JPH11230646A - Engine driven heat pump - Google Patents

Engine driven heat pump

Info

Publication number
JPH11230646A
JPH11230646A JP10035233A JP3523398A JPH11230646A JP H11230646 A JPH11230646 A JP H11230646A JP 10035233 A JP10035233 A JP 10035233A JP 3523398 A JP3523398 A JP 3523398A JP H11230646 A JPH11230646 A JP H11230646A
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
heating
refrigerant
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10035233A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nagura
弘之 名倉
Kenji Yamada
兼二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10035233A priority Critical patent/JPH11230646A/en
Publication of JPH11230646A publication Critical patent/JPH11230646A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Abstract

PROBLEM TO BE SOLVED: To enable continuous heating and defrosting by using a plurality of compressors and prevent heating efficiency from decreasing during the continuous heating and defrosting due to piping resistance and the like on an indoor heat exchanger side resulting from an increase in the number of stories of a building and the like. SOLUTION: A refrigeration cycle wherein cooling and heating are switched by switching a four-way valve 4 is provided with a plurality of compressors 2a and 2b. This refrigeration cycle separately forms during defrosting a defrosting circuit for introducing a discharged refrigerant of one compressor 2a to an outdoor heat exchanger 7 by means of a first defrosting bypass circuit 21 and a heating circuit for introducing a discharged refrigerant of the other compressor 2b into an indoor heat exchanger 5 to be returned by a second defrosting bypass circuit 22. According to this arrangement, defrosting and heating are performed and a heating effect is improved independently of the intensity of piping resistance of the indoor heat exchanger 5 side due to an increase in the number of stories of a building and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジン駆動ヒー
トポンプにおける暖房運転時の除霜に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to defrosting during a heating operation in an engine driven heat pump.

【0002】[0002]

【従来の技術】エンジン駆動ヒートポンプによる暖房運
転時に除霜を行う技術として、特開平6−265242
号公報に開示される技術が知られている。この技術は、
暖房運転時に室外熱交換器に着霜した霜を除霜する場
合、室内熱交換器による室内の暖房を停止することなく
除霜を行うもので、1つの圧縮機から吐出される冷媒を
2つに分岐して、分岐した一方の冷媒を室外熱交換器に
導いて除霜を行うとともに、分岐した他方の冷媒を室内
熱交換器に導いて暖房を行う技術であり、室外熱交換器
および室内熱交換器を通過した冷媒は冷媒加熱器で加熱
された後に圧縮機へ戻される。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 6-265242 discloses a technique for performing defrosting during a heating operation using an engine-driven heat pump.
The technology disclosed in Japanese Patent Laid-Open Publication No. H10-26095 is known. This technology is
When defrosting frost on the outdoor heat exchanger during the heating operation, defrosting is performed without stopping indoor heating by the indoor heat exchanger, and two refrigerants discharged from one compressor are used. This is a technique in which one of the branched refrigerants is guided to an outdoor heat exchanger to perform defrosting, and the other branched refrigerant is guided to an indoor heat exchanger for heating. The refrigerant that has passed through the heat exchanger is heated by the refrigerant heater and then returned to the compressor.

【0003】[0003]

【発明が解決しようとする課題】上記の連続暖房除霜技
術を採用するとともに、図4に示すように、高能力と省
エネとを両立させる目的で複数の圧縮機2a、2bを採
用した2コン1サイクルのエンジン駆動ヒートポンプが
ある。ところが、近年、ビルの高層化等により、室内熱
交換器5側の配管長が長く、また高低差も大きくなる傾
向がある。これらの傾向によって、室内熱交換器5側の
配管抵抗が大きくなり、連続暖房除霜する場合に、配管
抵抗の小さい第1除霜用バイパス回路21(室外熱交換
器7への冷媒循環回路)へ多くの冷媒が流れ、配管抵抗
の大きい第2除霜用バイパス回路22(室内熱交換器5
への冷媒循環回路)への冷媒循環量が減り、連続暖房除
霜時の暖房効果が薄れてしまう不具合がある。
As shown in FIG. 4, a two-compartment compressor employing a plurality of compressors 2a and 2b for the purpose of achieving both high performance and energy saving as well as employing the above-described continuous heating and defrosting technology. There is a one-cycle engine driven heat pump. However, in recent years, the length of the pipes on the indoor heat exchanger 5 side tends to be long, and the height difference tends to be large due to the rise of buildings and the like. Due to these tendencies, the pipe resistance on the indoor heat exchanger 5 side increases, and in the case of continuous heating and defrosting, the first defrost bypass circuit 21 with a small pipe resistance (refrigerant circulation circuit to the outdoor heat exchanger 7). A large amount of refrigerant flows to the second defrost bypass circuit 22 (the indoor heat exchanger 5) having a large pipe resistance.
The amount of the refrigerant circulating to the refrigerant circuit decreases, and the heating effect at the time of continuous heating and defrosting is reduced.

【0004】[0004]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、複数の圧縮機を用いて連続暖房除
霜が実行可能で、且つ連続暖房除霜時において配管抵抗
等による暖房効果が薄れる不具合のないエンジン駆動ヒ
ートポンプの提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to enable continuous heating and defrosting by using a plurality of compressors, and to improve piping resistance and the like during continuous heating and defrosting. An object of the present invention is to provide an engine-driven heat pump that does not have a problem that the heating effect is weakened by the heat.

【0005】[0005]

【課題を解決するための手段】本発明のエンジン駆動ヒ
ートポンプは、次の技術的手段を採用した。 〔請求項1の手段〕請求項1のようにすることにより、
連続暖房除霜時、一方の圧縮機から吐出される高温高圧
のガス冷媒は、第1除霜用バイパス回路を経て直接室外
熱交換器へ流入するため、室外熱交換器に付着していた
霜は、この高温の冷媒の放熱によって短時間で溶かされ
る。
The engine driven heat pump of the present invention employs the following technical means. [Means of Claim 1] By doing as in Claim 1,
During continuous heating and defrosting, the high-temperature and high-pressure gas refrigerant discharged from one of the compressors directly flows into the outdoor heat exchanger via the first defrost bypass circuit, so that the frost adhering to the outdoor heat exchanger is removed. Is melted in a short time by the heat radiation of the high-temperature refrigerant.

【0006】この時、他方の圧縮機から吐出された高温
高圧のガス冷媒は、直接室内熱交換器へ流入して室内熱
交換器で放熱するため、除霜時における連続暖房が効果
的に行われる。なお、室内熱交換器で放熱した冷媒は、
第2除霜用バイパス回路を経て室外熱交換器で放熱した
冷媒と合流した後、冷媒加熱器で加熱されて複数の圧縮
機に戻るため、複数の圧縮機から常に高温高圧のガス冷
媒を吐出できる。
At this time, the high-temperature and high-pressure gas refrigerant discharged from the other compressor flows directly into the indoor heat exchanger and radiates heat in the indoor heat exchanger, so that continuous heating during defrosting is effectively performed. Will be The refrigerant radiated by the indoor heat exchanger is
After merging with the refrigerant radiated by the outdoor heat exchanger through the second defrost bypass circuit, the refrigerant is heated by the refrigerant heater and returned to the plurality of compressors, so that the high-temperature and high-pressure gas refrigerant is always discharged from the plurality of compressors. it can.

【0007】このように、一方の圧縮機による除霜回路
(第1除霜用バイパス回路と室外熱交換器を通る回路)
と、他方の圧縮機による暖房回路(室内熱交換器と第2
除霜用バイパス回路を通る回路)とが別々に形成される
ため、ビルの高層化等により、室内熱交換器側の配管長
が長くなったり、あるいは高低差が大きくなっても、室
内熱交換器側の配管抵抗の大小に関係なく除霜運転と暖
房運転とが同時に行われる。つまり、本発明により、複
数の圧縮機を用いて連続暖房除霜が実行可能で、且つ連
続暖房除霜時において配管抵抗等によって暖房効果が薄
れる不具合がない。
As described above, the defrost circuit by one compressor (the circuit that passes through the first defrost bypass circuit and the outdoor heat exchanger)
And a heating circuit by the other compressor (the indoor heat exchanger and the second
(A circuit that passes through the defrost bypass circuit) is formed separately, so even if the length of the piping on the indoor heat exchanger side becomes long or the height difference becomes large due to the rise of buildings, indoor heat exchange The defrosting operation and the heating operation are performed simultaneously regardless of the magnitude of the pipe resistance on the vessel side. That is, according to the present invention, continuous heating defrosting can be performed using a plurality of compressors, and there is no problem that the heating effect is weakened by pipe resistance or the like during continuous heating defrosting.

【0008】〔請求項2の手段〕請求項2のようにする
ことにより、複数の圧縮機を作動させるとともに、エン
ジンを高回転数で運転させることにより、室外熱交換器
および室内熱交換器に供給される熱量が増える。この時
に室内暖房用の送風ファンを低回転で作動させることに
より、室内での冷媒の放熱量を抑えて除霜に使用するこ
とができるため、除霜時間を短縮できる。さらに、室外
器の送風ファンを停止させることにより、低温外気流に
よって室外熱交換器を流れる冷媒が除霜以外に放出され
るのを抑えて、除霜時間を短縮できる。つまり、この請
求項2を採用することにより、暖房能力の低下を抑え、
且つ除霜時間を短縮する効果がある。
[0008] According to the second aspect of the present invention, the plurality of compressors are operated and the engine is operated at a high rotational speed, so that the outdoor heat exchanger and the indoor heat exchanger can be operated. The amount of heat supplied increases. At this time, by operating the blower fan for indoor heating at a low rotation speed, the amount of refrigerant radiated in the room can be suppressed and used for defrosting, so that the defrosting time can be shortened. Further, by stopping the blower fan of the outdoor unit, it is possible to prevent the refrigerant flowing through the outdoor heat exchanger from being released by means other than the defrost due to the low-temperature outdoor airflow, thereby reducing the defrosting time. That is, by adopting this claim 2, a decrease in the heating capacity is suppressed,
In addition, there is an effect of reducing the defrosting time.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施の形態を、実
施例および変形例に基づき説明する。 〔実施例の構成〕図1ないし図3は本発明を採用した実
施例を説明するための図面で、図1はエンジン駆動ヒー
トポンプの構成を示す冷媒回路図である。
Next, embodiments of the present invention will be described based on examples and modifications. 1 to 3 are drawings for explaining an embodiment employing the present invention, and FIG. 1 is a refrigerant circuit diagram showing a configuration of an engine driven heat pump.

【0010】まず、全体の構成を図1を参照して説明す
る。エンジン1によって駆動される複数の圧縮機2a、
2b(一方の圧縮機2aと他方の圧縮機2b)、冷媒中
のオイルを分離するオイルセパレータ3、複数の圧縮機
2a、2bより吐出される冷媒の流路を切り替える四方
弁4、冷房時は蒸発器として働き暖房時は凝縮器として
働く室内熱交換器5、室内熱交換器5側の減圧装置(以
下、室内側減圧装置6)、冷房時は凝縮器として働き暖
房時は蒸発器として働く室外熱交換器7、室外熱交換器
7側の減圧装置(以下、室外側減圧装置8)、エンジン
1の冷却水(温水)で冷媒を加熱する冷媒加熱器9、冷
媒を気液分離してガス冷媒を導出するアキュムレータ1
0が冷媒配管によって接続されて、基本となる冷凍サイ
クルが構成されている。なお、一方の圧縮機2aおよび
他方の圧縮機2bは、それぞれに設けられた逆止弁B1
、B2 の下流で合流するものである。
First, the overall configuration will be described with reference to FIG. A plurality of compressors 2a driven by the engine 1,
2b (one compressor 2a and the other compressor 2b), an oil separator 3 for separating oil in the refrigerant, a four-way valve 4 for switching the flow path of the refrigerant discharged from the plurality of compressors 2a, 2b, The indoor heat exchanger 5 which functions as an evaporator and functions as a condenser during heating, the decompression device on the side of the indoor heat exchanger 5 (hereinafter referred to as the indoor decompression device 6), functions as a condenser during cooling and functions as an evaporator during heating. The outdoor heat exchanger 7, a decompression device (hereinafter referred to as an outdoor decompression device 8) on the side of the outdoor heat exchanger 7, a refrigerant heater 9 for heating the refrigerant with cooling water (warm water) of the engine 1, and a gas-liquid separation of the refrigerant. Accumulator 1 for extracting gas refrigerant
0 are connected by a refrigerant pipe to form a basic refrigeration cycle. The one compressor 2a and the other compressor 2b are each provided with a check valve B1
, B2 downstream.

【0011】上記の冷凍サイクルには、一方の圧縮機2
aの吐出側と、その逆止弁B1 の上流側のA点より分岐
して、室外側減圧装置8と室外熱交換器7の間に接続さ
れる第1除霜用バイパス回路21が設けられている。こ
の第1除霜用バイパス回路21には、この回路21を通
電により開弁する第1除霜用電磁弁11(第1開閉弁)
が設けられている。
In the above-described refrigeration cycle, one of the compressors 2
a first defrost bypass circuit 21 which is branched from the outdoor side pressure reducing device 8 and the outdoor heat exchanger 7 and is branched off from the discharge side of a and the point A on the upstream side of the check valve B1. ing. The first defrosting bypass circuit 21 is provided with a first defrosting solenoid valve 11 (first on-off valve) that opens the circuit 21 by energization.
Is provided.

【0012】また、上記の冷凍サイクルには、室内側減
圧装置6の下流側より分離して、室外熱交換器7と冷媒
加熱器9の間のB点に接続される第2除霜用バイパス回
路22が設けられている。この第2除霜用バイパス回路
22には、この回路22を通電により開弁する第2除霜
用電磁弁12(第2開閉弁)、補助減圧装置13、室外
熱交換器7側からの冷媒の流入を阻止する逆止弁14が
設けられている。なお、図1中の符号15は、室内ファ
ン(室内熱交換器5の送風ファン)であり、符号16
は、室外ファン(室外熱交換器7の送風ファン)であ
る。
In the above refrigeration cycle, a second defrost bypass connected to a point B between the outdoor heat exchanger 7 and the refrigerant heater 9 separated from the downstream side of the indoor decompression device 6. A circuit 22 is provided. The second defrost bypass circuit 22 includes a second defrost solenoid valve 12 (second on-off valve) that opens when the circuit 22 is energized, an auxiliary pressure reducing device 13, and refrigerant from the outdoor heat exchanger 7. A check valve 14 for preventing the inflow of the fluid is provided. Note that reference numeral 15 in FIG. 1 denotes an indoor fan (blower fan of the indoor heat exchanger 5), and reference numeral 16 denotes an indoor fan.
Is an outdoor fan (blower fan of the outdoor heat exchanger 7).

【0013】一方、エンジン冷却水の循環回路は、エン
ジン1からサーモスタット17を介してラジエータ18
を通ってエンジン1に戻る回路と、エンジン1からサー
モスタット17を介し冷媒加熱器9を通ってエンジン1
に戻る回路とにより構成されている。
On the other hand, the circulation circuit of the engine coolant flows from the engine 1 through a thermostat 17 to a radiator 18.
And a circuit returning to the engine 1 through the refrigerant heater 9 through the thermostat 17 from the engine 1.
And a circuit returning to

【0014】図2はエンジン駆動ヒートポンプにおい
て、冷房、暖房、除霜の各運転モードを実行するための
電気回路図である。この電気回路は、上記冷凍サイクル
に設けられた四方弁4、第1除霜用電磁弁11、第2除
霜用電磁弁12、室内ファン15、室外ファン16の通
電制御を行って各運転モードを実行するもので、メイン
スイッチ31によって電源Dとの断続が行われる。四方
弁4、第1除霜用電磁弁11、第2除霜用電磁弁12、
室内ファン15、室外ファン16のそれぞれは、並列接
続されたリレー接点r1 〜r5 を介してメインスイッチ
31に接続されており、各リレー接点r1 〜r5 は、制
御回路30によって制御される5つのリレーR1 〜R5
によって開閉される。制御回路30は、冷房接点C、暖
房接点Hを有する切替スイッチ32を介してメインスイ
ッチ31に接続されており、この切替スイッチ32の切
替状態と、室外熱交換器7の着霜を検出するフロストセ
ンサ33の検出出力とに応じて、上記の5つのリレーR
1 〜R5 を通電制御する。
FIG. 2 is an electric circuit diagram for executing the cooling, heating, and defrosting operation modes in the engine driven heat pump. This electric circuit controls the energization of the four-way valve 4, the first defrosting solenoid valve 11, the second defrosting solenoid valve 12, the indoor fan 15, and the outdoor fan 16 provided in the refrigeration cycle, and performs each operation mode. The main switch 31 is connected to and disconnected from the power supply D. Four-way valve 4, first defrosting solenoid valve 11, second defrosting solenoid valve 12,
Each of the indoor fan 15 and the outdoor fan 16 is connected to the main switch 31 via relay contacts r1 to r5 connected in parallel, and each of the relay contacts r1 to r5 has five relays controlled by the control circuit 30. R1 to R5
Is opened and closed by The control circuit 30 is connected to a main switch 31 via a changeover switch 32 having a cooling contact C and a heating contact H, and detects a switching state of the changeover switch 32 and a frost that detects frost formation on the outdoor heat exchanger 7. According to the detection output of the sensor 33, the above five relays R
1 to R5 are energized.

【0015】〔実施例の作動〕メインスイッチ31を入
れると、空調負荷に応じて電磁クラッチ(図示しない)
が作動して冷凍サイクルの運転が始まる。なお、空調負
荷が小さい場合は、一方の圧縮機2aと他方の圧縮機2
bの交互運転を行い、空調負荷が大きい場合は一方の圧
縮機2aと他方の圧縮機2bが同時作動するもので、こ
の作動では同時作動を例に説明する。
[Operation of the Embodiment] When the main switch 31 is turned on, an electromagnetic clutch (not shown) is used according to the air conditioning load.
Operates to start the operation of the refrigeration cycle. When the air conditioning load is small, one compressor 2a and the other compressor 2a
When the air conditioning load is large, one compressor 2a and the other compressor 2b operate simultaneously, and the simultaneous operation will be described as an example.

【0016】<暖房運転>切替スイッチ32が暖房接点
Hに入れられた状態で、フロストセンサ33が室外熱交
換器7の着霜を検出していない状態では、制御回路30
はリレーR1 、R4 、R5 を通電し、リレーR2 、R3
は通電しない。これにより、リレー接点r1 、r4 、r
5 が閉じ、リレー接点r2 、r3 が開く。この結果、四
方弁4が暖房側に切り替えられ、第1、第2除霜用電磁
弁11、12が閉じ、室内ファン15および室外ファン
16が通常回転数で作動する。
<Heating operation> In a state where the changeover switch 32 is set to the heating contact H and the frost sensor 33 does not detect frost on the outdoor heat exchanger 7, the control circuit 30
Turns on the relays R1, R4, R5 and relays R2, R3
Is not energized. Thereby, the relay contacts r1, r4, r
5 is closed and the relay contacts r2 and r3 are opened. As a result, the four-way valve 4 is switched to the heating side, the first and second solenoid valves 11 and 12 for defrosting are closed, and the indoor fan 15 and the outdoor fan 16 operate at the normal rotation speed.

【0017】この暖房運転時の冷媒の流れを説明する
と、複数の圧縮機2a、2bから吐出された高温高圧の
冷媒はそれぞれ逆止弁B1 、B2 を通過して合流し、オ
イルセパレータ3を通過する際にオイルを分離した後、
四方弁4を経て室内熱交換器5へ入る。室内熱交換器5
で冷媒は室内に吹き出される空気で放熱されて凝縮し、
放熱による熱が室内に吹き出されて室内を暖房する。室
内熱交換器5を出た冷媒は、室内側減圧装置6と室外側
減圧装置8により減圧されて、室外熱交換器7にて蒸発
し、冷媒加熱器9にてエンジン冷却水より吸熱を行い、
四方弁4を経てアキュムレータ10で気液分離された
後、ガス冷媒が複数の圧縮機2a、2bに吸入される。
Explaining the flow of the refrigerant during the heating operation, the high-temperature and high-pressure refrigerant discharged from the plurality of compressors 2a and 2b merges through the check valves B1 and B2, respectively, and passes through the oil separator 3. After separating the oil when
It enters the indoor heat exchanger 5 via the four-way valve 4. Indoor heat exchanger 5
The refrigerant is radiated and condensed by the air blown into the room,
Heat from the heat is blown into the room to heat the room. The refrigerant that has exited the indoor heat exchanger 5 is decompressed by the indoor decompression device 6 and the outdoor decompression device 8, evaporates in the outdoor heat exchanger 7, and absorbs heat from the engine cooling water in the refrigerant heater 9. ,
After gas-liquid separation by the accumulator 10 through the four-way valve 4, the gas refrigerant is sucked into the plurality of compressors 2a and 2b.

【0018】一方、エンジン1の冷却水は、エンジン1
からサーモスタット17を経て冷媒加熱器9にて冷媒と
熱交換され、冷却されてエンジン1に戻る。また、冷凍
サイクルの負荷の上昇等により冷却水温が上昇し、サー
モスタット17の設定温度以上になった場合は、サーモ
スタット17が作動してラジエータ18側へ冷却水が流
れ、ラジエータ18にて放熱を行う。
On the other hand, the cooling water of the engine 1
After passing through the thermostat 17, the heat is exchanged with the refrigerant in the refrigerant heater 9, cooled, and returned to the engine 1. When the temperature of the cooling water rises due to an increase in the load of the refrigeration cycle or the like and becomes equal to or higher than the set temperature of the thermostat 17, the thermostat 17 operates to flow the cooling water to the radiator 18 side, and the radiator 18 radiates heat. .

【0019】<除霜運転>上記の暖房運転中に、フロス
トセンサ33が室外熱交換器7の着霜を検出すると、制
御回路30はリレーR2 、R3 を通電し、リレーR4 、
R5 の通電を断つ。これにより、リレー接点r2 、r3
が閉じ、リレー接点r4 、r5 が開く。この結果、第
1、第2除霜用電磁弁11、12は開き、室内ファン1
5は抵抗Rを介した通電によって最低回転数で作動し、
室外ファン16は停止する。また、エンジン1はスロッ
トル(図示しない)が全開となり、最高回転数で運転す
る。
<Defrosting Operation> If the frost sensor 33 detects frost formation on the outdoor heat exchanger 7 during the above-mentioned heating operation, the control circuit 30 energizes the relays R2 and R3, and turns on the relays R4 and R4.
Turn off the power to R5. As a result, the relay contacts r2, r3
Is closed and the relay contacts r4 and r5 are opened. As a result, the first and second solenoid valves 11 and 12 for defrosting are opened, and the indoor fan 1 is opened.
5 operates at the minimum number of revolutions by energization through the resistor R,
The outdoor fan 16 stops. Further, the engine 1 operates at the maximum rotation speed with the throttle (not shown) fully opened.

【0020】この暖房運転時の冷媒の流れを説明する。
一方の圧縮機2aから吐出された高温高圧の冷媒は、破
線矢印に示すように、分岐部のA点から第1除霜用バイ
パス回路21へ流れ、第1除霜用電磁弁11を経て室外
熱交換器7へ入る。高温高圧の冷媒は室外熱交換器7に
着霜した霜を溶かす。この時、冷媒は凝縮する。室外熱
交換器7を出た冷媒は、合流部のB点で第2除霜用バイ
パス回路22からの冷媒と合流し、冷媒加熱器9にてエ
ンジン冷却水より吸熱を行い、四方弁4とアキュムレー
タ10を経て複数の圧縮機2a、2bに吸入される。
The flow of the refrigerant during the heating operation will be described.
The high-temperature and high-pressure refrigerant discharged from the one compressor 2a flows from the point A of the branch portion to the first defrost bypass circuit 21 as shown by the dashed arrow, passes through the first defrost electromagnetic valve 11, and is discharged outside the room. Enter the heat exchanger 7. The high-temperature and high-pressure refrigerant dissolves frost formed on the outdoor heat exchanger 7. At this time, the refrigerant condenses. The refrigerant that has exited the outdoor heat exchanger 7 merges with the refrigerant from the second defrost bypass circuit 22 at the point B at the junction, absorbs heat from the engine cooling water in the refrigerant heater 9, and connects with the four-way valve 4. It is sucked into the plurality of compressors 2a and 2b via the accumulator 10.

【0021】他方の圧縮機2bから吐出された高温高圧
の冷媒は、実線矢印に示すように、オイルセパレータ3
を通過した後、四方弁4を経て室内熱交換器5へ入る。
室内熱交換器5で冷媒は室内に吹き出される空気で放熱
されて凝縮し、放熱による熱が室内に吹き出されて室内
を暖房する。室内熱交換器5を出た冷媒は、室内側減圧
装置6で減圧された後、第2除霜用バイパス回路22へ
流れ、第2除霜用電磁弁12を経て補助減圧装置13に
て減圧された冷媒は逆止弁14を通り、合流部のB点に
て室外熱交換器7からの冷媒と合流する。なお、エンジ
ン1の冷却水は、上述の暖房運転時と同様な循環を行
う。
The high-temperature and high-pressure refrigerant discharged from the other compressor 2b is supplied to the oil separator 3 as shown by a solid line arrow.
, And enters the indoor heat exchanger 5 via the four-way valve 4.
In the indoor heat exchanger 5, the refrigerant is radiated and condensed by the air blown into the room, and heat generated by the radiated heat is blown into the room to heat the room. The refrigerant that has exited the indoor heat exchanger 5 is decompressed by the indoor decompression device 6, flows to the second defrost bypass circuit 22, passes through the second defrost electromagnetic valve 12, and is decompressed by the auxiliary decompression device 13. The refrigerant thus cooled passes through the check valve 14 and merges with the refrigerant from the outdoor heat exchanger 7 at a point B at the junction. Note that the cooling water of the engine 1 circulates in the same manner as in the above-described heating operation.

【0022】制御回路30による上記除霜運転の制御を
図3のフローチャートによって説明する。フロストセン
サ33によって室外熱交換器7に着霜したか否かの判断
を行う(ステップS1 )。着霜している場合は、第1、
第2除霜用電磁弁11、12を開弁して第1、第2除霜
用バイパス回路21、22に冷媒を流し、且つ室外ファ
ン16を停止し、室内ファン15を最低回転数で作動さ
せ、さらにエンジン1を最高回転数で運転させるととも
に、複数の圧縮機2a、2bを同時作動させる除霜運転
を実行させる(ステップS2 )。
The control of the defrosting operation by the control circuit 30 will be described with reference to the flowchart of FIG. The frost sensor 33 determines whether or not the outdoor heat exchanger 7 is frosted (step S1). If it is frosted, first,
The second solenoid valves 11 and 12 for defrosting are opened to flow the refrigerant to the first and second bypass circuits 21 and 22 for defrosting, the outdoor fan 16 is stopped, and the indoor fan 15 is operated at the minimum rotation speed. Then, the engine 1 is operated at the maximum rotational speed, and a defrosting operation for simultaneously operating the plurality of compressors 2a and 2b is executed (step S2).

【0023】次いで、フロストセンサ33により、室外
熱交換器7の霜が溶けたか否かを判断し(ステップS3
)、溶けていないと判断した場合はステップS2 へ戻
って除霜運転を継続し、溶けたと判断した場合は通常の
暖房運転のステップS4 へ進む。なお、上記のステップ
S1 で着霜していないと判断した場合は、直接ステップ
S4 の暖房運転へ進むものである。
Next, it is determined by the frost sensor 33 whether or not the frost of the outdoor heat exchanger 7 has melted (step S3).
If it is determined that it has not melted, the flow returns to step S2 to continue the defrosting operation, and if it is determined that it has melted, the flow proceeds to step S4 of the normal heating operation. If it is determined in step S1 that no frost has formed, the operation proceeds directly to the heating operation in step S4.

【0024】<冷房運転>切替スイッチ32が冷房接点
Cに入れられた状態では、制御回路30はリレーR4 、
R5 を通電し、リレーR1 、R2 、R3 は通電しない。
これにより、リレー接点r4 、r5 が閉じ、リレー接点
r1 、r2 、r3 が開く。この結果、四方弁4が冷房側
に切替えられ、第1、第2除霜用電磁弁11、12が閉
じ、室内ファン15および室外ファン16が通常回転数
で作動する。
<Cooling operation> When the changeover switch 32 is set to the cooling contact C, the control circuit 30 operates the relay R4,
R5 is energized, and relays R1, R2, R3 are not energized.
As a result, the relay contacts r4 and r5 are closed, and the relay contacts r1, r2 and r3 are opened. As a result, the four-way valve 4 is switched to the cooling side, the first and second solenoid valves 11 and 12 for defrosting are closed, and the indoor fan 15 and the outdoor fan 16 operate at the normal rotation speed.

【0025】この冷房運転時の冷媒の流れを説明する
と、複数の圧縮機2a、2bから吐出された高温高圧の
冷媒はそれぞれ逆止弁B1 、B2 を通過して合流し、オ
イルセパレータ3、四方弁4、冷媒加熱器9を経て室外
熱交換器7へ入る。室外熱交換器7で冷媒は外気に放熱
して凝縮する。室外熱交換器7を出た冷媒は、室外側減
圧装置8と室内側減圧装置6により減圧されて、室内熱
交換器5に室内に吹き出される空気より吸熱して室内を
冷房する。室内熱交換器5内で吸熱して蒸発した冷媒
は、四方弁4を経てアキュムレータ10で気液分離され
た後、ガス冷媒が複数の圧縮機2a、2bに吸入され
る。
Explaining the flow of the refrigerant during the cooling operation, the high-temperature and high-pressure refrigerant discharged from the plurality of compressors 2a and 2b pass through the check valves B1 and B2, respectively, and join together. It enters the outdoor heat exchanger 7 via the valve 4 and the refrigerant heater 9. In the outdoor heat exchanger 7, the refrigerant radiates heat to outside air and condenses. The refrigerant that has exited the outdoor heat exchanger 7 is decompressed by the outdoor decompression device 8 and the indoor decompression device 6, absorbs heat from the air blown into the room by the indoor heat exchanger 5, and cools the room. The refrigerant that has absorbed and evaporated in the indoor heat exchanger 5 is vapor-liquid separated by the accumulator 10 through the four-way valve 4, and then the gas refrigerant is sucked into the plurality of compressors 2a and 2b.

【0026】一方、エンジン1の冷却水は、サーモスタ
ット17、冷媒加熱器9を経てエンジン1に戻るが、冷
媒加熱器9で熱交換が行われないために次第に冷却水温
が上昇し、サーモスタット17の設定温度以上になると
サーモスタット17が作動してラジエータ18へ冷却水
が流れ、ラジエータ18にて放熱を行ってエンジン1に
戻るサイクルになる。
On the other hand, the cooling water of the engine 1 returns to the engine 1 through the thermostat 17 and the refrigerant heater 9, but since the heat exchange is not performed in the refrigerant heater 9, the temperature of the cooling water gradually increases, and the temperature of the thermostat 17 is reduced. When the temperature becomes equal to or higher than the set temperature, the thermostat 17 operates and the cooling water flows to the radiator 18, and the radiator 18 radiates heat and returns to the engine 1 in a cycle.

【0027】上述の冷房、暖房、除霜の各運転における
四方弁4、第1、第2除霜用電磁弁11、12、室内フ
ァン15、室外ファン16の各作動をまとめると、次の
表1の如くである。
The operations of the four-way valve 4, the first and second defrosting solenoid valves 11, 12, the indoor fan 15, and the outdoor fan 16 in each of the cooling, heating, and defrosting operations described above are summarized in the following table. Like one.

【表1】 [Table 1]

【0028】〔実施例の効果〕本実施例のエンジン駆動
ヒートポンプでは、除霜運転時において、一方の圧縮機
2aから吐出された高温高圧のガス冷媒が、第1除霜用
バイパス回路21を経て直接室外熱交換器7へ流入し
て、室外熱交換器7に付着していた霜を短時間で溶かす
とともに、他方の圧縮機2bから吐出された高温高圧の
ガス冷媒が、直接室内熱交換器5へ流入して室内熱交換
器5で放熱するため、除霜時における連続暖房が効果的
に行われる。このため、除霜時でも室内吹出温度が高く
維持でき、室内使用者の快適感が高まる。
[Effects of the Embodiment] In the engine-driven heat pump of this embodiment, during the defrosting operation, the high-temperature and high-pressure gas refrigerant discharged from one compressor 2a passes through the first defrost bypass circuit 21. The refrigerant directly flows into the outdoor heat exchanger 7 and melts the frost adhering to the outdoor heat exchanger 7 in a short time, and the high-temperature and high-pressure gas refrigerant discharged from the other compressor 2b is directly cooled by the indoor heat exchanger. 5, the heat is radiated by the indoor heat exchanger 5, so that continuous heating at the time of defrosting is effectively performed. For this reason, the indoor blowing temperature can be maintained high even during defrosting, and the comfort of the indoor user is enhanced.

【0029】また、除霜運転時には、一方の圧縮機2a
による除霜回路と、他方の圧縮機2bによる暖房回路と
が別々に形成されるため、ビルの高層化等により、室内
熱交換器5側の配管長が長くなったり、あるいは高低差
が大きくなっても、室内熱交換器5側の配管抵抗の大小
に関係なく除霜運転と暖房運転とが同時に行われる。つ
まり、本実施例のエンジン駆動ヒートポンプは、連続暖
房除霜が実行可能で、且つ連続暖房除霜時において配管
抵抗等によって暖房効果が薄れる不具合がない。
During the defrosting operation, one of the compressors 2a
, And a heating circuit by the other compressor 2b are separately formed, so that the length of the piping on the indoor heat exchanger 5 side becomes longer or the height difference becomes larger due to the rise of buildings and the like. However, the defrosting operation and the heating operation are simultaneously performed regardless of the magnitude of the pipe resistance on the indoor heat exchanger 5 side. That is, the engine-driven heat pump according to the present embodiment can perform continuous heating defrost, and does not have a problem that the heating effect is weakened by pipe resistance or the like during continuous heating defrost.

【0030】〔変形例〕上記の実施例では、暖房運転中
に第1、第2除霜用電磁弁11、12を閉弁させる例を
示したが、暖房運転上に問題がなければ、第2除霜用電
磁弁12は開弁させても良い。また、上記の実施例の冷
媒加熱器9は、エンジン冷却水を熱源として用いる例を
示したが、エンジン1の駆動により直接、あるいは間接
的に発生する熱源(例えば、オルタネータの給電で発熱
するヒータ等)を用いても良い。
[Modification] In the above embodiment, an example was shown in which the first and second defrosting solenoid valves 11 and 12 were closed during the heating operation. 2 The defrosting electromagnetic valve 12 may be opened. Further, the refrigerant heater 9 of the above embodiment uses the engine cooling water as a heat source, but a heat source generated directly or indirectly by driving the engine 1 (for example, a heater that generates heat by power supply of an alternator). Etc.) may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】エンジン駆動ヒートポンプの構成を示す冷媒回
路図である(実施例)。
FIG. 1 is a refrigerant circuit diagram showing a configuration of an engine-driven heat pump (Example).

【図2】エンジン駆動ヒートポンプの電気回路図である
(実施例)。
FIG. 2 is an electric circuit diagram of an engine drive heat pump (Example).

【図3】除霜運転制御を示すフローチャートである(実
施例)。
FIG. 3 is a flowchart illustrating defrosting operation control (embodiment).

【図4】エンジン駆動ヒートポンプの構成を示す冷媒回
路図である(従来例)。
FIG. 4 is a refrigerant circuit diagram showing a configuration of an engine-driven heat pump (conventional example).

【符号の説明】[Explanation of symbols]

1 エンジン 2a 一方の圧縮機 2b 他方の圧縮機 4 四方弁(冷媒の流れ方向切替手段) 5 室内熱交換器 7 室外熱交換器 9 冷媒加熱器 11 第1除霜用電磁弁(第1開閉弁) 12 第2除霜用電磁弁(第2開閉弁) 15 室内ファン(室内熱交換器の送風ファン) 16 室外ファン(室外熱交換器の送風ファン) 21 第1除霜用バイパス回路 22 第2除霜用バイパス回路 DESCRIPTION OF SYMBOLS 1 Engine 2a One compressor 2b The other compressor 4 Four-way valve (refrigerant flow direction switching means) 5 Indoor heat exchanger 7 Outdoor heat exchanger 9 Refrigerant heater 11 First defrosting solenoid valve (First on-off valve) 12) Second electromagnetic valve for defrost (second on-off valve) 15 Indoor fan (Blower fan of indoor heat exchanger) 16 Outdoor fan (Blower fan of outdoor heat exchanger) 21 First defrost bypass circuit 22 Second Defrost bypass circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エンジンで駆動される複数の圧縮機からの
冷媒を室内熱交換器側および室外熱交換器側に切り替え
て流すことにより、暖房運転および冷房運転を行うエン
ジン駆動ヒートポンプにおいて、 前記複数の圧縮機のうちの一方の圧縮機から吐出された
冷媒を、前記室外熱交換器の暖房運転時の上流側に流す
第1除霜用バイパス回路と、 この第1除霜用バイパス回路を開閉する第1開閉弁と、 前記複数の圧縮機のうちの他方の圧縮機から吐出されて
前記室内熱交換器を経た冷媒を、前記室外熱交換器の暖
房運転時の下流側に流す第2除霜用バイパス回路と、 この第2除霜用バイパス回路を開閉する第2開閉弁と、 前記室外熱交換器の暖房運転時の下流側に設けられ、前
記室外熱交換器および前記第2除霜用バイパス回路を通
過した冷媒を加熱する冷媒加熱器とを備え、 除霜運転時に前記第1、第2開閉弁を開くことを特徴と
するエンジン駆動ヒートポンプ。
An engine-driven heat pump that performs a heating operation and a cooling operation by switching and flowing refrigerant from a plurality of compressors driven by an engine to an indoor heat exchanger side and an outdoor heat exchanger side. A first defrost bypass circuit for flowing the refrigerant discharged from one of the compressors to the upstream side during the heating operation of the outdoor heat exchanger; and opening and closing the first defrost bypass circuit. A first on-off valve, and a second filter that flows the refrigerant discharged from the other one of the plurality of compressors and passed through the indoor heat exchanger to a downstream side during the heating operation of the outdoor heat exchanger. A frost bypass circuit; a second on-off valve for opening and closing the second defrost bypass circuit; and a downstream side provided during a heating operation of the outdoor heat exchanger, the outdoor heat exchanger and the second defrost. Passed through the bypass circuit for And a refrigerant heater for heating, the first during the defrosting operation, engine driven heat pump, characterized in that opening the second on-off valve.
【請求項2】請求項1のエンジン駆動ヒートポンプにお
いて、 除霜運転時に前記室内熱交換器の送風ファンを低回転数
で作動させ、前記室外熱交換器の送風ファンを停止さ
せ、前記複数の圧縮機を作動させるとともに、前記エン
ジンを高回転数で運転させることを特徴とするエンジン
駆動ヒートポンプ。
2. The engine-driven heat pump according to claim 1, wherein a blowing fan of said indoor heat exchanger is operated at a low rotation speed during a defrosting operation, and a blowing fan of said outdoor heat exchanger is stopped. An engine-driven heat pump characterized by operating the engine and operating the engine at a high rotational speed.
JP10035233A 1998-02-17 1998-02-17 Engine driven heat pump Pending JPH11230646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10035233A JPH11230646A (en) 1998-02-17 1998-02-17 Engine driven heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10035233A JPH11230646A (en) 1998-02-17 1998-02-17 Engine driven heat pump

Publications (1)

Publication Number Publication Date
JPH11230646A true JPH11230646A (en) 1999-08-27

Family

ID=12436134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10035233A Pending JPH11230646A (en) 1998-02-17 1998-02-17 Engine driven heat pump

Country Status (1)

Country Link
JP (1) JPH11230646A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535299A (en) * 2000-05-30 2003-11-25 アイジーシー ポリコールド システムズ インコーポレイテッド Cryogenic refrigeration system with controlled cooling and heating rates and long-term heating function
JP2005274039A (en) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd Air-conditioner with defrosting function
WO2005103575A1 (en) * 2004-04-23 2005-11-03 Dong-Soon Lee Heat exchanger raising the cooling and heating capacity
JP2006118726A (en) * 2004-10-19 2006-05-11 Denso Corp Ejector cycle
JP2007051838A (en) * 2005-08-19 2007-03-01 Matsushita Electric Ind Co Ltd Air conditioner
JP2008267676A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device and air conditioner including it
EP2047184A1 (en) * 2006-08-03 2009-04-15 LG Electronics, Inc. Air conditioner and controlling method thereof
JP2009243802A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Heat pump type air conditioner
JP2011237052A (en) * 2010-05-06 2011-11-24 Nippon Soken Inc Heat pump cycle
JP2012137209A (en) * 2010-12-24 2012-07-19 Aisin Seiki Co Ltd Engine-driven air conditioner
CN104729161A (en) * 2013-12-19 2015-06-24 珠海格力电器股份有限公司 Air conditioner and control method thereof
CN106440098A (en) * 2016-09-07 2017-02-22 海信(山东)空调有限公司 Air-conditioner outdoor unit, defrosting control method and device of air-conditioner outdoor unit and air conditioner
WO2018079517A1 (en) * 2016-10-31 2018-05-03 パナソニックIpマネジメント株式会社 Air conditioning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229871A (en) * 1985-07-31 1987-02-07 ヤンマーディーゼル株式会社 Defroster for heat-engine driving air conditioner
JPH06265242A (en) * 1993-03-11 1994-09-20 Nippondenso Co Ltd Engine driven heat pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229871A (en) * 1985-07-31 1987-02-07 ヤンマーディーゼル株式会社 Defroster for heat-engine driving air conditioner
JPH06265242A (en) * 1993-03-11 1994-09-20 Nippondenso Co Ltd Engine driven heat pump

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535299A (en) * 2000-05-30 2003-11-25 アイジーシー ポリコールド システムズ インコーポレイテッド Cryogenic refrigeration system with controlled cooling and heating rates and long-term heating function
JP2005274039A (en) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd Air-conditioner with defrosting function
WO2005103575A1 (en) * 2004-04-23 2005-11-03 Dong-Soon Lee Heat exchanger raising the cooling and heating capacity
JP2006118726A (en) * 2004-10-19 2006-05-11 Denso Corp Ejector cycle
JP4687326B2 (en) * 2005-08-19 2011-05-25 パナソニック株式会社 Air conditioner
JP2007051838A (en) * 2005-08-19 2007-03-01 Matsushita Electric Ind Co Ltd Air conditioner
EP2047184A1 (en) * 2006-08-03 2009-04-15 LG Electronics, Inc. Air conditioner and controlling method thereof
EP2047184A4 (en) * 2006-08-03 2011-06-22 Lg Electronics Inc Air conditioner and controlling method thereof
JP2008267676A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device and air conditioner including it
JP2009243802A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Heat pump type air conditioner
JP2011237052A (en) * 2010-05-06 2011-11-24 Nippon Soken Inc Heat pump cycle
JP2012137209A (en) * 2010-12-24 2012-07-19 Aisin Seiki Co Ltd Engine-driven air conditioner
CN104729161A (en) * 2013-12-19 2015-06-24 珠海格力电器股份有限公司 Air conditioner and control method thereof
CN106440098A (en) * 2016-09-07 2017-02-22 海信(山东)空调有限公司 Air-conditioner outdoor unit, defrosting control method and device of air-conditioner outdoor unit and air conditioner
WO2018079517A1 (en) * 2016-10-31 2018-05-03 パナソニックIpマネジメント株式会社 Air conditioning apparatus
GB2570817A (en) * 2016-10-31 2019-08-07 Panasonic Ip Man Co Ltd Air conditioning apparatus
GB2570817B (en) * 2016-10-31 2021-03-24 Panasonic Ip Man Co Ltd Air conditioning apparatus

Similar Documents

Publication Publication Date Title
JP3858276B2 (en) Refrigeration equipment
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP2002107014A (en) Air conditioner
JPH05264133A (en) Air conditioner
JP2007051805A (en) Air conditioner
JPH11230646A (en) Engine driven heat pump
JP3410859B2 (en) Air conditioner
JP3798418B2 (en) air conditioner
JPH0527018B2 (en)
JPH06265242A (en) Engine driven heat pump
JPH0478613A (en) Heat pump type air conditioner
JP2002098451A (en) Heat pump type air conditioner
JP2004347272A (en) Refrigerating plant
JP2005016881A (en) Air conditioning system
JP2004053207A (en) Air conditioner and frost preventing method for indoor heat exchanger of air conditioner
JP2001201217A (en) Air conditioner
JPH09138024A (en) Air conditioner
KR20140063930A (en) An engine-driven heat pump system
JP2000213835A (en) Freezer
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JP3448897B2 (en) Heat pump type heating and cooling water heater
JP2009192197A (en) Heat pump cycle system
JP2004205081A (en) Air-conditioner
JP2007051795A (en) Air conditioner
JP2002061994A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206