achieved by using the valve 4 fully open, and does not depart from the scope of the present invention.

また、本発明では、ホットガスバイパス路や吐出バイパス路に適宜冷媒を流すために開閉弁を用いているが、流量調整弁や膨張弁であっても同様の効果があり、本発明の域を脱するものではない。   In the present invention, the on-off valve is used to appropriately flow the refrigerant through the hot gas bypass passage and the discharge bypass passage. However, the flow regulating valve and the expansion valve have the same effect, and It does not take off.

本発明の第1実施例の空気調和機の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of an air conditioner according to a first embodiment of the present invention. 第1実施例の空気調和機の除霜運転のタイムチャート図である。FIG. 3 is a time chart diagram of a defrosting operation of the air conditioner of the first embodiment. 第1実施例の空気調和機の除霜運転のフローチャート図である。FIG. 3 is a flowchart of a defrosting operation of the air conditioner according to the first embodiment. 本発明の第2実施例の空気調和機の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the air conditioner of 2nd Example of this invention. 本発明の第3実施例の空気調和機の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the air conditioner of 3rd Example of this invention. 第3実施例の空気調和機の除霜運転のフローチャート図である。It is a flowchart figure of the defrost driving | operation of the air conditioner of 3rd Example. 第1〜3実施例の変形例を示す図である。It is a figure which shows the modification of 1st-3rd Example.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室外熱交換器
4 室外膨張弁
5 受液器
6 室内膨張弁
7 室内熱交換器
12 ホットガスバイパス開閉弁
13 ホットガスバイパス路
14 配管温度サーミスタ
15 吸入圧力センサ
16 吐出バイパス開閉弁
17 吐出バイパス路
30 四方弁切替え手段
31 開閉弁駆動手段
32 除霜制御手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor expansion valve 5 Receiver 6 Indoor expansion valve 7 Indoor heat exchanger 12 Hot gas bypass opening / closing valve 13 Hot gas bypass passage 14 Pipe temperature thermistor 15 Suction pressure sensor 16 Discharge bypass On-off valve 17 Discharge bypass passage 30 Four-way valve switching means 31 On-off valve driving means 32 Defrost control means

Claims (4)

冷媒を循環させる配管に、圧縮機と、四方弁と、凝縮器と、膨張弁と、蒸発器とを設けて冷凍サイクルを形成してなり、前記圧縮機の吐出側と前記蒸発器の上流側とを接続するホットガスバイパス路と、該ホットガスバイパス路を開閉するホットガスバイパス開閉弁と、前記蒸発器の除霜運転をおこなう除霜制御手段とを備えてなる冷凍装置において、
前記圧縮機から前記四方弁と前記凝縮器を経て前記膨張弁に至る配管の蓄熱量を検出する蓄熱量検出手段を設け、
前記除霜制御手段は、前記蒸発器の着霜を検出すると、前記四方弁を切替えて逆サイクル除霜運転をおこない、前記蓄熱量検出手段により検出される配管蓄熱量が設定値以下になったら前記四方弁を正サイクル側に切替えると共に前記ホットガスバイパス開閉弁を開いてホットガスバイパス除霜運転をおこなうことを特徴とする冷凍装置。
The refrigerant circulation pipe is provided with a compressor, a four-way valve, a condenser, an expansion valve, and an evaporator to form a refrigeration cycle, and the discharge side of the compressor and the upstream side of the evaporator A refrigeration apparatus comprising: a hot gas bypass passage that connects to the hot gas bypass passage; a hot gas bypass on-off valve that opens and closes the hot gas bypass passage; and a defrost control means that performs a defrosting operation of the evaporator.
A heat storage amount detecting means for detecting a heat storage amount of a pipe from the compressor to the expansion valve via the four-way valve and the condenser;
When the defrosting control unit detects frost formation of the evaporator, the four-way valve is switched to perform a reverse cycle defrosting operation, and when the amount of heat stored in the pipe detected by the heat storage amount detection unit becomes equal to or less than a set value. A refrigeration apparatus that switches the four-way valve to the positive cycle side and opens the hot gas bypass on-off valve to perform a hot gas bypass defrosting operation.
冷媒を循環させる配管に、圧縮機と、四方弁と、凝縮器と、膨張弁と、蒸発器とを設けて冷凍サイクルを形成してなり、前記圧縮機の吐出側と前記蒸発器の上流側とを接続するホットガスバイパス路と、該ホットガスバイパス路を開閉するホットガスバイパス開閉弁と、前記蒸発器の除霜運転をおこなう除霜制御手段とを備えてなる冷凍装置において、
前記圧縮機から前記四方弁と前記凝縮器を経て前記膨張弁に至る配管の温度を検出する温度検出手段を設け、
前記除霜制御手段は、前記蒸発器の着霜を検出すると、前記四方弁を切替えて逆サイクル除霜運転をおこない、前記温度検出手段により検出される配管温度が設定値以下になったら前記四方弁を正サイクル側に切替えると共に前記ホットガスバイパス開閉弁を開いてホットガスバイパス除霜運転をおこなうことを特徴とする冷凍装置。
The refrigerant circulation pipe is provided with a compressor, a four-way valve, a condenser, an expansion valve, and an evaporator to form a refrigeration cycle, and the discharge side of the compressor and the upstream side of the evaporator A refrigeration apparatus comprising: a hot gas bypass passage that connects to the hot gas bypass passage; a hot gas bypass on-off valve that opens and closes the hot gas bypass passage; and a defrost control means that performs a defrosting operation of the evaporator.
Providing a temperature detection means for detecting the temperature of the pipe from the compressor to the expansion valve via the four-way valve and the condenser;
When the defrost control means detects the frost formation of the evaporator, the four-way valve is switched to perform a reverse cycle defrost operation, and when the pipe temperature detected by the temperature detection means falls below a set value, the four-way valve A refrigeration apparatus characterized in that the hot gas bypass defrosting operation is performed by switching the valve to the positive cycle side and opening the hot gas bypass on-off valve.
冷媒を循環させる配管に、圧縮機と、四方弁と、凝縮器と、膨張弁と、蒸発器とを設けて冷凍サイクルを形成してなり、前記圧縮機の吐出側と前記蒸発器の上流側とを接続するホットガスバイパス路と、該ホットガスバイパス路を開閉するホットガスバイパス開閉弁と、前記蒸発器の除霜運転をおこなう除霜制御手段とを備えてなる冷凍装置において、
前記圧縮機から前記四方弁と前記凝縮器を経て前記膨張弁に至る配管の圧力を検出する圧力検出手段を設け、
前記除霜制御手段は、前記蒸発器の着霜を検出すると、前記四方弁を切替えて逆サイクル除霜運転をおこない、前記圧力検出手段により検出される配管圧力が設定値以下になったら前記四方弁を正サイクル側に切替えると共に前記ホットガスバイパス開閉弁を開いてホットガスバイパス除霜運転をおこなうことを特徴とする冷凍装置。
The refrigerant circulation pipe is provided with a compressor, a four-way valve, a condenser, an expansion valve, and an evaporator to form a refrigeration cycle, and the discharge side of the compressor and the upstream side of the evaporator A refrigeration apparatus comprising: a hot gas bypass passage that connects to the hot gas bypass passage; a hot gas bypass on-off valve that opens and closes the hot gas bypass passage; and a defrost control means that performs a defrosting operation of the evaporator.
A pressure detecting means for detecting a pressure of a pipe from the compressor to the expansion valve via the four-way valve and the condenser;
When the defrost control means detects the frost formation of the evaporator, the four-way valve is switched to perform a reverse cycle defrost operation, and when the pipe pressure detected by the pressure detection means falls below a set value, the four-way valve A refrigeration apparatus characterized in that the hot gas bypass defrosting operation is performed by switching the valve to the positive cycle side and opening the hot gas bypass on-off valve.
前記圧縮機の吐出側と吸入側とを接続する吐出バイパス路と、該吐出バイパス路を開閉する吐出バイパス開閉弁とを備え、
前記除霜制御手段は、前記蒸発器の着霜を検出すると、前記吐出バイパス開閉弁を開いて前記逆サイクル除霜運転及び前記ホットガスバイパス除霜運転をおこなうことを特徴とする請求項1乃至3に記載の冷凍装置。

A discharge bypass passage connecting the discharge side and the suction side of the compressor, and a discharge bypass opening and closing valve for opening and closing the discharge bypass passage,
The defrosting control means, when detecting frosting of the evaporator, opens the discharge bypass on-off valve to perform the reverse cycle defrosting operation and the hot gas bypass defrosting operation. 3. The refrigeration apparatus according to 3.

JP2006278522A 2006-10-12 2006-10-12 Refrigerating device Withdrawn JP2008096033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006278522A JP2008096033A (en) 2006-10-12 2006-10-12 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006278522A JP2008096033A (en) 2006-10-12 2006-10-12 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2008096033A true JP2008096033A (en) 2008-04-24

Family

ID=39379060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006278522A Withdrawn JP2008096033A (en) 2006-10-12 2006-10-12 Refrigerating device

Country Status (1)

Country Link
JP (1) JP2008096033A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032730A (en) * 2010-11-25 2011-04-27 佛山市中格威电子有限公司 Hot-gas bypass defrosting system for variable-frequency air conditioner
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
CN103486783A (en) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 Air conditioner system and defrosting control method thereof
JP2014013121A (en) * 2012-07-05 2014-01-23 Panasonic Corp Air conditioner
JP2014163653A (en) * 2013-02-28 2014-09-08 Aisin Seiki Co Ltd Engine-driven type air conditioning device
WO2015122056A1 (en) * 2014-02-13 2015-08-20 日立アプライアンス株式会社 Air conditioning device
JP2016125785A (en) * 2015-01-07 2016-07-11 三菱電機株式会社 Freezer
EP3093586A4 (en) * 2013-10-29 2017-08-23 Mitsubishi Electric Corporation Air conditioning device
EP3136009A4 (en) * 2014-04-22 2017-11-22 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Air conditioner and defrosting operation method therefor
JP2019148390A (en) * 2018-02-28 2019-09-05 株式会社富士通ゼネラル Air conditioner
CN110513830A (en) * 2019-08-05 2019-11-29 宁波奥克斯电气股份有限公司 A kind of air-conditioning four-way valve reverse control method and control device and air-conditioning
CN111442475A (en) * 2020-04-10 2020-07-24 海信(山东)空调有限公司 Defrosting control method and device of air conditioning system and air conditioner
US11585578B2 (en) 2017-07-07 2023-02-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2023218585A1 (en) * 2022-05-12 2023-11-16 三菱電機株式会社 Refrigeration cycle device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
CN102032730A (en) * 2010-11-25 2011-04-27 佛山市中格威电子有限公司 Hot-gas bypass defrosting system for variable-frequency air conditioner
JP2014013121A (en) * 2012-07-05 2014-01-23 Panasonic Corp Air conditioner
JP2014163653A (en) * 2013-02-28 2014-09-08 Aisin Seiki Co Ltd Engine-driven type air conditioning device
CN103486783A (en) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 Air conditioner system and defrosting control method thereof
CN103486783B (en) * 2013-09-26 2015-09-30 广东美的制冷设备有限公司 Air-conditioner system and defrosting control method thereof
EP3093586A4 (en) * 2013-10-29 2017-08-23 Mitsubishi Electric Corporation Air conditioning device
WO2015122056A1 (en) * 2014-02-13 2015-08-20 日立アプライアンス株式会社 Air conditioning device
JP2015152205A (en) * 2014-02-13 2015-08-24 日立アプライアンス株式会社 Air conditioner
US10473353B2 (en) 2014-04-22 2019-11-12 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner and defrosting operation method therefor
EP3136009A4 (en) * 2014-04-22 2017-11-22 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Air conditioner and defrosting operation method therefor
JP2016125785A (en) * 2015-01-07 2016-07-11 三菱電機株式会社 Freezer
US11585578B2 (en) 2017-07-07 2023-02-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2019148390A (en) * 2018-02-28 2019-09-05 株式会社富士通ゼネラル Air conditioner
JP7035623B2 (en) 2018-02-28 2022-03-15 株式会社富士通ゼネラル Air conditioner
CN110513830A (en) * 2019-08-05 2019-11-29 宁波奥克斯电气股份有限公司 A kind of air-conditioning four-way valve reverse control method and control device and air-conditioning
CN111442475A (en) * 2020-04-10 2020-07-24 海信(山东)空调有限公司 Defrosting control method and device of air conditioning system and air conditioner
WO2023218585A1 (en) * 2022-05-12 2023-11-16 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2008096033A (en) Refrigerating device
JP4974714B2 (en) Water heater
JP6580149B2 (en) Refrigeration cycle equipment
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP2005069566A (en) Freezer
WO2015122056A1 (en) Air conditioning device
JP4760974B2 (en) Refrigeration equipment
JP2007051805A (en) Air conditioner
JP4479828B2 (en) Refrigeration equipment
JP2008121983A (en) Air conditioner
US20190360725A1 (en) Refrigeration apparatus
JP2003240391A (en) Air conditioner
JP2015064169A (en) Hot water generation device
JP4804528B2 (en) Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
WO2013084510A1 (en) Refrigeration device for container
JP5517891B2 (en) Air conditioner
JP5601890B2 (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
JP3993540B2 (en) Refrigeration equipment
JP4823131B2 (en) Air conditioner
JP2007247997A (en) Air conditioner
JP2006162240A (en) Refrigerating device
JP6048549B1 (en) Refrigeration equipment
JP2745828B2 (en) Operation control device for refrigeration equipment
JP7038277B2 (en) Refrigeration cycle device and liquid heating device equipped with it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105