JP4687326B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4687326B2
JP4687326B2 JP2005238155A JP2005238155A JP4687326B2 JP 4687326 B2 JP4687326 B2 JP 4687326B2 JP 2005238155 A JP2005238155 A JP 2005238155A JP 2005238155 A JP2005238155 A JP 2005238155A JP 4687326 B2 JP4687326 B2 JP 4687326B2
Authority
JP
Japan
Prior art keywords
refrigerant
way valve
heat exchanger
bypass circuit
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005238155A
Other languages
Japanese (ja)
Other versions
JP2007051838A (en
Inventor
義和 西原
精治 小泉
直人 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005238155A priority Critical patent/JP4687326B2/en
Publication of JP2007051838A publication Critical patent/JP2007051838A/en
Application granted granted Critical
Publication of JP4687326B2 publication Critical patent/JP4687326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、ヒートポンプ運転による暖房運転時において、暖房を継続しながら室外熱交換器に付着した霜を除霜する除霜運転を行うことができる空気調和装置に関するものである。   The present invention relates to an air conditioner capable of performing a defrosting operation for defrosting frost adhering to an outdoor heat exchanger while heating is continued during a heating operation by a heat pump operation.

従来、この種の空気調和装置は四方弁を切り換え、冷凍サイクルの冷媒を暖房時と逆方向に流す、即ち、冷房時と同じ冷媒の流動方向とし、室外熱交換器に高温高圧の冷媒を流して、熱交換器に付着した霜を融解する除霜方式を使用している。この除霜方式では、除霜時は室内側の熱交換器が蒸発器となるため、暖房が停止して温度が低下し冷風感を感じるという基本的課題があった。   Conventionally, this type of air conditioner switches the four-way valve to flow the refrigerant in the refrigeration cycle in the opposite direction to that during heating, that is, the same refrigerant flow direction as in cooling, and allows high-temperature and high-pressure refrigerant to flow through the outdoor heat exchanger. The defrosting method is used to melt the frost adhering to the heat exchanger. In this defrosting method, since the indoor heat exchanger serves as an evaporator during defrosting, there is a basic problem that the heating stops, the temperature decreases, and a cold wind feeling is felt.

一方この基本的課題への対策として、暖房継続しながら除霜運転する除霜方式として、冷凍サイクルに冷媒加熱器を有する冷媒加熱回路と除霜用回路を設け、冷媒加熱器によって加熱された冷媒を圧縮機を通った後、室内熱交換器を通る流れと除霜用回路を介して室外熱交換器に暖房時とは逆に流れ込む流れとに分岐し、室内熱交換器による室内暖房と室外熱交換器の除霜を同時に行うものがある(例えば、特許文献1参照)。   On the other hand, as a countermeasure against this basic problem, as a defrosting method that performs defrosting operation while continuing heating, a refrigerant heating circuit having a refrigerant heater and a defrosting circuit are provided in the refrigeration cycle, and the refrigerant heated by the refrigerant heater After passing through the compressor, the flow branches through the flow through the indoor heat exchanger and the flow into the outdoor heat exchanger through the defrosting circuit in the opposite direction to that during heating. Some heat exchangers perform defrosting simultaneously (for example, see Patent Document 1).

図6は、特許文献1に記載された従来の空気調和装置の冷凍サイクルの構成図を示すもので(a)は除霜運転状態、(b)はその他の暖房及び冷房運転状態を示すものである。図6(a)(b)に示すように、圧縮機101、四方弁102、室内熱交換器110、膨張機構105および室外熱交換器103を冷媒回路で連結してなるヒートポンプ式冷凍サイクルで、膨張機構105と室外熱交換器103の間と、圧縮機101の吸入側の間とを連結して冷媒加熱器104を有する冷媒加熱回路と、圧縮機101の吐出側と、室外熱交換器103と四方弁102の間とを連結する除霜用回路とを備え、室外熱交換器103の除霜を行う際、冷媒加熱器104によって加熱された冷媒が、圧縮機101を通った後、室内熱交換器110を通る流れと除霜用回路を介して室外熱交換器103を通る流れとに分岐され、これらの分岐した冷媒の流れが冷媒加熱回路の入口で合流し、再び冷媒加熱器104によって加熱されるように構成されている。   FIG. 6 shows a configuration diagram of a refrigeration cycle of a conventional air conditioner described in Patent Document 1, wherein (a) shows a defrosting operation state, and (b) shows other heating and cooling operation states. is there. 6 (a) and 6 (b), a heat pump refrigeration cycle in which a compressor 101, a four-way valve 102, an indoor heat exchanger 110, an expansion mechanism 105, and an outdoor heat exchanger 103 are connected by a refrigerant circuit. A refrigerant heating circuit having a refrigerant heater 104 connected between the expansion mechanism 105 and the outdoor heat exchanger 103 and between the suction side of the compressor 101, the discharge side of the compressor 101, and the outdoor heat exchanger 103 And a circuit for defrosting that connects between the four-way valve 102 and when the outdoor heat exchanger 103 is defrosted, the refrigerant heated by the refrigerant heater 104 passes through the compressor 101, The flow is divided into a flow passing through the heat exchanger 110 and a flow passing through the outdoor heat exchanger 103 via a circuit for defrosting, and the flow of these branched refrigerants merges at the inlet of the refrigerant heating circuit, and again the refrigerant heater 104 Will be heated by It is configured.

しかし、この冷凍サイクルの構成は、除霜運転を行う際に、除霜用回路内の二方弁109aを開放にして、室外熱交換器103と四方弁102との間に圧縮機101の吐出冷媒が流れることになるため、圧縮機101吸入側に除霜するホットガス冷媒が流れないように二方弁106が必要となるが、二方弁106は圧縮機101の吸入側に連結され、冷房および暖房運転の圧損を低減するためには口径の大きな二方弁が必要となり、非常に高価な二方弁となってしまう。   However, this refrigeration cycle is configured such that when the defrosting operation is performed, the two-way valve 109a in the defrosting circuit is opened, and the compressor 101 discharges between the outdoor heat exchanger 103 and the four-way valve 102. Since the refrigerant flows, the two-way valve 106 is necessary so that the hot gas refrigerant to be defrosted does not flow to the compressor 101 suction side, but the two-way valve 106 is connected to the suction side of the compressor 101, In order to reduce the pressure loss during cooling and heating operations, a two-way valve with a large diameter is required, resulting in a very expensive two-way valve.

また暖房運転から除霜運転に切り換える際には室外熱交換器103の冷媒の流れが逆転するため、除霜運転を行う前に室外熱交換器103に流れ込む冷媒を止めるため、この室外熱交換器103の入口に二方弁107が必要となる。   Further, when switching from the heating operation to the defrosting operation, the flow of the refrigerant in the outdoor heat exchanger 103 is reversed, so that the refrigerant flowing into the outdoor heat exchanger 103 is stopped before the defrosting operation is performed. A two-way valve 107 is required at the 103 inlet.

したがって、この冷凍サイクルでは4個もの二方弁が必要となり、複雑で高価な方式となる。   Therefore, this refrigeration cycle requires as many as four two-way valves, which is a complicated and expensive method.

また除霜に供された後の冷媒と室内熱交換器110で放熱した後の冷媒が合流するため、合流箇所における冷媒圧力が除霜に供された後の冷媒の圧力よりも高ければ、室外熱交換器103に冷媒が逆流し、低ければ室内熱交換器110側に冷媒が流れることになり、暖房しながら除霜運転を行うことが出来ない場合が発生する。   In addition, since the refrigerant after being defrosted and the refrigerant after being radiated by the indoor heat exchanger 110 merge, if the refrigerant pressure at the junction is higher than the refrigerant pressure after being defrosted, If the refrigerant flows back to the heat exchanger 103 and is low, the refrigerant will flow to the indoor heat exchanger 110 side, and the defrosting operation may not be performed while heating.

また、除霜に供された後の冷媒と室内熱交換器110で放熱した後の冷媒が合流するため、冷媒音が発生しやすく、冷媒合流部の圧力バランスの課題と冷媒音課題を解決するために冷媒合流器を必要とする場合が考えられる。   Moreover, since the refrigerant after being defrosted and the refrigerant after radiating heat in the indoor heat exchanger 110 merge, refrigerant noise is likely to be generated, and the pressure balance problem and refrigerant noise problem of the refrigerant merge part are solved. Therefore, there may be a case where a refrigerant merger is required.

また、冷媒合流部では冷媒循環量が多くなり圧力損失が増加するため、その対策として配管の管径を大きくすることが必要となり、冷媒加熱器104が大型になってしまうという構造的課題もある。   In addition, since the refrigerant circulation amount increases and the pressure loss increases in the refrigerant junction, it is necessary to increase the pipe diameter as a countermeasure, and there is a structural problem that the refrigerant heater 104 becomes large. .

さらに、冷房回路で運転すると冷媒加熱器104の配管内部は、低圧冷媒で安定して冷媒加熱器104の温度が低下することから冷媒加熱器104に結露する場合や二方弁108が故障で冷媒漏れを発生した場合でも冷媒加熱器に結露が発生して冷媒加熱器の信頼性、安全性に大きな問題がある。   Furthermore, when the cooling circuit is operated, the inside of the piping of the refrigerant heater 104 is stabilized with the low-pressure refrigerant, and the temperature of the refrigerant heater 104 is decreased. Therefore, when the dew condensation occurs on the refrigerant heater 104 or the two-way valve 108 breaks down, the refrigerant Even when leakage occurs, condensation occurs in the refrigerant heater, and there is a big problem in the reliability and safety of the refrigerant heater.

この課題を解決する一対策案として、冷凍サイクルに冷媒加熱器を有する第1のバイパス回路と第2のバイパス回路を設け、冷媒加熱器によって加熱された冷媒を圧縮機を通った後、室内熱交換器を通る流れと第2のバイパス回路を介して直接に室外熱交換器を通る流れとに分岐し、室内熱交換器による室内暖房と室外熱交換器の除霜を同時に行うものがある。係る先行技術は、特願2004−318985に記載されたもので未だ未公開であり、文献公知発明に係るものではない。   As one countermeasure to solve this problem, a first bypass circuit and a second bypass circuit having a refrigerant heater are provided in the refrigeration cycle, and after the refrigerant heated by the refrigerant heater passes through the compressor, the indoor heat There is one that branches into a flow passing through the exchanger and a flow passing directly through the outdoor heat exchanger via the second bypass circuit, and simultaneously performs indoor heating by the indoor heat exchanger and defrosting of the outdoor heat exchanger. Such prior art is described in Japanese Patent Application No. 2004-318985, and has not been disclosed yet, and does not relate to a known invention.

この対策案の空気調和装置は、図7に示すように圧縮機1、四方弁2、室内熱交換器3、減圧器4、室外熱交換器5を冷媒回路で連結されたヒートポンプ式冷凍サイクルで、室内熱交換器3と減圧器4の間と四方弁2と室外熱交換器5の間を連結する第1のバイパス回路を設け、第1のバイパス回路に二方弁7及び冷媒加熱器8を設け、さらに四方弁2と室内熱交換器3の間と、減圧器4と室外熱交換器5の間、または圧縮機1と四方弁2の間と、減圧器4と室外熱交換器5の間を連結する第2のバイパス回路を設け、第2のバイパス回路に二方弁10を設け、室外熱交換器5の除霜を行う際、第1のバイパス回路の二方弁7を開放して冷媒加熱器8で加熱された冷媒を圧縮機1の吸入側に流す第1のバイパス運転と、第2のバイパス回路の二方弁10を開放して室外熱交換器5に冷媒を通過させる第2のバイパス運転を行うことを特徴とするもので、暖房運転を継続しながら除霜運転が
できる。
特開平11−182994号公報
As shown in FIG. 7, the air conditioner of this measure is a heat pump refrigeration cycle in which a compressor 1, a four-way valve 2, an indoor heat exchanger 3, a decompressor 4, and an outdoor heat exchanger 5 are connected by a refrigerant circuit. The first bypass circuit for connecting the indoor heat exchanger 3 and the decompressor 4 and the four-way valve 2 and the outdoor heat exchanger 5 is provided, and the two-way valve 7 and the refrigerant heater 8 are provided in the first bypass circuit. Furthermore, between the four-way valve 2 and the indoor heat exchanger 3, between the pressure reducer 4 and the outdoor heat exchanger 5, or between the compressor 1 and the four-way valve 2, the pressure reducer 4 and the outdoor heat exchanger 5 A second bypass circuit is provided to connect the two, the two-way valve 10 is provided in the second bypass circuit, and the two-way valve 7 of the first bypass circuit is opened when the outdoor heat exchanger 5 is defrosted. The first bypass operation for flowing the refrigerant heated by the refrigerant heater 8 to the suction side of the compressor 1, and the second bypass circuit Opens the way valve 10 characterized in that performing a second bypass operation for passing the refrigerant to the outdoor heat exchanger 5, it is defrosting operation while continuing the heating operation.
JP-A-11-182994

しかしながら、前記従来の構成では、暖房運転時には第1のバイパス回路には冷媒が二方弁から前記冷媒加熱器の方向に流れ、また第2のバイパス回路には冷媒が四方弁と前記室内熱交換器の間から前記減圧器と前記室外熱交換器の間への方向に流れるが、冷房時には高低圧が逆になるため第1のバイパス回路及び第2のバイパス回路を冷媒が逆に流れる可能性があり、逆圧に対し冷媒が漏れることや、冷媒圧力バランスに対する二方弁のビビリ動作が発生することから耐久性、信頼性の確保が要求されるという課題を有していた。   However, in the conventional configuration, during the heating operation, the refrigerant flows from the two-way valve to the refrigerant heater in the first bypass circuit, and the refrigerant is exchanged between the four-way valve and the indoor heat in the second bypass circuit. Although it flows in the direction from the space between the decompressor and the outdoor heat exchanger, the refrigerant may flow in the first bypass circuit and the second bypass circuit in reverse because the high and low pressures are reversed during cooling. However, since the refrigerant leaks with respect to the reverse pressure and the chatter operation of the two-way valve with respect to the refrigerant pressure balance occurs, it has been required to ensure durability and reliability.

本発明は、前記従来の課題を解決するもので、冷凍サイクルが簡単なバイパス回路で構成でき、逆圧に対する冷媒漏れをすることなく冷媒音、圧力バランスの問題も発生しないという暖房運転を継続しながら除霜運転ができる空気調和装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and can continue the heating operation in which the refrigeration cycle can be configured with a simple bypass circuit, and refrigerant noise and pressure balance problems do not occur without causing refrigerant leakage against reverse pressure. An object of the present invention is to provide an air conditioner that can perform a defrosting operation.

前記従来の課題を解決するために本発明の空気調和装置は、第1のバイパス回路の二方弁と冷媒加熱器との間に逆止弁を設けたことを特徴としたものである。これにより、第1のバイパス回路に設けた逆止弁は、冷房運転時の二方弁のビビリ音をなくすことができる。また二方弁の漏れや冷房時に低圧冷媒が冷媒加熱器に溜まることでの冷媒加熱器の結露発生をなくすことができるという問題を解決することなどを、簡単なバイパス回路で構成し、暖房運転を継続しながら除霜運転ができる空気調和装置を提供できる。 In order to solve the conventional problems, the air conditioner of the present invention is characterized in that a check valve is provided between the two-way valve of the first bypass circuit and the refrigerant heater. Thereby, the check valve provided in the first bypass circuit can eliminate the chatter sound of the two-way valve during the cooling operation. In addition, a simple bypass circuit can be used to solve the problem that condensation of the refrigerant heater can be eliminated due to leakage of the two-way valve and accumulation of low-pressure refrigerant in the refrigerant heater during cooling. It is possible to provide an air conditioner that can perform a defrosting operation while continuing the operation.

本発明の空気調和装置は、暖房運転を継続しながら、除霜を実施することができ、冷凍サイクルの信頼性と圧力バランスに対する二方弁の耐久性、信頼性を向上させ、外気温が低下しても室内の部屋の温度を低下させることなく冷風感を感じさせない暖房ができる空気調和装置を提供することができる。   The air conditioner of the present invention can perform defrosting while continuing the heating operation, improves the reliability and reliability of the two-way valve with respect to the reliability and pressure balance of the refrigeration cycle, and the outside air temperature decreases. Even so, it is possible to provide an air conditioner that can perform heating without causing a feeling of cold air without lowering the temperature of the room.

第1の発明は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結し前記四方弁の切り替えにより冷媒の流れを逆にして冷・暖房を行うヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間及び前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に冷媒加熱用二方弁とヒータ加熱式の冷媒加熱器並びに逆止弁を備え、前記逆止弁は第1のバイパス回路の冷媒加熱用二方弁と冷媒加熱器との間に設けて前記二方弁から前記冷媒加熱器の方向に冷媒が流れるように配設するとともに、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間及び前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間及び前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に除霜用二方弁を配設した構成とし、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の冷媒加熱用二方弁を開放して冷媒加熱器で加熱された冷媒を前記四方弁を介して前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の除霜用二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行う構成としたことにより暖房運転を継続しながら除霜を実施することができ、二方弁に常時逆圧がかからない様にするとともに冷房運転の圧力変動や逆圧における二方弁の冷媒漏れやビビリ音防止と耐久性、信頼性を向上させることができる。 A first invention is a heat pump type in which a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit, and cooling and heating are performed by reversing the refrigerant flow by switching the four-way valve. and a refrigeration cycle, the first bypass circuit for connecting the between and the outdoor heat exchanger and said four-way valve of the pressure reducer and connected to said indoor heat exchanger in the refrigeration cycle is provided, the first bypass The circuit includes a refrigerant heating two-way valve, a heater heating type refrigerant heater and a check valve, and the check valve is provided between the refrigerant heating two-way valve and the refrigerant heater of the first bypass circuit. The refrigerant is arranged so that the refrigerant flows from the two-way valve toward the refrigerant heater, and further, between the four-way valve and the indoor heat exchanger connected to the refrigeration cycle, and between the pressure reducer and the outdoor heat exchange. Or connected to the refrigeration cycle The second bypass circuit is provided for, arranged defrosting two-way valve in the second bypass circuit for connecting between said between compressor and the four-way valve and the pressure reducer and the outdoor heat exchangers When the defrosting of the outdoor heat exchanger is performed, the refrigerant heated by the refrigerant heater by opening the refrigerant heating two-way valve of the first bypass circuit is compressed through the four-way valve. A first bypass operation that flows to the suction side of the machine, and a second bypass operation that opens the two-way defrost valve of the second bypass circuit and allows the refrigerant to pass through the outdoor heat exchanger. This makes it possible to perform defrosting while continuing the heating operation, and to prevent the two-way valve from being constantly applied with a reverse pressure, and to prevent refrigerant leakage and chatter noise in the pressure fluctuation of the cooling operation and the reverse pressure. Durability and reliability can be improved.

第2の発明は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結し前記四方弁の切り替えにより冷媒の流れを逆にして冷・暖房を行うヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間及び前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に冷媒加熱用二方弁及びヒータ加熱式の冷媒加熱器並びに逆止弁を備え、前記逆止弁は第1のバイパス回路の冷媒加熱用二方弁と冷媒加熱器との間に設けて前記二方弁から前記冷媒加熱器の方向に冷媒が流れるように配設するとともに、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間及び前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間及び前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に除霜用二方弁及び逆止弁を設け前記逆止弁は前記四方弁と前記室内熱交換器の間から前記減圧器と前記室外熱交換器の間への方向、または前記圧縮機と前記四方弁の間から前記減圧器と前記室外熱交換器の間への方向に冷媒が流れるように配設した構成とし、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の冷媒加熱用二方弁を開放して冷媒加熱器で加熱された冷媒を前記四方弁を介し前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の除霜用二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことにより暖房運転を継続しながら除霜を実施することができ、二方弁に常時逆圧がかからない様にするとともに冷房運転の圧力変動や逆圧における二方弁の冷媒漏れやビビリ音防止と耐久性、信頼性を向上させることができる。 A second invention is a heat pump type in which a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit, and cooling and heating are performed by reversing the refrigerant flow by switching the four-way valve. and a refrigeration cycle, the first bypass circuit for connecting the between and the outdoor heat exchanger and said four-way valve of the pressure reducer and connected to said indoor heat exchanger in the refrigeration cycle is provided, the first bypass The circuit includes a refrigerant heating two-way valve, a heater heating type refrigerant heater and a check valve, and the check valve is provided between the refrigerant heating two-way valve of the first bypass circuit and the refrigerant heater. The refrigerant is arranged so that the refrigerant flows from the two-way valve toward the refrigerant heater , and further, between the four-way valve and the indoor heat exchanger connected to the refrigeration cycle, and between the pressure reducer and the outdoor heat exchange. Or between the refrigeration cycles The second bypass circuit is provided in the second two-way valve for defrosting the bypass circuit and the inverse for connecting the imaging has been the compressor and between the pressure reducer of the four-way valve the outdoor heat exchanger The check valve is provided with a check valve in a direction from between the four-way valve and the indoor heat exchanger to the pressure reducer and the outdoor heat exchanger, or between the compressor and the four-way valve. The refrigerant is arranged so that the refrigerant flows in a direction between the outdoor heat exchanger and the two-way valve for heating the refrigerant of the first bypass circuit is opened when defrosting the outdoor heat exchanger. The first bypass operation for flowing the refrigerant heated by the refrigerant heater to the suction side of the compressor through the four- way valve, and opening the two-way defrosting valve of the second bypass circuit to open the outdoor The heating operation is continued by performing the second bypass operation for allowing the refrigerant to pass through the heat exchanger. It is possible to perform defrosting and prevent reverse pressure from being constantly applied to the two-way valve, as well as prevent refrigerant leakage and chatter noise and improve durability and reliability of the two-way valve due to pressure fluctuations and reverse pressure during cooling operation. Can be made.

第3の発明は、第2の発明の逆止弁の配置は、第2のバイパス回路の除霜用二方弁から減圧器と室外熱交換器に連結される間に配置して、減圧器と前記室外熱交換器の連結された方向へ冷媒が流れるように配設した構成とすることにより、冷房運転時に常時逆圧がかからない様にすることができる。 According to a third aspect of the present invention , the check valve according to the second aspect of the present invention is disposed between the two-way defrosting valve of the second bypass circuit and connected to the pressure reducer and the outdoor heat exchanger. By adopting a configuration in which the refrigerant flows in a direction in which the outdoor heat exchanger is connected, it is possible to prevent a reverse pressure from being constantly applied during the cooling operation.

第4の発明は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結し前記四方弁の切り替えにより冷媒の流れを逆にして冷・暖房を行うヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に冷媒加熱用二方弁及び冷媒加熱器ならびに逆止弁を設けるとともに、第1のバイパス回路に設けた逆止弁を、前記第1のバイパス回路の冷媒加熱用二方弁と冷媒加熱器との間に、前記冷媒加熱用二方弁から前記冷媒加熱器の方向に流れるように設け、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間と、前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間と、前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、第2のバイパス回路に除霜用二方弁及び逆止弁を設けるとともに、前記逆止弁は第2のバイパス回路の除霜用二方弁から減圧器と室外熱交換器に連結される間に、四方弁と室内熱交換器の間から減圧器と室外熱交換器の間への方向、または圧縮機と前記四方弁の間から減圧器と前記室外熱交換器の間への方向に流れるように配設した構成とし、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の冷媒加熱用二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の除霜用二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことにより暖房運転を継続しながら除霜を実施することができ、二方弁に常時逆圧がかからない様にするとともに冷房運転の圧力変動や逆圧における二方弁の冷媒漏れやビビリ音防止と耐久性、信頼性を向上させることができる。 A fourth invention is a heat pump type in which a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit, and cooling and heating are performed by reversing the refrigerant flow by switching the four-way valve. A refrigeration cycle, and a first bypass circuit that connects the indoor heat exchanger and the pressure reducer connected to the refrigeration cycle, and the four-way valve and the outdoor heat exchanger. The circuit is provided with a refrigerant heating two-way valve, a refrigerant heater, and a check valve, and the check valve provided in the first bypass circuit is replaced with the refrigerant heating two-way valve and the refrigerant heater of the first bypass circuit. Between the four-way valve connected to the refrigeration cycle and the indoor heat exchanger, the pressure reducer, and the two-way valve for refrigerant heating are provided to flow in the direction of the refrigerant heater. Between the outdoor heat exchanger or the cooling A second bypass circuit for connecting the compressor and the four-way valve connected in a cycle, and between the pressure reducer and the outdoor heat exchanger is provided, and the two-way valve for defrosting is provided in the second bypass circuit And the check valve is connected between the defrosting two-way valve of the second bypass circuit and the decompressor and the outdoor heat exchanger, and between the four-way valve and the indoor heat exchanger. The outdoor heat exchange is configured to flow in a direction between the decompressor and the outdoor heat exchanger, or in a direction from the compressor and the four-way valve to the decompressor and the outdoor heat exchanger. A first bypass operation for opening the refrigerant heating two-way valve of the first bypass circuit and flowing the refrigerant heated by the refrigerant heater to the suction side of the compressor when performing defrosting of the compressor; A second defrosting two-way valve of the second bypass circuit is opened to allow the refrigerant to pass through the outdoor heat exchanger. By performing the bypass operation, defrosting can be carried out while continuing the heating operation, so that the back pressure is not constantly applied to the two-way valve, and the refrigerant leakage of the two-way valve due to the pressure fluctuation of the cooling operation or the back pressure And chatter noise prevention, durability and reliability can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和装置の構成図である。図1におい
て、室外機20には、圧縮機1、四方弁2、減圧器4、室外熱交換器5、第1のバイパス回路6、冷媒加熱用二方弁7、冷媒加熱器8、第1のバイパス回路の逆止弁30、第2のバイパス回路9、除霜用二方弁10、第2のバイパス回路の減圧器11、第1のバイパス回路の減圧器12、冷媒加熱ヒータ13、冷媒通過管部14、蓄熱部15、室外送風機19で配設されている。室内機18には、室内熱交換器3、室内送風機17が配設されている。ここでの減圧器4は、電磁膨張弁でもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(Embodiment 1)
FIG. 1 is a configuration diagram of an air-conditioning apparatus according to the first embodiment of the present invention. In FIG. 1, an outdoor unit 20 includes a compressor 1, a four-way valve 2, a decompressor 4, an outdoor heat exchanger 5, a first bypass circuit 6, a refrigerant heating two-way valve 7, a refrigerant heater 8, a first Check circuit 30 of the bypass circuit, second bypass circuit 9, two-way valve 10 for defrosting, decompressor 11 of the second bypass circuit, decompressor 12 of the first bypass circuit, refrigerant heater 13, refrigerant The passage pipe part 14, the heat storage part 15, and the outdoor blower 19 are provided. The indoor unit 18 is provided with the indoor heat exchanger 3 and the indoor blower 17. The decompressor 4 here may be an electromagnetic expansion valve.

次に図4は、本願発明にかかる実施の形態1を示す制御ブロック図であり、図5は同制御が動作したときの挙動を示すタイムチャートである。図4では室外機側で除霜開始判断が除霜開始判断手段50でなされ、除霜開始と判断された時に圧縮機運転手段51、冷媒加熱用二方弁開閉手段52、除霜用二方弁開閉手段53、膨張弁開度可変手段54、室外送風機運転手段55、四方弁切り換え手段56、加熱器ヒータ運転停止手段57が図5に示す動作をすることにより除霜運転が行われる。   Next, FIG. 4 is a control block diagram showing the first embodiment according to the present invention, and FIG. 5 is a time chart showing the behavior when the control is operated. In FIG. 4, the defrosting start determination is made by the defrosting start determining means 50 on the outdoor unit side, and when it is determined that the defrosting is started, the compressor operating means 51, the refrigerant heating two-way valve opening / closing means 52, and the defrosting two-way The valve opening / closing means 53, the expansion valve opening varying means 54, the outdoor fan operating means 55, the four-way valve switching means 56, and the heater heater operation stopping means 57 perform the defrosting operation by performing the operations shown in FIG.

このとき室外機20から除霜開始信号を室内機18で除霜開始信号受信手段58で受信して、除霜運転の判断より室内送風機運転手段59で室内送風機17を制御する。   At this time, the defrosting start signal is received from the outdoor unit 20 by the indoor unit 18 by the defrosting start signal receiving means 58, and the indoor fan 17 is controlled by the indoor fan operating means 59 based on the determination of the defrosting operation.

図5に示すように、除霜開始の判断をすると、ステップ1のヒートポンプによる暖房運転からステップ2の冷媒加熱運転による暖房運転に移行する。このときに冷媒加熱用二方弁をONして開方向に制御する。また加熱器ヒータをONして冷媒加熱運転を行う。このとき膨張弁は閉塞運転かまたは閉塞に近い運転を行う。 また室外送風機は除霜中停止する。四方弁は、暖房を継続するため、暖房回路のままで除霜中も切り替えしない。また室内送風機は暖房を継続するので、停止することはない。次にステップ3で、除霜を行うために除霜用二方弁をONして開方向に制御する。また圧縮機は、除霜用の運転周波数で運転する。   As shown in FIG. 5, when the start of defrosting is determined, the heating operation by the heat pump in step 1 is shifted to the heating operation by the refrigerant heating operation in step 2. At this time, the refrigerant heating two-way valve is turned on and controlled in the opening direction. Also, the heater is turned on to perform the refrigerant heating operation. At this time, the expansion valve performs a closed operation or an operation close to the closed state. The outdoor blower stops during defrosting. Since a four-way valve continues heating, it does not switch during defrosting with a heating circuit. Moreover, since an indoor air blower continues heating, it does not stop. Next, in step 3, in order to perform defrosting, the two-way valve for defrosting is turned on and controlled in the opening direction. The compressor is operated at an operating frequency for defrosting.

次にステップ4で除霜終了と共に除霜する前の動作に戻る。次にステップ5以降で通常のヒートポンプ暖房運転に復帰する。実施の形態1では圧縮機の運転周波数を変化させているが、一定速の圧縮機でも暖房を継続して除霜運転を行うことができる。   Next, in step 4, the operation before defrosting is returned to when the defrosting is completed. Next, after step 5, the normal heat pump heating operation is resumed. In the first embodiment, the operating frequency of the compressor is changed, but the defrosting operation can be performed by continuing heating even with a constant speed compressor.

圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に冷媒加熱用二方弁と冷媒加熱器並びに逆止弁を設け、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間と、前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間と、前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に除霜用二方弁を配設した構成とし、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の冷媒加熱用二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の除霜用二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことを特徴とした構成をとる。   A heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit; and between the indoor heat exchanger and the decompressor connected to the refrigeration cycle, and A first bypass circuit that connects the four-way valve and the outdoor heat exchanger is provided, a refrigerant heating two-way valve, a refrigerant heater, and a check valve are provided in the first bypass circuit, and the refrigeration cycle is further provided. Between the connected four-way valve and the indoor heat exchanger, between the pressure reducer and the outdoor heat exchanger, or between the compressor and the four-way valve connected to the refrigeration cycle, and the pressure reducer When the defrosting of the outdoor heat exchanger is performed by providing a second bypass circuit connecting between the outdoor heat exchanger and the outdoor heat exchanger, and providing a defrosting two-way valve in the second bypass circuit. The two-way valve for heating the refrigerant of the first bypass circuit The first bypass operation for opening the refrigerant heated by the refrigerant heater to the suction side of the compressor and the two-way defrosting valve for the second bypass circuit are opened to the outdoor heat exchanger. The configuration is characterized in that the second bypass operation for allowing the refrigerant to pass is performed.

これによって、暖房を継続しながら,除霜運転を行うため、四方弁を切り換える時の冷媒音は発生しない。また除霜時に四方弁を切り換えないため、圧力変動が小さく、圧縮機のオイル変動も小さいことから圧縮機の信頼性の高い運転ができる。また、接続配管長が長くなる場合でも除霜回路が室外で行うため、配管長による除霜運転での圧縮機オイルレベルが下がることはなく長配管商品でも圧縮機の信頼性の高い運転ができる。また全体冷媒の一部を除霜用に利用するため、冷媒加熱部に極端に多くの冷媒が流れないことからコンパクトな冷媒加熱機で構成できる。また、冷房運転を行った場合でも、冷媒加熱器に高
温高圧の冷媒ガスが滞留して、冷媒加熱機が結露を発生させることもない。
Thus, since the defrosting operation is performed while continuing the heating, no refrigerant noise is generated when the four-way valve is switched. Further, since the four-way valve is not switched during defrosting, the pressure fluctuation is small and the oil fluctuation of the compressor is small, so that the compressor can be operated with high reliability. In addition, since the defrosting circuit is performed outdoors even when the length of the connection pipe is long, the compressor oil level does not decrease during the defrosting operation by the pipe length, and the compressor can be operated with high reliability even with long pipe products. . In addition, since a part of the whole refrigerant is used for defrosting, an extremely large amount of refrigerant does not flow in the refrigerant heating unit, so that a compact refrigerant heater can be used. Even when the cooling operation is performed, the high-temperature and high-pressure refrigerant gas does not stay in the refrigerant heater, and the refrigerant heater does not cause dew condensation.

また、逆止弁の位置は冷媒加熱器と冷媒加熱用二方弁の間に配置されている。第1のバイパス回路に設けた逆止弁は、暖房運転時の圧力バランス変動による起動時の吸入脈動を減少させ冷媒加熱用二方弁のおどり音をなくし、また四方弁を切り替えて除霜運転をするとき冷媒加熱用二方弁が漏れていれば冷媒加熱器が冷えて結露の原因となることや冷媒加熱用二方弁の漏れや低圧冷媒が冷媒加熱器に溜まることでの冷媒加熱器の結露発生をなくすことができるという問題を解決することなど、冷凍サイクルが簡単なバイパス回路で構成でき、冷媒音、圧力バランスの問題も発生しない暖房運転を継続しながら除霜運転できる空気調和装置を提供できる。
また、本実施の形態では、第1のバイパス回路の一端を、四方弁と室外熱交換器の間に連結するものとしたが四方弁と圧縮機の吸入側の間に連結するものとしてもよい
(実施の形態2)
次に実施の形態2について図2を用いて説明する。図2は、本発明の第2の実施の形態における空気調和装置の構成図である。同図において、室外機20には、圧縮機1、四方弁2、減圧器4、室外熱交換器5、第1のバイパス回路6、冷媒加熱用二方弁7、冷媒加熱器8、第2のバイパス回路9、除霜用二方弁10、第2のバイパス回路の減圧機11、第2のバイパス回路の逆止弁31、第1のバイパス回路の減圧機12、冷媒加熱ヒータ13、冷媒通過管部14、蓄熱部15、逆止弁16、室外送風機19で配設されている。室内機18には、室内熱交換器3、室内送風機17が配設されている。ここでの減圧器4は、電磁膨張弁でもよい。圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に二方弁と冷媒加熱器並びに逆止弁を設け、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間と、前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間と、前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に二方弁及び逆止弁を設け室外熱交換器の除霜を行う際、前記第1のバイパス回路の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことを特徴とした構成をとる。
The check valve is disposed between the refrigerant heater and the refrigerant heating two-way valve. The check valve provided in the first bypass circuit reduces the suction pulsation during startup due to pressure balance fluctuations during heating operation, eliminates the noise of the refrigerant heating two-way valve, and switches the four-way valve to perform defrosting operation. When the refrigerant heating two-way valve is leaking, the refrigerant heater will cool and cause condensation, or the refrigerant heating two-way valve leaks or low-pressure refrigerant accumulates in the refrigerant heater. An air conditioner that can be defrosted while continuing the heating operation that can be configured with a simple bypass circuit and no refrigerant noise and pressure balance problems, such as solving the problem of eliminating the occurrence of dew condensation Can provide.
In the present embodiment, one end of the first bypass circuit is connected between the four-way valve and the outdoor heat exchanger, but may be connected between the four-way valve and the suction side of the compressor. (Embodiment 2)
Next, Embodiment 2 will be described with reference to FIG. FIG. 2 is a configuration diagram of an air-conditioning apparatus according to the second embodiment of the present invention. In the figure, an outdoor unit 20 includes a compressor 1, a four-way valve 2, a decompressor 4, an outdoor heat exchanger 5, a first bypass circuit 6, a refrigerant heating two-way valve 7, a refrigerant heater 8, a second bypass circuit 9, defrosting two-way valve 10, pressure reducer 11 of the second bypass circuit, the check valve 31 of the second bypass circuit, decompressor 12 of the first bypass circuit, refrigerant heater heater 13, The refrigerant passage pipe section 14, the heat storage section 15, the check valve 16, and the outdoor blower 19 are provided. The indoor unit 18 is provided with the indoor heat exchanger 3 and the indoor blower 17. The decompressor 4 here may be an electromagnetic expansion valve. A heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant circuit; and between the indoor heat exchanger and the decompressor connected to the refrigeration cycle, and A first bypass circuit that connects between the four-way valve and the outdoor heat exchanger is provided, a two-way valve, a refrigerant heater, and a check valve are provided in the first bypass circuit, and further connected to the refrigeration cycle. Between the four-way valve and the indoor heat exchanger, between the pressure reducer and the outdoor heat exchanger, or between the compressor and the four-way valve connected to the refrigeration cycle, and between the pressure reducer and the outdoor A second bypass circuit for connecting between the heat exchangers is provided, and a two-way valve and a check valve are provided in the second bypass circuit to defrost the outdoor heat exchanger. The two-way valve is opened and cooled by the refrigerant heater. And a second bypass operation for opening the two-way valve of the second bypass circuit and allowing the refrigerant to pass through the outdoor heat exchanger. The configuration is as follows.

これによって、暖房を継続しながら,除霜運転を行うため、四方弁を切り換える時の冷媒音は発生しない。また除霜時に四方弁を切り換えないため、圧力変動が小さく、圧縮機のオイル変動も小さいことから圧縮機の信頼性の高い運転ができる。また、接続配管長が長くなる場合でも除霜回路が室外で行うため、配管長による除霜運転での圧縮機オイルレベルが下がることはなく長配管商品でも圧縮機の信頼性の高い運転ができる。また全体冷媒の一部を除霜用に利用するため、冷媒加熱部に極端に多くの冷媒が流れないことからコンパクトな冷媒加熱機で構成できる。また、冷房運転を行った場合でも、冷媒加熱器に高温高圧の冷媒ガスが滞留して、冷媒加熱機が結露を発生させることもない。   Thus, since the defrosting operation is performed while continuing the heating, no refrigerant noise is generated when the four-way valve is switched. Further, since the four-way valve is not switched during defrosting, the pressure fluctuation is small and the oil fluctuation of the compressor is small, so that the compressor can be operated with high reliability. In addition, since the defrosting circuit is performed outdoors even when the length of the connection pipe is long, the compressor oil level does not decrease during the defrosting operation by the pipe length, and the compressor can be operated with high reliability even with long pipe products. . In addition, since a part of the whole refrigerant is used for defrosting, an extremely large amount of refrigerant does not flow in the refrigerant heating unit, so that a compact refrigerant heater can be used. Even when the cooling operation is performed, the high-temperature and high-pressure refrigerant gas does not stay in the refrigerant heater, and the refrigerant heater does not cause dew condensation.

また、逆止弁の位置は、第2のバイパス回路の二方弁から減圧器と室外熱交換器に連結される間に配置されている。また第2のバイパス回路に設けた逆止弁は、減圧器と前記室外熱交換器の連結された方向へ冷媒が流れるように配設した構成とし、暖房運転時の圧力バランス変動による起動時の吐出脈動を減少させ二方弁の踊り音をなくし、冷房運転時の圧力バランス変動による吸入脈動を減少させ二方弁の踊り音をなくすにことを特徴とした構成をとり、冷媒圧力バランスに対する耐久性、信頼性の確保が要求されるという二方弁保護の為常時二方弁に逆圧がかからない逆止弁の位置を決定し、冷媒音、圧力バランスの問題も発生しない安定した空気調和装置を提供することができることを特徴とした構成をとる。   The check valve is disposed between the two-way valve of the second bypass circuit and connected to the decompressor and the outdoor heat exchanger. Further, the check valve provided in the second bypass circuit is arranged so that the refrigerant flows in a direction in which the decompressor and the outdoor heat exchanger are connected, and at the time of start-up due to pressure balance fluctuation during heating operation Durable against refrigerant pressure balance by reducing the discharge pulsation and eliminating the two-way valve dance noise, and reducing the suction pulsation due to pressure balance fluctuation during cooling operation and eliminating the two-way valve dance noise Stable air-conditioning system that determines the position of the check valve that does not apply back pressure to the two-way valve at all times to protect the two-way valve, which requires ensuring safety and reliability. The structure characterized by being able to provide is taken.

また、本実施の形態では、第1のバイパス回路の一端を、四方弁と室外熱交換器の間に連結するものとしたが四方弁と圧縮機の吸入側の間に連結するものとしてもよい
(実施の形態3)
次に実施の形態3について図3を用いて説明する。図3において、室外機20には、圧縮機1、四方弁2、減圧器4、室外熱交換器5、第1のバイパス回路6、冷媒加熱用二方弁7、冷媒加熱器8、第1のバイパス回路の逆止弁30、第2のバイパス回路9、除霜用二方弁10、第2のバイパス回路の減圧器11、第2のバイパス回路の逆止弁31、第1のバイパス回路の減圧器12、冷媒加熱ヒータ13、冷媒通過管部14、蓄熱部15、室外送風機19で配設されている。室内機18には、室内熱交換器3、室内送風機17が配設されている。ここでの減圧器4は、電磁膨張弁でもよい。
In the present embodiment, one end of the first bypass circuit is connected between the four-way valve and the outdoor heat exchanger, but may be connected between the four-way valve and the suction side of the compressor. (Embodiment 3)
Next, Embodiment 3 will be described with reference to FIG. In FIG. 3, the outdoor unit 20 includes a compressor 1, a four-way valve 2, a decompressor 4, an outdoor heat exchanger 5, a first bypass circuit 6, a refrigerant heating two-way valve 7, a refrigerant heater 8, a first Check valve 30 of the bypass circuit, second bypass circuit 9, two-way valve 10 for defrosting, decompressor 11 of the second bypass circuit, check valve 31 of the second bypass circuit, first bypass circuit The decompressor 12, the refrigerant heater 13, the refrigerant passage pipe section 14, the heat storage section 15, and the outdoor blower 19 are provided. The indoor unit 18 is provided with the indoor heat exchanger 3 and the indoor blower 17. The decompressor 4 here may be an electromagnetic expansion valve.

図1において、室外機20には、圧縮機1、四方弁2、減圧器4、室外熱交換器5、第1のバイパス回路6、冷媒加熱
圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間と前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に二方弁と冷媒加熱器並びに逆止弁を設け、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間と、前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間と、前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に二方弁及び逆止弁を設け室外熱交換器の除霜を行う際、前記第1のバイパス回路の二方弁を開放して冷媒加熱器で加熱された冷媒を前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことを特徴とした構成をとる。
In FIG. 1, an outdoor unit 20 includes a compressor 1, a four-way valve 2, a decompressor 4, an outdoor heat exchanger 5, a first bypass circuit 6, a refrigerant heating compressor, a four-way valve, an indoor heat exchanger, and a decompressor. A heat pump refrigeration cycle in which an outdoor heat exchanger is connected by a refrigerant circuit, a connection between the indoor heat exchanger and the decompressor connected to the refrigeration cycle, and a connection between the four-way valve and the outdoor heat exchanger. A first bypass circuit, a two-way valve, a refrigerant heater and a check valve provided in the first bypass circuit, and between the four-way valve and the indoor heat exchanger connected to the refrigeration cycle; A second bypass circuit that connects between the decompressor and the outdoor heat exchanger, or between the compressor and the four-way valve connected to the refrigeration cycle, and between the decompressor and the outdoor heat exchanger. Providing a two-way valve to the second bypass circuit. When the outdoor heat exchanger is defrosted by providing a check valve, the two-way valve of the first bypass circuit is opened to allow the refrigerant heated by the refrigerant heater to flow to the suction side of the compressor. And the second bypass operation of opening the two-way valve of the second bypass circuit and allowing the refrigerant to pass through the outdoor heat exchanger.

これによって、暖房を継続しながら,除霜運転を行うため、四方弁を切り換える時の冷媒音は発生しない。また除霜時に四方弁を切り換えないため、圧力変動が小さく、圧縮機のオイル変動も小さいことから圧縮機の信頼性の高い運転ができる。また、接続配管長が長くなる場合でも除霜回路が室外で行うため、配管長による除霜運転での圧縮機オイルレベルが下がることはなく長配管商品でも圧縮機の信頼性の高い運転ができる。また全体冷媒の一部を除霜用に利用するため、冷媒加熱部に極端に多くの冷媒が流れないことからコンパクトな冷媒加熱機で構成できる。また、冷房運転を行った場合でも、冷媒加熱器に高温高圧の冷媒ガスが滞留して、冷媒加熱機が結露を発生させることもない。   Thus, since the defrosting operation is performed while continuing the heating, no refrigerant noise is generated when the four-way valve is switched. Further, since the four-way valve is not switched during defrosting, the pressure fluctuation is small and the oil fluctuation of the compressor is small, so that the compressor can be operated with high reliability. In addition, since the defrosting circuit is performed outdoors even when the length of the connection pipe is long, the compressor oil level does not decrease during the defrosting operation by the pipe length, and the compressor can be operated with high reliability even with long pipe products. . In addition, since a part of the whole refrigerant is used for defrosting, an extremely large amount of refrigerant does not flow in the refrigerant heating unit, so that a compact refrigerant heater can be used. Even when the cooling operation is performed, the high-temperature and high-pressure refrigerant gas does not stay in the refrigerant heater, and the refrigerant heater does not cause dew condensation.

また、逆止弁の位置は、第1のバイパス回路の冷媒加熱器と冷媒加熱用二方弁の間及び第2のバイパス回路の除霜用二方弁から減圧器と室外熱交換器に連結される間に配置されている。   The check valve is connected to the decompressor and the outdoor heat exchanger between the refrigerant heater of the first bypass circuit and the two-way valve for heating the refrigerant and from the two-way defrost valve of the second bypass circuit. Is placed in between.

第1のバイパス回路に設けた逆止弁は、暖房運転時の圧力バランス変動による起動時の吸入脈動を減少させ冷媒加熱用二方弁のおどり音をなくし、また四方弁を切り替えて除霜運転をするとき冷媒加熱用二方弁が漏れていれば冷媒加熱器が冷えて結露の原因となることや冷媒加熱用二方弁の漏れや低圧冷媒が冷媒加熱器に溜まることでの冷媒加熱器の結露発生をなくすことができるという問題を解決することなど、冷凍サイクルが簡単なバイパス回路で構成でき、冷媒音、圧力バランスの問題も発生しない暖房運転を継続しながら除霜運転できる空気調和装置を提供できる。   The check valve provided in the first bypass circuit reduces the suction pulsation during startup due to pressure balance fluctuations during heating operation, eliminates the noise of the refrigerant heating two-way valve, and switches the four-way valve to perform defrosting operation. When the refrigerant heating two-way valve is leaking, the refrigerant heater will cool and cause condensation, or the refrigerant heating two-way valve leaks or low-pressure refrigerant accumulates in the refrigerant heater. An air conditioner that can be defrosted while continuing the heating operation that can be configured with a simple bypass circuit and no refrigerant noise and pressure balance problems, such as solving the problem of eliminating the occurrence of dew condensation Can provide.

また第2のバイパス回路に設けた逆止弁は、減圧器と前記室外熱交換器の連結された方向へ冷媒が流れるように配設した構成とし、暖房運転時の圧力バランス変動による起動時の吐出脈動を減少させ二方弁の踊り音をなくし、冷房運転時の圧力バランス変動による吸
入脈動を減少させ二方弁の踊り音をなくすにことを特徴とした構成をとり、冷媒圧力バランスに対する耐久性、信頼性の確保が要求されるという二方弁保護の為常時二方弁に逆圧がかからない逆止弁の位置を決定し、冷媒音、圧力バランスの問題も発生しない安定した空気調和装置を提供することができることを特徴とした構成をとる。
Further, the check valve provided in the second bypass circuit is arranged so that the refrigerant flows in a direction in which the decompressor and the outdoor heat exchanger are connected, and at the time of start-up due to pressure balance fluctuation during heating operation Durable against refrigerant pressure balance by reducing the discharge pulsation and eliminating the two-way valve dance noise, and reducing the suction pulsation due to pressure balance fluctuation during cooling operation and eliminating the two-way valve dance noise Stable air-conditioning system that determines the position of the check valve that does not apply back pressure to the two-way valve at all times to protect the two-way valve, which requires ensuring safety and reliability. The structure characterized by being able to provide is taken.

また、本実施の形態では、第1のバイパス回路の一端を、四方弁と室外熱交換器の間に連結するものとしたが四方弁と圧縮機の吸入側の間に連結するものとしてもよい   In the present embodiment, one end of the first bypass circuit is connected between the four-way valve and the outdoor heat exchanger, but may be connected between the four-way valve and the suction side of the compressor.

以上のように本発明の空気調和装置は暖房運転しながら、除霜運転を実施できるので、室外温度が非常に低温の寒冷地での空気調和装置にも適用できる。   As described above, the air-conditioning apparatus of the present invention can perform the defrosting operation while performing the heating operation, and thus can be applied to an air-conditioning apparatus in a cold district where the outdoor temperature is very low.

本発明の実施の形態1における空気調和装置の構成図The block diagram of the air conditioning apparatus in Embodiment 1 of this invention 本発明の実施の形態2における空気調和装置の構成図The block diagram of the air conditioning apparatus in Embodiment 2 of this invention 本発明の実施の形態3における空気調和装置の構成図The block diagram of the air conditioning apparatus in Embodiment 3 of this invention 本発明の実施の形態1における制御ブロック図Control block diagram according to Embodiment 1 of the present invention 本発明の実施の形態1における制御タイムチャートControl time chart in Embodiment 1 of the present invention 従来の空気調和装置の構成図Configuration diagram of conventional air conditioner 従来の空気調和装置の構成図Configuration diagram of conventional air conditioner

1 圧縮機
2 四方弁
3 室内熱交換器
4 減圧器
5 室外熱交換器
6 第1のバイパス回路
7 冷媒加熱用二方弁
8 加熱器
9 第2のバイパス回路
10 除霜用二方弁
11 除霜用減圧器
12 冷媒加熱用減圧器
13 加熱器ヒータ
14 冷媒通過管部
15 蓄熱部
17 室内送風機
18 室内機
19 室外送風機
20 室外機
30 第1のバイパス回路の逆止弁
31 第2のバイパス回路の逆止弁
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Pressure reducer 5 Outdoor heat exchanger 6 First bypass circuit 7 Two-way valve for refrigerant heating 8 Heater 9 Second bypass circuit 10 Two-way valve for defrosting 11 Removal Frost decompressor 12 Refrigerant heating decompressor 13 Heater heater 14 Refrigerant passage tube part 15 Heat storage part 17 Indoor blower 18 Indoor unit 19 Outdoor blower 20 Outdoor unit 30 Check valve 31 of the first bypass circuit 31 Second bypass circuit Check valve

Claims (4)

圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結し前記四方弁の切り替えにより冷媒の流れを逆にして冷・暖房を行うヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間及び前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に冷媒加熱用二方弁とヒータ加熱式の冷媒加熱器並びに逆止弁を備え、前記逆止弁は第1のバイパス回路の冷媒加熱用二方弁と冷媒加熱器との間に設けて前記二方弁から前記冷媒加熱器の方向に冷媒が流れるように配設するとともに、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間及び前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間及び前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に除霜用二方弁を配設した構成とし、前記室外熱交換器の除霜を行う際、前記第1のバイパス回路の冷媒加熱用二方弁を開放して冷媒加熱器で加熱された冷媒を前記四方弁を介して前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の除霜用二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことを特徴とした空気調和装置。 A heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger are connected by a refrigerant circuit and the refrigerant flow is reversed by cooling and heating by switching the four-way valve, and the refrigeration provided a first bypass circuit for connecting the said indoor heat exchanger coupled to the cycle and during said pressure reducer and said four-way valve the outdoor heat exchanger, refrigerant heated for secondary to the first bypass circuit A non-return valve, a heater heating type refrigerant heater, and a check valve , the check valve being provided between the refrigerant heating two-way valve and the refrigerant heater of the first bypass circuit, while arranged so that the refrigerant flows in the direction of the refrigerant heater, further wherein during connected to the refrigeration cycle a and the four-way valve and between the pressure reducer of the indoor heat exchanger of said outdoor heat exchanger or said, The pressure connected to the refrigeration cycle The second bypass circuit for connecting the machine with and between the pressure reducer of the four-way valve between the outdoor heat exchanger provided with a structure which is disposed a two-way valve for defrosting the second bypass circuit, When performing defrosting of the outdoor heat exchanger, the refrigerant heating two-way valve of the first bypass circuit is opened, and the refrigerant heated by the refrigerant heater is passed through the four-way valve to the suction side of the compressor An air conditioner characterized by performing a first bypass operation to flow through and a second bypass operation to open the two-way defrosting valve of the second bypass circuit and allow the refrigerant to pass through the outdoor heat exchanger apparatus. 圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒回路で連結し前記四方弁の切り替えにより冷媒の流れを逆にして冷・暖房を行うヒートポンプ式冷凍サイクルと、この冷凍サイクルに連結された前記室内熱交換器と前記減圧器の間及び前記四方弁と前記室外熱交換器の間を連結する第1のバイパス回路を設け、前記第1のバイパス回路に冷媒加熱用二方弁及びヒータ加熱式の冷媒加熱器並びに逆止弁を備え、前記逆止弁は第1のバイパス回路の冷媒加熱用二方弁と冷媒加熱器との間に設けて前記二方弁から前記冷媒加熱器の方向に冷媒が流れるように配設するとともに、さらに前記冷凍サイクルに連結された前記四方弁と前記室内熱交換器の間及び前記減圧器と前記室外熱交換器の間、または前記冷凍サイクルに連結された前記圧縮機と前記四方弁の間及び前記減圧器と前記室外熱交換器の間を連結する第2のバイパス回路を設け、前記第2のバイパス回路に除霜用二方弁及び逆止弁を設け前記逆止弁は前記四方弁と前記室内熱交換器の間から前記減圧器と前記室外熱交換器の間への方向、または前記圧縮機と前記四方弁の間から前記減圧器と前記室外熱交換器の間への方向に冷媒が流れるように配設した構成とし、前記室外熱交換器の除霜を
行う際、前記第1のバイパス回路の冷媒加熱用二方弁を開放して冷媒加熱器で加熱された冷媒を前記四方弁を介し前記圧縮機の吸入側に流す第1のバイパス運転と、前記第2のバイパス回路の除霜用二方弁を開放して前記室外熱交換器に冷媒を通過させる第2のバイパス運転を行うことを特徴とした空気調和装置。
A heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger are connected by a refrigerant circuit and the refrigerant flow is reversed by cooling and heating by switching the four-way valve, and the refrigeration provided a first bypass circuit for connecting the said indoor heat exchanger coupled to the cycle and during said pressure reducer and said four-way valve the outdoor heat exchanger, refrigerant heated for secondary to the first bypass circuit A non-return valve, a heater heating type refrigerant heater, and a check valve, the check valve being provided between the refrigerant heating two-way valve and the refrigerant heater of the first bypass circuit, The refrigerant is arranged to flow in the direction of the refrigerant heater , and further, between the four-way valve and the indoor heat exchanger connected to the refrigeration cycle, and between the pressure reducer and the outdoor heat exchanger, or Connected to the refrigeration cycle Providing the second bypass circuit for connecting the compressor and between the pressure reducer of the four-way valve between the outdoor heat exchanger, provided the two-way valve and a check valve for defrosting the second bypass circuit The check valve is arranged in a direction from between the four-way valve and the indoor heat exchanger to the pressure reducer and the outdoor heat exchanger, or between the compressor and the four-way valve. The refrigerant is arranged so that the refrigerant flows in the direction between the exchangers, and when the defrosting of the outdoor heat exchanger is performed, the refrigerant heating two-way valve of the first bypass circuit is opened to heat the refrigerant. A first bypass operation in which the refrigerant heated by the cooler flows to the suction side of the compressor through the four-way valve, and the two-way valve for defrosting of the second bypass circuit is opened to the outdoor heat exchanger. An air conditioner that performs a second bypass operation for allowing a refrigerant to pass therethrough.
第2のバイパス回路に設けた逆止弁は、第2のバイパス回路の除霜用二方弁から減圧器と室外熱交換器に連結される間に配置することを特徴とした請求項に記載の空気調和装置。 A check valve provided in the second bypass circuit, to Claim 2 characterized in that disposed between coupled to decompressor and an outdoor heat exchanger from defrosting two-way valve in the second bypass circuit The air conditioning apparatus described. 第2のバイパス回路の除霜用二方弁から減圧器と室外熱交換器に連結される間に、四方弁と前記室内熱交換器の間から前記減圧器と前記室外熱交換器の間への方向、または前記圧縮機と前記四方弁の間から前記減圧器と前記室外熱交換器の間への方向に流れるように逆止弁を配置することを特徴とした請求項に記載の空気調和装置。 While being connected from the two-way defrosting valve of the second bypass circuit to the decompressor and the outdoor heat exchanger, from between the four-way valve and the indoor heat exchanger to between the decompressor and the outdoor heat exchanger. The air according to claim 2 , wherein the check valve is arranged so as to flow in a direction from the compressor or between the compressor and the four-way valve to the pressure reducer and the outdoor heat exchanger. Harmony device.
JP2005238155A 2005-08-19 2005-08-19 Air conditioner Expired - Fee Related JP4687326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238155A JP4687326B2 (en) 2005-08-19 2005-08-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238155A JP4687326B2 (en) 2005-08-19 2005-08-19 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007051838A JP2007051838A (en) 2007-03-01
JP4687326B2 true JP4687326B2 (en) 2011-05-25

Family

ID=37916398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238155A Expired - Fee Related JP4687326B2 (en) 2005-08-19 2005-08-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP4687326B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948606B2 (en) * 2012-07-12 2016-07-06 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
CN105020815B (en) * 2014-04-20 2017-09-26 倪仁建 A kind of evaporating condensation type air conditioner
JP6403468B2 (en) 2014-07-11 2018-10-10 リンナイ株式会社 Heat pump heat source equipment
JP6342282B2 (en) * 2014-09-29 2018-06-13 リンナイ株式会社 Heat pump heat source equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840157U (en) * 1971-09-16 1973-05-21
JPS57101264A (en) * 1980-12-12 1982-06-23 Matsushita Electric Ind Co Ltd Air conditioner
JPS62173670U (en) * 1986-04-22 1987-11-04
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPH01134857U (en) * 1988-03-04 1989-09-14
JPH0375460A (en) * 1989-08-17 1991-03-29 Daikin Ind Ltd Heat pump system and method for controlling its operation
JPH04295534A (en) * 1991-03-22 1992-10-20 Sharp Corp Air-conditioner
JPH0611202A (en) * 1992-06-26 1994-01-21 Daikin Ind Ltd Air conditioning apparatus
JPH06213540A (en) * 1993-01-20 1994-08-02 Matsushita Electric Ind Co Ltd Heating-and-cooling machine
JPH07120116A (en) * 1993-10-29 1995-05-12 Mitsubishi Electric Corp Cooler
JPH11230646A (en) * 1998-02-17 1999-08-27 Denso Corp Engine driven heat pump

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840157U (en) * 1971-09-16 1973-05-21
JPS57101264A (en) * 1980-12-12 1982-06-23 Matsushita Electric Ind Co Ltd Air conditioner
JPS62173670U (en) * 1986-04-22 1987-11-04
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPH01134857U (en) * 1988-03-04 1989-09-14
JPH0375460A (en) * 1989-08-17 1991-03-29 Daikin Ind Ltd Heat pump system and method for controlling its operation
JPH04295534A (en) * 1991-03-22 1992-10-20 Sharp Corp Air-conditioner
JPH0611202A (en) * 1992-06-26 1994-01-21 Daikin Ind Ltd Air conditioning apparatus
JPH06213540A (en) * 1993-01-20 1994-08-02 Matsushita Electric Ind Co Ltd Heating-and-cooling machine
JPH07120116A (en) * 1993-10-29 1995-05-12 Mitsubishi Electric Corp Cooler
JPH11230646A (en) * 1998-02-17 1999-08-27 Denso Corp Engine driven heat pump

Also Published As

Publication number Publication date
JP2007051838A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
US7716941B2 (en) Multi-type air conditioner with defrosting device
JP2007051825A (en) Air-conditioner
WO2017199289A1 (en) Air conditioning device
CN101233375B (en) Method for preventing spill start in heat pump and controller
JP4654828B2 (en) Air conditioner
EP1645817A2 (en) Air conditioner
JP2007040658A (en) Air conditioner
AU2004267299A1 (en) Refrigeration system
JP4622990B2 (en) Air conditioner
JP2008116156A (en) Air conditioner
JP2009014215A (en) Air conditioning device
JP2006132797A (en) Air conditioner
JP4605065B2 (en) Air conditioner
JP2006308156A (en) Air conditioner
JP4687326B2 (en) Air conditioner
JP2008025901A (en) Air conditioner
JP4830399B2 (en) Air conditioner
JP4661451B2 (en) Air conditioner
JP4802602B2 (en) Air conditioner
JP2007107853A (en) Air conditioner
JP2007247997A (en) Air conditioner
KR101075168B1 (en) Method for defrost of heat pump system
JP4774858B2 (en) Air conditioner
JP2006242443A (en) Air conditioner
JP2007051840A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees