JP2006118726A - Ejector cycle - Google Patents

Ejector cycle Download PDF

Info

Publication number
JP2006118726A
JP2006118726A JP2004304002A JP2004304002A JP2006118726A JP 2006118726 A JP2006118726 A JP 2006118726A JP 2004304002 A JP2004304002 A JP 2004304002A JP 2004304002 A JP2004304002 A JP 2004304002A JP 2006118726 A JP2006118726 A JP 2006118726A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
ejector
compressor
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004304002A
Other languages
Japanese (ja)
Other versions
JP4270098B2 (en
Inventor
Makoto Ikegami
真 池上
Hirotsugu Takeuchi
裕嗣 武内
Haruyuki Nishijima
春幸 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004304002A priority Critical patent/JP4270098B2/en
Publication of JP2006118726A publication Critical patent/JP2006118726A/en
Application granted granted Critical
Publication of JP4270098B2 publication Critical patent/JP4270098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily execute a defrosting operation of an evaporator mounted at the refrigerant flowing-out side of an ejector in an ejector cycle comprising a plurality of the evaporators. <P>SOLUTION: The first evaporator 13 is mounted at the refrigerant flowing-out side of the ejector 12, the second evaporator 17 is mounted on a passage 15, 150 for a refrigerant sucked to a refrigerant suction opening 12c of the ejector 12, and a flow rate adjusting mechanism of the ejector 12 is controlled to a refrigerant flow rate state of more than a specific value in the defrosting operation of the first evaporator 13, and thus a cycle operation situation is controlled to temporarily increase a refrigerant evaporation temperature of the first evaporator 13 to a temperature zone higher than 0°C, while keeping the operating state of a compressor 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒減圧手段および冷媒循環手段をなすエジェクタを有するエジェクタサイクルに関するものであり、例えば、車両用冷凍冷蔵装置の冷凍サイクルに適用して有効である。   The present invention relates to an ejector cycle having an ejector that forms refrigerant decompression means and refrigerant circulation means, and is effective when applied to, for example, a refrigeration cycle of a vehicle refrigeration apparatus.

本出願人は、特許文献1において冷媒減圧手段および冷媒循環手段をなすエジェクタを使用した蒸気圧縮式冷凍サイクル(エジェクタサイクル)を提案している。この特許文献1では、エジェクタと、エジェクタ下流側に配置される気液分離器との間に第1蒸発器を配置するとともに、気液分離器の液相冷媒出口側とエジェクタの冷媒吸引口側との間に第2蒸発器を設けるものが実施形態の1つとして記載されている。
特許第3322263号公報
The present applicant has proposed a vapor compression refrigeration cycle (ejector cycle) using an ejector that forms refrigerant decompression means and refrigerant circulation means in Patent Document 1. In this patent document 1, while arrange | positioning a 1st evaporator between an ejector and the gas-liquid separator arrange | positioned downstream of an ejector, the liquid-phase refrigerant | coolant exit side of a gas-liquid separator, and the refrigerant | coolant suction port side of an ejector One of the embodiments is described as providing a second evaporator between the two.
Japanese Patent No. 3322263

ところで、上記特許文献1において、第1蒸発器の冷媒蒸発温度が0℃より低い条件にてサイクルが運転されることがある。従って、第1蒸発器のフロスト(霜付き)による冷却性能の低下が課題となる。しかし、上記特許文献1では除霜手段について提案されていない。   By the way, in the said patent document 1, a cycle may be drive | operated on the conditions where the refrigerant | coolant evaporation temperature of a 1st evaporator is lower than 0 degreeC. Therefore, the cooling performance decline by the frost (with frost) of a 1st evaporator becomes a subject. However, Patent Document 1 does not propose defrosting means.

また、冷凍車等では、荷物を目的地に運搬して降ろした後は、庫内が空になるので、冷凍サイクルの運転を停止する。すると、庫内壁面の霜が解けて庫内空気の湿度が上昇し、庫内壁面に結露が生じて、庫内壁面が水浸しになる。そこで、庫内壁面の温度を庫内空気の露点温度以上に加温して、庫内壁面での結露を防止する加温運転が必要となるが、この加温運転についても上記特許文献1には何ら提案されていない。   Further, in a refrigerator car or the like, after the luggage is transported to the destination and lowered, the interior of the warehouse becomes empty, so the operation of the refrigeration cycle is stopped. Then, the frost on the inner wall surface is melted, the humidity of the inner air temperature is increased, condensation occurs on the inner wall surface, and the inner wall surface is submerged. Therefore, it is necessary to perform a heating operation in which the temperature of the internal wall surface is heated to a temperature equal to or higher than the dew point temperature of the internal air to prevent dew condensation on the internal wall surface. Has not been proposed at all.

本発明は、上記点に鑑み、複数の蒸発器を備える、エジェクタを使用した蒸気圧縮式冷凍サイクルにおいて、エジェクタの冷媒流出側に配置される蒸発器の除霜運転を簡単に実行できるようにすることを目的とする。   In view of the above points, the present invention makes it possible to easily perform a defrosting operation of an evaporator disposed on the refrigerant outflow side of an ejector in a vapor compression refrigeration cycle using an ejector, which includes a plurality of evaporators. For the purpose.

本発明は、複数の蒸発器を備える、エジェクタを使用した蒸気圧縮式冷凍サイクルにおいて、エジェクタの冷媒流出側に配置される蒸発器の加温運転を簡単に実行できるようにすることを目的とする。   An object of the present invention is to make it possible to easily perform a heating operation of an evaporator disposed on a refrigerant outflow side of an ejector in a vapor compression refrigeration cycle using an ejector, which includes a plurality of evaporators. .

上記目的を達成するため、請求項1に記載の発明では、冷媒を吸入し圧縮する圧縮機(10)と、
前記圧縮機(12)から吐出された高圧冷媒の放熱を行う放熱器(11)と、
前記放熱器(11)下流側の冷媒を減圧膨張させるノズル部(12a)、前記ノズル部(12a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(12c)、および前記高い速度の冷媒流と前記冷媒吸引口(12c)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(12b)を有するエジェクタ(12)と、
前記エジェクタ(12)の冷媒流出側に配置され、冷媒を蒸発させて冷却能力を発揮するとともに、冷媒流出側が前記圧縮機(10)の吸入側に接続される第1蒸発器(13)と、
前記冷媒吸引口(12c)に吸引される冷媒の通路(15、150)に配置され、冷媒を蒸発させて冷却能力を発揮する第2蒸発器(17)とを備え、
前記第1蒸発器(13)の除霜運転時に、前記圧縮機(10)の運転状態を維持したまま、前記第1蒸発器(13)の冷媒蒸発温度が0℃よりも高い温度域に一時的に上昇するようにサイクル運転状況を制御することを特徴としている。
In order to achieve the above object, in the invention according to claim 1, a compressor (10) for sucking and compressing refrigerant,
A radiator (11) that radiates heat of the high-pressure refrigerant discharged from the compressor (12);
A nozzle part (12a) for decompressing and expanding the refrigerant on the downstream side of the radiator (11), a refrigerant suction port (12c) through which the refrigerant is sucked in by a high-speed refrigerant flow injected from the nozzle part (12a), and An ejector (12) having a booster (12b) for converting the velocity energy of the refrigerant flow obtained by mixing the high-speed refrigerant flow and the refrigerant sucked from the refrigerant suction port (12c) into pressure energy;
A first evaporator (13) disposed on the refrigerant outflow side of the ejector (12), evaporating the refrigerant to exhibit cooling capacity, and the refrigerant outflow side connected to the suction side of the compressor (10);
A second evaporator (17) disposed in the refrigerant passages (15, 150) sucked into the refrigerant suction port (12c) and evaporating the refrigerant to exhibit cooling capacity;
During the defrosting operation of the first evaporator (13), while maintaining the operation state of the compressor (10), the refrigerant evaporation temperature of the first evaporator (13) is temporarily in a temperature range higher than 0 ° C. It is characterized by controlling the cycle operation state so as to rise.

これによると、第1蒸発器(13)はエジェクタ(12)の冷媒流出側(駆動流側)に配置され、第2蒸発器(17)は吸引冷媒側に配置されているから、第1蒸発器(13)の冷媒蒸発圧力よりも第2蒸発器(17)の冷媒蒸発圧力が低くくなって、第1蒸発器(13)の冷却温度よりも第2蒸発器(17)の冷却温度の方を低くできる。   According to this, the first evaporator (13) is arranged on the refrigerant outflow side (drive flow side) of the ejector (12), and the second evaporator (17) is arranged on the suction refrigerant side, so that the first evaporation The refrigerant evaporation pressure of the second evaporator (17) is lower than the refrigerant evaporation pressure of the evaporator (13), and the cooling temperature of the second evaporator (17) is lower than the cooling temperature of the first evaporator (13). Can be lower.

このような特徴を有するサイクルにおいて、第1蒸発器(13)の除霜運転時に、圧縮機(10)の運転状態を維持したまま、第1蒸発器(13)の冷媒蒸発温度が0℃よりも高い温度域に一時的に上昇するようにサイクル運転状況を制御するから、第1蒸発器(13)自身の冷媒蒸発温度の上昇により除霜を行うことができる。   In the cycle having such characteristics, during the defrosting operation of the first evaporator (13), the refrigerant evaporation temperature of the first evaporator (13) is from 0 ° C. while maintaining the operation state of the compressor (10). Since the cycle operation state is controlled to temporarily rise to a higher temperature range, defrosting can be performed by increasing the refrigerant evaporation temperature of the first evaporator (13) itself.

従って、除霜運転のために圧縮機(10)を一時的に停止したり、あるいは高圧側の高温冷媒を第1蒸発器(13)に導入する必要がない。   Therefore, it is not necessary to temporarily stop the compressor (10) for the defrosting operation or to introduce the high-pressure side high-temperature refrigerant into the first evaporator (13).

このため、第1蒸発器(13)の除霜運転を実行すると同時に、第2蒸発器(17)では冷却機能を続行できる。   For this reason, a cooling function can be continued in the 2nd evaporator (17) simultaneously with performing a defrosting operation of the 1st evaporator (13).

特に、請求項2に記載の発明のように、請求項1に記載のエジェクタサイクルにおいて、第2蒸発器(17)の入口部に可変絞り機構(16)を設け、除霜運転時には、可変絞り機構(16)の絞り開度を絞ることにより第2蒸発器(17)の必要冷媒蒸発温度を維持するようにすれば、除霜運転の実行後も、第2蒸発器(17)の冷却機能を目標レベルに維持できる。   In particular, as in the invention described in claim 2, in the ejector cycle described in claim 1, the variable throttle mechanism (16) is provided at the inlet of the second evaporator (17), and the variable throttle is operated during the defrosting operation. If the required refrigerant evaporation temperature of the second evaporator (17) is maintained by reducing the throttle opening of the mechanism (16), the cooling function of the second evaporator (17) even after the defrosting operation is performed. Can be maintained at the target level.

請求項3に記載の発明では、冷媒を吸入し圧縮する圧縮機(10)と、
前記圧縮機(12)から吐出された高圧冷媒の放熱を行う放熱器(11)と、
前記放熱器(11)下流側の冷媒を減圧膨張させるノズル部(12a)、前記ノズル部(12a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(12c)、および前記高い速度の冷媒流と前記冷媒吸引口(12c)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(12b)を有するエジェクタ(12)と、
前記エジェクタ(12)の冷媒流出側に配置され、冷媒を蒸発させて冷却能力を発揮するとともに、冷媒流出側が前記圧縮機(10)の吸入側に接続される第1蒸発器(13)と、
前記冷媒吸引口(12c)に吸引される冷媒の通路(15、150)に配置され、冷媒を蒸発させて冷却能力を発揮する第2蒸発器(17)とを備え、
前記第1蒸発器(13)の加温運転を行うときは、前記圧縮機(10)を起動するとともに、前記第1蒸発器(13)の冷媒蒸発温度が前記第1蒸発器(13)周辺の空気の露点温度以上に上昇するようにサイクル運転状況を制御することを特徴としている。
In the invention according to claim 3, a compressor (10) for sucking and compressing refrigerant,
A radiator (11) that radiates heat of the high-pressure refrigerant discharged from the compressor (12);
A nozzle part (12a) for decompressing and expanding the refrigerant on the downstream side of the radiator (11), a refrigerant suction port (12c) through which the refrigerant is sucked in by a high-speed refrigerant flow injected from the nozzle part (12a), and An ejector (12) having a booster (12b) for converting the velocity energy of the refrigerant flow obtained by mixing the high-speed refrigerant flow and the refrigerant sucked from the refrigerant suction port (12c) into pressure energy;
A first evaporator (13) disposed on the refrigerant outflow side of the ejector (12), evaporating the refrigerant to exhibit cooling capacity, and the refrigerant outflow side connected to the suction side of the compressor (10);
A second evaporator (17) disposed in the refrigerant passages (15, 150) sucked into the refrigerant suction port (12c) and evaporating the refrigerant to exhibit cooling capacity;
When the heating operation of the first evaporator (13) is performed, the compressor (10) is started, and the refrigerant evaporation temperature of the first evaporator (13) is around the first evaporator (13). It is characterized by controlling the cycle operation state so as to rise above the dew point temperature of the air.

請求項3に記載の発明は、請求項1の除霜運転を加温運転に置換したものに相当し、第1蒸発器(13)自身の冷媒蒸発温度の上昇により第1蒸発器(13)の加温運転を良好に実行できる。   The invention according to claim 3 corresponds to the one in which the defrosting operation of claim 1 is replaced with the heating operation, and the first evaporator (13) is caused by an increase in the refrigerant evaporation temperature of the first evaporator (13) itself. The heating operation can be performed satisfactorily.

請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載のエジェクタサイクルにおいて、前記エジェクタ(12)には流量調整手段(12d)が備えられており、前記第1蒸発器(13)の除霜運転時または加温運転時には前記流量調整手段(12d)を所定値以上の冷媒流量状態に制御することを特徴とする。   According to a fourth aspect of the present invention, in the ejector cycle according to any one of the first to third aspects, the ejector (12) includes a flow rate adjusting means (12d), and the first evaporator During the defrosting operation or heating operation of (13), the flow rate adjusting means (12d) is controlled to a refrigerant flow rate state equal to or greater than a predetermined value.

これによると、エジェクタ(12)に備えた流量調整手段(12d)の制御により第1蒸発器(13)の冷媒蒸発温度を高めて、除霜運転または加温運転を実行できる。   According to this, the refrigerant | coolant evaporation temperature of a 1st evaporator (13) can be raised by control of the flow volume adjustment means (12d) with which the ejector (12) was equipped, and a defrost operation or a heating operation can be performed.

請求項5に記載の発明では、請求項1ないし3のいずれか1つに記載のエジェクタサイクルにおいて、前記第1蒸発器(13)の除霜時または加温運転時には前記圧縮機(12)の冷媒吐出能力を所定値以上に制御することを特徴とする。   According to a fifth aspect of the present invention, in the ejector cycle according to any one of the first to third aspects, the compressor (12) of the compressor (12) is at the time of defrosting or heating operation of the first evaporator (13). The refrigerant discharge capacity is controlled to a predetermined value or more.

これによると、圧縮機(12)の能力制御により第1蒸発器(13)の冷媒蒸発温度を高めて、除霜運転または加温運転を実行できる。   According to this, the refrigerant | coolant evaporation temperature of a 1st evaporator (13) can be raised by capability control of a compressor (12), and a defrost operation or a heating operation can be performed.

請求項6に記載の発明では、請求項1ないし3のいずれか1つに記載のエジェクタサイクルにおいて、前記第1蒸発器(13)の除霜時または加温運転時には前記放熱器(11)の冷却風量を所定値以下に制御することを特徴とする。   According to a sixth aspect of the present invention, in the ejector cycle according to any one of the first to third aspects, the radiator (11) of the first evaporator (13) is defrosted or heated during a defrosting operation. The cooling air volume is controlled to a predetermined value or less.

これによると、放熱器(11)の冷却風量制御により第1蒸発器(13)の冷媒蒸発温度を高めて、除霜運転または加温運転を実行できる。   According to this, the refrigerant | coolant evaporation temperature of a 1st evaporator (13) can be raised by cooling air volume control of a heat radiator (11), and a defrost operation or a heating operation can be performed.

請求項7に記載の発明では、請求項1ないし3のいずれか1つに記載のエジェクタサイクルにおいて、前記第1蒸発器(13)の除霜時または加温運転時には、前記第1蒸発器(13)の風量を所定値以上に制御することを特徴とする。   According to a seventh aspect of the present invention, in the ejector cycle according to any one of the first to third aspects, when the first evaporator (13) is defrosted or heated, the first evaporator ( The air volume of 13) is controlled to a predetermined value or more.

これによると、第1蒸発器(13)の風量制御により第1蒸発器(13)の冷媒蒸発温度を高めて、除霜運転または加温運転を実行できる。   According to this, the refrigerant | coolant evaporation temperature of a 1st evaporator (13) can be raised by the air volume control of a 1st evaporator (13), and a defrost operation or a heating operation can be performed.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は、本発明の第1実施形態によるエジェクタサイクルを示しており、本実施形態は車両用冷凍冷蔵装置の冷凍サイクルに適用した例を示す。圧縮機10は冷媒を吸入、圧縮するもので、この圧縮機10を図示しない車両走行用エンジンによりベルト等を介して回転駆動するようになっている。
(First embodiment)
FIG. 1 shows an ejector cycle according to a first embodiment of the present invention, and this embodiment shows an example applied to a refrigeration cycle of a vehicular refrigeration apparatus. The compressor 10 sucks and compresses the refrigerant, and the compressor 10 is rotated by a vehicle travel engine (not shown) via a belt or the like.

本実施形態では圧縮機10として固定容量型圧縮機を用いており、この固定容量型圧縮機10の作動のオンオフ制御を電磁クラッチ10aにより行って、圧縮機オンオフ作動の比率を制御することにより冷媒吐出能力を制御するようになっている。なお、圧縮機10として吐出容量を変化できる可変容量型圧縮機を使用して、吐出容量の制御により冷媒吐出能力を制御するようにしてもよい。   In the present embodiment, a fixed capacity type compressor is used as the compressor 10. The on / off control of the operation of the fixed capacity type compressor 10 is performed by the electromagnetic clutch 10 a, and the refrigerant is controlled by controlling the ratio of the compressor on / off operation. The discharge capacity is controlled. Note that a variable displacement compressor capable of changing the discharge capacity may be used as the compressor 10, and the refrigerant discharge capacity may be controlled by controlling the discharge capacity.

圧縮機10の冷媒流れ下流側には放熱器11が配置されている。放熱器11は圧縮機10から吐出された高圧冷媒と冷却ファン11aにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。冷却ファン11aはモータにより回転数制御(風量制御)が可能な電動式冷却ファンである。   A radiator 11 is disposed on the downstream side of the refrigerant flow of the compressor 10. The radiator 11 cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 10 and the outside air (air outside the passenger compartment) blown by the cooling fan 11a. The cooling fan 11a is an electric cooling fan capable of rotating speed control (air flow control) by a motor.

放熱器11の冷媒流れ下流側部位にはエジェクタ12が配置されている。このエジェクタ12は流体を減圧する減圧手段であるとともに、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプである(JIS Z 8126 番号2.1.2.3等参照)。   An ejector 12 is disposed in the refrigerant flow downstream side portion of the radiator 11. The ejector 12 is a pressure reducing means for reducing the pressure of the fluid and is a momentum transporting pump that transports the fluid by the entrainment action of the working fluid ejected at a high speed (see JIS Z 8126 number 2.1.2.3).

エジェクタ12には、放熱器11から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部12aと、ノズル部12aの冷媒噴出口と同一空間に配置され、後述する第2蒸発器17からの気相冷媒を吸引する冷媒吸引口12cが備えられている。   The ejector 12 is arranged in the same space as the nozzle portion 12a for reducing the passage area of the high-pressure refrigerant flowing from the radiator 11 to be isentropically decompressed and expanded, and the refrigerant outlet of the nozzle portion 12a. A refrigerant suction port 12c for sucking a gas-phase refrigerant from the second evaporator 17 described later is provided.

さらに、ノズル部12aおよび冷媒吸引口12cの冷媒流れ下流側部位には、昇圧部をなすディフューザ部12bが配置されている。このディフューザ部12bは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。   Further, a diffuser portion 12b forming a pressure increasing portion is disposed at the downstream side of the refrigerant flow of the nozzle portion 12a and the refrigerant suction port 12c. The diffuser portion 12b is formed in a shape that gradually increases the refrigerant passage area, and acts to decelerate the refrigerant flow to increase the refrigerant pressure, that is, to convert the velocity energy of the refrigerant into pressure energy.

更に、エジェクタ12のノズル部12aの入口部には流量調整機構12dが設けてある。この流量調整機構12dはノズル部12aの絞り通路面積を変化させて冷媒流量を調整する可変絞り機構であって、具体的にはエジェクタ12の軸方向(ノズル部12aの冷媒流れ方向)に移動可能なニードル弁12eと、このニードル弁12eの軸方向位置を制御するアクチュエータ12fとからなる。   Furthermore, a flow rate adjusting mechanism 12d is provided at the inlet of the nozzle 12a of the ejector 12. This flow rate adjusting mechanism 12d is a variable throttle mechanism that adjusts the refrigerant flow rate by changing the throttle passage area of the nozzle portion 12a, and is specifically movable in the axial direction of the ejector 12 (the refrigerant flow direction of the nozzle portion 12a). A needle valve 12e and an actuator 12f for controlling the axial position of the needle valve 12e.

ニードル弁12eの先端部はテーパ状に形成され、このテーパ状先端部の位置制御によりノズル部12aの絞り通路面積を変化させるようになっている。アクチュエータ12fは例えばステッピングモータから構成され、ステッピングモータのロータ部の回転運動をねじ機構等によりエジェクタ12の軸方向の変位に変換してニードル弁12eの軸方向位置を制御する。   The tip of the needle valve 12e is formed in a tapered shape, and the throttle passage area of the nozzle portion 12a is changed by controlling the position of the tapered tip. The actuator 12f is composed of, for example, a stepping motor, and controls the axial position of the needle valve 12e by converting the rotational movement of the rotor portion of the stepping motor into the axial displacement of the ejector 12 by a screw mechanism or the like.

エジェクタ12のディフューザ部12bの冷媒流出側は第1蒸発器13に接続される。この第1蒸発器13の冷媒流出側は気液分離器14に接続される。この気液分離器14はタンク形状からなり、第1蒸発器13から流出した冷媒の気液を密度差により分離して、気液分離器14のタンク形状内部の上方側に気相冷媒が溜まり、下方側に液相冷媒が溜まる。   The refrigerant outflow side of the diffuser portion 12 b of the ejector 12 is connected to the first evaporator 13. The refrigerant outflow side of the first evaporator 13 is connected to the gas-liquid separator 14. The gas-liquid separator 14 has a tank shape, and the gas-liquid refrigerant flowing out of the first evaporator 13 is separated by density difference, so that the gas-phase refrigerant is accumulated on the upper side of the gas-liquid separator 14 inside the tank shape. The liquid refrigerant accumulates on the lower side.

そこで、気液分離器14のタンク形状の上方部に気相冷媒の出口14aを設けて圧縮機10の吸入側に接続している。一方、気液分離器14のタンク形状の下方部に液相冷媒の出口14bを設けて、この液相冷媒の出口14bとエジェクタ12の冷媒吸引口12cとの間を分岐通路15により結合している。   Therefore, a gas-phase refrigerant outlet 14 a is provided in the upper part of the tank shape of the gas-liquid separator 14 and connected to the suction side of the compressor 10. On the other hand, a liquid-phase refrigerant outlet 14b is provided at the lower part of the tank shape of the gas-liquid separator 14, and the liquid-phase refrigerant outlet 14b and the refrigerant suction port 12c of the ejector 12 are connected by a branch passage 15. Yes.

この分岐通路15には絞り機構16が設けられ、この絞り機構16の冷媒流出側に第2蒸発器17が設けられている。ここで、絞り機構16は気液分離器14からの液相冷媒を減圧して第2蒸発器17での冷媒蒸発圧力を調節するものである。この絞り機構16は、具体的には、キャピラリチューブやオリフィス等からなる固定絞り、あるいは絞り開度を調節可能な可変絞りのいずれで構成してもよい。   A throttle mechanism 16 is provided in the branch passage 15, and a second evaporator 17 is provided on the refrigerant outflow side of the throttle mechanism 16. Here, the throttle mechanism 16 adjusts the refrigerant evaporation pressure in the second evaporator 17 by reducing the pressure of the liquid-phase refrigerant from the gas-liquid separator 14. Specifically, the throttle mechanism 16 may be configured by either a fixed throttle formed of a capillary tube, an orifice, or the like, or a variable throttle that can adjust the throttle opening.

ここで、絞り機構16を可変絞りで構成する場合は第2蒸発器17での冷媒蒸発圧力や冷媒蒸発温度、あるいは第2蒸発器17出口での冷媒過熱度を可変絞りの絞り開度の調節により調節することが好ましい。   Here, when the throttle mechanism 16 is configured with a variable throttle, the refrigerant evaporation pressure and refrigerant evaporation temperature in the second evaporator 17 or the degree of refrigerant superheat at the outlet of the second evaporator 17 is adjusted. It is preferable to adjust by.

エジェクタ12の冷媒流出側に位置する第1蒸発器13の冷媒蒸発圧力(冷媒蒸発温度)はディフューザ部12bにて昇圧した後の圧力であり、これに対し、第2蒸発器17はエジェクタ12の冷媒吸引口12cの上流側に位置しているので、第2蒸発器17の冷媒蒸発圧力(冷媒蒸発温度)は第1蒸発器13よりも低くなる。   The refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 13 located on the refrigerant outflow side of the ejector 12 is the pressure after the pressure is increased by the diffuser portion 12b. On the other hand, the second evaporator 17 Since it is located upstream of the refrigerant suction port 12 c, the refrigerant evaporation pressure (refrigerant evaporation temperature) of the second evaporator 17 is lower than that of the first evaporator 13.

そこで、本実施形態では、車両用冷凍冷蔵装置における冷蔵庫の冷却手段として第1蒸発器13を用い、車両用冷凍冷蔵装置における冷凍庫の冷却手段として第2蒸発器17を用いている。   Therefore, in this embodiment, the first evaporator 13 is used as the cooling means for the refrigerator in the vehicle refrigeration apparatus, and the second evaporator 17 is used as the cooling means for the freezer in the vehicle refrigeration apparatus.

第1蒸発器13および第2蒸発器17には、それぞれ第1、第2送風機18、19により庫内空気が送風されるようになっている。この第1、第2送風機18、19はモータ回転数制御により風量が制御可能な電動送風機である。   The first evaporator 13 and the second evaporator 17 are supplied with air inside the cabinet by the first and second blowers 18 and 19, respectively. The first and second blowers 18 and 19 are electric blowers capable of controlling the air volume by controlling the motor rotation speed.

次に、本実施形態の電気制御部の概要を説明すると、電気制御装置(以下ECUと略称)20はマイクロコンピュータおよびその周辺回路等により構成されるものである。圧縮機10の電磁クラッチ10a、放熱器11の電動式冷却ファン11a、エジェクタ12の流量調整機構12dのアクチュエータ12f、および第1、第2送風機18、19等の作動をECU20の制御出力により制御するようになっている。   Next, the outline of the electric control unit of the present embodiment will be described. The electric control device (hereinafter abbreviated as ECU) 20 is composed of a microcomputer and its peripheral circuits. The operation of the electromagnetic clutch 10a of the compressor 10, the electric cooling fan 11a of the radiator 11, the actuator 12f of the flow rate adjusting mechanism 12d of the ejector 12, the first and second blowers 18, 19 and the like is controlled by the control output of the ECU 20. It is like that.

第1蒸発器13近傍の所定位置には温度センサ21が配置され、この温度センサ21により第2蒸発器19近傍の空気温度を検出する。この温度センサ21の検出信号はECU20に入力される。   A temperature sensor 21 is arranged at a predetermined position near the first evaporator 13, and the temperature sensor 21 detects the air temperature near the second evaporator 19. The detection signal of the temperature sensor 21 is input to the ECU 20.

次に、上記構成において本実施形態の作動を説明する。圧縮機10を車両エンジンにより駆動すると、圧縮機10は気液分離器14内の気相冷媒を吸入して圧縮し、吐出する。この吐出冷媒(高温高圧状態の冷媒)は放熱器11に流入して外気により冷却され凝縮する。放熱器11から流出した液相冷媒は、エジェクタ12に流入しノズル部12aで減圧され、気液2相状態となる。   Next, the operation of this embodiment in the above configuration will be described. When the compressor 10 is driven by the vehicle engine, the compressor 10 sucks and compresses the gas-phase refrigerant in the gas-liquid separator 14 and discharges it. The discharged refrigerant (refrigerant in a high temperature and high pressure state) flows into the radiator 11 and is cooled and condensed by the outside air. The liquid-phase refrigerant that has flowed out of the radiator 11 flows into the ejector 12 and is depressurized by the nozzle portion 12a, so that a gas-liquid two-phase state is obtained.

このノズル部12aで高圧冷媒の圧力エネルギーが速度エネルギーに変換され、冷媒は高速度となってノズル噴出口から噴出する。この際に生じるノズル噴出口付近の圧力低下により、冷媒吸引口12cから第2蒸発器17にて蒸発した気相冷媒を吸引する。   The pressure energy of the high-pressure refrigerant is converted into velocity energy by the nozzle portion 12a, and the refrigerant is ejected from the nozzle outlet at a high velocity. Due to the pressure drop in the vicinity of the nozzle outlet generated at this time, the vapor-phase refrigerant evaporated in the second evaporator 17 is sucked from the refrigerant suction port 12c.

ノズル部12aから噴出した冷媒と冷媒吸引口12cに吸引された冷媒は、ノズル部12a下流側で混合してディフューザ部12bに流入する。このディフューザ部12bでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。   The refrigerant ejected from the nozzle portion 12a and the refrigerant sucked into the refrigerant suction port 12c are mixed on the downstream side of the nozzle portion 12a and flow into the diffuser portion 12b. In the diffuser portion 12b, the refrigerant pressure increases because the velocity (expansion) energy of the refrigerant is converted into pressure energy due to the expansion of the passage area.

そして、エジェクタ12のディフューザ部12bから流出した冷媒は第1蒸発器13に流入し、ここで第1送風機18の送風空気から吸熱して蒸発する。これにより、第1送風機18の送風空気を冷却できる。第1蒸発器13を通過した冷媒は気液分離器14内に流入して、気相冷媒と液相冷媒とに分離される。気液分離器14内の気相冷媒は圧縮機10に吸入され、圧縮される。   The refrigerant flowing out of the diffuser portion 12b of the ejector 12 flows into the first evaporator 13, where it absorbs heat from the blown air of the first blower 18 and evaporates. Thereby, the blowing air of the 1st air blower 18 can be cooled. The refrigerant that has passed through the first evaporator 13 flows into the gas-liquid separator 14 and is separated into a gas phase refrigerant and a liquid phase refrigerant. The gas-phase refrigerant in the gas-liquid separator 14 is sucked into the compressor 10 and compressed.

一方、気液分離器14内の液相冷媒は分岐通路15側へ流れる。この液相冷媒は絞り機構16で減圧されて第2蒸発器17に流入し、ここで第2送風機19の送風空気から吸熱して蒸発する。これにより、第2送風機19の送風空気を冷却できる。第2蒸発器17で蒸発した気相冷媒は冷媒吸引口12cに吸引され、ノズル部12aからの高速噴出流(駆動流)と混合する。   On the other hand, the liquid-phase refrigerant in the gas-liquid separator 14 flows to the branch passage 15 side. This liquid phase refrigerant is decompressed by the throttle mechanism 16 and flows into the second evaporator 17 where it absorbs heat from the blown air of the second blower 19 and evaporates. Thereby, the blowing air of the 2nd air blower 19 can be cooled. The gas-phase refrigerant evaporated in the second evaporator 17 is sucked into the refrigerant suction port 12c and mixed with the high-speed jet flow (drive flow) from the nozzle portion 12a.

前述のごとく第1蒸発器13の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器17の冷媒蒸発圧力(冷媒蒸発温度)が低くなるので、第1蒸発器13により冷却される冷蔵庫の冷却温度(例えば−5℃)よりも第2蒸発器17により冷却される冷凍庫の冷却温度(例えば−25℃)を低くすることができる。従って、冷凍冷蔵装置の冷蔵庫と冷凍庫とを所定の温度差を付けた2つ温度帯で良好に冷却できる。   As described above, the refrigerant evaporation pressure (refrigerant evaporation temperature) of the second evaporator 17 is lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 13, so that the refrigerator cooled by the first evaporator 13 is cooled. The cooling temperature (for example, −25 ° C.) of the freezer cooled by the second evaporator 17 can be made lower than the temperature (for example, −5 ° C.). Therefore, the refrigerator and freezer of the freezer can be cooled well in two temperature zones with a predetermined temperature difference.

ところで、第1蒸発器13にフロスト(霜付き)が発生すると、第1送風機18の送風量が減少して、第1蒸発器13付近の空気温度が上記冷蔵庫の冷却温度(例えば−5℃)よりも更に所定温度低い温度(フロスト判定温度)Ta以下に低下する。   By the way, when frost (with frost) occurs in the first evaporator 13, the amount of air blown from the first blower 18 decreases, and the air temperature in the vicinity of the first evaporator 13 becomes the cooling temperature of the refrigerator (for example, −5 ° C.). Further, the temperature falls below a temperature (frost determination temperature) Ta lower than a predetermined temperature.

本実施形態では、第1蒸発器13付近の空気温度が温度センサ21により検出され、その検出信号がECU20に入力される。そこで、ECU20では第1蒸発器13付近の空気温度が上記フロスト判定温度Ta以下に低下すると第1蒸発器13のフロスト状態を判定して、第1蒸発器13の除霜運転を自動的に行う。   In the present embodiment, the temperature of the air near the first evaporator 13 is detected by the temperature sensor 21, and the detection signal is input to the ECU 20. Therefore, the ECU 20 determines the frost state of the first evaporator 13 and automatically performs the defrosting operation of the first evaporator 13 when the air temperature in the vicinity of the first evaporator 13 falls below the frost determination temperature Ta. .

この除霜運転では、圧縮機10の運転状態を維持したまま、第1蒸発器13の冷媒蒸発温度を一時的に0℃よりも高い温度域に上昇させるようにサイクル運転状況を変化させる。   In this defrosting operation, the cycle operation state is changed so that the refrigerant evaporation temperature of the first evaporator 13 is temporarily raised to a temperature range higher than 0 ° C. while the operation state of the compressor 10 is maintained.

この除霜運転をモリエル線図に基づいて具体的に説明する。先ず、図2は通常運転時、すなわち、除霜運転を行っていない通常の冷凍冷蔵運転時のサイクル挙動を示すモリエル線図で、図3は除霜運転時のサイクル挙動を示すモリエル線図である。図2、図3におけるa〜j点は、図1の冷凍サイクルにおけるa〜jの部位における冷媒の状態を示す。   This defrosting operation will be specifically described based on the Mollier diagram. First, FIG. 2 is a Mollier diagram showing the cycle behavior during normal operation, that is, normal refrigeration operation without defrosting operation, and FIG. 3 is a Mollier diagram showing the cycle behavior during defrosting operation. is there. 2 and 3, points a to j indicate the state of the refrigerant in the portions a to j in the refrigeration cycle of FIG.

図2、3において、e〜fのエンタルピ増加部分が第1蒸発器13の吸熱分であり、また、i〜jによるエンタルピ増加部分が第2蒸発器17の吸熱分である。   In FIGS. 2 and 3, the enthalpy increase portion of e to f is the endothermic component of the first evaporator 13, and the enthalpy increase portion of i to j is the endothermic component of the second evaporator 17.

通常運転時には第1蒸発器13の冷媒蒸発圧力が0℃等温線に対応する冷媒蒸発圧力よりも低くなっており、第1蒸発器13の冷媒蒸発温度が0℃よりも低い温度(例えば、−5℃)になっている。   During normal operation, the refrigerant evaporation pressure of the first evaporator 13 is lower than the refrigerant evaporation pressure corresponding to the 0 ° C. isotherm, and the refrigerant evaporation temperature of the first evaporator 13 is lower than 0 ° C. (for example, − 5 ° C).

そこで、本実施形態では、第1蒸発器13のフロストを判定して、第1蒸発器13の除霜運転を行うときは、ECU20の制御出力によりエジェクタ12の流量調整機構12dのアクチュエータ12fを動作させて、流量調整機構12dのニードル弁12eをノズル部12aの絞り通路の面積が増大する方向(図1の左方向)に移動させる。   Therefore, in the present embodiment, when the frost of the first evaporator 13 is determined and the defrosting operation of the first evaporator 13 is performed, the actuator 12f of the flow rate adjusting mechanism 12d of the ejector 12 is operated by the control output of the ECU 20. Thus, the needle valve 12e of the flow rate adjusting mechanism 12d is moved in the direction in which the area of the throttle passage of the nozzle portion 12a increases (the left direction in FIG. 1).

これにより、ノズル部12aを通過する冷媒流(駆動流)の流量が増加し、ディフューザ部12bでの昇圧量が増加するので、第1蒸発器13の冷媒蒸発圧力を0℃等温線に対応する冷媒蒸発圧力よりも高い圧力に上昇させることができる。この結果、第1蒸発器13の表面温度が0℃より高い温度(例えば、10℃付近)に上昇して、第1蒸発器13の表面の霜を溶かすことができる。   As a result, the flow rate of the refrigerant flow (driving flow) passing through the nozzle portion 12a increases and the amount of pressure increase in the diffuser portion 12b increases, so that the refrigerant evaporation pressure of the first evaporator 13 corresponds to the 0 ° C. isotherm. The pressure can be increased to a pressure higher than the refrigerant evaporation pressure. As a result, the surface temperature of the first evaporator 13 rises to a temperature higher than 0 ° C. (for example, around 10 ° C.), and the frost on the surface of the first evaporator 13 can be melted.

ここで、第1、第2蒸発器13、17間の絞り機構16として、通常運転時と除霜運転とで絞り開度(絞り通路面積)を切り替える可変絞りを用いて、除霜運転時には絞り機構16の絞り面積を通常運転時よりも一段と小さい値に切り替えるようにすれば、除霜運転時でも絞り機構16での減圧量を大きくして(図3のh→iの圧力降下参照)、第2蒸発器17の冷媒蒸発圧力を通常運転時と同レベルに維持できる。   Here, as the throttle mechanism 16 between the first and second evaporators 13 and 17, a variable throttle that switches the throttle opening (throttle passage area) between the normal operation and the defrosting operation is used, and the throttle is throttled during the defrosting operation. If the throttle area of the mechanism 16 is switched to a value smaller than that during normal operation, the amount of pressure reduction in the throttle mechanism 16 is increased even during the defrosting operation (see the pressure drop from h to i in FIG. 3). The refrigerant evaporation pressure of the second evaporator 17 can be maintained at the same level as during normal operation.

この結果、除霜運転時でも第2蒸発器17の冷媒蒸発温度を通常運転時と同レベルの低温(例えば−25℃)に維持でき、冷凍庫の冷却作用を続行できる。   As a result, even during the defrosting operation, the refrigerant evaporation temperature of the second evaporator 17 can be maintained at a low temperature (for example, −25 ° C.) at the same level as during the normal operation, and the cooling operation of the freezer can be continued.

上記除霜運転の実行により、第1蒸発器13近傍の空気温度が上記フロスト判定温度Taよりも所定温度αだけ高い除霜終了温度Tb(Tb=Ta+α)まで上昇すると、ECU20にて除霜運転の終了を判定して、ECU20の制御出力によりエジェクタ12の流量調整機構12dのアクチュエータ12fを動作させ、流量調整機構12dのニードル弁12eを除霜運転開始前の元の位置(通常運転時の位置)に復帰させ、ノズル部12aの絞り通路の面積を通常運転時の元の大きさに復帰(減少)させる。   When the air temperature in the vicinity of the first evaporator 13 rises to a defrosting end temperature Tb (Tb = Ta + α) higher than the frost determination temperature Ta by the execution of the defrosting operation, the ECU 20 performs the defrosting operation. Is finished, the actuator 12f of the flow rate adjusting mechanism 12d of the ejector 12 is operated by the control output of the ECU 20, and the needle valve 12e of the flow rate adjusting mechanism 12d is moved to the original position before starting the defrosting operation (position during normal operation). ) To return (decrease) the area of the throttle passage of the nozzle portion 12a to the original size during normal operation.

これにより、ノズル部12aを通過する冷媒流(駆動流)の流量が減少し、ディフューザ部12bでの昇圧量が減少するので、第1蒸発器13の冷媒蒸発圧力を0℃等温線に対応する冷媒蒸発圧力よりも低い圧力に復帰させ、第1蒸発器13による冷蔵庫の冷却作用を再び発揮できる。   As a result, the flow rate of the refrigerant flow (driving flow) passing through the nozzle portion 12a is reduced, and the amount of pressure increase in the diffuser portion 12b is reduced, so that the refrigerant evaporation pressure of the first evaporator 13 corresponds to the 0 ° C. isotherm. By returning to a pressure lower than the refrigerant evaporation pressure, the cooling action of the refrigerator by the first evaporator 13 can be exhibited again.

なお、絞り機構16を構成する上記可変絞りの具体例としては、サーボモータ等のアクチュエータにより位置制御される可動板部材に、通常運転用の大面積の第1絞り穴と、除霜運転用の小面積の第2絞り穴とを開口し、通常運転時には大面積の第1絞り穴で冷媒の減圧を行い、除霜運転時には小面積の第2絞り穴で冷媒の減圧を行うように、可動板部材の位置を切替制御すればよい。   In addition, as a specific example of the variable aperture constituting the aperture mechanism 16, a movable plate member whose position is controlled by an actuator such as a servomotor, a first aperture hole having a large area for normal operation, and a defrosting operation It is movable so that the second throttle hole with a small area is opened and the refrigerant is depressurized with the first throttle hole with a large area during normal operation, and the refrigerant is depressurized with the second throttle hole with a small area during defrosting operation. The position of the plate member may be switched and controlled.

また、絞り機構16として第2蒸発器17の冷媒蒸発圧力または冷媒蒸発温度に応答して絞り開度を調整する可変絞りを用いて、除霜運転時にも第2蒸発器17によって冷凍庫の冷却作用を続行できるようにしてもよい。   In addition, by using a variable throttle that adjusts the throttle opening in response to the refrigerant evaporation pressure or refrigerant evaporation temperature of the second evaporator 17 as the throttle mechanism 16, the cooling action of the freezer is also performed by the second evaporator 17 during the defrosting operation. You may be able to continue.

(第2実施形態)
第1実施形態は、エジェクタ12に流量調整機構12dを備えて、第1蒸発器13の除霜運転時にはエジェクタ12の冷媒流量を通常運転時よりも大きくして、第1蒸発器13の冷媒蒸発圧力を0℃等温線に対応する冷媒蒸発圧力よりも高い圧力に上昇させているが、第2実施形態は圧縮機10の冷媒吐出能力の制御によって第1蒸発器13の除霜運転を行うものである。
(Second Embodiment)
In the first embodiment, the ejector 12 is provided with a flow rate adjusting mechanism 12d, and the refrigerant flow rate of the ejector 12 is made larger during the defrosting operation of the first evaporator 13 than during the normal operation so that the refrigerant evaporation of the first evaporator 13 occurs. Although the pressure is increased to a pressure higher than the refrigerant evaporation pressure corresponding to the 0 ° C. isotherm, the second embodiment performs the defrosting operation of the first evaporator 13 by controlling the refrigerant discharge capacity of the compressor 10. It is.

すなわち、第2実施形態によると、ECU20が第1蒸発器13のフロストを判定して、第1蒸発器13の除霜を行うときは、ECU20から圧縮機10の冷媒吐出能力を増大するための制御信号を圧縮機10に加える。第2実施形態では、第1実施形態と同様に固定容量型圧縮機10のオンオフ動作を電磁クラッチ10aにより制御し、そのオンオフ動作の比率により冷媒吐出能力を制御するようにしている。   That is, according to the second embodiment, when the ECU 20 determines the frost of the first evaporator 13 and defrosts the first evaporator 13, the ECU 20 increases the refrigerant discharge capacity of the compressor 10 from the ECU 20. A control signal is applied to the compressor 10. In the second embodiment, similarly to the first embodiment, the on / off operation of the fixed displacement compressor 10 is controlled by the electromagnetic clutch 10a, and the refrigerant discharge capacity is controlled by the ratio of the on / off operation.

従って、第1蒸発器13の除霜運転時には、圧縮機10のオン動作比率(稼働率)が通常運転時よりも所定量大きくなるように電磁クラッチ10aの通電制御を行う。これにより、圧縮機10の冷媒吐出能力(冷媒吐出流量)が通常運転時よりも増大して、エジェクタ12の冷媒流量が増大する。この結果、第1実施形態と同等のサイクル挙動が生じて第1蒸発器13の除霜を行うことができる。   Therefore, during the defrosting operation of the first evaporator 13, the energization control of the electromagnetic clutch 10a is performed so that the ON operation ratio (operation rate) of the compressor 10 is larger by a predetermined amount than during the normal operation. Thereby, the refrigerant | coolant discharge capability (refrigerant | coolant discharge flow rate) of the compressor 10 increases compared with the time of normal operation, and the refrigerant | coolant flow rate of the ejector 12 increases. As a result, a cycle behavior equivalent to that of the first embodiment occurs, and the first evaporator 13 can be defrosted.

なお、圧縮機10として吐出容量を変化できる可変容量型圧縮機を使用する場合は、第1蒸発器13の除霜運転時に可変容量型圧縮機の容量制御機構に吐出容量増加の制御信号を加えて冷媒吐出能力を増大させればよい。   When a variable capacity compressor capable of changing the discharge capacity is used as the compressor 10, a control signal for increasing the discharge capacity is added to the capacity control mechanism of the variable capacity compressor during the defrosting operation of the first evaporator 13. Thus, the refrigerant discharge capacity may be increased.

更に、圧縮機10として回転数制御可能な電動圧縮機を使用する場合は、第1蒸発器13の除霜運転時に電動圧縮機のモータに回転数増加の制御信号を加えて冷媒吐出能力を増大させればよい。   Further, when an electric compressor capable of controlling the rotational speed is used as the compressor 10, a control signal for increasing the rotational speed is added to the motor of the electric compressor during the defrosting operation of the first evaporator 13 to increase the refrigerant discharge capacity. You can do it.

(第3実施形態)
第3実施形態は放熱器11の冷却風量の制御によって第1蒸発器13の除霜を行うものである。
(Third embodiment)
In the third embodiment, the first evaporator 13 is defrosted by controlling the cooling air volume of the radiator 11.

すなわち、第3実施形態によると、ECU20が第1蒸発器13のフロストを判定して、第1蒸発器13の除霜を行うときは、ECU20から放熱器11の冷却ファン11aのモータに対して、回転数低下(風量低下)の制御信号を加える。   That is, according to the third embodiment, when the ECU 20 determines the frost of the first evaporator 13 and defrosts the first evaporator 13, the ECU 20 controls the motor of the cooling fan 11 a of the radiator 11. Then, a control signal for reducing the rotational speed (decreasing the air volume) is added.

これにより、第1蒸発器13の除霜運転時には、冷却ファン11aの冷却風量が通常運転時よりも所定量減少するので、放熱器11の空気側冷却能力が低下して、放熱器11での冷媒圧力(サイクル高圧圧力)が上昇する。   As a result, during the defrosting operation of the first evaporator 13, the cooling air amount of the cooling fan 11 a is reduced by a predetermined amount as compared with the normal operation, so that the air side cooling capacity of the radiator 11 is reduced, and the radiator 11 The refrigerant pressure (cycle high pressure) increases.

このサイクル高圧圧力の上昇によってエジェクタ12の冷媒流量が増大する。この結果、第1実施形態と同等のサイクル挙動が生じて第1蒸発器13の除霜を行うことができる。   The refrigerant flow rate of the ejector 12 increases due to the increase in the cycle high pressure. As a result, a cycle behavior equivalent to that of the first embodiment occurs, and the first evaporator 13 can be defrosted.

(第4実施形態)
第4実施形態は第1蒸発器13の風量制御によって第1蒸発器13の除霜を行うものである。
(Fourth embodiment)
In the fourth embodiment, the first evaporator 13 is defrosted by controlling the air volume of the first evaporator 13.

すなわち、第4実施形態によると、ECU20が第1蒸発器13のフロストを判定して、第1蒸発器13の除霜を行うときは、ECU20から第1蒸発器13に送風する第1送風機18のモータに対して、回転数上昇(風量上昇)の制御信号を加える。   That is, according to the fourth embodiment, when the ECU 20 determines the frost of the first evaporator 13 and defrosts the first evaporator 13, the first blower 18 that blows air from the ECU 20 to the first evaporator 13. A control signal for increasing the rotation speed (increasing air volume) is added to the motor.

これにより、第1蒸発器13の除霜運転時には、第1送風機18の風量が通常運転時よりも所定量増加するので、第1蒸発器13の冷却熱負荷が増加して、第1蒸発器13の冷媒蒸発圧力(サイクル低圧圧力)が上昇する。このため、サイクル高圧圧力の上昇→エジェクタ12の冷媒流量増大→第1蒸発器13の冷媒蒸発圧力の上昇という循環が起こり、
第1蒸発器13の除霜を行うことができる。
As a result, during the defrosting operation of the first evaporator 13, the air volume of the first blower 18 is increased by a predetermined amount than during the normal operation, so that the cooling heat load of the first evaporator 13 is increased and the first evaporator 13 is increased. 13 refrigerant evaporation pressure (cycle low pressure) rises. For this reason, a cycle of an increase in the cycle high pressure → an increase in the refrigerant flow rate of the ejector 12 → an increase in the refrigerant evaporation pressure of the first evaporator 13 occurs,
Defrosting of the first evaporator 13 can be performed.

なお、上記第1〜第4実施形態では、エジェクタ12の流量調整機構12dの制御、圧縮機10の冷媒吐出能力制御、放熱器11の冷却風量制御、および第1蒸発器13の風量制御をそれぞれ個別に実行して、第1蒸発器13の除霜運転を行う場合を説明したが、上記第1〜第4実施形態による制御を複数組み合わせて第1蒸発器13の除霜運転を行うようにしてもよい。   In the first to fourth embodiments, the control of the flow rate adjustment mechanism 12d of the ejector 12, the refrigerant discharge capacity control of the compressor 10, the cooling air volume control of the radiator 11, and the air volume control of the first evaporator 13 are performed. The case where the defrosting operation of the first evaporator 13 is performed individually has been described, but the defrosting operation of the first evaporator 13 is performed by combining a plurality of controls according to the first to fourth embodiments. May be.

また、上記第1〜第4実施形態では、第2蒸発器17の除霜運転について説明していないが、第2蒸発器17の除霜が必要な場合は、第1蒸発器13の除霜運転とは別手段、例えば、サイクル高圧側の高温冷媒を第2蒸発器17に導入する等の手段で第2蒸発器17の除霜を行えばよい。   Moreover, in the said 1st-4th embodiment, although the defrost operation of the 2nd evaporator 17 is not demonstrated, when the defrost of the 2nd evaporator 17 is required, the defrost of the 1st evaporator 13 is carried out. The second evaporator 17 may be defrosted by means other than the operation, for example, by introducing a high-temperature refrigerant on the cycle high pressure side into the second evaporator 17.

(第5〜第9実施形態)
図4〜図8は第5〜第9実施形態であり、本発明を適用可能な冷凍サイクル構成の他の例を示す。なお、図4〜図8はいずれも冷凍サイクル構成のみを図示し、圧縮機10の電磁クラッチ10a、放熱器11の冷却ファン11a、エジェクタ12の流量調整機構12d、第1、第2蒸発器13、17の第1、第2送風機18、19、ECU20等の図示を省略している。
(Fifth to ninth embodiments)
4 to 8 show fifth to ninth embodiments and show other examples of refrigeration cycle configurations to which the present invention can be applied. 4 to 8 all show only the refrigeration cycle configuration. The electromagnetic clutch 10a of the compressor 10, the cooling fan 11a of the radiator 11, the flow rate adjusting mechanism 12d of the ejector 12, the first and second evaporators 13 are shown. , 17 of the first and second blowers 18, 19 and the ECU 20, etc. are omitted.

図4は第5実施形態であり、第1実施形態における分岐通路15の代わりに、放熱器11の出口側からエジェクタ12の冷媒吸引口12cに至る分岐通路150を設け、この分岐通路150に冷媒流れの上流側から下流側へ向かって、通路開閉機構をなす電磁弁22、絞り機構16、および第2蒸発器17を直列に配置している。   FIG. 4 shows a fifth embodiment. Instead of the branch passage 15 in the first embodiment, a branch passage 150 extending from the outlet side of the radiator 11 to the refrigerant suction port 12c of the ejector 12 is provided. From the upstream side to the downstream side of the flow, the solenoid valve 22, which forms a passage opening / closing mechanism, the throttle mechanism 16, and the second evaporator 17 are arranged in series.

第5実施形態の冷凍サイクル構成においても、第1蒸発器13の冷媒蒸発圧力よりも第2蒸発器17の冷媒蒸発圧力が低くなるので、第1蒸発器13による冷蔵作用と第2蒸発器17による冷凍作用とを同時に実行できる。そして、第5実施形態においても上記第1〜第4実施形態による第1蒸発器13の除霜運転を同様に行うことができる。       Also in the refrigeration cycle configuration of the fifth embodiment, since the refrigerant evaporation pressure of the second evaporator 17 is lower than the refrigerant evaporation pressure of the first evaporator 13, the refrigeration action by the first evaporator 13 and the second evaporator 17. The freezing action by can be executed simultaneously. And also in 5th Embodiment, the defrost operation of the 1st evaporator 13 by the said 1st-4th embodiment can be performed similarly.

図5は第6実施形態であり、上記第5実施形態の変形である。すなわち、第6実施形態では、放熱器11の出口側から第1蒸発器13の出口側(圧縮機10の吸入側)に至る分岐通路151を上記第5実施形態に更に追加している。   FIG. 5 shows a sixth embodiment, which is a modification of the fifth embodiment. That is, in the sixth embodiment, a branch passage 151 extending from the outlet side of the radiator 11 to the outlet side of the first evaporator 13 (suction side of the compressor 10) is further added to the fifth embodiment.

この分岐通路151には冷媒流れの上流側から下流側へ向かって、通路開閉機構をなす電磁弁23、絞り機構24、および第3蒸発器25を直列に配置している。絞り機構24も絞り機構16と同様に固定絞り、可変絞りのいずれで構成してもよい。   In this branch passage 151, an electromagnetic valve 23, a throttle mechanism 24, and a third evaporator 25 that constitute a passage opening / closing mechanism are arranged in series from the upstream side to the downstream side of the refrigerant flow. As with the diaphragm mechanism 16, the diaphragm mechanism 24 may be configured with either a fixed diaphragm or a variable diaphragm.

第6実施形態によると、第1蒸発器13および第3蒸発器25の冷媒蒸発圧力が同等になり、そして、第2蒸発器17の冷媒蒸発圧力が第1蒸発器13および第3蒸発器25の冷媒蒸発圧力よりも低くなる。   According to the sixth embodiment, the refrigerant evaporation pressures of the first evaporator 13 and the third evaporator 25 are equal, and the refrigerant evaporation pressure of the second evaporator 17 is the same as that of the first evaporator 13 and the third evaporator 25. It becomes lower than the refrigerant evaporation pressure.

従って、第1、第3蒸発器13、25による冷蔵作用と第2蒸発器17による冷凍作用とを同時に実行できる。そして、第6実施形態においても第1〜第4実施形態による第1蒸発器13の除霜運転を同様に行うことができる。   Therefore, the refrigeration action by the first and third evaporators 13 and 25 and the refrigeration action by the second evaporator 17 can be executed simultaneously. And also in 6th Embodiment, the defrost operation of the 1st evaporator 13 by 1st-4th embodiment can be performed similarly.

図6は第7実施形態であり、上記第5実施形態(図4)の変形である。すなわち、第7実施形態では、第1蒸発器13と並列に設けられた分岐通路152を上記第5実施形態(図4)に更に追加している。   FIG. 6 shows a seventh embodiment, which is a modification of the fifth embodiment (FIG. 4). That is, in the seventh embodiment, a branch passage 152 provided in parallel with the first evaporator 13 is further added to the fifth embodiment (FIG. 4).

この分岐通路152には冷媒流れの上流側から下流側へ向かって、絞り機構24と第3蒸発器25を直列に配置している。   In the branch passage 152, the throttle mechanism 24 and the third evaporator 25 are arranged in series from the upstream side to the downstream side of the refrigerant flow.

第7実施形態によると、第1蒸発器13および第3蒸発器25の冷媒蒸発圧力が同等になり、そして、第2蒸発器17の冷媒蒸発圧力が第1蒸発器13および第3蒸発器25の冷媒蒸発圧力よりも低くなる。第7実施形態においても第1〜第4実施形態による第1蒸発器13の除霜運転を同様に行うことができる。   According to the seventh embodiment, the refrigerant evaporation pressures of the first evaporator 13 and the third evaporator 25 are equal, and the refrigerant evaporation pressure of the second evaporator 17 is the same as that of the first evaporator 13 and the third evaporator 25. It becomes lower than the refrigerant evaporation pressure. Also in 7th Embodiment, the defrosting operation | movement of the 1st evaporator 13 by 1st-4th embodiment can be performed similarly.

図7は第8実施形態であり、第1実施形態(図1)の変形である。すなわち、第8実施形態では、第1蒸発器13と並列に設けられた分岐通路152を第1実施形態(図4)に追加し、この分岐通路152に冷媒流れの上流側から下流側へ向かって、絞り機構24と第3蒸発器25を直列に配置している。   FIG. 7 shows an eighth embodiment, which is a modification of the first embodiment (FIG. 1). That is, in the eighth embodiment, a branch passage 152 provided in parallel with the first evaporator 13 is added to the first embodiment (FIG. 4), and the branch passage 152 moves from the upstream side to the downstream side of the refrigerant flow. The throttle mechanism 24 and the third evaporator 25 are arranged in series.

第8実施形態によると、第1蒸発器13および第3蒸発器25の冷媒蒸発圧力が同等になり、そして、第2蒸発器17の冷媒蒸発圧力が第1蒸発器13および第3蒸発器25の冷媒蒸発圧力よりも低くなる。第8実施形態においても第1〜第4実施形態による第1蒸発器13の除霜運転を同様に行うことができる。   According to the eighth embodiment, the refrigerant evaporation pressures of the first evaporator 13 and the third evaporator 25 are equal, and the refrigerant evaporation pressure of the second evaporator 17 is the same as that of the first evaporator 13 and the third evaporator 25. It becomes lower than the refrigerant evaporation pressure. Also in the eighth embodiment, the defrosting operation of the first evaporator 13 according to the first to fourth embodiments can be similarly performed.

図8は第9実施形態であり、第1実施形態(図1)の変形である。すなわち、第9実施形態では、放熱器11の出口側から第1蒸発器13の出口側(気液分離器14の入口側)に至る分岐通路151を第1実施形態に更に追加している。   FIG. 8 shows a ninth embodiment, which is a modification of the first embodiment (FIG. 1). That is, in the ninth embodiment, a branch passage 151 extending from the outlet side of the radiator 11 to the outlet side of the first evaporator 13 (inlet side of the gas-liquid separator 14) is further added to the first embodiment.

この分岐通路151には冷媒流れの上流側から下流側へ向かって、絞り機構24および第3蒸発器25を直列に配置している。   In this branch passage 151, a throttle mechanism 24 and a third evaporator 25 are arranged in series from the upstream side to the downstream side of the refrigerant flow.

第9実施形態によると、第1蒸発器13および第3蒸発器25の冷媒蒸発圧力が同等になり、そして、第2蒸発器17の冷媒蒸発圧力が第1蒸発器13および第3蒸発器25の冷媒蒸発圧力よりも低くなる。第8実施形態においても第1〜第4実施形態による第1蒸発器13の除霜運転を同様に行うことができる。   According to the ninth embodiment, the refrigerant evaporation pressures of the first evaporator 13 and the third evaporator 25 are equal, and the refrigerant evaporation pressure of the second evaporator 17 is the same as that of the first evaporator 13 and the third evaporator 25. It becomes lower than the refrigerant evaporation pressure. Also in the eighth embodiment, the defrosting operation of the first evaporator 13 according to the first to fourth embodiments can be similarly performed.

(第10実施形態)
上述の第1〜第9実施形態は、第1蒸発器13の除霜運転に関するものであるが、第10実施形態は第1蒸発器13の加温運転に関するものである。
(10th Embodiment)
The first to ninth embodiments described above relate to the defrosting operation of the first evaporator 13, while the tenth embodiment relates to the heating operation of the first evaporator 13.

最初に、加温運転について説明すると、車両用冷凍冷蔵装置(冷凍車)においては、通常の冷凍冷蔵運転をしながら、庫内の荷物を目的地に運搬し、庫内の荷物を降ろした後は、冷凍庫、冷蔵庫の室内が空の状態になるので、冷凍サイクルの運転を停止する。   First, the heating operation will be explained. In the vehicle refrigeration system (freezer car), while carrying the normal refrigeration operation, the cargo in the warehouse is transported to the destination and the cargo in the warehouse is unloaded. Stops the operation of the refrigeration cycle because the interior of the freezer and refrigerator becomes empty.

この冷凍サイクル停止状態が継続されることにより、冷凍庫、冷蔵庫の室内壁面の温度が上昇して、この室内壁面に付着していた霜が溶けて庫内空気の水分量が飽和水蒸気量を超えて結露する。この結果として、冷凍庫、冷蔵庫の室内壁面が水浸しになるという不具合が発生する。   By continuing this refrigeration cycle stop state, the temperature of the indoor wall surface of the freezer and the refrigerator rises, the frost adhering to the indoor wall surface melts, and the moisture content of the interior air exceeds the saturated water vapor amount. Condensation. As a result, the inconvenience that the indoor wall surface of the freezer and the refrigerator becomes flooded occurs.

そこで、冷凍庫、冷蔵庫の室内壁面を庫内空気の露点温度以上に加温して、庫内空気の結露を防止することが加温運転である。   Therefore, heating operation is performed by heating the indoor wall surfaces of the freezer and the refrigerator to a temperature equal to or higher than the dew point temperature of the internal air to prevent dew condensation of the internal air.

第10実施形態は、前述の第1実施形態による第1蒸発器13の冷媒蒸発圧力(冷媒蒸発温度)の上昇を図って、第1蒸発器13を配置した冷蔵庫側の加温運転を行うものである。なお、第2蒸発器17を配置した冷凍庫側の加温運転は、必要に応じて、別手段(高温冷媒の導入等)で行うものとする。   In the tenth embodiment, the refrigerant evaporating pressure (refrigerant evaporating temperature) of the first evaporator 13 according to the first embodiment is increased, and the heating operation on the refrigerator side where the first evaporator 13 is arranged is performed. It is. In addition, the heating operation by the side of the freezer which has arrange | positioned the 2nd evaporator 17 shall be performed by another means (introduction of a high temperature refrigerant | coolant etc.) as needed.

図9は第10実施形態を示すもので、ECU20には操作パネル26の種々な操作スイッチの操作信号が入力される。この操作パネル26には加温運転の指令を出す加温スイッチ26aが設けられている。第10実施形態の冷凍サイクル構成は第1実施形態(図1)と同じである。   FIG. 9 shows a tenth embodiment, and operation signals of various operation switches of the operation panel 26 are input to the ECU 20. The operation panel 26 is provided with a heating switch 26a for issuing a heating operation command. The refrigeration cycle configuration of the tenth embodiment is the same as that of the first embodiment (FIG. 1).

ユーザー(運転者)が加温運転が必要であると判断したときは操作パネル26の加温スイッチ26aを手動操作して投入する。これにより、ECU20はエジェクタ12の流量調整機構12dに制御出力を加えて、流量調整機構12dを加温運転時に必要となる所定の高流量状態に駆動する。   When the user (driver) determines that the heating operation is necessary, the heating switch 26a of the operation panel 26 is manually operated and turned on. As a result, the ECU 20 applies a control output to the flow rate adjusting mechanism 12d of the ejector 12 to drive the flow rate adjusting mechanism 12d to a predetermined high flow rate state that is required during the heating operation.

この結果、ノズル部12aを通過する冷媒流(駆動流)の流量が増加し、ディフューザ部12bでの昇圧量が増加するので、第1蒸発器13の冷媒蒸発圧力(冷媒蒸発温度)を上昇させる。そのため、第1蒸発器13を配置した冷蔵庫側の室内壁面を庫内空気の露点温度以上に加温して、冷蔵庫側の室内壁面における結露を防止できる。なお、加温運転時にも、第2蒸発器17は冷凍庫側の冷却機能を続行する。   As a result, the flow rate of the refrigerant flow (driving flow) passing through the nozzle portion 12a increases and the amount of pressure increase in the diffuser portion 12b increases, so that the refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 13 is increased. . Therefore, the indoor wall surface on the refrigerator side where the first evaporator 13 is disposed can be heated to a temperature equal to or higher than the dew point temperature of the air in the cabinet, and condensation on the indoor wall surface on the refrigerator side can be prevented. Note that the second evaporator 17 continues the cooling function on the freezer side even during the heating operation.

そして、第1蒸発器13近傍の温度(温度センサ21の検出温度)がユーザー(運転者)設定による所定温度以上に上昇したら、ECU20により圧縮機10を自動的に停止し、加温運転を停止する。この加温運転停止後も、送風機18、19の作動は継続して庫内温度の均一化を図る。   When the temperature in the vicinity of the first evaporator 13 (the temperature detected by the temperature sensor 21) rises above a predetermined temperature set by the user (driver), the ECU 10 automatically stops the compressor 10 and stops the heating operation. To do. Even after the heating operation is stopped, the operations of the blowers 18 and 19 are continued to make the internal temperature uniform.

なお、第10実施形態では、エジェクタ12の流量調整機構12dの制御により第1蒸発器13の加温運転を行うようにしているが、第1蒸発器13の加温運転を第2〜第4実施形態のサイクル運転制御で行ったり、あるいは第1〜第4実施形態によるサイクル運転制御を複数個組み合わせて第1蒸発器13の加温運転を行うようにしてもよい。   In the tenth embodiment, the heating operation of the first evaporator 13 is performed under the control of the flow rate adjusting mechanism 12d of the ejector 12. However, the heating operation of the first evaporator 13 is performed in the second to fourth modes. The heating operation of the first evaporator 13 may be performed by the cycle operation control of the embodiment, or by combining a plurality of cycle operation controls according to the first to fourth embodiments.

(他の実施形態)
なお、本発明は上述の実施形態に限定されることなく、以下述べるごとく種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and various modifications can be made as described below.

(1)上述の実施形態では、車両用冷凍冷蔵装置における冷蔵庫内を第1蒸発器13で冷却し、冷凍庫内を第2蒸発器17で冷却する例を説明したが、例えば、第1蒸発器13で車室内を冷房し、第2蒸発器17で冷蔵庫内を冷却する用途に本発明を適用してもよい。また、熱負荷の異なる複数部位の冷房のために本発明を適用してもよい。   (1) In the above-described embodiment, the example in which the inside of the refrigerator in the vehicle refrigeration apparatus is cooled by the first evaporator 13 and the inside of the freezer is cooled by the second evaporator 17 has been described. For example, the first evaporator The present invention may be applied to the use of cooling the passenger compartment at 13 and cooling the interior of the refrigerator with the second evaporator 17. Further, the present invention may be applied for cooling a plurality of parts having different heat loads.

もちろん、車両用に限らず、定置用の冷凍サイクルに本発明を適用してもよい。このように、本発明は複数の温度帯で冷却が必要な種々な用途に適用できる。   Of course, the present invention may be applied not only to vehicles but also to stationary refrigeration cycles. Thus, the present invention can be applied to various applications that require cooling in a plurality of temperature zones.

(2)第1〜第4実施形態では、第1蒸発器13近傍の空気温度を温度センサ21により検出して第1蒸発器13の除霜運転を自動的に行うようにしているが、これは具体的な一例を示すにすぎず、除霜運転の自動制御は種々変形できる。例えば、第1蒸発器13近傍の空気温度の代わりに、第1蒸発器13の表面温度を温度センサ21により検出して、除霜運転の自動制御を行うようにしてもよい。   (2) In the first to fourth embodiments, the air temperature in the vicinity of the first evaporator 13 is detected by the temperature sensor 21, and the defrosting operation of the first evaporator 13 is automatically performed. Is merely a specific example, and automatic control of the defrosting operation can be variously modified. For example, instead of the air temperature in the vicinity of the first evaporator 13, the surface temperature of the first evaporator 13 may be detected by the temperature sensor 21 to automatically control the defrosting operation.

また、第1蒸発器13近傍の冷媒通路内に冷媒温度を検出する冷媒温度センサを設け、第1蒸発器13近傍の冷媒温度に基づいて除霜運転の自動制御を行うようにしてもよい。また、第1蒸発器13近傍の冷媒温度と冷媒圧力は相関関係があるから、第1蒸発器13近傍の冷媒圧力を検出する冷媒圧力センサを設け、第1蒸発器13近傍の冷媒圧力に基づいて除霜運転の自動制御を行うようにしてもよい。   In addition, a refrigerant temperature sensor that detects the refrigerant temperature may be provided in the refrigerant passage near the first evaporator 13, and automatic control of the defrosting operation may be performed based on the refrigerant temperature near the first evaporator 13. Further, since the refrigerant temperature and the refrigerant pressure in the vicinity of the first evaporator 13 have a correlation, a refrigerant pressure sensor for detecting the refrigerant pressure in the vicinity of the first evaporator 13 is provided and is based on the refrigerant pressure in the vicinity of the first evaporator 13. Thus, automatic control of the defrosting operation may be performed.

更に、上記のごとき温度センサ21や冷媒圧力センサを廃止して、ECU20のタイマー機能にてサイクルの起動後に、所定の時間間隔で除霜運転を所定時間のみ自動的に行うようにしてもよい。   Further, the temperature sensor 21 and the refrigerant pressure sensor as described above may be eliminated, and the defrosting operation may be automatically performed at predetermined time intervals for only a predetermined time after the cycle is started by the timer function of the ECU 20.

(3)上述の実施形態において絞り機構16および絞り機構24を固定絞りまたは可変絞りで構成する旨説明しているが、絞り機構16および絞り機構24として特別の絞り手段を設置せずに、例えば、第2、第3蒸発器17、25の入口側冷媒配管の流路長さによる圧損を利用して、この入口側冷媒配管自体により絞り機構16、24を構成してもよい。   (3) Although it has been described in the above-described embodiment that the diaphragm mechanism 16 and the diaphragm mechanism 24 are configured by a fixed diaphragm or a variable diaphragm, the diaphragm mechanism 16 and the diaphragm mechanism 24 are not provided with special diaphragm means, for example, The throttling mechanisms 16 and 24 may be configured by the inlet side refrigerant piping itself by using pressure loss due to the flow path length of the inlet side refrigerant piping of the second and third evaporators 17 and 25.

また、第2、第3蒸発器17、25の実際の搭載位置に基づく重力方向の高さ位置の差(ヘッド差)による圧損を利用して、第2、第3蒸発器17、25の入口側冷媒配管自体により絞り機構16、24を構成してもよい。   Further, the inlets of the second and third evaporators 17 and 25 are utilized by utilizing pressure loss due to the difference in height position in the gravity direction (head difference) based on the actual mounting positions of the second and third evaporators 17 and 25. The throttle mechanisms 16 and 24 may be configured by the side refrigerant pipe itself.

(4)上述の実施形態では、冷媒の種類を特定しなかったが、冷媒はフロン系、HC系の代替フロン、二酸化炭素(CO2)など蒸気圧縮式の超臨界サイクルおよび亜臨界サイクルのいずれに適用できるものであってもよい。 (4) In the above-described embodiment, the type of the refrigerant was not specified, but the refrigerant is any one of a supercritical cycle and a subcritical cycle of a vapor compression type such as CFC-based, HC-based alternative CFC, carbon dioxide (CO 2 ), etc. It may be applicable to.

なお、ここでフロンとは炭素、フッ素、塩素、水素からなる有機化合物の総称であり、
冷媒として広く使用されているものである。フロン系冷媒には、HCFC(ハイドロ・ク
ロロ・フルオロ・カーボン)系冷媒、HFC(ハイドロ・フルオロ・カーボン)系冷媒等
が含まれており、これらはオゾン層を破壊しないため代替フロンと呼ばれる冷媒である。
Here, chlorofluorocarbon is a general term for organic compounds composed of carbon, fluorine, chlorine, and hydrogen.
It is widely used as a refrigerant. Fluorocarbon refrigerants include HCFC (hydro-chloro-fluoro-carbon) refrigerants, HFC (hydro-fluoro-carbon) refrigerants, etc., and these are refrigerants called substitute chlorofluorocarbons because they do not destroy the ozone layer. is there.

また、HC(炭化水素)系冷媒とは、水素、炭素を含み、自然界に存在する冷媒物質の
ことである。このHC系冷媒には、R600a(イソブタン)、R290(プロパン)な
どがある。
The HC (hydrocarbon) refrigerant is a refrigerant substance that contains hydrogen and carbon and exists in nature. Examples of the HC refrigerant include R600a (isobutane) and R290 (propane).

本発明の第1実施形態によるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle by 1st Embodiment of this invention. 第1実施形態による通常運転時のモリエル線図である。It is a Mollier diagram at the time of normal operation by a 1st embodiment. 第1実施形態による除霜運転時のモリエル線図である。It is a Mollier diagram at the time of the defrost operation by 1st Embodiment. 本発明の第5実施形態によるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle by 5th Embodiment of this invention. 本発明の第6実施形態によるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle by 6th Embodiment of this invention. 本発明の第7実施形態によるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle by 7th Embodiment of this invention. 本発明の第8実施形態によるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle by 8th Embodiment of this invention. 本発明の第9実施形態によるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle by 9th Embodiment of this invention. 本発明の第10実施形態によるエジェクタサイクルを示す模式図である。It is a schematic diagram which shows the ejector cycle by 10th Embodiment of this invention.

符号の説明Explanation of symbols

10…圧縮機、11…放熱器、12…エジェクタ、12a…ノズル部、
12b…ディフューザ部(昇圧部)、12c…冷媒吸引口、12d…流量調整機構、
13…第1蒸発器、14…気液分離器、15、150〜152…分岐通路、
16、24…絞り機構、17…第2蒸発器、25…第3蒸発器。
DESCRIPTION OF SYMBOLS 10 ... Compressor, 11 ... Radiator, 12 ... Ejector, 12a ... Nozzle part,
12b ... Diffuser part (pressure increase part), 12c ... Refrigerant suction port, 12d ... Flow rate adjusting mechanism,
13 ... 1st evaporator, 14 ... Gas-liquid separator, 15, 150-152 ... Branch passage,
16, 24 ... throttle mechanism, 17 ... second evaporator, 25 ... third evaporator.

Claims (7)

冷媒を吸入し圧縮する圧縮機(10)と、
前記圧縮機(12)から吐出された高圧冷媒の放熱を行う放熱器(11)と、
前記放熱器(11)下流側の冷媒を減圧膨張させるノズル部(12a)、前記ノズル部(12a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(12c)、および前記高い速度の冷媒流と前記冷媒吸引口(12c)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(12b)を有するエジェクタ(12)と、
前記エジェクタ(12)の冷媒流出側に配置され、冷媒を蒸発させて冷却能力を発揮するとともに、冷媒流出側が前記圧縮機(10)の吸入側に接続される第1蒸発器(13)と、
前記冷媒吸引口(12c)に吸引される冷媒の通路(15、150)に配置され、冷媒を蒸発させて冷却能力を発揮する第2蒸発器(17)とを備え、
前記第1蒸発器(13)の除霜運転時に、前記圧縮機(10)の運転状態を維持したまま、前記第1蒸発器(13)の冷媒蒸発温度が0℃よりも高い温度域に一時的に上昇するようにサイクル運転状況を制御することを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing refrigerant;
A radiator (11) that radiates heat of the high-pressure refrigerant discharged from the compressor (12);
A nozzle part (12a) for decompressing and expanding the refrigerant on the downstream side of the radiator (11), a refrigerant suction port (12c) through which the refrigerant is sucked in by a high-speed refrigerant flow injected from the nozzle part (12a), and An ejector (12) having a booster (12b) for converting the velocity energy of the refrigerant flow obtained by mixing the high-speed refrigerant flow and the refrigerant sucked from the refrigerant suction port (12c) into pressure energy;
A first evaporator (13) disposed on the refrigerant outflow side of the ejector (12), evaporating the refrigerant to exhibit cooling capacity, and the refrigerant outflow side connected to the suction side of the compressor (10);
A second evaporator (17) disposed in the refrigerant passages (15, 150) sucked into the refrigerant suction port (12c) and evaporating the refrigerant to exhibit cooling capacity;
During the defrosting operation of the first evaporator (13), while maintaining the operation state of the compressor (10), the refrigerant evaporation temperature of the first evaporator (13) is temporarily in a temperature range higher than 0 ° C. The ejector cycle is characterized by controlling the cycle operating condition so as to rise.
前記第2蒸発器(17)の入口部に可変絞り機構(16)を設け、
前記除霜運転時には、前記可変絞り機構(16)の絞り開度を絞ることにより前記第2蒸発器(17)の必要冷媒蒸発温度を維持することを特徴とする請求項1に記載のエジェクタサイクル。
A variable throttle mechanism (16) is provided at the inlet of the second evaporator (17),
2. The ejector cycle according to claim 1, wherein during the defrosting operation, the required refrigerant evaporation temperature of the second evaporator (17) is maintained by reducing the throttle opening of the variable throttle mechanism (16). .
冷媒を吸入し圧縮する圧縮機(10)と、
前記圧縮機(12)から吐出された高圧冷媒の放熱を行う放熱器(11)と、
前記放熱器(11)下流側の冷媒を減圧膨張させるノズル部(12a)、前記ノズル部(12a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(12c)、および前記高い速度の冷媒流と前記冷媒吸引口(12c)からの吸引冷媒とを混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(12b)を有するエジェクタ(12)と、
前記エジェクタ(12)の冷媒流出側に配置され、冷媒を蒸発させて冷却能力を発揮するとともに、冷媒流出側が前記圧縮機(10)の吸入側に接続される第1蒸発器(13)と、
前記冷媒吸引口(12c)に吸引される冷媒の通路(15、150)に配置され、冷媒を蒸発させて冷却能力を発揮する第2蒸発器(17)とを備え、
前記第1蒸発器(13)の加温運転を行うときは、前記圧縮機(10)を起動するとともに、前記第1蒸発器(13)の冷媒蒸発温度が前記第1蒸発器(13)周辺の空気の露点温度以上に上昇するようにサイクル運転状況を制御することを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing refrigerant;
A radiator (11) that radiates heat of the high-pressure refrigerant discharged from the compressor (12);
A nozzle part (12a) for decompressing and expanding the refrigerant on the downstream side of the radiator (11), a refrigerant suction port (12c) through which the refrigerant is sucked in by a high-speed refrigerant flow injected from the nozzle part (12a), and An ejector (12) having a booster (12b) for converting the velocity energy of the refrigerant flow obtained by mixing the high-speed refrigerant flow and the refrigerant sucked from the refrigerant suction port (12c) into pressure energy;
A first evaporator (13) disposed on the refrigerant outflow side of the ejector (12), evaporating the refrigerant to exhibit cooling capacity, and the refrigerant outflow side connected to the suction side of the compressor (10);
A second evaporator (17) disposed in the refrigerant passages (15, 150) sucked into the refrigerant suction port (12c) and evaporating the refrigerant to exhibit cooling capacity;
When the heating operation of the first evaporator (13) is performed, the compressor (10) is started, and the refrigerant evaporation temperature of the first evaporator (13) is around the first evaporator (13). The ejector cycle is characterized in that the cycle operating condition is controlled so as to rise above the dew point temperature of the air.
前記エジェクタ(12)には流量調整手段(12d)が備えられており、前記第1蒸発器(13)の除霜運転時または加温運転時には前記流量調整手段(12d)を所定値以上の冷媒流量状態に制御することを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタサイクル。 The ejector (12) is provided with a flow rate adjusting means (12d), and when the first evaporator (13) is defrosted or heated, the flow rate adjusting means (12d) is a refrigerant having a predetermined value or more. The ejector cycle according to claim 1, wherein the ejector cycle is controlled to a flow rate state. 前記第1蒸発器(13)の除霜時または加温運転時には前記圧縮機(12)の冷媒吐出能力を所定値以上に制御することを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタサイクル。 The refrigerant discharge capacity of the compressor (12) is controlled to a predetermined value or more during defrosting or warming operation of the first evaporator (13), according to any one of claims 1 to 3. The described ejector cycle. 前記第1蒸発器(13)の除霜時または加温運転時には前記放熱器(11)の冷却風量を所定値以下に制御することを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタサイクル。 The cooling air volume of the radiator (11) is controlled to be a predetermined value or less during defrosting or heating operation of the first evaporator (13), according to any one of claims 1 to 3. Ejector cycle. 前記第1蒸発器(13)の除霜時または加温運転時には、前記第1蒸発器(13)の風量を所定値以上に制御することを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタサイクル。 The air volume of the first evaporator (13) is controlled to a predetermined value or more during defrosting or heating operation of the first evaporator (13). Ejector cycle described in.
JP2004304002A 2004-10-19 2004-10-19 Ejector cycle Expired - Fee Related JP4270098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304002A JP4270098B2 (en) 2004-10-19 2004-10-19 Ejector cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304002A JP4270098B2 (en) 2004-10-19 2004-10-19 Ejector cycle

Publications (2)

Publication Number Publication Date
JP2006118726A true JP2006118726A (en) 2006-05-11
JP4270098B2 JP4270098B2 (en) 2009-05-27

Family

ID=36536775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304002A Expired - Fee Related JP4270098B2 (en) 2004-10-19 2004-10-19 Ejector cycle

Country Status (1)

Country Link
JP (1) JP4270098B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315632A (en) * 2006-05-23 2007-12-06 Denso Corp Ejector type cycle
JP2008209066A (en) * 2007-02-27 2008-09-11 Denso Corp Ejector and unit for ejector type refrigerating cycle
JP2008241111A (en) * 2007-03-27 2008-10-09 Mitsubishi Electric Corp Refrigerator-freezer
JP2008256240A (en) * 2007-04-03 2008-10-23 Denso Corp Ejector type refrigerating cycle
JP2009276047A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2010019456A (en) * 2008-07-09 2010-01-28 Nippon Soken Inc Heat pump cycle
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
CN103542570A (en) * 2013-10-30 2014-01-29 上海交通大学 Injection circulation with automatic defrosting and oil return functions
CN105402959A (en) * 2015-12-21 2016-03-16 大连理工大学 Forced convective circulating flooded evaporator refrigerating system driven by recovered throttling loss
WO2016103295A1 (en) * 2014-12-25 2016-06-30 日揮株式会社 Refrigeration device
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043843A (en) * 1990-04-20 1992-01-08 Fujitsu General Ltd Method of controlling air conditioner
JPH04295572A (en) * 1991-03-25 1992-10-20 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH05312421A (en) * 1992-05-14 1993-11-22 Nippondenso Co Ltd Freezer device
JPH09318169A (en) * 1996-03-28 1997-12-12 Mitsubishi Electric Corp Refrigerating apparatus
JPH11230646A (en) * 1998-02-17 1999-08-27 Denso Corp Engine driven heat pump
JP2002081714A (en) * 2000-09-08 2002-03-22 Daikin Ind Ltd Air conditioner
JP2004028402A (en) * 2002-06-24 2004-01-29 Denso Corp Vapor compression type refrigerator
JP2004239493A (en) * 2003-02-05 2004-08-26 Denso Corp Heat pump cycle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043843A (en) * 1990-04-20 1992-01-08 Fujitsu General Ltd Method of controlling air conditioner
JPH04295572A (en) * 1991-03-25 1992-10-20 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH05312421A (en) * 1992-05-14 1993-11-22 Nippondenso Co Ltd Freezer device
JPH09318169A (en) * 1996-03-28 1997-12-12 Mitsubishi Electric Corp Refrigerating apparatus
JPH11230646A (en) * 1998-02-17 1999-08-27 Denso Corp Engine driven heat pump
JP2002081714A (en) * 2000-09-08 2002-03-22 Daikin Ind Ltd Air conditioner
JP2004028402A (en) * 2002-06-24 2004-01-29 Denso Corp Vapor compression type refrigerator
JP2004239493A (en) * 2003-02-05 2004-08-26 Denso Corp Heat pump cycle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315632A (en) * 2006-05-23 2007-12-06 Denso Corp Ejector type cycle
JP2008209066A (en) * 2007-02-27 2008-09-11 Denso Corp Ejector and unit for ejector type refrigerating cycle
US8534093B2 (en) 2007-02-27 2013-09-17 Denso Corporation Unit for ejector-type refrigeration cycle, and refrigeration cycle device using the same
JP2008241111A (en) * 2007-03-27 2008-10-09 Mitsubishi Electric Corp Refrigerator-freezer
JP2008256240A (en) * 2007-04-03 2008-10-23 Denso Corp Ejector type refrigerating cycle
JP4715797B2 (en) * 2007-04-03 2011-07-06 株式会社デンソー Ejector refrigeration cycle
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
JP2009276047A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2010019456A (en) * 2008-07-09 2010-01-28 Nippon Soken Inc Heat pump cycle
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle
CN103542570A (en) * 2013-10-30 2014-01-29 上海交通大学 Injection circulation with automatic defrosting and oil return functions
WO2016103295A1 (en) * 2014-12-25 2016-06-30 日揮株式会社 Refrigeration device
CN105402959A (en) * 2015-12-21 2016-03-16 大连理工大学 Forced convective circulating flooded evaporator refrigerating system driven by recovered throttling loss

Also Published As

Publication number Publication date
JP4270098B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4984453B2 (en) Ejector refrigeration cycle
US7779647B2 (en) Ejector and ejector cycle device
JP4600208B2 (en) Cycle using ejector
JP4600200B2 (en) Ejector refrigeration cycle
JP4581720B2 (en) Cycle using ejector
US8991201B2 (en) Ejector cycle system
JP3931899B2 (en) Ejector cycle
US20060254308A1 (en) Ejector cycle device
JP5217121B2 (en) Ejector refrigeration cycle
JP4196873B2 (en) Ejector cycle
JP4665601B2 (en) Cycle using ejector
JP4270098B2 (en) Ejector cycle
JP4924436B2 (en) Vapor compression cycle
JP4631721B2 (en) Vapor compression refrigeration cycle
JP2007078349A (en) Ejector cycle
JP4400533B2 (en) Ejector refrigeration cycle
JP2006017444A (en) Ejector cycle and its control method
JP4259092B2 (en) Ejector cycle, air conditioner, and vehicle air conditioner
JP4259605B2 (en) Ejector refrigeration cycle
JP2008008505A (en) Ejector type refrigerating cycle
JP4747967B2 (en) Vapor compression cycle
JP4835296B2 (en) Ejector refrigeration cycle
JP2006118727A (en) Ejector cycle
JP2008057848A (en) Vapor compression type refrigerating cycle using ejector
JP2006132800A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees