JP2007051805A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007051805A
JP2007051805A JP2005236277A JP2005236277A JP2007051805A JP 2007051805 A JP2007051805 A JP 2007051805A JP 2005236277 A JP2005236277 A JP 2005236277A JP 2005236277 A JP2005236277 A JP 2005236277A JP 2007051805 A JP2007051805 A JP 2007051805A
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
way valve
refrigerant
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005236277A
Other languages
Japanese (ja)
Other versions
JP4654828B2 (en
Inventor
Teruo Fujikoso
輝夫 藤社
Yoshikazu Nishihara
義和 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005236277A priority Critical patent/JP4654828B2/en
Priority to CN2008101700528A priority patent/CN101382365B/en
Priority to CN2008101700532A priority patent/CN101382366B/en
Priority to CN2008101700547A priority patent/CN101382367B/en
Publication of JP2007051805A publication Critical patent/JP2007051805A/en
Application granted granted Critical
Publication of JP4654828B2 publication Critical patent/JP4654828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner performing a defrosting operation while continuing a heating operation. <P>SOLUTION: The air conditioner is provided with a first by-pass circuit 6 connecting the suction side of a compressor 1 to a part between an indoor heat exchanger 3 and a pressure reducer 4 of a heat pump type refrigerating cycle, the first by-pass circuit 6 comprising a two-way valve 7 and a refrigerant heater 8; and a second by-pass circuit 9 connecting a part between the pressure reducer 4 and an outdoor heat exchanger 5 to a part between the indoor heat exchanger 3 and a four-way valve 2 connected to the refrigerating cycle, the second by-pass circuit 9 comprising a two-way valve 10. When the outdoor heat exchanger 5 is defrosted, the two-way valve 7 of the first by-pass circuit 6 and the two-way valve 10 of the second by-pass circuit 9 are opened to perform the heating and defrosting operations. If sufficient defrosting cannot be performed in this defrosting method, four-way valve switching defrosting is performed in optimum conditions to suppress imperfect defrosting at the outdoor heat exchanger. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ運転による暖房運転時において、暖房を継続しながら室外熱交換器に付着した霜を除霜する除霜運転を行うことができる空気調和装置に関するものである。   The present invention relates to an air conditioner capable of performing a defrosting operation for defrosting frost adhering to an outdoor heat exchanger while heating is continued during a heating operation by a heat pump operation.

従来、この種のヒートポンプ式空気調和器の除霜方式は、一般的に四方弁を切り換え、冷凍サイクルの冷媒を逆方向に流す除霜方式をとっている。   Conventionally, this type of heat pump type air conditioner defrosting method generally employs a defrosting method in which the four-way valve is switched and the refrigerant of the refrigeration cycle is flowed in the reverse direction.

即ち、除霜運転は冷房時と同じ冷媒の流動方向とし、室外熱交換器に高温高圧の冷媒を流す事により、熱交換器に付着した霜を融解するものである。   That is, in the defrosting operation, the flow direction of the refrigerant is the same as that during cooling, and the frost attached to the heat exchanger is melted by flowing a high-temperature and high-pressure refrigerant through the outdoor heat exchanger.

この除霜方式では、除霜時は室内側の熱交換器が蒸発器となるため、室内機のファンを停止させる。これにより部屋の温度が低下して冷風感を感じるという基本的課題があった。   In this defrosting method, the indoor heat exchanger is an evaporator during defrosting, so the fan of the indoor unit is stopped. As a result, there is a basic problem that the temperature of the room is lowered to feel a cold wind.

この基本的課題への対策として、暖房運転を継続しながら除霜運転する発明が考えられてきた。   As a countermeasure to this basic problem, an invention for performing a defrosting operation while continuing a heating operation has been considered.

図5は従来の空気調和装置の冷凍サイクルの構成図である。   FIG. 5 is a configuration diagram of a refrigeration cycle of a conventional air conditioner.

同図に示すように、圧縮機、四方弁、室内熱交換器、膨張機構および室外熱交換器を冷媒回路で連結してなるヒートポンプ式冷凍サイクルにおいて、この冷凍サイクルにおける前記膨張機構と前記室外熱交換器の間と、前記圧縮機の吸入側の間を連結し、冷媒加熱器を有する冷媒加熱回路と、前記冷凍サイクルにおける圧縮機の吐出側と前記室外熱交換器と前記四方弁の間を連結する除霜用回路とを備え、前記冷凍サイクルのヒートポンプ運転時において前記室外熱交換器の除霜を行う際、前記冷媒加熱器によって加熱された冷媒が、前記圧縮機を通った後、前記室内熱交換器を通る流れと前記除霜用回路から前記室外熱交換器を通る流れとに分岐され、これらの分岐した冷媒の流れが前記冷媒加熱回路の入口で合流し、再び前記冷媒加熱器によって加熱されるように構成されている発明が開示されている。   As shown in the figure, in a heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, an expansion mechanism, and an outdoor heat exchanger are connected by a refrigerant circuit, the expansion mechanism and the outdoor heat in the refrigeration cycle Between the exchangers and between the suction side of the compressor, a refrigerant heating circuit having a refrigerant heater, and between the discharge side of the compressor, the outdoor heat exchanger and the four-way valve in the refrigeration cycle. A defrosting circuit to be connected, and when defrosting the outdoor heat exchanger during the heat pump operation of the refrigeration cycle, after the refrigerant heated by the refrigerant heater passes through the compressor, The flow through the indoor heat exchanger and the flow from the defrosting circuit to the flow through the outdoor heat exchanger are branched, and the flow of the branched refrigerant merges at the inlet of the refrigerant heating circuit, and again the refrigerant heater Thus the invention is configured is disclosed to be heated.

上記発明で課題として取り上げられているように、ヒートポンプ運転を行った際の室外機の除霜運転を行うときに、暖房を継続しながら、除霜運転を行うことは条件が決まれば可能である(例えば、特許文献1参照)。
特開平11−182994号公報(図6)
As taken up as a problem in the above invention, when performing a defrosting operation of the outdoor unit when performing a heat pump operation, it is possible to perform the defrosting operation while continuing the heating if conditions are determined. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 11-182994 (FIG. 6)

しかしながら、この冷凍サイクルの方式では、次のような課題が発生する。   However, this refrigeration cycle system has the following problems.

この冷凍サイクルの構成は、除霜運転を行う際に、二方弁109aを開放にして、室外熱交換器103と四方弁102との間に圧縮機101の吐出冷媒が流れることになるため、圧縮機吸入側に除霜するホットガス冷媒が流れないように二方弁106が必要となる。   In this refrigeration cycle, when the defrosting operation is performed, the two-way valve 109a is opened, and the refrigerant discharged from the compressor 101 flows between the outdoor heat exchanger 103 and the four-way valve 102. The two-way valve 106 is necessary so that the hot gas refrigerant to be defrosted does not flow to the compressor suction side.

二方弁106は圧縮機101の吸入側に連結され、冷房および暖房運転の圧損を低減するためには口径の大きな二方弁106を採用することとなり、非常に高価な二方弁となっ
てしまう。
The two-way valve 106 is connected to the suction side of the compressor 101, and in order to reduce the pressure loss during cooling and heating operation, the two-way valve 106 having a large diameter is adopted, which makes the two-way valve very expensive. End up.

またヒートポンプ運転から二方弁108を開放させて冷媒加熱運転に切り換え、除霜運転を行う方式で室外熱交換器103の冷媒の流れが逆転するため、除霜運転を行う前に二方弁107を一旦閉運転とする必要があり、この室外熱交換器103の入口に二方弁107が必要となる。   In addition, the two-way valve 108 is opened from the heat pump operation to switch to the refrigerant heating operation, and the refrigerant flow in the outdoor heat exchanger 103 is reversed in the method of performing the defrosting operation. Must be closed once, and a two-way valve 107 is required at the inlet of the outdoor heat exchanger 103.

したがって、この冷凍サイクルでは4個もの二方弁が必要となり、複雑で高価な方式となる。   Therefore, this refrigeration cycle requires as many as four two-way valves, which is a complicated and expensive method.

また除霜に供された後の冷媒と室内熱交換器110で放熱した後の冷媒が合流するため、合流箇所における冷媒圧力が除霜に供された後の冷媒の圧力よりも高ければ、室外熱交換器に冷媒が流れ、逆であれば室内側に冷媒が流れることになり、暖房しながら除霜運転を行うことが出来ない場合が発生する。   In addition, since the refrigerant after being defrosted and the refrigerant after being radiated by the indoor heat exchanger 110 merge, if the refrigerant pressure at the junction is higher than the refrigerant pressure after being defrosted, If the refrigerant flows through the heat exchanger and vice versa, the refrigerant will flow into the room, and the defrosting operation may not be performed while heating.

また、除霜に供された後の冷媒と室内熱交換器110で放熱した後の冷媒が合流するため、冷媒音が発生しやすく、前記の圧力バランスの課題と冷媒音課題を解決するために冷媒合流器を必要とする場合が考えられる。   In addition, since the refrigerant after being defrosted and the refrigerant radiated by the indoor heat exchanger 110 join together, refrigerant noise is likely to occur, and in order to solve the above pressure balance problem and refrigerant noise problem The case where a refrigerant merger is required can be considered.

また、前記合流箇所では冷媒循環量が多くなり圧力損失が増加するため、その対策として配管の管径を大きくすることが必要となる。それにより、管径の大きくなった配管を吐出した過熱冷媒が流入する際、吐出ガスの冷媒速度が減少し、充分に除霜能力を確保できず、霜が溶け残るといった場合が発生する可能性がある。   Further, since the refrigerant circulation amount increases and the pressure loss increases at the junction, it is necessary to increase the pipe diameter as a countermeasure. As a result, when superheated refrigerant discharged from a pipe with a large pipe diameter flows in, the refrigerant speed of the discharged gas decreases, and sufficient defrosting capacity cannot be ensured and frost may remain unmelted. There is.

本発明は、従来技術の有するこのような問題点に鑑みてなされたもので、冷凍サイクルが簡単なバイパス回路で構成でき、冷媒音、圧力バランスの問題も発生しない安定した除霜運転を提供すると共に、このホットガスバイパス回路の除霜運転で室外熱交換器の霜の溶け残りが発生した場合でも、所定の判定条件により最適化された四方弁除霜を行う事で快適性を充分に満足させて且つ、除霜を完全に行うと言った信頼性の高い空気調和装置を提供することを目的としている。   The present invention has been made in view of such problems of the prior art, and provides a stable defrosting operation in which the refrigeration cycle can be configured with a simple bypass circuit and the problem of refrigerant noise and pressure balance does not occur. At the same time, even if the frost of the outdoor heat exchanger is not melted during the defrosting operation of this hot gas bypass circuit, the four-way valve defrosting optimized according to the predetermined judgment conditions is sufficient to ensure comfort. It is an object of the present invention to provide a highly reliable air conditioner that performs defrosting completely.

上記目的を達成するために、本発明の空気調和装置は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結されたヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された室内熱交換器と減圧器の間と四方弁と室外熱交換器の間を連結する第1のバイパス回路を設け、第1のバイパス回路に二方弁、冷媒加熱器を設け、さらに前記四方弁と前記室内熱交換器の間と減圧器と室外熱交換器の間、または前記圧縮機と四方弁の間と、減圧器と室外熱交換器の間を連結する第2のバイパス回路を設け、第2のバイパス回路に二方弁を設け、室外熱交換器の除霜を行う際、第1のバイパス回路の二方弁を開放して冷媒加熱器で加熱された冷媒を圧縮機の吸入側に流す第1のバイパス運転と、第2のバイパス回路の二方弁を開放して室外熱交換器に冷媒を通過させる第2のバイパス運転を行い、除霜運転中、所定の時間内に室外熱交換器温度の温度検知器によって検知された室外熱交換器温度が所定の温度に到達しない場合、前記ホットガスバイパスによって行う除霜方式を停止し、前記四方弁により冷媒回路を冷房サイクルに切り換え除霜を行うことを特徴とするものである。   In order to achieve the above object, an air conditioner of the present invention includes a heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit, and the refrigeration cycle. A first bypass circuit that connects between the indoor heat exchanger and the pressure reducer connected to each other and between the four-way valve and the outdoor heat exchanger is provided, and a two-way valve and a refrigerant heater are provided in the first bypass circuit, Further, a second bypass that connects between the four-way valve and the indoor heat exchanger, between the pressure reducer and the outdoor heat exchanger, or between the compressor and the four-way valve, and between the pressure reducer and the outdoor heat exchanger. When the circuit is provided, the two-way valve is provided in the second bypass circuit, and the outdoor heat exchanger is defrosted, the two-way valve of the first bypass circuit is opened to compress the refrigerant heated by the refrigerant heater. The first bypass operation to flow to the suction side of the machine and the two-way valve of the second bypass circuit A second bypass operation is performed to allow the refrigerant to pass through the outdoor heat exchanger, and during the defrosting operation, the outdoor heat exchanger temperature detected by the temperature detector of the outdoor heat exchanger temperature within a predetermined time is predetermined. When the temperature does not reach, the defrosting method performed by the hot gas bypass is stopped and the refrigerant circuit is switched to a cooling cycle by the four-way valve to perform defrosting.

本発明の空気調和装置は、暖房運転を継続しながら、除霜を実施することができる。   The air conditioner of the present invention can perform defrosting while continuing the heating operation.

第1の発明は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器温度を検知する検知器を具備した室外熱交換器、冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に二方弁及び冷媒加熱器を設け、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間と、前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間と、前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に二方弁を設け、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことを特徴とするホットガスバイパス除霜を行う構成をなすことにより、暖房運転を行ないながら除霜運転を実施することができると共に、ホットガスバイパス除霜運転中、所定の時間10分30秒以内で室外熱交換器温度が所定の判定温度6℃以上に到達しない時、直ちに前記ホットガスバイパス除霜運転を停止し、四方弁を切り換えて除霜を行う四方弁切り換え除霜の運転制御へ変更する。   A first invention includes a compressor, a four-way valve, an indoor heat exchanger, a decompressor, an outdoor heat exchanger having a detector for detecting an outdoor heat exchanger temperature, a heat pump refrigeration cycle connected by a refrigerant circuit, A first bypass circuit that connects the indoor heat exchanger and the pressure reducer connected to the refrigeration cycle, the four-way valve, and the outdoor heat exchanger is provided, and the two-way valve is provided in the first bypass circuit. And a refrigerant heater, and the compression connected between the four-way valve and the indoor heat exchanger connected to the refrigeration cycle, between the decompressor and the outdoor heat exchanger, or connected to the refrigeration cycle A second bypass circuit that connects between the compressor and the four-way valve and between the pressure reducer and the outdoor heat exchanger, a two-way valve is provided in the second bypass circuit, and the outdoor heat exchanger When performing defrosting, the first bypass circuit A first bypass operation in which the two-way valve is opened and the refrigerant heated by the refrigerant heater flows to the suction side of the compressor, and the two-way valve of the second bypass circuit is opened, and the outdoor heat exchanger By performing a hot gas bypass defrosting configuration that performs a second bypass operation that allows the refrigerant to pass through, it is possible to perform the defrosting operation while performing the heating operation, and to remove the hot gas bypass. During the frost operation, when the outdoor heat exchanger temperature does not reach the predetermined judgment temperature of 6 ° C. or more within a predetermined time of 10 minutes and 30 seconds, the hot gas bypass defrost operation is immediately stopped and the four-way valve is switched to defrost. Change to the four-way valve switching defrost operation control.

これにより外気空調負荷変化や雪の付着、熱交換器の凍結、冷媒加熱器の加熱量バラツキなどにより発生する恐れのある霜の溶け残りを防止する事が可能となる。   As a result, it is possible to prevent unmelted frost that may be generated due to a change in the outside air conditioning load, snow adhesion, freezing of the heat exchanger, variation in the heating amount of the refrigerant heater, and the like.

第2の発明は、特に第1の発明の室外気温度検知器によって検知された室外気温度の値によって、ホットガスバイパス除霜時に行う冷媒過熱器の加熱量を調整し、負荷に応じた最適な過熱量で除霜を行う事で無駄な消費電力を省く事が出来ると共に、ホットガスバイパス除霜運転中に判断している所定の判定時間を最適化することで、無駄に四方弁除霜を行い暖房運転の快適性を損ねるという事を抑制できる。   The second invention adjusts the amount of heating of the refrigerant superheater performed during hot gas bypass defrosting according to the value of the outdoor air temperature detected by the outdoor air temperature detector of the first invention, and is optimal according to the load. By defrosting with a large amount of overheating, wasteful power consumption can be saved, and by optimizing the predetermined judgment time judged during hot gas bypass defrosting operation, four-way valve defrosting is wasted To reduce the comfort of heating operation.

例えば、外気温度が低温の時に冷媒過熱器の熱量を増加させ、除霜運転中の判定時間を10分30秒以上に延ばすことで、充分に除霜運転を行うと共に、快適性も維持することが出来る。   For example, by increasing the amount of heat of the refrigerant superheater when the outside air temperature is low and extending the determination time during the defrosting operation to 10 minutes 30 seconds or more, the defrosting operation is sufficiently performed and the comfort is also maintained. I can do it.

第3の発明は、特に第1の発明の室外気温度検知器によって検知された室外気温度の値によって、ホットガスバイパス除霜時に行う冷媒過熱器の加熱量を調整し、負荷に応じた最適な過熱量で除霜を行う事で無駄な消費電力を省く事が出来ると共に、ホットガスバイパス除霜運転中に判断している所定の室外熱交換器温度の判定温度を最適化することで、無駄に四方弁除霜を行い暖房運転の快適性を損ねるという事を抑制できる。例えば、外気温度が低温の時に冷媒過熱器の熱量を増加させ、除霜運転中の室外熱交換器温度の判定温度を10℃以上に設定変更することで、充分に除霜運転を行うと共に、快適性も維持することが出来る。   The third aspect of the invention adjusts the amount of heating of the refrigerant superheater that is performed at the time of defrosting the hot gas bypass according to the value of the outdoor temperature detected by the outdoor temperature detector of the first aspect of the invention. By defrosting with a large amount of overheating, wasteful power consumption can be saved, and by optimizing the judgment temperature of the predetermined outdoor heat exchanger temperature judged during hot gas bypass defrosting operation, It is possible to suppress wasteful defrosting of the four-way valve and impairing the comfort of heating operation. For example, when the outside air temperature is low, the amount of heat of the refrigerant superheater is increased, and the determination temperature of the outdoor heat exchanger temperature during the defrosting operation is changed to 10 ° C. or more, thereby sufficiently performing the defrosting operation, Comfort can also be maintained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本願発明にかかる空気調和装置の構成図である。同図において、室外機20には、圧縮機1、四方弁2、減圧器4、室外熱交換器5、室外熱交換器温度検知器21、室外気温度検知器22、第1のバイパス回路6、冷媒加熱用二方弁7、冷媒加熱器8、第2のバイパス回路9、除霜用二方弁10、第2のバイパス回路の二方弁11、第1のバイパス回路の二方弁12、冷媒加熱ヒータ13、冷媒通過管部14、蓄熱部15、室外送風機19で配設されている。室内機18には、室内熱交換器3、室内送風機17が配設されている。ここでの減圧器4は、電磁膨張弁でもよい。
(Embodiment 1)
FIG. 1 is a configuration diagram of an air conditioner according to the present invention. In the figure, an outdoor unit 20 includes a compressor 1, a four-way valve 2, a decompressor 4, an outdoor heat exchanger 5, an outdoor heat exchanger temperature detector 21, an outdoor air temperature detector 22, and a first bypass circuit 6. , A refrigerant heating two-way valve 7, a refrigerant heater 8, a second bypass circuit 9, a defrosting two-way valve 10, a second bypass circuit two-way valve 11, a first bypass circuit two-way valve 12 The refrigerant heater 13, the refrigerant passage pipe part 14, the heat storage part 15, and the outdoor blower 19 are provided. The indoor unit 18 is provided with the indoor heat exchanger 3 and the indoor blower 17. The decompressor 4 here may be an electromagnetic expansion valve.

次に図2は、本願発明にかかる実施の形態1を示す制御ブロック図であり、図3はホットガスバイパス除霜制御が動作したときの挙動を示すタイムチャートである。図4はホットガスバイパス除霜運転中、室外熱交換器温度が所定の判定時間、判定温度に到達しなかった場合に四方弁除霜に切り替えて行う際のタイムチャート図である。   Next, FIG. 2 is a control block diagram showing the first embodiment according to the present invention, and FIG. 3 is a time chart showing the behavior when the hot gas bypass defrost control is operated. FIG. 4 is a time chart when switching to four-way valve defrosting when the outdoor heat exchanger temperature does not reach the predetermined determination time and determination temperature during the hot gas bypass defrosting operation.

図2では室外機側で除霜開始判断が除霜開始判断手段50でなされ、除霜開始と判断された時に圧縮機運転手段51、冷媒加熱用二方弁開閉手段52、除霜用二方弁開閉手段53、膨張弁開度可変手段54、室外送風機運転手段55、四方弁切り換え手段56、加熱器ヒータ運転停止手段が図5に示す動作をすることにより除霜運転が行われる。   In FIG. 2, the defrosting start determination is made by the defrosting start determining means 50 on the outdoor unit side, and when it is determined that the defrosting is started, the compressor operating means 51, the refrigerant heating two-way valve opening / closing means 52, and the defrosting two-way The defrosting operation is performed by the valve opening / closing means 53, the expansion valve opening varying means 54, the outdoor fan operating means 55, the four-way valve switching means 56, and the heater heater operation stopping means performing the operations shown in FIG.

このとき室外機20から除霜開始信号を室内機18で除霜開始信号受信手段58で受信して、除霜運転の判断より室内送風機運転手段59で室内送風機17を制御する。   At this time, the defrosting start signal is received from the outdoor unit 20 by the indoor unit 18 by the defrosting start signal receiving means 58, and the indoor fan 17 is controlled by the indoor fan operating means 59 based on the determination of the defrosting operation.

図3に示すように、除霜開始の判断をすると、ステップ1のヒートポンプによる暖房運転からステップ2の冷媒加熱運転による暖房運転に移行する。このときに冷媒加熱用二方弁をONして開方向に制御する。   As shown in FIG. 3, when the start of defrosting is determined, the heating operation by the heat pump in step 1 is shifted to the heating operation by the refrigerant heating operation in step 2. At this time, the refrigerant heating two-way valve is turned on and controlled in the opening direction.

また加熱器ヒータをONして冷媒加熱運転を行う。このとき膨張弁は閉塞運転かまたは閉塞に近い運転を行う。   Also, the heater is turned on to perform the refrigerant heating operation. At this time, the expansion valve performs a closed operation or an operation close to the closed state.

また外ファンは除霜中停止する。四方弁は、暖房を継続するため、暖房回路のままで除霜中も切り換えしない。   The external fan stops during defrosting. Since the four-way valve continues heating, it remains in the heating circuit and does not switch during defrosting.

また内ファンは暖房を継続するので、停止することはない。   Moreover, since an internal fan continues heating, it does not stop.

次にステップ3で、除霜を行うために除霜用二方弁をONして開方向に制御する。また圧縮機は、除霜用の運転周波数で運転する。   Next, in step 3, in order to perform defrosting, the two-way valve for defrosting is turned on and controlled in the opening direction. The compressor is operated at an operating frequency for defrosting.

ここで、ステップ3で前記ホットガスバイパス制御による除霜運転中、室外熱交換器温度が所定の判定時間内に所定の判定温度に到達しない場合は、ステップ3終了後、図4にある四方弁除霜制御のタイムチャートにおけるステップ1に移行し、四方弁除霜制御の準備を開始する。   Here, when the outdoor heat exchanger temperature does not reach the predetermined determination temperature within the predetermined determination time during the defrosting operation by the hot gas bypass control in step 3, the four-way valve shown in FIG. It moves to Step 1 in the time chart of defrost control, and preparations for four-way valve defrost control are started.

その後、ステップ2により四方弁除霜を開始し、ステップ3により圧縮機の運転を開始し、四方弁除霜を継続する。   Thereafter, the four-way valve defrosting is started in step 2, the compressor is started in step 3, and the four-way valve defrosting is continued.

ここで除霜運転中、室外熱交換器温度が所定の判定時間内に判定温度に到達すると、四方弁除霜運転を終了し、ステップ4へ移行する。ここで暖房運転が復帰される。   Here, during the defrosting operation, when the outdoor heat exchanger temperature reaches the determination temperature within a predetermined determination time, the four-way valve defrosting operation is terminated, and the process proceeds to step 4. Here, the heating operation is restored.

ここで、実施例として、第1のバイパス回路の接続を四方弁と室外熱交換器の間としたが、四方弁と圧縮機吸入側の間にしても、除霜作用は同じなので第1のバイパス回路を四方弁と圧縮機吸入側にしても良い。   Here, as an example, the connection of the first bypass circuit is made between the four-way valve and the outdoor heat exchanger, but the defrosting action is the same even between the four-way valve and the compressor suction side. The bypass circuit may be a four-way valve and a compressor suction side.

(実施の形態2)
次に実施の形態2について説明する。
(Embodiment 2)
Next, a second embodiment will be described.

本実施の形態において実施の形態1と異なる点は、図1における室外気温度検知器22で検知された温度により、冷媒過熱器8の加熱量を最適化調整すると共に、図3における除霜制御タイムチャートのステップ3での所定の判定時間を最適化することで、無駄に四
方弁切り換え除霜に移行させることを抑制できる。
The present embodiment differs from the first embodiment in that the heating amount of the refrigerant superheater 8 is optimized and adjusted based on the temperature detected by the outdoor air temperature detector 22 in FIG. 1, and the defrost control in FIG. By optimizing the predetermined determination time in step 3 of the time chart, it is possible to suppress unnecessary shift to the four-way valve switching defrosting.

(実施の形態3)
次に実施の形態3について説明する。
(Embodiment 3)
Next, a third embodiment will be described.

本実施の形態において実施の形態1と異なる点は、図1における室外気温度検知器22で検知された温度により、冷媒過熱器8の加熱量を最適化調整すると共に、図3における除霜制御タイムチャートのステップ3での室外熱交換器温度の所定の判定温度を最適化することで、無駄に四方弁切り換え除霜に移行させることを抑制できる。   The present embodiment differs from the first embodiment in that the heating amount of the refrigerant superheater 8 is optimized and adjusted based on the temperature detected by the outdoor air temperature detector 22 in FIG. 1, and the defrost control in FIG. By optimizing the predetermined determination temperature of the outdoor heat exchanger temperature in Step 3 of the time chart, it is possible to suppress the useless transition to the four-way valve switching defrosting.

以上のように本発明の空気調和装置は暖房運転しながら、除霜運転を実施できるので、室外温度が非常に低温の寒冷地での空気調和装置にも適用できると共に、除霜しても熱交換器に付着した霜が溶け残ってしまうと言った課題も解決できる。   As described above, since the air conditioner of the present invention can perform the defrosting operation while performing the heating operation, it can be applied to an air conditioner in a cold region where the outdoor temperature is very low, and heat is also generated even if the defrost is performed. The problem that the frost attached to the exchanger remains undissolved can also be solved.

本願発明にかかる実施の形態1の空気調和装置の構成図Configuration diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention. 本願発明にかかる制御ブロック図Control block diagram according to the present invention 本願発明にかかる実施の形態1のホットガスバイパス除霜のタイムチャートTime chart of hot gas bypass defrosting according to Embodiment 1 of the present invention 本願発明にかかる実施の形態1の四方弁除霜のタイムチャートTime chart of four-way valve defrosting according to the first embodiment of the present invention 従来例の空気調和装置の構成図Configuration diagram of conventional air conditioner

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室内熱交換器
4 減圧器
5 室外熱交換器
6 第1のバイパス回路
7 冷媒加熱用二方弁
8 加熱器
9 第2のバイパス回路
10 除霜用二方弁
11 除霜用減圧器
12 冷媒加熱用減圧器
13 加熱器ヒータ
14 冷媒通過管部
15 蓄熱部
17 室内送風機
18 室内機
19 室外送風機
20 室外機
21 室外熱交換器温度検知器
22 室外気温度検知器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Pressure reducer 5 Outdoor heat exchanger 6 First bypass circuit 7 Two-way valve for refrigerant heating 8 Heater 9 Second bypass circuit 10 Two-way valve for defrosting 11 Removal Defroster for frost 12 Depressurizer for refrigerant heating 13 Heater heater 14 Refrigerant passage pipe part 15 Heat storage part 17 Indoor fan 18 Indoor unit 19 Outdoor fan 20 Outdoor unit 21 Outdoor heat exchanger temperature detector 22 Outdoor air temperature detector

Claims (3)

圧縮機及び、四方弁、室内熱交換器、減圧器、室外ファン、室外熱交換器と室外熱交換器の温度を検出する検知器、室外気温度を検知する検知器を具備した冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に二方弁及び冷媒加熱器を設け、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間と、前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間と、前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に二方弁を設け、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転のホットガスバイパスにより除霜を行い、除霜運転中、所定の時間内に室外熱交換器温度の温度検知器によって検知された室外熱交換器温度が所定の温度に到達しない場合、前記ホットガスバイパスによって行う除霜方式を停止し、前記四方弁により冷媒回路を冷房サイクルに切り換え除霜を行うことを特徴とする空気調和装置。 Connected by a refrigerant circuit equipped with a compressor, a four-way valve, an indoor heat exchanger, a decompressor, an outdoor fan, a detector that detects the temperature of the outdoor heat exchanger and the outdoor heat exchanger, and a detector that detects the outdoor air temperature A heat bypass refrigeration cycle, a first bypass circuit that connects between the indoor heat exchanger and the decompressor connected to the refrigeration cycle, and between the four-way valve and the outdoor heat exchanger, A bypass circuit and a refrigerant heater are provided in one bypass circuit, and further between the four-way valve and the indoor heat exchanger connected to the refrigeration cycle, between the pressure reducer and the outdoor heat exchanger, or A second bypass circuit is provided to connect between the compressor and the four-way valve connected to a refrigeration cycle, and between the decompressor and the outdoor heat exchanger, and a two-way valve is provided in the second bypass circuit. Defrosting the outdoor heat exchanger When performing, the first bypass operation of opening the two-way valve of the first bypass circuit and flowing the refrigerant heated by the refrigerant heater to the suction side of the compressor, and two ways of the second bypass circuit The defrosting is performed by the hot gas bypass in the second bypass operation that opens the valve and allows the refrigerant to pass through the outdoor heat exchanger. During the defrosting operation, the temperature detector of the outdoor heat exchanger temperature is used within a predetermined time. When the detected outdoor heat exchanger temperature does not reach a predetermined temperature, the defrosting method performed by the hot gas bypass is stopped, and the refrigerant circuit is switched to a cooling cycle by the four-way valve to perform defrosting. Air conditioner. ホットガスバイパスにより行う除霜方式において、除霜運転開始時に、室外気温度検知器によって検知された室外気温度の値によって冷媒過熱器の加熱量を調整すると共に、除霜運転中の所定の時間を変更する事を特徴とする、請求項1に記載の空気調和装置。 In the defrosting method performed by hot gas bypass, at the start of the defrosting operation, the heating amount of the refrigerant superheater is adjusted according to the value of the outdoor air temperature detected by the outdoor air temperature detector, and a predetermined time during the defrosting operation The air conditioner according to claim 1, wherein the air conditioner is changed. ホットガスバイパスにより行う除霜方式において、除霜運転開始時に、室外気温度検知器によって検知された室外気温度の値によって、前記冷媒過熱器の加熱量を調整すると共に、除霜運転中の所定の前記室外熱交換器温度を変更する事を特徴とする、請求項1に記載の空気調和装置。 In the defrosting method performed by hot gas bypass, at the start of the defrosting operation, the heating amount of the refrigerant superheater is adjusted according to the value of the outdoor air temperature detected by the outdoor air temperature detector, and the predetermined amount during the defrosting operation is adjusted. The air conditioner according to claim 1, wherein the outdoor heat exchanger temperature is changed.
JP2005236277A 2005-08-05 2005-08-17 Air conditioner Expired - Fee Related JP4654828B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005236277A JP4654828B2 (en) 2005-08-17 2005-08-17 Air conditioner
CN2008101700528A CN101382365B (en) 2005-08-05 2006-08-03 Air conditioner
CN2008101700532A CN101382366B (en) 2005-08-05 2006-08-03 Air conditioner
CN2008101700547A CN101382367B (en) 2005-08-05 2006-08-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236277A JP4654828B2 (en) 2005-08-17 2005-08-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007051805A true JP2007051805A (en) 2007-03-01
JP4654828B2 JP4654828B2 (en) 2011-03-23

Family

ID=37916370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236277A Expired - Fee Related JP4654828B2 (en) 2005-08-05 2005-08-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP4654828B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100874229B1 (en) 2007-05-07 2008-12-16 위니아만도 주식회사 Heat pump
JP2012057869A (en) * 2010-09-09 2012-03-22 Panasonic Corp Air conditioner
CN103162461A (en) * 2011-12-13 2013-06-19 珠海格力电器股份有限公司 Air conditioner and defrosting control method applied to same
JP5265010B2 (en) * 2009-07-22 2013-08-14 三菱電機株式会社 Heat pump equipment
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
WO2014061133A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
CN103940163A (en) * 2014-04-14 2014-07-23 美的集团武汉制冷设备有限公司 Defrosting control method and device
JP5829761B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
CN105910237A (en) * 2016-05-11 2016-08-31 广东美的制冷设备有限公司 Defrosting control method and device for air conditioner
JPWO2015162696A1 (en) * 2014-04-22 2017-04-13 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner and its defrosting operation method
CN107514741A (en) * 2017-07-27 2017-12-26 青岛海尔空调器有限总公司 A kind of air conditioner combined type defrosting control method, control device and air conditioner
JP2019117035A (en) * 2017-12-27 2019-07-18 株式会社コロナ Heat pump device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192012B (en) * 2017-05-03 2020-07-07 青岛海尔空调电子有限公司 Split heat pump air conditioner and method for delaying frosting of split heat pump air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134464A (en) * 1985-12-06 1987-06-17 三菱電機株式会社 Controller for air conditioner
JPS62173670U (en) * 1986-04-22 1987-11-04
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPS63213765A (en) * 1987-02-27 1988-09-06 ダイキン工業株式会社 Refrigerator
JPH08338673A (en) * 1995-06-14 1996-12-24 Fujitsu General Ltd Method and device for controlling air conditioner
JPH11257719A (en) * 1998-03-09 1999-09-24 Fujitsu General Ltd Method of controlling air conditioner, and its device
JPH11315719A (en) * 1998-04-28 1999-11-16 Denso Corp Engine-driven air conditioner
JP2001133088A (en) * 1999-11-04 2001-05-18 Sharp Corp Air-conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134464A (en) * 1985-12-06 1987-06-17 三菱電機株式会社 Controller for air conditioner
JPS62173670U (en) * 1986-04-22 1987-11-04
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPS63213765A (en) * 1987-02-27 1988-09-06 ダイキン工業株式会社 Refrigerator
JPH08338673A (en) * 1995-06-14 1996-12-24 Fujitsu General Ltd Method and device for controlling air conditioner
JPH11257719A (en) * 1998-03-09 1999-09-24 Fujitsu General Ltd Method of controlling air conditioner, and its device
JPH11315719A (en) * 1998-04-28 1999-11-16 Denso Corp Engine-driven air conditioner
JP2001133088A (en) * 1999-11-04 2001-05-18 Sharp Corp Air-conditioner

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100874229B1 (en) 2007-05-07 2008-12-16 위니아만도 주식회사 Heat pump
JP5265010B2 (en) * 2009-07-22 2013-08-14 三菱電機株式会社 Heat pump equipment
US9557085B2 (en) 2009-07-22 2017-01-31 Mitsubishi Electric Corporation Heat pump apparatus
JP2012057869A (en) * 2010-09-09 2012-03-22 Panasonic Corp Air conditioner
CN103162461A (en) * 2011-12-13 2013-06-19 珠海格力电器股份有限公司 Air conditioner and defrosting control method applied to same
JP5829762B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
CN104736949A (en) * 2012-10-18 2015-06-24 大金工业株式会社 Air conditioner
WO2014061133A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
JP5829761B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
CN104736949B (en) * 2012-10-18 2016-06-15 大金工业株式会社 Air-conditioning device
JP5955400B2 (en) * 2012-10-18 2016-07-20 ダイキン工業株式会社 Air conditioner
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
CN103940163A (en) * 2014-04-14 2014-07-23 美的集团武汉制冷设备有限公司 Defrosting control method and device
JPWO2015162696A1 (en) * 2014-04-22 2017-04-13 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner and its defrosting operation method
US10473353B2 (en) 2014-04-22 2019-11-12 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner and defrosting operation method therefor
CN105910237A (en) * 2016-05-11 2016-08-31 广东美的制冷设备有限公司 Defrosting control method and device for air conditioner
CN107514741A (en) * 2017-07-27 2017-12-26 青岛海尔空调器有限总公司 A kind of air conditioner combined type defrosting control method, control device and air conditioner
JP2019117035A (en) * 2017-12-27 2019-07-18 株式会社コロナ Heat pump device

Also Published As

Publication number Publication date
JP4654828B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4654828B2 (en) Air conditioner
JP3888403B2 (en) Method and apparatus for controlling air conditioner
JP4622990B2 (en) Air conditioner
CN100439824C (en) Air conditioner device
JP3858276B2 (en) Refrigeration equipment
JP2007040658A (en) Air conditioner
JP2006105560A (en) Air conditioner
WO2015122056A1 (en) Air conditioning device
JP2008096033A (en) Refrigerating device
US20080028773A1 (en) Air conditioner and controlling method thereof
JP2008116156A (en) Air conditioner
JP2003240391A (en) Air conditioner
JP2009014215A (en) Air conditioning device
JP4694457B2 (en) Air conditioner
JP4605065B2 (en) Air conditioner
JP2006132797A (en) Air conditioner
JP2009047344A (en) Air conditioning device
JP4830399B2 (en) Air conditioner
JP4802602B2 (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2007285614A (en) Air conditioner
JP4661451B2 (en) Air conditioner
JP2007107853A (en) Air conditioner
JP5747160B2 (en) Air conditioner
JP5516332B2 (en) Heat pump type hot water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4654828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees