JP4196873B2 - Ejector cycle - Google Patents

Ejector cycle Download PDF

Info

Publication number
JP4196873B2
JP4196873B2 JP2004118892A JP2004118892A JP4196873B2 JP 4196873 B2 JP4196873 B2 JP 4196873B2 JP 2004118892 A JP2004118892 A JP 2004118892A JP 2004118892 A JP2004118892 A JP 2004118892A JP 4196873 B2 JP4196873 B2 JP 4196873B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
gas
nozzle
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004118892A
Other languages
Japanese (ja)
Other versions
JP2005300067A (en
Inventor
春幸 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004118892A priority Critical patent/JP4196873B2/en
Publication of JP2005300067A publication Critical patent/JP2005300067A/en
Application granted granted Critical
Publication of JP4196873B2 publication Critical patent/JP4196873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02322Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Description

本発明は、流体を減圧する減圧手段であるとともに、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタ(JIS Z 8126 番号2.1.2.3等参照)を有するエジェクタサイクルに関するものであり、車両用空調装置の冷凍サイクルに適用して有効である。   The present invention is an ejector (see JIS Z 8126 No. 2.1.2.3, etc.) that is a decompression means for decompressing a fluid and that transports fluid by the entrainment action of a working fluid ejected at high speed. And is effective when applied to a refrigeration cycle of a vehicle air conditioner.

従来、図6中の実線で示すように冷媒減圧手段および冷媒循環手段としてエジェクタ20を使用した蒸気圧縮式冷凍サイクル(エジェクタサイクル)において、第1蒸発器55、第2蒸発器56を配置したものが特許文献1にて知られている(以下従来例と称す)。   Conventionally, in the vapor compression refrigeration cycle (ejector cycle) using the ejector 20 as the refrigerant decompression means and the refrigerant circulation means as shown by the solid line in FIG. 6, the first evaporator 55 and the second evaporator 56 are arranged. Is known in Patent Document 1 (hereinafter referred to as a conventional example).

従来例では、エジェクタ20と気液分離器21との間に第1蒸発器55が配置され、気液分離器21とエジェクタ20の気相冷媒流入口20cとをつなぐ冷媒通路に第2蒸発器56が配置されている。   In the conventional example, the first evaporator 55 is disposed between the ejector 20 and the gas-liquid separator 21, and the second evaporator is connected to the refrigerant passage connecting the gas-liquid separator 21 and the gas-phase refrigerant inlet 20 c of the ejector 20. 56 is arranged.

これによると、エジェクタ20で減圧された気液2相状態の冷媒が第1蒸発器55に流入し、第1蒸発器55において気液2相のうちの液相冷媒が第1蒸発器55に送風される空気から吸熱して蒸発する。さらに、気液分離器21で分離された液相冷媒が第2蒸発器56に流入し、第2蒸発器56に送風される空気から吸熱して蒸発する。したがって、第1、第2蒸発器55、56で同一または別々の空間を空調できる
ところで、蒸発器55、56に必要流量以上の冷媒が送られ続けて蒸発器55、56の冷却能力が過大となることにより、蒸発器55、56の温度が0℃以下になる状態が継続して蒸発器表面の凝縮水がフロスト(着霜)する場合がある。
According to this, the gas-liquid two-phase refrigerant decompressed by the ejector 20 flows into the first evaporator 55, and in the first evaporator 55, the liquid-phase refrigerant of the gas-liquid two phases enters the first evaporator 55. It absorbs heat from the blown air and evaporates. Further, the liquid phase refrigerant separated by the gas-liquid separator 21 flows into the second evaporator 56, absorbs heat from the air blown to the second evaporator 56, and evaporates. Accordingly, the same or different space can be air-conditioned by the first and second evaporators 55 and 56. However, the refrigerant 55 and 56 is continuously supplied with a refrigerant exceeding the required flow rate, and the cooling capacity of the evaporators 55 and 56 is excessive. As a result, the state in which the temperatures of the evaporators 55 and 56 become 0 ° C. or lower may continue, and the condensed water on the evaporator surface may be frosted (frosted).

しかし、従来例で蒸発器表面の霜を除去するには、圧縮機11を停止して、第1、第2蒸発器55、56の霜が自然解凍するまで待たなければならない。つまり、積極的に蒸発器表面の霜を取り除けないという問題がある。   However, in order to remove the frost on the evaporator surface in the conventional example, the compressor 11 must be stopped and wait until the frost of the first and second evaporators 55 and 56 is naturally thawed. That is, there is a problem that frost on the evaporator surface cannot be removed positively.

上記の問題に対して、本発明者は圧縮機11から吐出された高温高圧状態の気相冷媒が蒸発器55、56に流入する除霜回路を従来例に追加した例を検討した(図6中点線部分、以下検討例と称す)。   In order to solve the above problem, the present inventor has examined an example in which a defrosting circuit in which high-temperature and high-pressure gas-phase refrigerant discharged from the compressor 11 flows into the evaporators 55 and 56 is added to the conventional example (FIG. 6 The middle dotted line part, hereinafter referred to as a study example).

この検討例には、圧縮機11と凝縮器12の間の冷媒流れを分岐し、気液分離器21と第2蒸発器56との間で合流させる第2蒸発器除霜回路51と、圧縮機11と凝縮器12の間の冷媒流れを分岐し、エジェクタ20と第1蒸発器55との間で合流させる第1蒸発器除霜回路52と、第1、第2蒸発器除霜回路51、52にそれぞれ配置される開閉弁53、54とが備えられている。なお、図6中の57は冷媒流れの逆流を防止する逆止弁である。   In this examination example, the refrigerant flow between the compressor 11 and the condenser 12 is branched, and the second evaporator defrosting circuit 51 for joining the gas-liquid separator 21 and the second evaporator 56, and the compression A first evaporator defrosting circuit 52 that branches the refrigerant flow between the machine 11 and the condenser 12 and joins between the ejector 20 and the first evaporator 55, and first and second evaporator defrosting circuits 51. , 52 are provided with on-off valves 53 and 54, respectively. In addition, 57 in FIG. 6 is a check valve which prevents the reverse flow of the refrigerant flow.

これによると、第2蒸発器除霜回路51の開閉弁53を開とすれば第2蒸発器56に圧縮機11から吐出される高温冷媒が流入する。また、第1蒸発器除霜回路52の開閉弁53を開とすれば第1蒸発器55に圧縮機11から吐出される高温冷媒が流入する。したがって、必要な時に第1、第2蒸発器55、56の除霜を行うことができる。
特許3322263号公報
According to this, if the on-off valve 53 of the second evaporator defrosting circuit 51 is opened, the high-temperature refrigerant discharged from the compressor 11 flows into the second evaporator 56. Further, when the on-off valve 53 of the first evaporator defrosting circuit 52 is opened, the high-temperature refrigerant discharged from the compressor 11 flows into the first evaporator 55. Therefore, the first and second evaporators 55 and 56 can be defrosted when necessary.
Japanese Patent No. 3322263

しかし、検討例のエジェクタサイクルでは、除霜運転時には冷媒が冷凍サイクルを成さないため、第1、第2蒸発器55、56のいずれか一方の除霜運転をした場合であっても、両方の蒸発器55、56の空調運転が停止してしまうという問題がある。このため、サイクルの作動を総合して考えると圧縮機11の作動に対する空調効率が低くなってしまう。   However, in the ejector cycle of the study example, since the refrigerant does not form a refrigeration cycle during the defrosting operation, both of the first and second evaporators 55 and 56 can be defrosted. There is a problem that the air conditioning operation of the evaporators 55 and 56 is stopped. For this reason, when the operation of the cycle is considered as a whole, the air conditioning efficiency for the operation of the compressor 11 is lowered.

本発明は、上記点に鑑み、冷凍能力を発揮できる蒸発器を複数備えるエジェクタサイクルにおいて、除霜運転により全ての蒸発器の空調運転が停止することの防止を目的とする。   In view of the above points, an object of the present invention is to prevent the air-conditioning operation of all the evaporators from being stopped by a defrosting operation in an ejector cycle that includes a plurality of evaporators that can exhibit refrigeration capacity.

上記目的を達成するため、請求項1に記載の発明では、エジェクタサイクルにおいて、気相冷媒を吸引圧縮する圧縮機(11)から吐出された冷媒の熱を放熱させる第1熱交換器(12)と、冷媒と空調対象空間に吹き出す空気とを熱交換させる第2熱交換器(15)および第3熱交換器(16)と、内部に流入する冷媒を等エントロピ的に減圧膨張させるノズル(20a)と、ノズル(20a)から噴射する高い速度の冷媒流により気相冷媒が内部に吸引される気相冷媒流入口(20c)とを有するエジェクタ(20)と、エジェクタ(20)から流出する冷媒を気相冷媒と液相冷媒とに分離する気液分離器(21)と、第2熱交換器(15)と第1熱交換器(12)とを連通させて第2熱交換器(15)に第1熱交換器(12)から流出した冷媒を流入させると同時に、第3熱交換器(16)と気液分離器(21)とを連通させて第3熱交換器(16)に気液分離器(21)で分離された液相冷媒を流入させる冷媒通路、および、第3熱交換器(16)と第1熱交換器(12)とを連通させて第3熱交換器(16)に第1熱交換器(12)から流出した冷媒を流入させると同時に、第2熱交換器(15)と気液分離器(21)とを連通させて第2熱交換器(15)に気液分離器(21)で分離された液相冷媒を流入させる冷媒通路を切換える第1切換手段(14)と、ノズル(20a)と第2熱交換器(15)とを連通させてノズル(20a)に第2熱交換器(15)から流出した冷媒を流入させると同時に、気相冷媒流入口(20c)と第3熱交換器(16)とを連通させて気相冷媒流入口(20c)に第3熱交換器(16)から流出した冷媒を流入させる冷媒通路、および、ノズル(20a)と第3熱交換器(16)とを連通させてノズル(20a)に第3熱交換器(16)から流出した冷媒を流入させると同時に、気相冷媒流入口(20c)と第2熱交換器(15)とを連通させて気相冷媒流入口(20c)に第2熱交換器(15)から流出した冷媒を流入させる冷媒通路を切換える第2切換手段(19)と、第1切替手段(14)および第2切替手段(19)を制御する制御装置とを備え、
制御装置は、第熱交換器(15)と第1熱交換器(12)とを連通させると同時に、第熱交換器(16)と気液分離器(21)とを連通させるように第1切替手段(14)を制御するとともに、ノズル(20a)と第2熱交換器(15)とを連通させると同時に、気相冷媒流入口(20c)と第3熱交換器(16)とを連通させるように第2切替手段(19)を制御することによって、圧縮機(11)から吐出した冷媒を第1熱交換器(12)→第2熱交換器(15)→ノズル(20a)→気液分離器(21)の液相冷媒→第3熱交換器(16)→気相冷媒流入口(20c)の順に流し、第2熱交換器(15)を除霜しながら第3熱交換器(16)で蒸発した冷媒をエジェクタ(20)に吸引させる第2熱交換器除霜モードを実行する制御状態と、第熱交換器(16)と第1熱交換器(12)とを連通させると同時に、第熱交換器(15)と気液分離器(21)とを連通させるように第1切替手段(14)を制御するとともに、ノズル(20a)と第3熱交換器(16)とを連通させると同時に、気相冷媒流入口(20c)と第2熱交換器(15)とを連通させるように第2切替手段を制御することによって、圧縮機(11)から吐出した冷媒を第1熱交換器(12)→第3熱交換器(16)→ノズル(20a)→気液分離器(21)の液相冷媒→第2熱交換器(15)→気相冷媒流入口(20c)の順に流し、第3熱交換器(16)を除霜しながら第2熱交換器(15)で蒸発した冷媒をエジェクタ(20)に吸引させる第3熱交換器除霜モードを実行する制御状態とを有することを特徴とする。
To achieve the above object, according to the first aspect of the present invention, in the ejector cycle, the first heat exchanger (12) that dissipates heat of the refrigerant discharged from the compressor (11) that sucks and compresses the gas-phase refrigerant. And a second heat exchanger (15) and a third heat exchanger (16) for exchanging heat between the refrigerant and the air blown into the air-conditioning target space, and a nozzle (20a) that decompresses and expands the refrigerant flowing into the interior isentropically. ), A gas phase refrigerant inlet (20c) into which the gas phase refrigerant is sucked into the inside by a high-speed refrigerant flow injected from the nozzle (20a), and a refrigerant flowing out of the ejector (20) The gas-liquid separator (21) that separates the gas phase refrigerant into the liquid phase refrigerant, the second heat exchanger (15), and the first heat exchanger (12) are connected to each other to connect the second heat exchanger (15 ) From the first heat exchanger (12) The refrigerant separated from the third heat exchanger (16) by the gas-liquid separator (21) by allowing the third heat exchanger (16) and the gas-liquid separator (21) to communicate with each other at the same time. A refrigerant passage through which the phase refrigerant flows, and the third heat exchanger (16) and the first heat exchanger (12) are communicated to the third heat exchanger (16) from the first heat exchanger (12). At the same time as flowing out refrigerant, the second heat exchanger (15) and the gas-liquid separator (21) were communicated with each other and separated into the second heat exchanger (15) by the gas-liquid separator (21). The first switching means (14) for switching the refrigerant passage through which the liquid phase refrigerant flows, the nozzle (20a) and the second heat exchanger (15) are communicated with each other, and the nozzle (20a) is connected to the second heat exchanger (15). At the same time as the refrigerant flowing out from the refrigerant flows in, the gas-phase refrigerant inlet (20c) communicates with the third heat exchanger (16). A refrigerant passage for allowing the refrigerant flowing out from the third heat exchanger (16) to flow into the phase refrigerant inlet (20c), and the nozzle (20a) and the third heat exchanger (16) communicate with each other. At the same time, the refrigerant flowing out from the third heat exchanger (16) is introduced into the gas phase refrigerant inlet (20c) and the second heat exchanger (15) to communicate with the gas phase refrigerant inlet (20c). A second switching means (19) for switching the refrigerant passage through which the refrigerant that has flowed out of the second heat exchanger (15) flows, and a controller for controlling the first switching means (14) and the second switching means (19); Prepared,
The control device causes the second heat exchanger ( 15 ) and the first heat exchanger (12) to communicate with each other, and simultaneously causes the third heat exchanger ( 16 ) and the gas-liquid separator (21) to communicate with each other. While controlling a 1st switching means (14) and making a nozzle (20a) and a 2nd heat exchanger (15) communicate, simultaneously a gaseous-phase refrigerant | coolant inlet (20c) and a 3rd heat exchanger (16) By controlling the second switching means (19) so as to communicate with each other, the refrigerant discharged from the compressor (11) is changed from the first heat exchanger (12) to the second heat exchanger (15) to the nozzle (20a). → The liquid refrigerant of the gas-liquid separator (21) → the third heat exchanger (16) → the gas phase refrigerant inlet (20c) is flowed in this order, and the third heat is removed while defrosting the second heat exchanger (15). The second heat exchanger defrosting mode is performed in which the refrigerant evaporated in the exchanger (16) is sucked into the ejector (20). The control state, the third heat exchanger ( 16 ) and the first heat exchanger (12) are communicated, and at the same time, the second heat exchanger ( 15 ) and the gas-liquid separator (21) are communicated. While controlling a 1st switching means (14) and making a nozzle (20a) and a 3rd heat exchanger (16) communicate, simultaneously a gaseous-phase refrigerant | coolant inlet (20c) and a 2nd heat exchanger (15) By controlling the second switching means so as to communicate with each other, the refrigerant discharged from the compressor (11) is changed to the first heat exchanger (12) → the third heat exchanger (16) → the nozzle (20a) → the gas-liquid It flows in the order of the liquid phase refrigerant of the separator (21) → second heat exchanger (15) → gas phase refrigerant inlet (20c), and the second heat exchanger (16) is defrosted while defrosting the third heat exchanger (16). The control state which performs the 3rd heat exchanger defrost mode which makes the ejector (20) attract the refrigerant | coolant which evaporated by 15) It is characterized by having.

ところで、第1熱交換器(12)から流出した冷媒は、一般に放熱対象が空気などであるため、冷媒の温度が零度以上である。したがって、第2熱交換器除霜モード時に第1熱交換器(12)から流出した冷媒が第2熱交換器(15)に流入すると第2熱交換器(15)の表面の霜を溶かすことができる。第3熱交換器除霜モード時に第1熱交換器(12)から流出した冷媒が第3熱交換器(16)に流入した場合も同様に第3熱交換器(16)の除霜を行うことができる。   By the way, since the refrigerant | coolant which flowed out from the 1st heat exchanger (12) generally has the heat dissipation object, such as air, the temperature of a refrigerant | coolant is 0 degree | times or more. Therefore, when the refrigerant flowing out from the first heat exchanger (12) flows into the second heat exchanger (15) in the second heat exchanger defrosting mode, the frost on the surface of the second heat exchanger (15) is melted. Can do. The third heat exchanger (16) is similarly defrosted when the refrigerant flowing out from the first heat exchanger (12) flows into the third heat exchanger (16) in the third heat exchanger defrost mode. be able to.

また、請求項1によると、第2熱交換器(15)の除霜時に第3熱交換器(16)において、気液分離器(21)から流入する液相冷媒を蒸発させて空調対象空間の冷却能力を発揮させることができる。これとは逆に、第3熱交換器(16)の除霜時には、第2熱交換器(15)に空調対象空間の冷却能力を発揮させることができる。   According to claim 1, the air-conditioning target space is obtained by evaporating the liquid-phase refrigerant flowing from the gas-liquid separator (21) in the third heat exchanger (16) when the second heat exchanger (15) is defrosted. The cooling ability can be demonstrated. On the contrary, when the third heat exchanger (16) is defrosted, the second heat exchanger (15) can exhibit the cooling capacity of the air-conditioning target space.

したがって、一方の熱交換器(15、16)の除霜時に他方の熱交換器(15、16)が空調運転可能であるため、図6の検討例のようにいずれか1つの熱交換器の除霜を行うと全ての蒸発器の空調運転が停止することを防止できる。これにより、サイクルの作動を総合して考えた場合に圧縮機11の作動に対する空調対象空間の空調効率が低くなることを防止できる。   Therefore, when one heat exchanger (15, 16) is defrosted, the other heat exchanger (15, 16) can be operated in air conditioning. When defrosting is performed, it is possible to prevent the air conditioning operation of all the evaporators from stopping. Thereby, when the operation | movement of a cycle is considered collectively, it can prevent that the air-conditioning efficiency of the air-conditioning object space with respect to the operation | movement of the compressor 11 becomes low.

また、請求項2に記載の発明のように、請求項1に記載のエジェクタサイクルにおいて、第1、第2切換弁を第1、第2四方弁(14、19)とすれば、具体的に第2熱交換器運転モードと第3熱交換器運転モードの順に冷媒を流して請求項1で述べた効果を発揮することができる。   Further, as in the invention described in claim 2, if the first and second switching valves are the first and second four-way valves (14, 19) in the ejector cycle described in claim 1, specifically, The effect described in claim 1 can be exhibited by flowing the refrigerant in the order of the second heat exchanger operation mode and the third heat exchanger operation mode.

また、請求項3に記載の発明のように、請求項1または2に記載のエジェクタサイクルにおいて、エジェクタ(20)と気液分離器(21)との間の部位に第4熱交換器(22)を配置すれば、第2、第3熱交換器(15、16)に加えて第4熱交換器(22)でも第2、第3熱交換器(15、16)と同一、または別々の空間を空調することができる。   Further, as in the invention described in claim 3, in the ejector cycle described in claim 1 or 2, the fourth heat exchanger (22) is disposed at a portion between the ejector (20) and the gas-liquid separator (21). ) In addition to the second and third heat exchangers (15, 16), the fourth heat exchanger (22) is the same as or separate from the second and third heat exchangers (15, 16). The space can be air-conditioned.

また、請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載のエジェクタサイクルにおいて、第2熱交換器(15)へ空調対象空間に吹き出す空気を送風する第2熱交換器送風手段(17)と、第3熱交換器(16)へ空調対象空間に吹き出す空気を送風する第3熱交換器送風手段(18)とを備え、
第2熱交換器除霜モード時に第2熱交換器送風手段(17)が送風し、第3熱交換器除霜モード時に第3熱交換器送風手段(18)が送風するようになっていることを特徴としている。
Moreover, in invention of Claim 4, in the ejector cycle as described in any one of Claim 1 thru | or 3, 2nd heat exchange which blows the air which blows off to an air-conditioning object space to a 2nd heat exchanger (15). Air blower means (17), and third heat exchanger blow means (18) for blowing air blown into the air-conditioning target space to the third heat exchanger (16),
The second heat exchanger blow means (17) blows air during the second heat exchanger defrost mode, and the third heat exchanger blow means (18) blows air during the third heat exchanger defrost mode. It is characterized by that.

これによると、第2熱交換器除霜モード時には第2熱交換器送風手段(17)が送風して、第2熱交換器(15)の除霜を促進するとともに、空調対象空間の暖房を行うことができる。また、第3熱交換器除霜モード時には第3熱交換器送風手段(18)が送風して、第3蒸発器(16)の除霜を促進するとともに、空調対象空間の暖房を行うことができる。   According to this, while the 2nd heat exchanger ventilation means (17) ventilates at the time of the 2nd heat exchanger defrost mode, while promoting the defrost of the 2nd heat exchanger (15), heating of the air-conditioning object space is carried out. It can be carried out. Further, in the third heat exchanger defrosting mode, the third heat exchanger blowing means (18) blows air to promote the defrosting of the third evaporator (16) and to heat the air-conditioning target space. it can.

また、請求項5に記載の発明のように、請求項1ないし4のいずれか1つに記載のエジェクタサイクルにおいて、冷媒としてフロン系冷媒、HC系冷媒、CO冷媒のいずれか1つを使用してもよい。 Further, as in the invention according to claim 5, in the ejector cycle according to any one of claims 1 to 4, any one of a freon refrigerant, an HC refrigerant, and a CO 2 refrigerant is used as the refrigerant. May be.

なお、ここでフロンとは炭素、フッ素、塩素、水素からなる有機化合物の総称であり、冷媒として広く使用されているものである。フロン系冷媒には、HCFC(ハイドロ・クロロ・フルオロ・カーボン)系冷媒、HFC(ハイドロ・フルオロ・カーボン)系冷媒等が含まれており、これらはオゾン層を破壊しないため代替フロンと呼ばれる冷媒である。   Here, chlorofluorocarbon is a general term for organic compounds composed of carbon, fluorine, chlorine, and hydrogen, and is widely used as a refrigerant. Fluorocarbon refrigerants include HCFC (hydro-chloro-fluoro-carbon) refrigerants, HFC (hydro-fluoro-carbon) refrigerants, etc. These are refrigerants called substitute chlorofluorocarbons because they do not destroy the ozone layer. is there.

また、HC(炭化水素)系冷媒とは、水素、炭素を含み、自然界に存在する冷媒物質のことである。このHC系冷媒には、R600a(イソブタン)、R290(プロパン)などがある。   The HC (hydrocarbon) refrigerant is a refrigerant substance that contains hydrogen and carbon and exists in nature. Examples of the HC refrigerant include R600a (isobutane) and R290 (propane).

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は、本発明の第1実施形態に係るエジェクタサイクルを2つの冷却対象空間を有する車両の空調装置に適用した例を示している。図1中、11は気相冷媒を吸入圧縮する圧縮機であり、本実施形態では駆動源として図示しない電動モータが一体となっている。なお、圧縮機11は走行用エンジン等の駆動源(図示せず。)から駆動力を得て冷媒を吸入圧縮するものであってもよい。
(First embodiment)
FIG. 1 shows an example in which the ejector cycle according to the first embodiment of the present invention is applied to a vehicle air conditioner having two spaces to be cooled. In FIG. 1, reference numeral 11 denotes a compressor that sucks and compresses a gas-phase refrigerant. In this embodiment, an electric motor (not shown) is integrated as a drive source. The compressor 11 may be one that obtains driving force from a driving source (not shown) such as a traveling engine and sucks and compresses the refrigerant.

圧縮機11で高圧状態となった冷媒は第1熱交換器である凝縮器12に流入し、凝縮器送風機13で送風される室外空気により冷却されて凝縮する。凝縮により液相状態となった冷媒は第1四方弁14に流入する。   The refrigerant that has become a high pressure state in the compressor 11 flows into the condenser 12 that is the first heat exchanger, and is cooled and condensed by the outdoor air blown by the condenser blower 13. The refrigerant that has become liquid phase due to condensation flows into the first four-way valve 14.

第1四方弁14には、凝縮器12の冷媒流出側、第2熱交換器である冷蔵蒸発器15の冷媒流入側、第3熱交換器である冷蔵蒸発器16の冷媒流入側、および気液分離器21(後述)の液相冷媒流出側が接続されている。第1四方弁14は、弁体の位置を電気アクチュエータ機構(図示せず)により制御して、凝縮器12と冷蔵蒸発器15、気液分離器21と冷凍蒸発器16を連通させる場合と、凝縮器12と冷凍蒸発器16、気液分離器21と冷蔵蒸発器15を連通させる場合とに切換えるものである。   The first four-way valve 14 includes a refrigerant outflow side of the condenser 12, a refrigerant inflow side of the refrigeration evaporator 15 that is the second heat exchanger, a refrigerant inflow side of the refrigeration evaporator 16 that is the third heat exchanger, and an air The liquid phase refrigerant outflow side of the liquid separator 21 (described later) is connected. The first four-way valve 14 controls the position of the valve body by an electric actuator mechanism (not shown) to allow the condenser 12 and the refrigeration evaporator 15, the gas-liquid separator 21 and the refrigeration evaporator 16 to communicate with each other; Switching between the condenser 12 and the refrigeration evaporator 16, the gas-liquid separator 21 and the refrigeration evaporator 15 is performed.

冷蔵、冷凍蒸発器15、16は、冷蔵、冷凍送風機17、18から送風される空気と冷媒とを熱交換させて冷媒を蒸発させるものである。この送風空気は、冷媒から吸熱されて低温状態となり、冷却対象空間、言い換えると冷蔵空間、冷凍空間へ流れる。   The refrigeration / refrigeration evaporators 15 and 16 evaporate the refrigerant by exchanging heat between the air sent from the refrigeration / refrigeration blowers 17 and 18 and the refrigerant. The blown air absorbs heat from the refrigerant to be in a low temperature state, and flows into the space to be cooled, in other words, the refrigerated space and the frozen space.

さらに、冷蔵、冷凍蒸発器15、16の冷媒流れ下流側には、冷蔵蒸発器15の冷媒流出側、冷蔵蒸発器16の冷媒流出側、エジェクタ20のノズル20a流入側、およびエジェクタ20の気相流入口20cが接続される第2四方弁19が配置されている。第2四方弁19は、弁体の位置を電気アクチュエータ機構(図示せず)により制御して、冷蔵蒸発器15とノズル20a、冷凍蒸発器16と気相流入口20cを連通させる場合と、冷蔵蒸発器15と気相流入口20c、冷凍蒸発器16とノズル20aを連通させる場合とに切換えるものである。   Further, on the downstream side of the refrigerant flow of the refrigeration / freezing evaporators 15, 16, the refrigerant outflow side of the refrigeration evaporator 15, the refrigerant outflow side of the refrigeration evaporator 16, the nozzle 20 a inflow side of the ejector 20, and the gas phase of the ejector 20. A second four-way valve 19 to which the inflow port 20c is connected is disposed. The second four-way valve 19 controls the position of the valve body by an electric actuator mechanism (not shown) to connect the refrigeration evaporator 15 and the nozzle 20a, the refrigeration evaporator 16 and the gas phase inlet 20c, and refrigeration. Switching between the evaporator 15 and the gas phase inlet 20c and the refrigeration evaporator 16 and the nozzle 20a are made to communicate with each other.

エジェクタ20には、凝縮器12で凝縮し、冷蔵蒸発器15または冷凍蒸発器16を通過した液相冷媒を等エントロピ的に減圧膨張するノズル20aと、ノズル20aから噴射する高い速度の冷媒流により冷蔵蒸発器15または冷凍蒸発器16で気相となった冷媒がエジェクタ20内に吸引される気相冷媒流入口20cとが備えられている。   The ejector 20 is provided with a nozzle 20a for condensing the liquid phase refrigerant condensed by the condenser 12 and passing through the refrigeration evaporator 15 or the freezing evaporator 16 in an isentropic manner, and a high-speed refrigerant flow injected from the nozzle 20a. There is provided a gas-phase refrigerant inlet 20c through which the refrigerant that has become a gas phase in the refrigeration evaporator 15 or the refrigeration evaporator 16 is sucked into the ejector 20.

さらに、エジェクタ20にはノズル20aから噴出する冷媒と吸引される気相冷媒が混合する混合部20bと、混合後の冷媒通路面積が徐々に拡大するディフューザ部20dが備えられている。エジェクタ20から流出した冷媒は気液分離器21へ流入する。   Further, the ejector 20 is provided with a mixing portion 20b in which the refrigerant ejected from the nozzle 20a and the sucked gas-phase refrigerant are mixed, and a diffuser portion 20d in which the refrigerant passage area after mixing is gradually increased. The refrigerant that has flowed out of the ejector 20 flows into the gas-liquid separator 21.

気液分離器21は、気液2相状態でエジェクタ20から流出する冷媒を液相と気相とに分離するとともに余剰冷媒を蓄えている。分離された気相冷媒は、再び圧縮機11に吸入され、分離された液相冷媒は前述のように第1四方弁14へ流れる。   The gas-liquid separator 21 separates the refrigerant flowing out from the ejector 20 in a gas-liquid two-phase state into a liquid phase and a gas phase and stores excess refrigerant. The separated gas-phase refrigerant is again sucked into the compressor 11, and the separated liquid-phase refrigerant flows to the first four-way valve 14 as described above.

なお、本実施形態では圧縮機11、第1、第2四方弁14、19、各送風機13、17、18は、図示しない電子制御装置からの電気信号により、圧縮機11の回転数(吐出冷媒量)、第1、第2四方弁の弁体位置、各送風機13、17、18の送風量が制御される。   In the present embodiment, the compressor 11, the first and second four-way valves 14 and 19, and the blowers 13, 17, and 18 are driven by an electric signal from an electronic control device (not shown). Volume), the valve body positions of the first and second four-way valves, and the air volume of each of the blowers 13, 17 and 18 are controlled.

次に、上記構成において本実施形態の作動を図2のp−h(圧力−比エンタルピ)線図を参照しながら説明する。本実施形態では電子制御装置の電子機器制御により冷蔵蒸発器15を除霜する冷蔵蒸発器除霜モードと、冷凍蒸発器16を除霜する冷凍蒸発器除霜モードとが備えられている。   Next, the operation of the present embodiment in the above configuration will be described with reference to the ph (pressure-specific enthalpy) diagram of FIG. In the present embodiment, a refrigeration evaporator defrosting mode for defrosting the refrigeration evaporator 15 and a refrigeration evaporator defrosting mode for defrosting the refrigeration evaporator 16 are provided by electronic device control of the electronic control unit.

まず、図1、図2を使用して冷蔵蒸発器除霜モードを説明する。まず始めに冷媒は圧縮機11に吸入圧縮され高温高圧状態となる(G点〜A点)。そして、凝縮器12に流入した冷媒は凝縮器送風機13で送風される室外空気により、冷却されて凝縮する(A点〜B点)。   First, the refrigeration evaporator defrost mode will be described with reference to FIGS. 1 and 2. First, the refrigerant is sucked and compressed by the compressor 11 to be in a high temperature and high pressure state (G point to A point). And the refrigerant | coolant which flowed into the condenser 12 is cooled and condensed with the outdoor air ventilated with the condenser air blower 13 (A point-B point).

冷蔵蒸発器除霜モードでは第1四方弁14が凝縮器12と冷蔵蒸発器15、気液分離器21と冷凍蒸発器16を連通するように制御されるため、凝縮器12を流出した冷媒は冷蔵蒸発器15へ流入する。冷媒は凝縮器12で室外空気と熱交換、つまり室外空気と略同一温度になっている。   In the refrigeration evaporator defrosting mode, the first four-way valve 14 is controlled so that the condenser 12 and the refrigeration evaporator 15, the gas-liquid separator 21 and the refrigeration evaporator 16 communicate with each other. It flows into the refrigeration evaporator 15. The refrigerant exchanges heat with the outdoor air in the condenser 12, that is, has substantially the same temperature as the outdoor air.

したがって、冷蔵蒸発器15の表面に着霜している場合、つまり表面温度が零度以下となっている場合には、冷蔵蒸発器15に室外温度と略同一温度の冷媒が流入することにより霜を溶かすことができる(B点〜B’点)。なお、本実施形態では冷蔵蒸発器除霜モード時には、冷蔵送風機17は停止している。   Therefore, when the surface of the refrigeration evaporator 15 is frosted, that is, when the surface temperature is less than or equal to zero degrees, the refrigerant having the same temperature as the outdoor temperature flows into the refrigeration evaporator 15 to generate frost. It can be melted (B point to B ′ point). In the present embodiment, the refrigeration blower 17 is stopped during the refrigeration evaporator defrosting mode.

冷蔵蒸発器15から流出した冷媒は、第2四方弁19に流入する。冷蔵蒸発器除霜モードでは、第2四方弁19が冷蔵蒸発器15とノズル20a、冷凍蒸発器16と気相流入口20cを連通するように制御される。   The refrigerant that has flowed out of the refrigeration evaporator 15 flows into the second four-way valve 19. In the refrigeration evaporator defrosting mode, the second four-way valve 19 is controlled to communicate with the refrigeration evaporator 15 and the nozzle 20a, and the refrigeration evaporator 16 and the gas phase inlet 20c.

したがって、冷蔵蒸発器15から流出した冷媒はエジェクタ20のノズル20aへ流入し、等エントロピ的に減圧膨張される(B’点〜D点)。ノズル20aから噴出した冷媒は、高速度の噴出流の巻き込み作用により、気相流入口20cから気相冷媒を吸引する。そして、噴出冷媒と気相冷媒は混合部20bで混合する(E点)。   Therefore, the refrigerant flowing out of the refrigeration evaporator 15 flows into the nozzle 20a of the ejector 20, and is decompressed and expanded in an isentropic manner (points B 'to D). The refrigerant ejected from the nozzle 20a sucks the gas-phase refrigerant from the gas-phase inlet 20c by the entraining action of the high-speed jet flow. And a jet refrigerant and a gaseous-phase refrigerant | coolant mix in the mixing part 20b (E point).

冷媒は混合後、通路断面積が大きくなるディフューザ部20dを通過する。この時、冷媒の速度エネルギが圧力エネルギに変換される(E点〜F点)。ディフューザ部20dを通過して気液分離器21に流入した冷媒は、液相と気相とに分離される(気相がG点、液相がH点)。分離された気相冷媒は再び圧縮機11で昇圧される。   After mixing, the refrigerant passes through the diffuser portion 20d having a larger passage cross-sectional area. At this time, the velocity energy of the refrigerant is converted into pressure energy (points E to F). The refrigerant that has passed through the diffuser portion 20d and entered the gas-liquid separator 21 is separated into a liquid phase and a gas phase (the gas phase is the G point and the liquid phase is the H point). The separated gas-phase refrigerant is pressurized again by the compressor 11.

一方、分離された液相冷媒は第1四方弁14を通過して冷凍蒸発器16へ流入する。この時、冷凍送風機18により冷凍対象空間へ流れる空気から冷媒が吸熱して蒸発する。いいかえると、冷媒が冷凍対象空間へ流れる空気を冷却する(H点〜C’点)。蒸発して気相状態となった冷媒は、前述の気相冷媒としてノズル20aからの噴出流の巻き込み作用によりエジェクタ20内に吸引される。   On the other hand, the separated liquid-phase refrigerant passes through the first four-way valve 14 and flows into the refrigeration evaporator 16. At this time, the refrigerant absorbs heat and evaporates from the air flowing into the space to be frozen by the refrigeration blower 18. In other words, the refrigerant cools the air flowing into the refrigeration target space (point H to point C ′). The refrigerant that has evaporated to a gas phase is sucked into the ejector 20 by the entraining action of the jet flow from the nozzle 20a as the gas phase refrigerant described above.

次に冷凍蒸発器除霜モードについて図2、図4を使用して説明すると、冷媒は圧縮機11に吸入圧縮され高温高圧状態となった(G点〜A点)後に凝縮器12に流入して凝縮する(A点〜B点)。   Next, the refrigeration evaporator defrosting mode will be described with reference to FIGS. 2 and 4. The refrigerant flows into the condenser 12 after being sucked and compressed by the compressor 11 to become a high temperature and high pressure state (points G to A). And condensed (point A to point B).

冷凍蒸発器除霜モードでは第1四方弁14が凝縮器12と冷凍蒸発器16、気液分離器21と冷蔵蒸発器15を連通するように制御されるため、凝縮器12を流出した冷媒は冷蔵蒸発器15へ流入する。冷媒は凝縮器12で室外空気と熱交換、つまり室外空気と略同一温度になっている。   In the refrigeration evaporator defrosting mode, the first four-way valve 14 is controlled to communicate the condenser 12 and the refrigeration evaporator 16, the gas-liquid separator 21 and the refrigeration evaporator 15. It flows into the refrigeration evaporator 15. The refrigerant exchanges heat with the outdoor air in the condenser 12, that is, has substantially the same temperature as the outdoor air.

したがって、冷蔵蒸発器除霜モードと同様理由により、冷凍蒸発器15の表面に着霜し霜を溶かすことができる(C点〜C’点)。なお、本実施形態では冷凍蒸発器除霜モード時には、冷凍送風機18は停止している。
Therefore, for the same reason as in the refrigerated evaporator defrosting mode, the surface of the refrigeration evaporator 15 can be frosted and frost can be melted (point C to point C ′). In the present embodiment, the refrigeration blower 18 is stopped during the refrigeration evaporator defrost mode.

冷凍蒸発器16から流出した冷媒は、第2四方弁19に流入する。冷凍蒸発器除霜モードでは、第2四方弁19が冷蔵蒸発器15と気相流入口20c、冷凍蒸発器16とノズル20aを連通するように制御される。   The refrigerant that has flowed out of the refrigeration evaporator 16 flows into the second four-way valve 19. In the refrigeration evaporator defrosting mode, the second four-way valve 19 is controlled to communicate the refrigeration evaporator 15 and the gas phase inlet 20c, and the refrigeration evaporator 16 and the nozzle 20a.

したがって、冷凍蒸発器16から流出した冷媒はノズル20aへ流入し、等エントロピ的に減圧膨張される(B’点〜D点)。ノズル20aから噴出した冷媒は、高速度の噴出流の巻き込み作用により、気相流入口20cから気相冷媒を吸引した後にディフューザ部20dを通過して(E点〜F点)気液分離器21に流入する。   Therefore, the refrigerant that has flowed out of the refrigeration evaporator 16 flows into the nozzle 20a and is decompressed and expanded in an isentropic manner (points B 'to D). The refrigerant ejected from the nozzle 20a passes through the diffuser portion 20d (points E to F) after sucking the gas-phase refrigerant from the gas-phase inlet 20c by the entrainment action of the high-speed jet flow, and the gas-liquid separator 21 Flow into.

そして、分離された気相冷媒は再び圧縮機11で昇圧され、一方、分離された液相冷媒は第1四方弁14を通過して冷蔵蒸発器16へ流入する。この時、冷蔵送風機17により冷凍対象空間へ流れる空気から冷媒が吸熱して蒸発する。いいかえると、冷媒が冷蔵対象空間へ流れる空気を冷却する(H点〜B’点)。蒸発して気相状態となった冷媒は、前述の気相冷媒としてノズル20aからの噴出流の巻き込み作用によりエジェクタ20内に吸引される。   The separated gas-phase refrigerant is again pressurized by the compressor 11, while the separated liquid-phase refrigerant passes through the first four-way valve 14 and flows into the refrigeration evaporator 16. At this time, the refrigerant absorbs heat and evaporates from the air flowing into the space to be frozen by the refrigeration blower 17. In other words, the refrigerant cools the air flowing into the refrigeration target space (point H to point B '). The refrigerant that has evaporated to a gas phase is sucked into the ejector 20 by the entraining action of the jet flow from the nozzle 20a as the gas phase refrigerant described above.

次に、第1実施形態による作用効果を列挙すると、(1)第1四方弁14、19を切替えることにより、凝縮器12から流出する冷媒を冷蔵蒸発器15または冷凍蒸発器16に流入させて蒸発器15、16の除霜を行うことができる。   Next, the effects of the first embodiment will be listed. (1) By switching the first four-way valves 14 and 19, the refrigerant flowing out of the condenser 12 is caused to flow into the refrigeration evaporator 15 or the freezing evaporator 16. The evaporators 15 and 16 can be defrosted.

本実施形態では凝縮器12から流出した冷媒が冷蔵蒸発器15に流入する冷蔵蒸発器除霜モードと、冷凍蒸発器16に流入する冷凍蒸発器除霜モードを備えている。冷媒は凝縮器12で室外空気と熱交換することにより、室外空気と略同一温度になっている。したがって、冷蔵蒸発器15または冷凍蒸発器16の表面に着霜している場合、つまり表面温度が零度以下となっている場合には、冷蔵蒸発器15または冷蔵蒸発器16に室外温度と略同一温度の冷媒が流入することにより霜を溶かすことができる。   In the present embodiment, a refrigeration evaporator defrost mode in which the refrigerant flowing out of the condenser 12 flows into the refrigeration evaporator 15 and a refrigeration evaporator defrost mode in which the refrigerant flows into the refrigeration evaporator 16 are provided. The refrigerant exchanges heat with the outdoor air in the condenser 12 so that the refrigerant has substantially the same temperature as the outdoor air. Therefore, when the surface of the refrigeration evaporator 15 or the refrigeration evaporator 16 is frosted, that is, when the surface temperature is less than or equal to zero degrees, the refrigeration evaporator 15 or the refrigeration evaporator 16 has substantially the same outdoor temperature. Frost can be melted by the flow of temperature refrigerant.

(2)冷蔵蒸発器15の除霜時には、冷凍蒸発器16において気液分離器21から流入する液相冷媒を蒸発させて空調対象空間の冷却能力を発揮させることができ、冷凍蒸発器の除霜時には冷蔵蒸発器15に空調対象空間の冷却能力を発揮させることができる。   (2) When the refrigeration evaporator 15 is defrosted, the liquid refrigerant flowing from the gas-liquid separator 21 in the refrigeration evaporator 16 can be evaporated to exhibit the cooling capacity of the air-conditioning target space. During frost, the refrigeration evaporator 15 can exhibit the cooling capacity of the air-conditioning target space.

したがって、一方の熱交換器15、16の除霜時に他方の熱交換器15、16が空調運転可能であるため、図6の検討例のようにいずれか1つの熱交換器の除霜を行うと全ての蒸発器の空調運転が停止することを防止できる。これにより、サイクルの作動を総合して考えた場合に圧縮機11の作動に対する空調対象空間の空調効率が低くなることを防止できる。   Therefore, since the other heat exchangers 15 and 16 can perform air-conditioning operation when one of the heat exchangers 15 and 16 is defrosted, one of the heat exchangers is defrosted as in the examination example of FIG. And it can prevent that the air-conditioning operation of all the evaporators stops. Thereby, when the operation | movement of a cycle is considered collectively, it can prevent that the air-conditioning efficiency of the air-conditioning object space with respect to the operation | movement of the compressor 11 becomes low.

(3)第1、第2四方弁14、19により、冷蔵蒸発器除霜モード(冷凍蒸発器16が冷凍運転)と、冷凍蒸発器除霜モード(冷蔵蒸発器15が冷蔵運転)を切り換えることができるため、複数の空間(冷蔵空間、冷凍空間)を冷却することができる。本実施形態では、蒸発器15、16の大きさ(体格)の大小、送風機17、18による送風量の違いなどにより、温度差のある冷蔵空間と冷凍空間の冷却を行っている。   (3) Switching between the refrigeration evaporator defrost mode (the refrigeration evaporator 16 is refrigeration operation) and the refrigeration evaporator defrost mode (the refrigeration evaporator 15 is refrigeration operation) by the first and second four-way valves 14 and 19. Therefore, a plurality of spaces (refrigerated space, frozen space) can be cooled. In the present embodiment, the refrigeration space and the freezing space having a temperature difference are cooled by the size (physique) of the evaporators 15 and 16 and the difference in the amount of air blown by the blowers 17 and 18.

なお、蒸発器15、16で1つの空間を冷却する場合には、除霜により空間内の全ての蒸発器が運転を停止することなく連続して空間の冷却が可能となる。   In the case where one space is cooled by the evaporators 15 and 16, the space can be continuously cooled by defrosting without stopping the operation of all the evaporators in the space.

(4)冷凍サイクルにおいて、冷媒減圧手段および冷媒循環手段としてエジェクタ20を使用したため、サイクルの効率を向上させることができる。   (4) In the refrigeration cycle, since the ejector 20 is used as the refrigerant decompression means and the refrigerant circulation means, the efficiency of the cycle can be improved.

本実施形態では、エジェクタ20のディフューザ部20dで冷媒が昇圧されるため(図2、図4中のE点〜F点)、圧縮機11が吸引する冷媒の圧力を高くすることができる。これにより、圧縮機11が圧縮(昇圧)に要する動力を少なくできるため、サイクルの効率を向上させることができる。   In the present embodiment, since the pressure of the refrigerant is increased by the diffuser portion 20d of the ejector 20 (points E to F in FIGS. 2 and 4), the pressure of the refrigerant sucked by the compressor 11 can be increased. Thereby, since the power which the compressor 11 requires for compression (pressure | voltage rise) can be decreased, the efficiency of a cycle can be improved.

また、ノズル20aで冷媒を減圧膨張させるため、膨張弁などでは発生する渦を減少させることによってもサイクルの効率を向上させることができる。また、従来の膨張弁などを使用した冷凍サイクルと同等の冷凍能力を発揮させる場合には、封入冷媒量を少なくすることができる。   Further, since the refrigerant is decompressed and expanded by the nozzle 20a, the efficiency of the cycle can also be improved by reducing vortices generated in an expansion valve or the like. Moreover, when the refrigerating capacity equivalent to the refrigerating cycle using the conventional expansion valve etc. is exhibited, the amount of encapsulated refrigerant can be reduced.

(第2実施形態)
本実施形態は第1実施形態とほぼ同構成であるが、エジェクタ20と気液分離器21との間の部位に第4熱交換器である第3蒸発器22が配置されている。第3蒸発器22では第3蒸発器送風機23から空調対象空間へ送風される空気とエジェクタ20から流出した冷媒とを熱交換させて、主として液相冷媒が送風空気から吸熱して蒸発する。
(Second Embodiment)
Although the present embodiment has substantially the same configuration as that of the first embodiment, a third evaporator 22 that is a fourth heat exchanger is disposed at a portion between the ejector 20 and the gas-liquid separator 21. In the third evaporator 22, heat exchange is performed between the air blown from the third evaporator blower 23 to the air-conditioning target space and the refrigerant flowing out of the ejector 20, and mainly the liquid phase refrigerant absorbs heat from the blown air and evaporates.

これにより、冷蔵、冷凍蒸発器15、16に加えて第3蒸発器22でも冷蔵、冷凍蒸発器15、16と同一または別の空間を空調することができる。   Thereby, in addition to the refrigeration / freezing evaporators 15 and 16, the third evaporator 22 can also air-condition the same or different space as the refrigeration / freezing evaporators 15 and 16.

(他の実施形態)
上述の実施形態では、冷蔵蒸発器除霜モード時には冷蔵送風機17が停止し、冷凍蒸発器除霜モード時には冷凍送風機18が停止している例を示した。しかし、冷蔵蒸発器除霜モード時には冷蔵送風機17を駆動し、冷凍蒸発器除霜モード時には冷凍送風機18を駆動して冷蔵、冷凍蒸発器15、16が配置された空間の暖房を行ってもよい。暖房が可能となることで空調対象空間の温蔵庫としての利用や、空間内を乾燥させることが可能となる。
(Other embodiments)
In the above-described embodiment, the refrigeration blower 17 is stopped during the refrigeration evaporator defrost mode, and the refrigeration blower 18 is stopped during the refrigeration evaporator defrost mode. However, in the refrigeration evaporator defrost mode, the refrigeration blower 17 may be driven, and in the refrigeration evaporator defrost mode, the refrigeration blower 18 may be driven to refrigerate and heat the space where the refrigeration evaporators 15 and 16 are arranged. . By enabling heating, it becomes possible to use the air-conditioning target space as a warm storage and to dry the space.

また、上述の実施形態ではエジェクタ20のノズル20aを通過する冷媒流量を圧縮機11が変化させる例を示したが、ノズル20aを通過する冷媒流量を変化できる可変流量型エジェクタを使用して、サイクル効率がより最適となるように冷媒流量を変化させてもよい。また、可変流量型のエジェクタの使用により、より冷蔵、冷凍空間の温度差をつけ易くなるのは当然である。   Moreover, although the example in which the compressor 11 changes the refrigerant | coolant flow rate which passes the nozzle 20a of the ejector 20 was shown in the above-mentioned embodiment, a variable flow type ejector which can change the refrigerant | coolant flow rate which passes the nozzle 20a is used, and a cycle is carried out. The refrigerant flow rate may be changed so that the efficiency becomes more optimal. Of course, the use of a variable flow rate type ejector makes it easier to create a temperature difference between the refrigerated and frozen spaces.

また、上述の実施形態では、切換手段として第1、第2四方弁14、19を使用した例を示したが、凝縮器12から流出した冷媒を冷蔵蒸発器15に流す場合と冷凍熱交換器16に流す場合とに切換える第1切換手段、および気液分離器21で分離された液相冷媒を冷蔵蒸発器15に流す場合と冷凍蒸発器16に流す場合とに切換える第2切換手段を組み合わせて実質的に第1四方弁14と同様の冷媒通路切換をしてもよい。   In the above-described embodiment, the first and second four-way valves 14 and 19 are used as switching means. However, the refrigerant flowing out of the condenser 12 flows to the refrigeration evaporator 15 and the refrigeration heat exchanger. The first switching means for switching to the case of flowing to 16 and the second switching means for switching to the case of flowing the liquid refrigerant separated by the gas-liquid separator 21 to the refrigeration evaporator 15 and the case of flowing to the refrigeration evaporator 16 are combined. Thus, the refrigerant passage may be switched substantially similar to the first four-way valve 14.

さらに、冷蔵蒸発器15から流出した冷媒をノズル20aに流す場合と気相流入口20cに流す場合とに切換える第3切換手段、および冷凍蒸発器16から流出した冷媒をノズル20aに流す場合と気相流入口20cに流す場合とに切換える第4切換手段を組み合わせて実質的に第2四方弁19と同様の冷媒通路切換をしてもよい。   Further, a third switching means for switching between flowing the refrigerant flowing out of the refrigeration evaporator 15 to the nozzle 20a and flowing to the gas phase inlet 20c, and flowing the refrigerant flowing out from the refrigeration evaporator 16 to the nozzle 20a. The refrigerant passage switching substantially similar to that of the second four-way valve 19 may be performed by combining the fourth switching means for switching to the case of flowing to the phase inlet 20c.

また、上述の実施形態では、冷媒の種類を特定しなかったが、冷媒はフロン系冷媒、HCFC系、HFC系などの代替フロン、HC系の自然冷媒、二酸化炭素など蒸気圧縮式サイクルに適用できるものであればよい。なお、二酸化炭素を冷媒として用いる場合には、凝縮器で冷媒が凝縮しない超臨界サイクルとなるため、凝縮器は放熱器として機能することとなる。   In the above-described embodiment, the type of the refrigerant is not specified, but the refrigerant can be applied to a vapor compression cycle such as a fluorocarbon refrigerant, an alternative fluorocarbon such as an HCFC or HFC, an HC natural refrigerant, or carbon dioxide. Anything is acceptable. Note that when carbon dioxide is used as the refrigerant, the condenser functions as a radiator because a supercritical cycle in which the refrigerant is not condensed by the condenser occurs.

また、凝縮器12の冷媒流れ下流側部位にレシーバが配置されていてもよい。   In addition, a receiver may be disposed in the refrigerant flow downstream portion of the condenser 12.

また、冷蔵、冷凍蒸発器15、16の冷媒流れ上流側に冷媒の減圧および流量調整を行う固定絞り、例えばキャピラリチューブなどを配置してもよい。また、冷蔵、冷凍、第3蒸発器15、16、22出口の冷媒過熱度に応じて絞り開度を変更する可変絞り、例えば膨張弁を配置してもよい。   In addition, a fixed throttle, such as a capillary tube, for reducing the pressure of the refrigerant and adjusting the flow rate may be arranged on the upstream side of the refrigerant flow in the refrigeration and refrigeration evaporators 15 and 16. Moreover, you may arrange | position the variable throttle, for example, an expansion valve which changes throttle opening according to refrigeration, freezing, and the refrigerant | coolant superheat degree of the 3rd evaporator 15,16,22 exit.

また、上述の実施形態では冷蔵、冷凍、第3蒸発器15、16、22が別体となっている例を示したが、これらが一体となっていてもよい。   Moreover, although the refrigeration, freezing, and the 3rd evaporators 15, 16, and 22 were shown in the above-mentioned embodiment, these may be united.

本発明の第1実施形態に係るエジェクタサイクルの模式図であり、冷蔵蒸発器除霜モード時を示している。It is a schematic diagram of the ejector cycle which concerns on 1st Embodiment of this invention, and the time of refrigeration evaporator defrost mode is shown. 冷蔵蒸発器除霜モード時のp−h線図である。It is a ph diagram at the time of refrigeration evaporator defrost mode. 本発明の第1実施形態に係るエジェクタサイクルの模式図であり、冷凍蒸発器除霜モード時を示している。It is a schematic diagram of the ejector cycle which concerns on 1st Embodiment of this invention, and the time of freezing evaporator defrost mode is shown. 冷凍蒸発器除霜モード時のp−h線図である。It is a ph diagram at the time of freezing evaporator defrost mode. 本発明の第2実施形態に係るエジェクタサイクルの模式図であり、冷蔵蒸発器除霜モード時を示している。It is a schematic diagram of the ejector cycle which concerns on 2nd Embodiment of this invention, and the time of refrigeration evaporator defrost mode is shown. 特許文献1に係るエジェクタサイクル(実線部)および本発明者が検討した検討例(点線部)の模式図である。It is a schematic diagram of the ejector cycle (solid line part) which concerns on patent document 1, and the examination example (dotted line part) which this inventor examined.

符号の説明Explanation of symbols

11…圧縮機、12…凝縮器(第1熱交換器)、14…第1四方弁(第1切換手段)、
15…冷蔵蒸発器(第2熱交換器)、16…冷凍蒸発器(第3熱交換器)、
17…冷蔵送風機(第2熱交換器送風手段)、
18…冷凍熱交換器(第3熱交換器送風手段)、19…第2四方弁(第2切換手段)、
20…エジェクタ、20a…ノズル、20c…気相冷媒流入口、21…気液分離器、
22…第3蒸発器(第4熱交換器)。
DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... Condenser (1st heat exchanger), 14 ... 1st four-way valve (1st switching means),
15 ... refrigerated evaporator (second heat exchanger), 16 ... refrigeration evaporator (third heat exchanger),
17 ... Refrigerated blower (second heat exchanger blower),
18 ... Refrigeration heat exchanger (third heat exchanger blowing means), 19 ... Second four-way valve (second switching means),
20 ... Ejector, 20a ... Nozzle, 20c ... Gas phase refrigerant inlet, 21 ... Gas-liquid separator,
22 ... 3rd evaporator (4th heat exchanger).

Claims (5)

気相冷媒を吸引圧縮する圧縮機(11)から吐出された冷媒の熱を放熱させる第1熱交換器(12)と、
冷媒と空調対象空間に吹き出す空気とを熱交換させる第2熱交換器(15)および第3熱交換器(16)と、
内部に流入する冷媒を等エントロピ的に減圧膨張させるノズル(20a)と、前記ノズル(20a)から噴射する高い速度の冷媒流により気相冷媒が内部に吸引される気相冷媒流入口(20c)とを有するエジェクタ(20)と、
前記エジェクタ(20)から流出する冷媒を気相冷媒と液相冷媒とに分離する気液分離器(21)と、
前記第2熱交換器(15)と前記第1熱交換器(12)とを連通させて前記第2熱交換器(15)に前記第1熱交換器(12)から流出した冷媒を流入させると同時に、前記第3熱交換器(16)と前記気液分離器(21)とを連通させて前記第3熱交換器(16)に前記気液分離器(21)で分離された液相冷媒を流入させる冷媒通路、および、前記第3熱交換器(16)と前記第1熱交換器(12)とを連通させて前記第3熱交換器(16)に前記第1熱交換器(12)から流出した冷媒を流入させると同時に、前記第2熱交換器(15)と前記気液分離器(21)とを連通させて前記第2熱交換器(15)に前記気液分離器(21)で分離された液相冷媒を流入させる冷媒通路を切換える第1切換手段(14)と、
前記ノズル(20a)と前記第2熱交換器(15)とを連通させて前記ノズル(20a)に前記第2熱交換器(15)から流出した冷媒を流入させると同時に、前記気相冷媒流入口(20c)と前記第3熱交換器(16)とを連通させて前記気相冷媒流入口(20c)に前記第3熱交換器(16)から流出した冷媒を流入させる冷媒通路、および、前記ノズル(20a)と前記第3熱交換器(16)とを連通させて前記ノズル(20a)に前記第3熱交換器(16)から流出した冷媒を流入させると同時に、前記気相冷媒流入口(20c)と前記第2熱交換器(15)とを連通させて前記気相冷媒流入口(20c)に前記第2熱交換器(15)から流出した冷媒を流入させる冷媒通路を切換える第2切換手段(19)と、
前記第1切替手段(14)および前記第2切替手段(19)を制御する制御装置とを備え、
前記制御装置は、
前記第熱交換器(15)と前記第1熱交換器(12)とを連通させると同時に、前記第熱交換器(16)と前記気液分離器(21)とを連通させるように前記第1切替手段(14)を制御するとともに、前記ノズル(20a)と前記第2熱交換器(15)とを連通させると同時に、前記気相冷媒流入口(20c)と前記第3熱交換器(16)とを連通させるように前記第2切替手段(19)を制御することによって、前記圧縮機(11)から吐出した冷媒を前記第1熱交換器(12)→前記第2熱交換器(15)→前記ノズル(20a)→前記気液分離器(21)の液相冷媒→前記第3熱交換器(16)→前記気相冷媒流入口(20c)の順に流し、前記第2熱交換器(15)を除霜しながら前記第3熱交換器(16)で蒸発した冷媒を前記エジェクタ(20)に吸引させる第2熱交換器除霜モードを実行する制御状態と、
前記第熱交換器(16)と前記第1熱交換器(12)とを連通させると同時に、前記第熱交換器(15)と前記気液分離器(21)とを連通させるように前記第1切替手段(14)を制御するとともに、前記ノズル(20a)と前記第3熱交換器(16)とを連通させると同時に、前記気相冷媒流入口(20c)と前記第2熱交換器(15)とを連通させるように前記第2切替手段を制御することによって、前記圧縮機(11)から吐出した冷媒を前記第1熱交換器(12)→前記第3熱交換器(16)→前記ノズル(20a)→前記気液分離器(21)の液相冷媒→前記第2熱交換器(15)→前記気相冷媒流入口(20c)の順に流し、前記第3熱交換器(16)を除霜しながら前記第2熱交換器(15)で蒸発した冷媒を前記エジェクタ(20)に吸引させる第3熱交換器除霜モードを実行する制御状態とを有することを特徴とするエジェクタサイクル。
A first heat exchanger (12) that dissipates heat of the refrigerant discharged from the compressor (11) that sucks and compresses the gas-phase refrigerant;
A second heat exchanger (15) and a third heat exchanger (16) for exchanging heat between the refrigerant and the air blown into the air-conditioning target space;
A nozzle (20a) that decompresses and expands the refrigerant flowing into the interior isentropically, and a gas-phase refrigerant inlet (20c) through which the gas-phase refrigerant is sucked into the interior by a high-speed refrigerant flow injected from the nozzle (20a) An ejector (20) having:
A gas-liquid separator (21) for separating the refrigerant flowing out of the ejector (20) into a gas-phase refrigerant and a liquid-phase refrigerant;
The second heat exchanger (15) and the first heat exchanger (12) are communicated to allow the refrigerant flowing out of the first heat exchanger (12) to flow into the second heat exchanger (15). At the same time, the liquid phase separated from the third heat exchanger (16) by the gas-liquid separator (21) by communicating the third heat exchanger (16) and the gas-liquid separator (21). A refrigerant passage through which a refrigerant flows, and the third heat exchanger (16) and the first heat exchanger (16) communicated with the first heat exchanger (16). At the same time as the refrigerant that has flowed out from 12) is introduced, the second heat exchanger (15) and the gas-liquid separator (21) are communicated with each other to connect the gas-liquid separator to the second heat exchanger (15). First switching means (14) for switching the refrigerant passage through which the liquid-phase refrigerant separated in (21) flows;
The nozzle (20a) and the second heat exchanger (15) are connected to allow the refrigerant flowing out of the second heat exchanger (15) to flow into the nozzle (20a), and at the same time, the gas phase refrigerant flow A refrigerant passage through which the refrigerant flowing out of the third heat exchanger (16) flows into the gas-phase refrigerant inlet (20c) by communicating the inlet (20c) and the third heat exchanger (16); and The nozzle (20a) and the third heat exchanger (16) are connected to allow the refrigerant flowing out of the third heat exchanger (16) to flow into the nozzle (20a), and at the same time, the gas phase refrigerant flow First, the inlet (20c) and the second heat exchanger (15) are communicated to switch the refrigerant passage through which the refrigerant flowing out of the second heat exchanger (15) flows into the gas-phase refrigerant inlet (20c). 2 switching means (19);
A control device for controlling the first switching means (14) and the second switching means (19),
The controller is
The second heat exchanger ( 15 ) and the first heat exchanger (12) are communicated with each other, and at the same time, the third heat exchanger ( 16 ) and the gas-liquid separator (21) are communicated with each other. While controlling the said 1st switching means (14) and making the said nozzle (20a) and the said 2nd heat exchanger (15) communicate, simultaneously with the said gaseous-phase refrigerant | coolant inflow port (20c) and the said 3rd heat exchange. By controlling the second switching means (19) so as to communicate with the compressor (16), the refrigerant discharged from the compressor (11) is converted into the first heat exchanger (12) → the second heat exchange. Flow in the order of the vessel (15) → the nozzle (20a) → the liquid-phase refrigerant of the gas-liquid separator (21) → the third heat exchanger (16) → the gas-phase refrigerant inlet (20c), Refrigerant evaporated in the third heat exchanger (16) while defrosting the heat exchanger (15) A control state for executing a second heat exchanger defrosting mode for causing the ejector (20) to suck
The third heat exchanger ( 16 ) and the first heat exchanger (12) are communicated with each other, and at the same time, the second heat exchanger ( 15 ) and the gas-liquid separator (21) are communicated with each other. While controlling the said 1st switching means (14) and making the said nozzle (20a) and the said 3rd heat exchanger (16) communicate, simultaneously with the said gaseous-phase refrigerant | coolant inflow port (20c) and the said 2nd heat exchange. The refrigerant discharged from the compressor (11) is transferred from the first heat exchanger (12) to the third heat exchanger (16 by controlling the second switching means so as to communicate with the compressor (15). ) → the nozzle (20a) → the liquid-phase refrigerant of the gas-liquid separator (21) → the second heat exchanger (15) → the gas-phase refrigerant inlet (20c), and the third heat exchanger. The refrigerant evaporated in the second heat exchanger (15) is defrosted while defrosting (16). The ejector cycle characterized by having the control state which performs the 3rd heat exchanger defrost mode made to attract to an ejector (20).
前記第1、第2切換手段は、第1、第2四方弁(14、19)であることを特徴とする請求項1に記載のエジェクタサイクル。 The ejector cycle according to claim 1, wherein the first and second switching means are first and second four-way valves (14, 19). 前記エジェクタ(20)と前記気液分離器(21)との間の部位に、冷媒と空調対象空間に吹き出す空気とを熱交換させる第4熱交換器(22)を備えたことを特徴とする請求項1または2に記載のエジェクタサイクル。 A fourth heat exchanger (22) for exchanging heat between the refrigerant and the air blown into the air-conditioning target space is provided at a portion between the ejector (20) and the gas-liquid separator (21). The ejector cycle according to claim 1 or 2. 前記第2熱交換器(15)へ空調対象空間に吹き出す空気を送風する第2熱交換器送風手段(17)と、
前記第3熱交換器(16)へ空調対象空間に吹き出す空気を送風する第3熱交換器送風手段(18)とを備え、
前記第2熱交換器除霜モード時に前記第2熱交換器送風手段(17)が送風し、前記第3熱交換器除霜モード時に前記第3熱交換器送風手段(18)が送風するようになっていることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタサイクル。
Second heat exchanger blow means (17) for blowing air blown into the air-conditioning target space to the second heat exchanger (15);
A third heat exchanger blowing means (18) for blowing air blown into the air-conditioning target space to the third heat exchanger (16),
The second heat exchanger blower (17) blows air during the second heat exchanger defrost mode, and the third heat exchanger blower (18) blows during the third heat exchanger defrost mode. The ejector cycle according to any one of claims 1 to 3, wherein:
前記冷媒は、フロン系冷媒、HC系冷媒、CO冷媒のいずれか1つであることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタサイクル。 5. The ejector cycle according to claim 1, wherein the refrigerant is any one of a fluorocarbon refrigerant, an HC refrigerant, and a CO 2 refrigerant.
JP2004118892A 2004-04-14 2004-04-14 Ejector cycle Expired - Fee Related JP4196873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118892A JP4196873B2 (en) 2004-04-14 2004-04-14 Ejector cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118892A JP4196873B2 (en) 2004-04-14 2004-04-14 Ejector cycle

Publications (2)

Publication Number Publication Date
JP2005300067A JP2005300067A (en) 2005-10-27
JP4196873B2 true JP4196873B2 (en) 2008-12-17

Family

ID=35331810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118892A Expired - Fee Related JP4196873B2 (en) 2004-04-14 2004-04-14 Ejector cycle

Country Status (1)

Country Link
JP (1) JP4196873B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148629A (en) * 2013-02-28 2013-06-12 西安交通大学 Gas-liquid phase ejector synergy refrigeration system for double temperature direct cooling-type refrigerator
US20140096557A1 (en) * 2011-07-01 2014-04-10 Mitsubishi Electric Corporation Refrigeration cycle device and air-conditioning apparatus
CN103822393A (en) * 2012-11-16 2014-05-28 珠海格力电器股份有限公司 Air-conditioning system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747967B2 (en) * 2006-06-29 2011-08-17 株式会社デンソー Vapor compression cycle
JP4501984B2 (en) 2007-10-03 2010-07-14 株式会社デンソー Ejector refrigeration cycle
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
JP5003665B2 (en) * 2008-04-18 2012-08-15 株式会社デンソー Ejector refrigeration cycle
JP5018756B2 (en) * 2008-04-18 2012-09-05 株式会社デンソー Ejector refrigeration cycle
KR101200273B1 (en) 2009-12-09 2012-11-12 한라공조주식회사 Refrigerant apparatus of air conditioner for vehicles
CN104089424B (en) * 2014-07-04 2017-01-11 珠海格力电器股份有限公司 Ejection refrigerating cycle device
CN104048448B (en) * 2014-07-07 2016-08-24 珠海格力电器股份有限公司 Injection refrigerating plant, the circulatory system, the apparatus of air conditioning and control method
CN106322807B (en) 2015-07-03 2021-05-28 开利公司 Ejector heat pump
CN105805981A (en) * 2016-05-23 2016-07-27 华北理工大学 Dual-operation compression-ejection heat pump air conditioner system
JP6528733B2 (en) * 2016-06-21 2019-06-12 株式会社デンソー Ejector type refrigeration cycle
CN107120863A (en) * 2017-06-14 2017-09-01 珠海格力电器股份有限公司 Heat pump
KR102046129B1 (en) * 2018-06-20 2019-11-18 티이컴퍼니 유한회사 Dual type refrigerating system for defrosting operation
JPWO2022201336A1 (en) * 2021-03-24 2022-09-29
CN113418317A (en) * 2021-06-08 2021-09-21 瀚润联合高科技发展(北京)有限公司 Ejection evaporation cooling type air-cooled heat pump unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140096557A1 (en) * 2011-07-01 2014-04-10 Mitsubishi Electric Corporation Refrigeration cycle device and air-conditioning apparatus
US9447993B2 (en) * 2011-07-01 2016-09-20 Mitsubishi Electric Corporation Refrigeration cycle device and air-conditioning apparatus
CN103822393A (en) * 2012-11-16 2014-05-28 珠海格力电器股份有限公司 Air-conditioning system
CN103822393B (en) * 2012-11-16 2016-03-23 珠海格力电器股份有限公司 Air-conditioning system
CN103148629A (en) * 2013-02-28 2013-06-12 西安交通大学 Gas-liquid phase ejector synergy refrigeration system for double temperature direct cooling-type refrigerator

Also Published As

Publication number Publication date
JP2005300067A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4196873B2 (en) Ejector cycle
JP4984453B2 (en) Ejector refrigeration cycle
JP4639541B2 (en) Cycle using ejector
US7779647B2 (en) Ejector and ejector cycle device
JP4595607B2 (en) Refrigeration cycle using ejector
JP4600200B2 (en) Ejector refrigeration cycle
JP3931899B2 (en) Ejector cycle
JP5195364B2 (en) Ejector refrigeration cycle
JP4600208B2 (en) Cycle using ejector
JP4501984B2 (en) Ejector refrigeration cycle
JP2004198002A (en) Vapor compression type refrigerator
JP5018724B2 (en) Ejector refrigeration cycle
JP4400522B2 (en) Ejector refrigeration cycle
JP5359231B2 (en) Ejector refrigeration cycle
JP6708161B2 (en) Ejector type refrigeration cycle
JP2004257694A (en) Vapor compression type refrigerator
JP4930214B2 (en) Refrigeration cycle equipment
JP4577365B2 (en) Cycle using ejector
JP2007003171A (en) Ejector operated cycle
JP2007078349A (en) Ejector cycle
WO2013018298A1 (en) Refrigeration cycle device
JP4270098B2 (en) Ejector cycle
JP4400533B2 (en) Ejector refrigeration cycle
JP2009138952A (en) Brine type cooling device
JP4835296B2 (en) Ejector refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees