JP4622990B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4622990B2
JP4622990B2 JP2006306349A JP2006306349A JP4622990B2 JP 4622990 B2 JP4622990 B2 JP 4622990B2 JP 2006306349 A JP2006306349 A JP 2006306349A JP 2006306349 A JP2006306349 A JP 2006306349A JP 4622990 B2 JP4622990 B2 JP 4622990B2
Authority
JP
Japan
Prior art keywords
refrigerant
way valve
heat exchanger
refrigerant heater
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006306349A
Other languages
Japanese (ja)
Other versions
JP2008121983A (en
Inventor
義和 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006306349A priority Critical patent/JP4622990B2/en
Publication of JP2008121983A publication Critical patent/JP2008121983A/en
Application granted granted Critical
Publication of JP4622990B2 publication Critical patent/JP4622990B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、暖房運転時において、暖房を継続しながら室外熱交換器に付着した霜を除霜する除霜運転を行うことができる空気調和機に関するものである。   The present invention relates to an air conditioner capable of performing a defrosting operation for defrosting frost attached to an outdoor heat exchanger while heating is continued during a heating operation.

従来、この種のヒートポンプ式空気調和器の除霜方式は、一般的に四方弁を切り換え、冷凍サイクルの冷媒を逆方向に流す除霜方式をとっている。   Conventionally, this type of heat pump type air conditioner defrosting method generally employs a defrosting method in which the four-way valve is switched and the refrigerant of the refrigeration cycle is flowed in the reverse direction.

即ち、除霜運転は冷房時と同じ冷媒の流動方向とし、室外熱交換器に高温高圧の冷媒を流して、熱交換器に付着した霜を融解するものである。   That is, in the defrosting operation, the flow direction of the refrigerant is the same as that during cooling, and a high-temperature and high-pressure refrigerant is passed through the outdoor heat exchanger to melt frost adhering to the heat exchanger.

この除霜方式では、除霜時は室内側の熱交換器が蒸発器となるため、暖房を停止することで室内の部屋の温度が低下して冷風感を感じるという基本的課題があった。   In this defrosting system, since the indoor heat exchanger becomes an evaporator during defrosting, there is a basic problem that when the heating is stopped, the temperature of the room in the room is lowered and a cold air feeling is felt.

この基本的課題への対策として、暖房継続しながら除霜運転する発明が考えられてきた。   As a countermeasure to this basic problem, an invention for performing a defrosting operation while continuing heating has been considered.

図7は従来の空気調和機の冷凍サイクルの構成図である。   FIG. 7 is a configuration diagram of a refrigeration cycle of a conventional air conditioner.

同図に示すように、圧縮機、四方弁、室内熱交換器、膨張機構および室外熱交換器を冷媒回路で連結してなるヒートポンプ式冷凍サイクルにおいて、この冷凍サイクルにおける前記膨張機構と前記室外熱交換器の間と、前記圧縮機の吸入側の間を連結し、冷媒加熱器を有する冷媒加熱回路と、前記冷凍サイクルにおける圧縮機の吐出側と前記室外熱交換器と前記四方弁の間を連結する除霜用回路とを備え、前記冷凍サイクルのヒートポンプ運転時において前記室外熱交換器の除霜を行う際、前記冷媒加熱器によって加熱された冷媒が、前記圧縮機を通った後、前記室内熱交換器を通る流れと前記除霜用回路から前記室外熱交換器を通る流れとに分岐され、これらの分岐した冷媒の流れが前記冷媒加熱回路の入口で合流し、再び前記冷媒加熱器によって加熱されるように構成されている発明が開示されている。   As shown in the figure, in a heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, an expansion mechanism, and an outdoor heat exchanger are connected by a refrigerant circuit, the expansion mechanism and the outdoor heat in the refrigeration cycle Between the exchangers and between the suction side of the compressor, a refrigerant heating circuit having a refrigerant heater, and between the discharge side of the compressor, the outdoor heat exchanger and the four-way valve in the refrigeration cycle. A defrosting circuit to be connected, and when defrosting the outdoor heat exchanger during the heat pump operation of the refrigeration cycle, after the refrigerant heated by the refrigerant heater passes through the compressor, The flow through the indoor heat exchanger and the flow from the defrosting circuit to the flow through the outdoor heat exchanger are branched, and the flow of the branched refrigerant merges at the inlet of the refrigerant heating circuit, and the refrigerant heater again. Thus the invention is configured is disclosed to be heated.

上記発明で課題として取り上げられているように、ヒートポンプ運転を行った際の室外機の除霜運転を行うときに、暖房を継続しながら、除霜運転を行うことは条件が決まれば可能である(例えば、特許文献1参照)。
特開平11−182994号公報
As taken up as a problem in the above invention, when performing a defrosting operation of the outdoor unit when performing a heat pump operation, it is possible to perform the defrosting operation while continuing the heating if conditions are determined. (For example, refer to Patent Document 1).
JP-A-11-182994

しかしながら、この冷凍サイクルの方式では、次のような課題が発生する。   However, this refrigeration cycle system has the following problems.

この冷凍サイクルの構成は、除霜運転を行う際に、二方弁109aを開放にして、室外熱交換器103と四方弁102との間に圧縮機101の吐出冷媒が流れることになるため、圧縮機吸入側に除霜するホットガス冷媒が流れないように二方弁106が必要となる。   In this refrigeration cycle, when the defrosting operation is performed, the two-way valve 109a is opened, and the refrigerant discharged from the compressor 101 flows between the outdoor heat exchanger 103 and the four-way valve 102. The two-way valve 106 is necessary so that the hot gas refrigerant to be defrosted does not flow to the compressor suction side.

二方弁106は圧縮機101の吸入側に連結され、冷房および暖房運転の圧損を低減す
るためには口径の大きな二方弁106を採用することとなり、非常に高価な二方弁となってしまう。
The two-way valve 106 is connected to the suction side of the compressor 101, and in order to reduce the pressure loss during cooling and heating operation, the two-way valve 106 having a large diameter is adopted, which makes the two-way valve very expensive. End up.

またヒートポンプ運転から二方弁108を開放させて冷媒加熱運転に切り換え、除霜運転を行う方式で室外熱交換器103の冷媒の流れが逆転するため、除霜運転を行う前に二方弁107を一端閉運転とする必要があり、この室外熱交換器103の入口に二方弁107が必要となる。   In addition, the two-way valve 108 is opened from the heat pump operation to switch to the refrigerant heating operation, and the refrigerant flow in the outdoor heat exchanger 103 is reversed in the method of performing the defrosting operation. Must be closed at one end, and a two-way valve 107 is required at the inlet of the outdoor heat exchanger 103.

したがって、この冷凍サイクルでは4個もの二方弁が必要となり、複雑で高価な方式となる。   Therefore, this refrigeration cycle requires as many as four two-way valves, which is a complicated and expensive method.

また除霜に供された後の冷媒と室内熱交換器110で放熱した後の冷媒が合流するため、合流箇所における冷媒圧力が除霜に供された後の冷媒の圧力よりも高ければ、室外熱交換器に冷媒が流れ、逆であれば室内側に冷媒が流れることになり、暖房しながら除霜運転を行うことが出来ない場合が発生する。   In addition, since the refrigerant after being defrosted and the refrigerant after being radiated by the indoor heat exchanger 110 merge, if the refrigerant pressure at the joining point is higher than the pressure of the refrigerant after being defrosted, If the refrigerant flows through the heat exchanger and vice versa, the refrigerant will flow into the room, and the defrosting operation may not be performed while heating.

また、除霜に供された後の冷媒と室内熱交換器110で放熱した後の冷媒が合流するため、冷媒音が発生しやすく、前記の圧力バランスの課題と冷媒音課題を解決するために冷媒合流器を必要とする場合が考えられる。   In addition, since the refrigerant after being defrosted and the refrigerant radiated by the indoor heat exchanger 110 join together, refrigerant noise is likely to occur, and in order to solve the above pressure balance problem and refrigerant noise problem The case where a refrigerant merger is required can be considered.

また、前記合流箇所では冷媒循環量が多くなり圧力損失が増加するため、その対策として配管の管径を大きくすることが必要となり、加熱器が大型になってしまうという構造的課題もある。   Moreover, since the refrigerant circulation amount increases and the pressure loss increases at the junction, it is necessary to increase the pipe diameter as a countermeasure, and there is a structural problem that the heater becomes large.

さらに、冷房回路で運転すると冷媒加熱器104の配管内部は、低圧冷媒で安定して冷媒加熱器104の温度が低下することから冷媒加熱器104に結露する場合や二方弁108が故障で冷媒漏れを発生した場合でも冷媒加熱器に結露が発生して冷媒加熱器の信頼性、安全性に大きな問題がある。   Furthermore, when the cooling circuit is operated, the inside of the piping of the refrigerant heater 104 is stabilized with the low-pressure refrigerant, and the temperature of the refrigerant heater 104 is decreased. Therefore, when the dew condensation occurs on the refrigerant heater 104 or the two-way valve 108 breaks down, the refrigerant Even when leakage occurs, condensation occurs in the refrigerant heater, and there is a big problem in the reliability and safety of the refrigerant heater.

本発明は、従来技術の有するこのような問題点に鑑みてなされたもので、冷凍サイクルが簡単なバイパス回路で構成でき、冷媒音、圧力バランスの問題も発生しない安定した除霜運転を、暖房運転を継続しながら実施できる空気調和機を提供することを目的としている。   The present invention has been made in view of the above-described problems of the prior art. A stable defrosting operation in which a refrigeration cycle can be configured with a simple bypass circuit and no problems of refrigerant noise and pressure balance occur. The purpose is to provide an air conditioner that can be implemented while continuing operation.

上記目的を達成するために、本発明は、室内機と室外機とで構成され室外熱交換器の除霜運転を行う除霜運転機能を有する空気調和機において、暖房運転時に冷媒の流通する経路が順に、圧縮機、四方弁、室内熱交換器、第1の減圧器、室外熱交換器、前記四方弁、前記圧縮機となるように冷媒配管で接続したヒートポンプサイクルと、
冷媒が前記室内熱交換器から前記第1の減圧器へ向かう経路と、前記室外熱交換器から前記四方弁へ向かう経路とを連結する第1のバイパス回路と、
冷媒が前記四方弁から前記室内熱交換器へ向かう経路と、前記第1の減圧器から前記室外熱交換器へ向かう経路とを連結、もしくは、冷媒が前記圧縮機から前記四方弁へ向かう経路と、前記第1の減圧器から前記室外熱交換器へ向かう経路とを連結する第2のバイパス回路と、
前記室外機内に前記空気調和機の運転電流を検出する電流検出手段とを備え、前記第1のバイパス回路には第1の二方弁と、第2の減圧器と、冷媒を加熱する冷媒加熱器とを配設し、前記第2のバイパス回路には第2の二方弁と、第3の減圧器とを配設するとともに、暖房運転中に、前記電流検出手段によって検出された値が、所定の電流値よりも低下すれば、前記冷媒加熱器の発熱部に通電させて蓄熱を開始し、前記除霜運転を行う際に、前記
第1の二方弁と前記第2の二方弁とを開放することを特徴とする。
In order to achieve the above object, the present invention provides an air conditioner having a defrosting operation function that includes an indoor unit and an outdoor unit and performs a defrosting operation of an outdoor heat exchanger. A heat pump cycle in which a compressor, a four-way valve, an indoor heat exchanger, a first pressure reducer, an outdoor heat exchanger, the four-way valve, and the compressor are connected by refrigerant piping so as to become,
A first bypass circuit that connects a path from the indoor heat exchanger to the first pressure reducer and a path from the outdoor heat exchanger to the four-way valve;
A path through which the refrigerant travels from the four-way valve to the indoor heat exchanger and a path from the first pressure reducer to the outdoor heat exchanger, or a path through which the refrigerant travels from the compressor to the four-way valve; A second bypass circuit connecting a path from the first pressure reducer to the outdoor heat exchanger;
A current detecting means for detecting an operating current of the air conditioner in the outdoor unit, the first bypass circuit having a first two-way valve, a second pressure reducer, and a refrigerant heating for heating the refrigerant; A second two-way valve and a third pressure reducer are disposed in the second bypass circuit, and the value detected by the current detection means during the heating operation is If the current value is lower than a predetermined current value, the first two-way valve and the second two-way valve are turned on when the heat generation unit of the refrigerant heater is energized to start heat storage and perform the defrosting operation. It is characterized by opening the valve.

本発明の空気調和機は、除霜を行う前に、冷媒加熱器に除霜を行う熱を蓄熱することで暖房運転を継続しながら、除霜を実施することができる。   The air conditioner of the present invention can perform defrosting while continuing the heating operation by storing heat for performing defrosting in the refrigerant heater before defrosting.

第1の発明は、室内機と室外機とで構成され室外熱交換器の除霜運転を行う除霜運転機能を有する空気調和機において、暖房運転時に冷媒の流通する経路が順に、圧縮機、四方弁、室内熱交換器、第1の減圧器、室外熱交換器、前記四方弁、前記圧縮機となるように冷媒配管で接続したヒートポンプサイクルと、
冷媒が前記室内熱交換器から前記第1の減圧器へ向かう経路と、前記室外熱交換器から前記四方弁へ向かう経路とを連結する第1のバイパス回路と、
冷媒が前記四方弁から前記室内熱交換器へ向かう経路と、前記第1の減圧器から前記室外熱交換器へ向かう経路とを連結、もしくは、冷媒が前記圧縮機から前記四方弁へ向かう経路と、前記第1の減圧器から前記室外熱交換器へ向かう経路とを連結する第2のバイパス回路と、
前記室外機内に前記空気調和機の運転電流を検出する電流検出手段とを備え、前記第1のバイパス回路には第1の二方弁と、第2の減圧器と、冷媒を加熱する冷媒加熱器とを配設し、前記第2のバイパス回路には第2の二方弁と、第3の減圧器とを配設するとともに、暖房運転中に、前記電流検出手段によって検出された値が、所定の電流値よりも低下すれば、前記冷媒加熱器の発熱部に通電させて蓄熱を開始し、前記除霜運転を行う際に、前記第1の二方弁と前記第2の二方弁とを開放することを特徴とするものでこの構成をなすことにより、暖房運転を行いながら除霜運転を実施することができる。
A first aspect of the present invention is an air conditioner having a defrosting operation function that includes an indoor unit and an outdoor unit and performs a defrosting operation of an outdoor heat exchanger. A four-way valve, an indoor heat exchanger, a first pressure reducer, an outdoor heat exchanger, the four-way valve, a heat pump cycle connected by refrigerant piping so as to be the compressor,
A first bypass circuit that connects a path from the indoor heat exchanger to the first pressure reducer and a path from the outdoor heat exchanger to the four-way valve;
A path through which the refrigerant travels from the four-way valve to the indoor heat exchanger and a path from the first pressure reducer to the outdoor heat exchanger, or a path through which the refrigerant travels from the compressor to the four-way valve; A second bypass circuit connecting a path from the first pressure reducer to the outdoor heat exchanger;
A current detecting means for detecting an operating current of the air conditioner in the outdoor unit, the first bypass circuit having a first two-way valve, a second pressure reducer, and a refrigerant heating for heating the refrigerant; A second two-way valve and a third pressure reducer are disposed in the second bypass circuit, and the value detected by the current detection means during the heating operation is If the current value is lower than a predetermined current value, the first two-way valve and the second two-way valve are turned on when the heat generation unit of the refrigerant heater is energized to start heat storage and perform the defrosting operation. This structure is characterized in that the valve is opened. With this configuration, the defrosting operation can be performed while performing the heating operation.

また、冷媒加熱器に通電するタイミングを電流値のみで判断して冷媒加熱ヒータを通電することで、暖房運転中に、冷媒加熱器に通電して蓄熱させることから、除霜中の冷媒加熱器通電時間が短縮できることや、電源容量に余裕があれば冷媒加熱器を効率よく利用できという利点がある。 In addition, the refrigerant heater during defrosting is determined by energizing the refrigerant heater by heating the refrigerant heater by judging the timing of energizing the refrigerant heater based only on the current value, so that the refrigerant heater is energized during the heating operation . and the energization time can be shortened, there is an advantage that the power supply capacity margin Ru available efficiently refrigerant heater, if any.

第2の発明は、外気温度を検出する外気温度検出手段を備え、前記外気温度検出手段で検出される値が、所定の温度よりも低い場合に、前記冷媒加熱器の発熱部に通電することにより、特に外気温度が極端に低い場合(−15℃以下)には、圧縮機を容量可変で運転しても運転電流が上がらない場合があることから、外気温度を検出してある所定温度より低い場合には、除霜運転の前に冷媒加熱器に通電して、冷媒加熱器に蓄熱して除霜中の冷媒加熱器通電時間が短縮できることや極端に温度が低い場合の電装品の温度特性が変化しないように保護する運転を行う。   The second invention includes an outside air temperature detecting means for detecting an outside air temperature, and energizes the heat generating portion of the refrigerant heater when a value detected by the outside air temperature detecting means is lower than a predetermined temperature. Therefore, especially when the outside air temperature is extremely low (−15 ° C. or lower), the operating current may not increase even if the compressor is operated with a variable capacity. Therefore, the outside air temperature is detected from a predetermined temperature. When the temperature is low, the refrigerant heater is energized before the defrosting operation, the refrigerant heater can store heat and the refrigerant heater energization time during defrosting can be shortened, or the temperature of the electrical component when the temperature is extremely low Operate to protect the characteristics from changing.

第3の発明は、前記冷媒加熱器の温度を検出する冷媒加熱器温度検出手段を備え、前記冷媒加熱器の発熱部に通電したあと、前記冷媒加熱器温度検出手段で検出される値によって、前記冷媒加熱器の通電と通電停止を繰り返し行うことにより、冷媒加熱器に通電する時間にとらわれることなく、電流値が設定より低い場合には直ちに冷媒加熱器の通電を行い、冷媒加熱器に蓄熱できる。   3rd invention is equipped with the refrigerant heater temperature detection means which detects the temperature of the refrigerant heater, and after energizing the exothermic part of the refrigerant heater, by the value detected by the refrigerant heater temperature detection means, By repeatedly energizing and stopping energization of the refrigerant heater, the refrigerant heater is energized immediately when the current value is lower than the set value without being limited by the time to energize the refrigerant heater, and the refrigerant heater stores heat. it can.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本願発明にかかる空気調和機の構成図である。同図において、室外機20には、圧縮機1、四方弁2、減圧器4、室外熱交換器5、第1のバイパス回路6、冷媒加熱用
二方弁7、冷媒加熱器8、第2のバイパス回路9、除霜用である第2の二方弁10、第3の減圧器11、第1の二方弁7、第2の減圧器12、発熱部である冷媒加熱ヒータ13、冷媒通過管部14、蓄熱部15、室外送風機19で配設されている。室内機18には、室内熱交換器3、室内送風機17が配設されている。ここでの減圧器4は、電磁膨張弁でもよい。
(Embodiment 1)
FIG. 1 is a configuration diagram of an air conditioner according to the present invention. In the figure, an outdoor unit 20 includes a compressor 1, a four-way valve 2, a decompressor 4, an outdoor heat exchanger 5, a first bypass circuit 6, a refrigerant heating two-way valve 7, a refrigerant heater 8, a second Bypass circuit 9, second two-way valve 10 for defrosting, third decompressor 11, first two-way valve 7, second decompressor 12, refrigerant heating heater 13 as a heat generating unit, refrigerant The passage pipe part 14, the heat storage part 15, and the outdoor blower 19 are provided. The indoor unit 18 is provided with the indoor heat exchanger 3 and the indoor blower 17. The decompressor 4 here may be an electromagnetic expansion valve.

また、外気温度センサー21、冷媒加熱温度センサー22が配設されている。   In addition, an outside air temperature sensor 21 and a refrigerant heating temperature sensor 22 are provided.

次に図2は、本願発明にかかる実施の形態1を示す制御ブロック図であり、図3は同制御が動作したときの挙動を示すタイムチャートであり、図4は、冷媒加熱器通電を判断する時の運転電流と電流制御値の関係を示したタイムチャートである。図5は、冷媒加熱器通電を判断する時の外気温度と外気温度設定値の関係を示した制御図である。図6は、冷媒加熱器温度より冷媒加熱ヒータを運転停止させて時の冷媒加熱器温度特性図である。   Next, FIG. 2 is a control block diagram showing the first embodiment according to the present invention, FIG. 3 is a time chart showing the behavior when the control is operated, and FIG. 4 is for determining whether the refrigerant heater is energized. 6 is a time chart showing the relationship between the operating current and the current control value when FIG. 5 is a control diagram showing the relationship between the outside air temperature and the outside air temperature setting value when determining whether the refrigerant heater is energized. FIG. 6 is a refrigerant heater temperature characteristic diagram when the refrigerant heater is stopped from the refrigerant heater temperature.

次に図2で構成について説明すると室外機側で除霜開始判断が除霜開始判断手段50でなされる前に、電流検出手段60または、外気温度検出手段61により冷媒加熱器通電判断が行われ、その後、除霜開始と判断された時に圧縮機運転手段51、冷媒加熱用二方弁開閉手段52、除霜用二方弁開閉手段53、膨張弁開度可変手段54、室外送風機運転手段55、四方弁切り換え手段56、加熱器ヒータ運転停止手段57が図3に示す動作をすることにより除霜運転が行われる。   Next, the configuration will be described with reference to FIG. 2. Before the defrosting start determination unit 50 makes the defrosting start determination unit 50 on the outdoor unit side, the current detection unit 60 or the outside air temperature detection unit 61 performs the refrigerant heater energization determination. Thereafter, when it is determined that the defrosting is started, the compressor operating means 51, the refrigerant heating two-way valve opening / closing means 52, the defrosting two-way valve opening / closing means 53, the expansion valve opening varying means 54, the outdoor fan operating means 55 The defrosting operation is performed by the four-way valve switching means 56 and the heater heater operation stopping means 57 performing the operations shown in FIG.

このとき室外機20から除霜開始信号を室内機18で除霜開始信号受信手段58で受信して、除霜運転の判断より室内送風機運転手段59で室内送風機17を制御する。   At this time, the defrosting start signal is received from the outdoor unit 20 by the indoor unit 18 by the defrosting start signal receiving means 58, and the indoor fan 17 is controlled by the indoor fan operating means 59 based on the determination of the defrosting operation.

また冷媒加熱器は、冷媒加熱器温度手段より検知された温度により、加熱器ヒータ運転停止手段より運転停止を行う。   Further, the refrigerant heater is shut down by the heater heater operation stop means based on the temperature detected by the refrigerant heater temperature means.

次に図3に示すように、除霜開始の判断をするまえに、ステップ1のヒートポンプによる暖房運転を行い、冷媒加熱器に通電できるかどうか、電流値または外気温度を検出して冷媒加熱器の通電判断を行う。電流設定値より電流が低いことを判断して冷媒加熱器通電判断をするか外気温度が所定の温度より低いことを検知して冷媒加熱器の通電判断を行う。ステップ2では、冷媒加熱通電判断より冷媒加熱の通電が行われ、冷媒加熱器の蓄熱運転に移行する。このとき圧縮機は、通常運転を行い、暖房運転と冷媒加熱器通電運転が共に行われる。   Next, as shown in FIG. 3, before the start of defrosting, the heating operation by the heat pump in step 1 is performed, and whether the refrigerant heater can be energized, the current value or the outside air temperature is detected, and the refrigerant heater The energization judgment is performed. It is determined that the current is lower than the current set value and the refrigerant heater energization determination is performed, or it is detected that the outside air temperature is lower than a predetermined temperature, and the energization determination of the refrigerant heater is performed. In step 2, energization of the refrigerant heating is performed based on the refrigerant heating energization determination, and the operation proceeds to the heat storage operation of the refrigerant heater. At this time, the compressor performs a normal operation, and both the heating operation and the refrigerant heater energization operation are performed.

次にステップ3で冷媒加熱運転に移行してその後除霜運転を行う。   Next, in step 3, the refrigerant heating operation is performed, and then the defrosting operation is performed.

まず冷媒加熱運転は、冷媒加熱ヒータをONしたまま、冷媒加熱用二方弁をONして開方向に制御する。   First, in the refrigerant heating operation, the refrigerant heating two-way valve is turned on and controlled in the opening direction while the refrigerant heater is turned on.

このとき膨張弁は閉塞運転かまたは閉塞に近い運転を行う。   At this time, the expansion valve performs a closed operation or an operation close to the closed state.

また外ファンは除霜中停止する。四方弁は、暖房を継続するため、暖房回路のままで除霜中も切り替えしない。   The external fan stops during defrosting. Since a four-way valve continues heating, it does not switch during defrosting with a heating circuit.

また内ファンは暖房を継続するので、停止することはない。   Moreover, since an internal fan continues heating, it does not stop.

その後、除霜を行うために除霜用二方弁をONして開方向に制御する。また圧縮機は、除霜用の運転周波数で運転する。   Thereafter, in order to perform defrosting, the two-way valve for defrosting is turned on and controlled in the opening direction. The compressor is operated at an operating frequency for defrosting.

次にステップ4で除霜終了と共に除霜する前の動作に戻る。   Next, in step 4, the operation before defrosting is returned to when the defrosting is completed.

次にステップ5以降で通常のヒートポンプ暖房運転に復帰する。   Next, after step 5, the normal heat pump heating operation is resumed.

実施の形態1では圧縮機の運転周波数を変化させているが、一定速の圧縮機でも暖房を継続して除霜運転を行うことができる。   In the first embodiment, the operating frequency of the compressor is changed, but the defrosting operation can be performed by continuing heating even with a constant speed compressor.

次に図4に示すように、ステップ1のヒートポンプによる暖房運転から電流制御値に対して総合電流が低下する検知をした場合に、冷媒加熱器の通電する判断を行い、ステップ2に移行する。   Next, as shown in FIG. 4, when it is detected that the total current decreases with respect to the current control value from the heating operation by the heat pump in Step 1, it is determined that the refrigerant heater is energized, and the process proceeds to Step 2.

また図5に示すように外気温度がある外気温度設定値より低下すると、冷媒加熱器通電判断となり、冷媒加熱器に通電され、暖房運転と冷媒加熱器の通電運転が共に運転される。   Also, as shown in FIG. 5, when the outside air temperature falls below a certain outside air temperature set value, it is determined that the refrigerant heater is energized, the refrigerant heater is energized, and both the heating operation and the energization operation of the refrigerant heater are operated.

また、図6に示すように冷媒加熱器の温度により、冷媒加熱ヒータの運転停止を行い、冷媒加熱器の温度が異常に上昇しないように制御する。   Further, as shown in FIG. 6, the operation of the refrigerant heater is stopped by the temperature of the refrigerant heater, and control is performed so that the temperature of the refrigerant heater does not rise abnormally.

この制御により、冷媒加熱器に通電するタイミングを電流値のみで判断して冷媒加熱ヒータを通電できることから、除霜以外にも極低温時の電装品の温度特性がずれるため、室外機の温度確保で安定した制御装置の駆動ができる効果がある。   With this control, the refrigerant heater can be energized by judging the timing of energizing the refrigerant heater based only on the current value. Therefore, in addition to defrosting, the temperature characteristics of the electrical components at extremely low temperatures are shifted. Thus, there is an effect that a stable control device can be driven.

また冷媒加熱器のヒータ部は、発熱体であれば形、方式は問わない。     In addition, the heater part of the refrigerant heater may be of any shape and system as long as it is a heating element.

以上のように本発明の空気調和機は冷媒加熱器に蓄熱させた熱量を利用して、暖房運転しながら、除霜運転を実施できるので、除霜時間が短くかつ暖房能力の高い運転ができることで、室外温度が極端に低い寒冷地での空気調和機にも適用できる。   As described above, the air conditioner according to the present invention can perform the defrosting operation while performing the heating operation using the amount of heat stored in the refrigerant heater, so that the operation can be performed with a short defrosting time and a high heating capacity. Thus, the present invention can be applied to an air conditioner in a cold region where the outdoor temperature is extremely low.

本願発明にかかる実施の形態1の空気調和機の構成図Configuration diagram of the air conditioner according to the first embodiment of the present invention. 本願発明にかかる制御ブロック図Control block diagram according to the present invention 本願発明にかかる実施の形態のタイムチャートTime chart of an embodiment according to the present invention 本願発明にかかる実施の形態のタイムチャートTime chart of an embodiment according to the present invention 本願発明にかかる実施の形態の制御図Control diagram of embodiment according to the present invention 本願発明にかかる実施の形態の冷媒加熱器温度変化図Refrigerant heater temperature change diagram of the embodiment according to the present invention 従来例の空気調和機の構成図Configuration diagram of conventional air conditioner

1 圧縮機
2 四方弁
3 室内熱交換器
4 減圧器
5 室外熱交換器
6 第1のバイパス回路
7 冷媒加熱用二方弁
8 加熱器
9 第2のバイパス回路
10 除霜用二方弁
11 除霜用減圧器
12 冷媒加熱用減圧器
13 加熱器ヒータ
14 冷媒通過管部
15 蓄熱部
17 室内送風機
18 室内機
19 室外送風機
20 室外機
21 外気温度センサー
22 冷媒加熱器温度センサー
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Pressure reducer 5 Outdoor heat exchanger 6 First bypass circuit 7 Two-way valve for refrigerant heating 8 Heater 9 Second bypass circuit 10 Two-way valve for defrosting 11 Removal Frost decompressor 12 Refrigerant heating decompressor 13 Heater heater 14 Refrigerant passage tube part 15 Heat storage part 17 Indoor blower 18 Indoor unit 19 Outdoor blower 20 Outdoor unit 21 Outdoor air temperature sensor 22 Refrigerant heater temperature sensor

Claims (3)

室内機と室外機とで構成され室外熱交換器の除霜運転を行う除霜運転機能を有する空気調和機において、
暖房運転時に冷媒の流通する経路が順に、圧縮機、四方弁、室内熱交換器、第1の減圧器、室外熱交換器、前記四方弁、前記圧縮機となるように冷媒配管で接続したヒートポンプサイクルと、
冷媒が前記室内熱交換器から前記第1の減圧器へ向かう経路と、前記室外熱交換器から前記四方弁へ向かう経路とを連結する第1のバイパス回路と、
冷媒が前記四方弁から前記室内熱交換器へ向かう経路と、前記第1の減圧器から前記室外熱交換器へ向かう経路とを連結、もしくは、冷媒が前記圧縮機から前記四方弁へ向かう経路と、前記第1の減圧器から前記室外熱交換器へ向かう経路とを連結する第2のバイパス回路と、
前記室外機内に前記空気調和機の運転電流を検出する電流検出手段とを備え、
前記第1のバイパス回路には第1の二方弁と、第2の減圧器と、冷媒を加熱する冷媒加熱器とを配設し、前記第2のバイパス回路には第2の二方弁と、第3の減圧器とを配設するとともに、
暖房運転中に、前記電流検出手段によって検出された値が、所定の電流値よりも低下すれば、前記冷媒加熱器の発熱部に通電させて蓄熱を開始し、前記除霜運転を行う際に、前記第1の二方弁と前記第2の二方弁とを開放することを特徴とする空気調和機。
In an air conditioner having a defrosting operation function that includes an indoor unit and an outdoor unit and performs a defrosting operation of an outdoor heat exchanger,
Heat pump connected by refrigerant piping so that the refrigerant flow path in order during heating operation is a compressor, a four-way valve, an indoor heat exchanger, a first pressure reducer, an outdoor heat exchanger, the four-way valve, and the compressor Cycle,
A first bypass circuit that connects a path from the indoor heat exchanger to the first pressure reducer and a path from the outdoor heat exchanger to the four-way valve;
A path through which the refrigerant travels from the four-way valve to the indoor heat exchanger and a path from the first pressure reducer to the outdoor heat exchanger, or a path through which the refrigerant travels from the compressor to the four-way valve; A second bypass circuit connecting a path from the first pressure reducer to the outdoor heat exchanger;
Current detection means for detecting the operating current of the air conditioner in the outdoor unit,
The first bypass circuit includes a first two-way valve, a second pressure reducer, and a refrigerant heater that heats the refrigerant, and the second bypass circuit includes a second two-way valve. And a third decompressor, and
When the value detected by the current detection means is lower than a predetermined current value during the heating operation, the heat generation unit of the refrigerant heater is energized to start heat storage, and the defrosting operation is performed. And opening the first two-way valve and the second two-way valve.
外気温度を検出する外気温度検出手段を備え、前記外気温度検出手段で検出される値が、所定の温度よりも低い場合に、前記冷媒加熱器の発熱部に通電することを特徴とする請求項1に記載の空気調和機。 An outside air temperature detecting means for detecting an outside air temperature is provided, and when the value detected by the outside air temperature detecting means is lower than a predetermined temperature, the heating portion of the refrigerant heater is energized. The air conditioner according to 1. 前記冷媒加熱器の温度を検出する冷媒加熱器温度検出手段を備え、前記冷媒加熱器の発熱部に通電したあと、前記冷媒加熱器温度検出手段で検出される値によって、前記冷媒加熱器の通電と通電停止を繰り返し行うことを特徴とする請求項1または2に記載の空気調和機。 A refrigerant heater temperature detecting means for detecting the temperature of the refrigerant heater is provided, and after the heat generating part of the refrigerant heater is energized, the refrigerant heater is energized according to a value detected by the refrigerant heater temperature detecting means. The air conditioner according to claim 1, wherein the energization is repeatedly stopped.
JP2006306349A 2006-11-13 2006-11-13 Air conditioner Expired - Fee Related JP4622990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306349A JP4622990B2 (en) 2006-11-13 2006-11-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306349A JP4622990B2 (en) 2006-11-13 2006-11-13 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008121983A JP2008121983A (en) 2008-05-29
JP4622990B2 true JP4622990B2 (en) 2011-02-02

Family

ID=39506927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306349A Expired - Fee Related JP4622990B2 (en) 2006-11-13 2006-11-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP4622990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236155A (en) * 2013-06-20 2014-12-24 青岛海尔空调电子有限公司 Air conditioning system with coolant supercooling, defrosting and heating functions and control method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791569B (en) * 2012-10-30 2016-10-05 珠海格力电器股份有限公司 Heat pump type air conditioning system
CN103807997B (en) * 2012-11-14 2016-05-04 珠海格力电器股份有限公司 Air conditioning system and control method thereof
CN103383157B (en) * 2013-06-28 2016-01-13 美的集团股份有限公司 Heat pump type air conditioning system and control method thereof
TWI693366B (en) * 2014-12-22 2020-05-11 日商松下知識產權經營股份有限公司 Dehumidifier
JP6646803B2 (en) * 2015-09-29 2020-02-14 パナソニックIpマネジメント株式会社 Dehumidifier
CN106091260B (en) * 2016-06-17 2018-12-18 美的集团武汉制冷设备有限公司 Air conditioner and its defrosting control method
CN106767079B (en) * 2017-01-10 2019-01-22 美的集团武汉制冷设备有限公司 Accumulation of heat component and air conditioner
CN108361807A (en) * 2018-01-26 2018-08-03 青岛海尔空调电子有限公司 A kind of heat pump system and its control method
CN108375145A (en) * 2018-01-26 2018-08-07 青岛海尔空调电子有限公司 A kind of heat pump system and its defrosting control method
CN113654576B (en) * 2021-07-02 2023-12-19 华人运通(江苏)技术有限公司 Four-way valve position identification method and system based on water pump current

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110839U (en) * 1983-01-17 1984-07-26 三菱重工業株式会社 air conditioner
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JP2006132797A (en) * 2004-11-02 2006-05-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2006258343A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110839U (en) * 1983-01-17 1984-07-26 三菱重工業株式会社 air conditioner
JPS62184376U (en) * 1986-05-15 1987-11-24
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JP2006132797A (en) * 2004-11-02 2006-05-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2006258343A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236155A (en) * 2013-06-20 2014-12-24 青岛海尔空调电子有限公司 Air conditioning system with coolant supercooling, defrosting and heating functions and control method thereof
CN104236155B (en) * 2013-06-20 2016-12-28 青岛海尔空调电子有限公司 Have that coolant is supercool, the defrosting air conditioning system of heat-production functions and control method thereof

Also Published As

Publication number Publication date
JP2008121983A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4622990B2 (en) Air conditioner
JP4654828B2 (en) Air conditioner
JP2007040658A (en) Air conditioner
US6467288B2 (en) Heat-pump water heater
CN100439824C (en) Air conditioner device
JP2008116156A (en) Air conditioner
JP2006105560A (en) Air conditioner
JP2008096033A (en) Refrigerating device
EP2853838B1 (en) Hot water generator
JP2013119954A (en) Heat pump hot water heater
WO2012042692A1 (en) Refrigeration cycle device
JP2009014215A (en) Air conditioning device
JP2007139244A (en) Refrigeration device
JP2003240391A (en) Air conditioner
JP2008082654A (en) Failure diagnostic method for refrigerating device, and refrigerating device
JP4605065B2 (en) Air conditioner
JP2006132797A (en) Air conditioner
JP4694457B2 (en) Air conditioner
JP4830399B2 (en) Air conditioner
JP4661451B2 (en) Air conditioner
JP4802602B2 (en) Air conditioner
JP2007107853A (en) Air conditioner
JP4687326B2 (en) Air conditioner
JP2007247997A (en) Air conditioner
JP2004308955A (en) Heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R151 Written notification of patent or utility model registration

Ref document number: 4622990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees