JP3798418B2 - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP3798418B2
JP3798418B2 JP2005008360A JP2005008360A JP3798418B2 JP 3798418 B2 JP3798418 B2 JP 3798418B2 JP 2005008360 A JP2005008360 A JP 2005008360A JP 2005008360 A JP2005008360 A JP 2005008360A JP 3798418 B2 JP3798418 B2 JP 3798418B2
Authority
JP
Japan
Prior art keywords
unit
cooling water
compressor
refrigerant
driving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005008360A
Other languages
Japanese (ja)
Other versions
JP2005201631A (en
Inventor
鍾文 金
炯濬 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2005201631A publication Critical patent/JP2005201631A/en
Application granted granted Critical
Publication of JP3798418B2 publication Critical patent/JP3798418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空調機に係り、特に、初期駆動時に圧縮機に液冷媒が流入されることを最小化する空調機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that minimizes the flow of liquid refrigerant into a compressor during initial driving.

一般に、空調機は、冷凍サイクルを使用して主居用建物や事務用建物の室内温度と湿度のような状態量を調節して空気調和を実現する装置である。ここで、空調機は、冷媒の圧縮、凝縮、膨張及び蒸発を繰り返すことによって、冬には凝縮による放熱で暖房を実現し、夏には蒸発による吸熱で冷房を実現する装置である。   In general, an air conditioner is an apparatus that realizes air conditioning by adjusting a state quantity such as a room temperature and humidity in a main building or office building using a refrigeration cycle. Here, the air conditioner is a device that realizes heating by heat dissipation by condensation in winter and cooling by heat absorption by evaporation in the summer by repeating compression, condensation, expansion, and evaporation of the refrigerant.

また、空調機の中でGHP(Gas engine−driven heat pump)方式の空調機は、ガスエンジンの駆動力によって圧縮機を運転しエンジン廃熱を活用する空調機として、夏の冷房需要の増加による電力需給の不安定問題を引起こす恐れがあるEHP(Electric motor−driven Pump)方式の空調機の対案として広く利用されている。   Among the air conditioners, the GHP (Gas engine-driven heat pump) type air conditioner is an air conditioner that operates the compressor by the driving force of the gas engine and uses engine waste heat due to an increase in cooling demand in summer. It is widely used as an alternative to an EHP (Electric motor-drive Pump) type air conditioner that may cause an unstable power supply and demand problem.

ところが、このような従来の空調機において、圧縮機の初期駆動時に圧縮機に液状の冷媒(以下、“液冷媒”という)が流入される場合が発生することができる。例えば、圧縮機の初期駆動時に圧縮機に吸入される配管内の液冷媒の蒸発前に圧縮機に流入される液冷媒の圧縮、即ち液圧縮が発生するのに、これは圧縮機の寿命に悪影響を及ぼす。   However, in such a conventional air conditioner, a liquid refrigerant (hereinafter referred to as “liquid refrigerant”) may flow into the compressor when the compressor is initially driven. For example, the compression of the liquid refrigerant flowing into the compressor before the evaporation of the liquid refrigerant in the pipe sucked into the compressor during the initial driving of the compressor, i.e., liquid compression occurs. Adversely affect.

これによって、液冷媒が圧縮機に流入されることを防止するためにアキュムレータの容量を大きく設計して液冷媒が流入されることを防止する方法が提案されているが、アキュムレータの容量が増加されることによって製造コストが増加される短小がある。また、アキュムレータに流入された冷媒を増発させるためにホットガス・バイパスを利用するのに、この場合、システムの能力を低下させる問題がある。   Thus, a method has been proposed in which the capacity of the accumulator is designed to be large in order to prevent the liquid refrigerant from flowing into the compressor to prevent the liquid refrigerant from flowing in, but the capacity of the accumulator is increased. As a result, the manufacturing cost is increased. In addition, in order to increase the amount of refrigerant that has flowed into the accumulator, hot gas bypass is used. In this case, there is a problem that the capacity of the system is reduced.

従って、本発明の目的は、製造コストを減少させながら初期駆動時に圧縮機に液冷媒が流入されることを最小化することができる空調機を提供することにある。   Accordingly, an object of the present invention is to provide an air conditioner capable of minimizing the flow of liquid refrigerant into the compressor during initial driving while reducing the manufacturing cost.

前記目的を達成するために本発明によるは、室内熱交換部及び室外熱交換部と、前記室内熱交換部及び前記室外熱交換部と閉ループを形成し、冷媒を圧縮させる圧縮機と、前記圧縮機を駆動させるための圧縮機駆動部と、を有する空調機において、前記圧縮機駆動部と前記圧縮機の間の動力伝達を開閉する動力開閉部と、前記圧縮機駆動部を冷却させるための冷却水が循環し、前記圧縮機駆動部を冷却させた冷却水によって前記圧縮機に流入される冷媒を加熱するための冷媒加熱循環経路を形成する冷却水管と、前記冷却水管の前記冷媒加熱循環経路上に設けられて、前記圧縮機駆動部を冷却させた冷却水によって前記圧縮機に流入される冷媒を加熱する冷媒加熱部と、前記圧縮機駆動部を冷却させた冷却水が前記冷媒加熱循環経路に沿って循環することを開閉する冷却水弁と、前記圧縮機駆動部の初期駆動時に前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、所定の時間の経過後、前記動力開閉部及び前記冷却水弁を開放する制御部を含むことを特徴とする。   To achieve the above object, according to the present invention, an indoor heat exchange unit and an outdoor heat exchange unit, a compressor that forms a closed loop with the indoor heat exchange unit and the outdoor heat exchange unit, and compresses the refrigerant, and the compression An air conditioner having a compressor driving unit for driving the machine, a power opening and closing unit for opening and closing power transmission between the compressor driving unit and the compressor, and for cooling the compressor driving unit Cooling water circulates and forms a refrigerant heating circulation path for heating the refrigerant flowing into the compressor by the cooling water that has cooled the compressor driving unit, and the refrigerant heating circulation of the cooling water pipe A refrigerant heating unit that is provided on the path and heats the refrigerant flowing into the compressor with cooling water that has cooled the compressor driving unit, and cooling water that has cooled the compressor driving unit is the refrigerant heating Along the circulation path A cooling water valve for opening and closing the ring, and driving the compressor driving unit with the power opening and closing unit and the cooling water valve closed when the compressor driving unit is initially driven. It includes a control unit that opens the power opening / closing unit and the cooling water valve after elapse of time.

ここで、前記圧縮機駆動部を冷却させた冷却水の温度を感知する温度感知部をさらに含み、前記制御部は、前記圧縮機駆動部の初期駆動時に動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が所定の基準温度を超過する時、前記動力開閉部及び前記冷却水弁を開放することが好ましい。   The control unit further includes a temperature sensing unit that senses a temperature of cooling water that has cooled the compressor driving unit, and the control unit closes the power opening / closing unit and the cooling water valve when the compressor driving unit is initially driven. After the compressor driving unit is driven in the state of being operated, it is preferable to open the power opening / closing unit and the cooling water valve when the temperature sensed by the temperature sensing unit exceeds a predetermined reference temperature.

また、前記制御部は、前記圧縮機駆動部の初期駆動時に前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が前記所定の基準温度を超過する時、前記冷却水弁の開放後、所定の時間の経過後、前記動力開閉部を開放することが好ましい。   In addition, the control unit senses the temperature sensing unit after driving the compressor driving unit with the power opening / closing unit and the cooling water valve closed when the compressor driving unit is initially driven. When the temperature exceeds the predetermined reference temperature, it is preferable that the power opening / closing part is opened after a predetermined time has elapsed after the cooling water valve is opened.

また、前記室内熱交換部と前記室外熱交換部との間に設けられて冷媒を膨張させる膨張弁をさらに含み、前記制御部は、前記圧縮機駆動部の初期駆動時に前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が前記所定の基準温度を超過する時、前記膨張弁を開放することが好ましい。   And an expansion valve provided between the indoor heat exchange unit and the outdoor heat exchange unit to expand the refrigerant, and the control unit includes the power opening and closing unit and the power opening and closing unit when the compressor driving unit is initially driven. After the compressor driving unit is driven in a state where the cooling water valve is closed, the expansion valve is preferably opened when the temperature sensed by the temperature sensing unit exceeds the predetermined reference temperature.

また、前記冷却水管は、前記圧縮機駆動部を冷却させた冷却水が前記室外熱交換器側に循環する室外熱交換循環経路を形成し、前記冷却水弁は、前記圧縮機駆動部を冷却させた冷却水が前記冷媒加熱循環経路と前記室外熱交換循環経路の中でいずれか一つに沿って選択的に循環することができる。   The cooling water pipe forms an outdoor heat exchange circulation path through which the cooling water that has cooled the compressor driving unit circulates to the outdoor heat exchanger, and the cooling water valve cools the compressor driving unit. The cooled cooling water can be selectively circulated along one of the refrigerant heating circulation path and the outdoor heat exchange circulation path.

また、前記制御部は、前記圧縮機駆動部を冷却させた冷却水が、冷房運転時に前記室外熱交換循環経路に沿って循環し、暖房運転時に前記冷媒加熱循環経路に沿って循環するように前記冷却水弁を制御することが好ましい。   The control unit may be configured such that the cooling water that has cooled the compressor driving unit circulates along the outdoor heat exchange circulation path during cooling operation and circulates along the refrigerant heating circulation path during heating operation. It is preferable to control the cooling water valve.

ここで、前記圧縮機に流入される冷媒の過熱度を検出する過熱度検出部をさらに含み、前記制御部は、前記圧縮機駆動部の初期駆動時前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が所定の基準温度を超過した状態で前記過熱度検出部によって検出された過熱度が所定の基準過熱度を超過する場合、冷房運転または暖房運転に対応して前記冷却水弁を制御することができる。   The control unit further includes a superheat degree detection unit that detects a superheat degree of the refrigerant flowing into the compressor, and the control unit closes the power opening / closing unit and the cooling water valve when the compressor drive unit is initially driven. After the compressor driving unit is driven in a heated state, the degree of superheat detected by the superheat degree detecting unit in a state where the temperature sensed by the temperature sensing unit exceeds a predetermined reference temperature is a predetermined reference overheating. When the temperature exceeds, the cooling water valve can be controlled corresponding to the cooling operation or the heating operation.

また、前記動力伝達部は、マグネチッククラッチを含むことが好ましい。   The power transmission unit preferably includes a magnetic clutch.

上述したように、本発明によれば、製造コストをダウンさせ、初期駆動時に圧縮機に液冷媒が流入されることを最小化することができる空調機を提供することができる。   As described above, according to the present invention, it is possible to provide an air conditioner that can reduce manufacturing costs and minimize the inflow of liquid refrigerant into the compressor during initial driving.

以下、添付した図面を参照して、本発明に対して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

本発明による空調機は、図1に示すように、閉ループを形成するように冷媒管によって順次的に連結された圧縮機6、室外熱交換部2、膨張弁7及び室内熱交換部1を含む。冷媒管の中で圧縮機6の吐出側と膨張弁7とを連結する冷媒管は、圧縮機6から吐出された高圧の冷媒の流れを案内する高圧管であり、膨張弁7と圧縮機6の吸入側を連結する冷媒管は膨張弁7によって膨張された低圧の冷媒の流れを案内する低圧管である。   As shown in FIG. 1, the air conditioner according to the present invention includes a compressor 6, an outdoor heat exchange unit 2, an expansion valve 7, and an indoor heat exchange unit 1 that are sequentially connected by a refrigerant pipe so as to form a closed loop. . The refrigerant pipe that connects the discharge side of the compressor 6 and the expansion valve 7 in the refrigerant pipe is a high-pressure pipe that guides the flow of the high-pressure refrigerant discharged from the compressor 6, and the expansion valve 7 and the compressor 6. The refrigerant pipe connecting the suction side is a low-pressure pipe for guiding the flow of the low-pressure refrigerant expanded by the expansion valve 7.

低圧管と高圧管は、四方弁10によって相互に交差される。四方弁10は、冷媒の流れを切換すことによって、本発明による空調機が冷房と暖房を選択的に行うことになる。ここで、暖房運転時には、冷媒が図1に示すように点線の矢印方向、即ち、圧縮機6、四方弁10、室内熱交換部1、膨張弁7、室外熱交換部2、四方弁10、圧縮機6に沿って循環することになる。これによって、暖房運転時の高圧管は、圧縮機6の吐出側、四方弁10、室内熱交換部1及び膨張弁7を連結する冷媒管になり、低圧管は、膨張弁7、室外熱交換部2、四方弁10及び圧縮機6の吸入側を連結する冷媒管になる。また、冷房運転時には、図1で実線矢印の方向、即ち、圧縮機6、四方弁10、室外熱交換部2、膨張弁7、室内熱交換部1、四方弁10、圧縮機6に沿って循環する。これによって、冷房運転時の高圧管は、圧縮機6の吐出側、四方弁10、室外熱交換部2及び膨張弁7を連結する冷媒管になり、低圧管は、膨張弁7、室内熱交換部1、四方弁10及び圧縮機6の吸入側を連結する冷媒管になる。   The low pressure pipe and the high pressure pipe are crossed by a four-way valve 10. The four-way valve 10 selectively cools and heats the air conditioner according to the present invention by switching the flow of the refrigerant. Here, during the heating operation, as shown in FIG. 1, the refrigerant is in the direction of the dotted arrow, that is, the compressor 6, the four-way valve 10, the indoor heat exchange unit 1, the expansion valve 7, the outdoor heat exchange unit 2, the four-way valve 10, It will circulate along the compressor 6. As a result, the high pressure pipe during heating operation becomes a refrigerant pipe connecting the discharge side of the compressor 6, the four-way valve 10, the indoor heat exchange unit 1 and the expansion valve 7, and the low pressure pipe is the expansion valve 7 and the outdoor heat exchange. It becomes a refrigerant pipe which connects section 2, four-way valve 10, and the suction side of compressor 6. In the cooling operation, the direction of the solid arrow in FIG. 1, that is, along the compressor 6, the four-way valve 10, the outdoor heat exchange unit 2, the expansion valve 7, the indoor heat exchange unit 1, the four-way valve 10, and the compressor 6. Circulate. As a result, the high pressure pipe during the cooling operation becomes a refrigerant pipe connecting the discharge side of the compressor 6, the four-way valve 10, the outdoor heat exchange unit 2 and the expansion valve 7, and the low pressure pipe is the expansion valve 7 and the indoor heat exchange. It becomes a refrigerant pipe which connects section 1, four-way valve 10, and the suction side of compressor 6.

圧縮機6の吐出側と四方弁10との間の高圧管の上には、オイル分離器8が設けられている。オイル分離器8は、圧縮機6から吐出される冷媒に含まれたオイルを濾過してさらに圧縮機6に移動させる。ここで、オイルは、圧縮機6の駆動時に潤滑のため使用される。   An oil separator 8 is provided on the high-pressure pipe between the discharge side of the compressor 6 and the four-way valve 10. The oil separator 8 filters the oil contained in the refrigerant discharged from the compressor 6 and further moves it to the compressor 6. Here, the oil is used for lubrication when the compressor 6 is driven.

室外熱交換部2は、室外に設けられ、冷媒が循環する室外熱交換器3と、後述する圧縮機駆動部12の冷却水が循環する冷却水放熱器4と、室外熱交換器3及び冷却水放熱器4に空気を送風する送風ファン5と、を含む。室内熱交換部1は、冷房または暖房をする室内に設けられ、冷媒の循環時に室内の空気と熱交換して冷房または暖房機能を行う。   The outdoor heat exchanging unit 2 is provided outside the outdoor heat exchanger 3 in which the refrigerant circulates, the cooling water radiator 4 in which the cooling water of the compressor driving unit 12 to be described later circulates, the outdoor heat exchanger 3 and the cooling A blower fan 5 for blowing air to the water radiator 4. The indoor heat exchanging unit 1 is provided in a room for cooling or heating, and performs a cooling or heating function by exchanging heat with indoor air when the refrigerant is circulated.

圧縮機6の吸入側の低圧管上には、アキュムレータ9が設けられる。アキュムレータ9は、圧縮機6に液冷媒の流入を抑制するために設けられる。   An accumulator 9 is provided on the low pressure pipe on the suction side of the compressor 6. The accumulator 9 is provided to suppress the inflow of liquid refrigerant into the compressor 6.

膨張弁7は、室内熱交換部1に設けられる室内膨張弁7aと、室外熱交換部2に近接して設けられる室外膨張弁7bと、を含むことができる。ここで、室内膨張弁7aは、冷房時に室外熱交換部2から室内熱交換部1に流れる冷媒を膨張させ、室外膨張弁7bは、暖房時に室内熱交換部1からの室外熱交換部2に流れる冷媒を膨張させる。   The expansion valve 7 can include an indoor expansion valve 7 a provided in the indoor heat exchange unit 1 and an outdoor expansion valve 7 b provided in the vicinity of the outdoor heat exchange unit 2. Here, the indoor expansion valve 7a expands the refrigerant flowing from the outdoor heat exchange unit 2 to the indoor heat exchange unit 1 during cooling, and the outdoor expansion valve 7b communicates with the outdoor heat exchange unit 2 from the indoor heat exchange unit 1 during heating. Expand the flowing refrigerant.

また、本発明による空調機は、圧縮機6に駆動力を供給する圧縮機駆動部12を含む。本発明による空調機には、ガスによって駆動されるガスエンジンを使用するGHP方式が適用される。ここで、圧縮機駆動部12の駆動時に発生するエンジン廃熱は冷却水の循環に従って冷却水に伝達される。   Further, the air conditioner according to the present invention includes a compressor driving unit 12 that supplies driving force to the compressor 6. The GHP system using a gas engine driven by gas is applied to the air conditioner according to the present invention. Here, engine waste heat generated when the compressor drive unit 12 is driven is transmitted to the cooling water according to the circulation of the cooling water.

また、本発明による空調機は、制御部22によって制御され、圧縮機駆動部12と圧縮機6の間の動力電圧を開閉する動力開閉部13とを含む。本発明では、動力開閉部13が圧縮機駆動部12と圧縮機6を軸連結するマグネチッククラッチであることに例えた。   The air conditioner according to the present invention includes a power opening / closing unit 13 that is controlled by the control unit 22 and opens and closes a power voltage between the compressor driving unit 12 and the compressor 6. In the present invention, the power opening / closing part 13 is compared with a magnetic clutch that connects the compressor driving part 12 and the compressor 6 in an axial manner.

また、本発明による空調機は、圧縮機駆動部12の駆動時に発生するエンジン廃熱を除去及び/または活用するための冷却水の循環システムを含む。冷却水の循環システムは、閉ループを形成する冷却水管23と、冷却水の流動を誘導する冷却水ポンプ19と、を含む。冷却水ポンプ19によって冷却水管23に沿ってなられる冷却水は圧縮機駆動部12で発生するエンジン廃熱を吸収して圧縮機駆動部12を冷却させ、圧縮機駆動部12の冷却のためエンジン廃熱を吸収した冷却水は加熱される。   The air conditioner according to the present invention includes a cooling water circulation system for removing and / or utilizing engine waste heat generated when the compressor driving unit 12 is driven. The cooling water circulation system includes a cooling water pipe 23 that forms a closed loop, and a cooling water pump 19 that induces a flow of the cooling water. The cooling water formed along the cooling water pipe 23 by the cooling water pump 19 absorbs engine waste heat generated in the compressor driving unit 12 to cool the compressor driving unit 12, and the engine for cooling the compressor driving unit 12. The cooling water that has absorbed the waste heat is heated.

圧縮機駆動部12を冷却させた冷却水、即ち、エンジン廃熱によって加熱された冷却水は、サーモスタット14を通じて圧縮機駆動部12に復帰したり冷却水弁15に流れる。サーモスタット14は、加熱された冷却水の温度が所定の温度以下である場合に冷却水が圧縮機駆動部12を冷却させるように圧縮機駆動部12に復帰させ、加熱された冷却水の温度が所定の温度を超過する場合に冷却水が冷却水弁15に流れる。   Cooling water that has cooled the compressor driving unit 12, that is, cooling water heated by engine waste heat, returns to the compressor driving unit 12 through the thermostat 14 and flows to the cooling water valve 15. The thermostat 14 returns to the compressor driving unit 12 so that the cooling water cools the compressor driving unit 12 when the temperature of the heated cooling water is equal to or lower than a predetermined temperature, and the temperature of the heated cooling water is The cooling water flows to the cooling water valve 15 when the predetermined temperature is exceeded.

冷却水弁15は、制御部22の制御に従ってサーモスタット14から流入される冷却水が冷媒加熱部11及び室外熱交換部2の中でいずれか一方に選択的に流れるように開閉される。以下では、室外熱交換部2側に流れる冷却水の循環経路を室外熱交換循環経路とし、冷媒加熱部11側に流れる冷却水の循環経路を冷媒加熱循環経路とする。   The cooling water valve 15 is opened and closed so that the cooling water flowing from the thermostat 14 selectively flows to one of the refrigerant heating unit 11 and the outdoor heat exchange unit 2 under the control of the control unit 22. Hereinafter, the circulation path of the cooling water flowing to the outdoor heat exchange unit 2 side is referred to as an outdoor heat exchange circulation path, and the circulation path of the cooling water flowing to the refrigerant heating unit 11 side is referred to as a refrigerant heating circulation path.

制御部22は、暖房運転時にサーモスタット14から流入される冷却水が冷媒加熱循環経路に沿って冷媒加熱部11に流れるように冷却水弁15を制御し、冷房運転時にサーモスタット14から流入される冷却水が室外熱交換循環経路に沿って室外熱交換部2の冷却水放熱器4に供給されるように冷却水弁15を制御する。   The control unit 22 controls the cooling water valve 15 so that the cooling water flowing from the thermostat 14 during the heating operation flows to the refrigerant heating unit 11 along the refrigerant heating circulation path, and the cooling flowing from the thermostat 14 during the cooling operation. The cooling water valve 15 is controlled so that water is supplied to the cooling water radiator 4 of the outdoor heat exchange unit 2 along the outdoor heat exchange circulation path.

また、本発明による空調機は、圧縮機駆動部12によって加熱された冷却水の温度を感知する温度感知部20と、圧縮機6に吸入される冷媒の過熱度を検出する過熱度検出部21をさらに含む。ここで、温度感知部20によって感知された冷却水の温度に対する情報と、過熱度検出部21によって検出された冷媒の過熱度に対する情報は制御部22に伝達される。   Further, the air conditioner according to the present invention includes a temperature sensing unit 20 that senses the temperature of the cooling water heated by the compressor driving unit 12, and a superheat degree detection unit 21 that detects the superheat degree of the refrigerant sucked into the compressor 6. Further included. Here, information on the temperature of the cooling water sensed by the temperature sensing unit 20 and information on the superheat degree of the refrigerant detected by the superheat degree detection unit 21 are transmitted to the control unit 22.

図1において、参照番号16は、冷却水が貯蔵された冷却水タンクであり、参照番号17は、排気ガス熱交換部であり、参照番号18は排気マフラーである。   In FIG. 1, reference numeral 16 is a cooling water tank in which cooling water is stored, reference numeral 17 is an exhaust gas heat exchanging section, and reference numeral 18 is an exhaust muffler.

前記のような構成によって本発明による空調機の冷房運転時と暖房運転時の冷媒及び冷却水の流れを説明すると次の通りである。   The flow of the refrigerant and the cooling water during the cooling operation and the heating operation of the air conditioner according to the present invention will be described as follows.

まず、冷房運転時、圧縮機6に吸入された冷媒が圧縮されて高圧管に吐出される。ここで、圧縮機6から吐出される高温、高圧の冷媒に含まれたオイルは、オイル分離器8を通過しながら濾過されてさらに圧縮機6に移動する。また、圧縮機6から吐出された冷媒は、四方弁10を経て室外熱交換部2に移動する。   First, during the cooling operation, the refrigerant sucked into the compressor 6 is compressed and discharged to the high-pressure pipe. Here, the oil contained in the high-temperature and high-pressure refrigerant discharged from the compressor 6 is filtered while passing through the oil separator 8 and further moves to the compressor 6. The refrigerant discharged from the compressor 6 moves to the outdoor heat exchange unit 2 through the four-way valve 10.

次に、四方弁10を通過した冷媒は、室外熱交換器2で凝縮された後室内膨張弁7aに移動する。また、室内膨張弁7aを通過しながら低温、低圧状態で膨張された冷媒は室内熱交換部1に移動して室内と熱交換することによって、冷房機能を行う。   Next, the refrigerant that has passed through the four-way valve 10 is condensed in the outdoor heat exchanger 2 and then moves to the indoor expansion valve 7a. In addition, the refrigerant expanded in a low temperature and low pressure state while passing through the indoor expansion valve 7a moves to the indoor heat exchanging unit 1 to exchange heat with the room, thereby performing a cooling function.

次に、室内熱交換部1を通過した冷媒は、さらに四方弁10、アキュームレータ9を経てさらに圧縮機6に流入される。   Next, the refrigerant that has passed through the indoor heat exchanging unit 1 further flows into the compressor 6 through the four-way valve 10 and the accumulator 9.

ここで、冷房運転時に圧縮機駆動部12で発生したエンジンの廃熱は、冷却水に吸入されて室外熱交換部2の冷却水放熱器4を通じて外部に放熱される。   Here, the waste heat of the engine generated in the compressor driving unit 12 during the cooling operation is sucked into the cooling water and radiated to the outside through the cooling water radiator 4 of the outdoor heat exchange unit 2.

また、暖房運転時、圧縮機6から吐出された冷媒は、オイル分離器、四方弁10を経て室内熱交換部1で凝縮される。ここで、室内熱交換部1での冷媒の凝縮時放熱される熱によって暖房機能が行われる。   Further, during the heating operation, the refrigerant discharged from the compressor 6 is condensed in the indoor heat exchange unit 1 through the oil separator and the four-way valve 10. Here, the heating function is performed by the heat dissipated during the condensation of the refrigerant in the indoor heat exchange unit 1.

次に、室内熱交換部1で凝縮された冷媒は、室外膨張弁7bによって膨張されて室外熱交換器3に流入される。室外熱交換器3を通過した冷媒は、四方弁10を経て冷媒加熱部11を経るのに、制御部22は、暖房運転時に圧縮機駆動部12によって加熱された冷却水が冷媒加熱循環経路に沿って循環して冷媒加熱部11側に流れるように冷却水弁15を制御するのに、冷媒加熱部11を経る冷媒は冷媒加熱部11を流れる加熱された冷却水から熱を吸収する。このように、四方弁10を通過した冷媒は、冷媒加熱部11とアキュムレータ9を経て圧縮機6に流入される。   Next, the refrigerant condensed in the indoor heat exchange unit 1 is expanded by the outdoor expansion valve 7 b and flows into the outdoor heat exchanger 3. The refrigerant that has passed through the outdoor heat exchanger 3 passes through the four-way valve 10 and the refrigerant heating unit 11, but the control unit 22 uses the cooling water heated by the compressor driving unit 12 during the heating operation to enter the refrigerant heating circulation path. The refrigerant passing through the refrigerant heating unit 11 absorbs heat from the heated cooling water flowing through the refrigerant heating unit 11 to control the cooling water valve 15 so as to circulate along and flow toward the refrigerant heating unit 11. Thus, the refrigerant that has passed through the four-way valve 10 flows into the compressor 6 via the refrigerant heating unit 11 and the accumulator 9.

また、本発明による空調器の初期駆動時の制御過程を図3を参照して説明する。   In addition, a control process during initial driving of the air conditioner according to the present invention will be described with reference to FIG.

まず、冷房または暖房機能が選択される場合、制御部22は、圧縮機駆動部12を駆動させる(S10)。この時制御部22は、冷却水弁15を通過する冷却水が室外熱交換循環経路に沿って循環して冷却水放熱器4側に流れるように冷却水弁15を制御し、膨張弁7を閉鎖された状態で維持させる。また、圧縮機駆動部12からの駆動力が圧縮機6に伝達されないように動力開閉部13を閉鎖する(S11)。これによって、初期駆動時圧縮機6に冷媒が流入されることを遮断して、圧縮機6に流入される冷媒に含まれた液冷媒が流入されることを一次的に遮断する。   First, when the cooling or heating function is selected, the control unit 22 drives the compressor driving unit 12 (S10). At this time, the control unit 22 controls the cooling water valve 15 so that the cooling water passing through the cooling water valve 15 circulates along the outdoor heat exchange circulation path and flows to the cooling water radiator 4 side, Keep it closed. Further, the power opening / closing unit 13 is closed so that the driving force from the compressor driving unit 12 is not transmitted to the compressor 6 (S11). Accordingly, the refrigerant is prevented from flowing into the compressor 6 during the initial driving, and the liquid refrigerant contained in the refrigerant flowing into the compressor 6 is temporarily blocked from flowing.

この時、温度感知部20は、圧縮機駆動部12によって加熱された冷却水の温度を感知して制御部22に伝達し、制御部22は、温度感知部20によって感知された冷却水の温度が所定の基準温度を超過するか否かを検査する(S12)。   At this time, the temperature sensing unit 20 senses the temperature of the cooling water heated by the compressor driving unit 12 and transmits it to the control unit 22. The control unit 22 detects the temperature of the cooling water sensed by the temperature sensing unit 20. Is inspected whether or not a predetermined reference temperature is exceeded (S12).

次に、制御部22は、温度感知部20によって感知された冷却水の温度が基準温度を超過する時、冷却水弁15を通過する冷却水が冷媒加熱循環経路に沿って冷媒加熱部11側に流れるように冷却水弁15を制御する(S13)。これによって、冷媒加熱部11側に流れる加熱された冷却水によって冷媒加熱部11を通過する冷媒が加熱されることによって、冷媒中にある液冷媒を除去することができる。   Next, when the temperature of the cooling water sensed by the temperature sensing unit 20 exceeds the reference temperature, the control unit 22 causes the cooling water passing through the cooling water valve 15 to move toward the refrigerant heating unit 11 along the refrigerant heating circulation path. The cooling water valve 15 is controlled so as to flow to (S13). Thereby, the liquid refrigerant in the refrigerant can be removed by heating the refrigerant passing through the refrigerant heating unit 11 by the heated cooling water flowing toward the refrigerant heating unit 11.

また、制御部22は、温度感知部20によって感知された冷却水の温度が基準温度を超過する時、圧縮機駆動部12からの駆動力が圧縮機6に伝達されるように動力開閉部13を開放することによって(S14)、圧縮機6を駆動させる。ここで、圧縮機6の駆動は図4に示すように、冷却水弁15の制御後に一定の時間が経過した後駆動されることが液冷媒の流入を最小化するために好ましい。図4の(a)は圧縮機駆動部12、(b)は圧縮機6、(c)は冷却水弁15の駆動時間を示す図であり、(c)のB領域は加熱された冷却水が冷媒加熱循環経路に沿って冷媒加熱部11に向く領域であり、A領域は加熱された冷却水が室外熱交換循環経路に沿って室外熱交換部2に向く領域を示す。即ち、図4の(c)は、空調機が冷房運転時に初期駆動であることに例えて示したが、空調機が暖房運転する場合、A領域はB領域と同一の状態を維持する。   The control unit 22 also includes a power opening / closing unit 13 so that the driving force from the compressor driving unit 12 is transmitted to the compressor 6 when the temperature of the cooling water detected by the temperature detecting unit 20 exceeds the reference temperature. (S14), the compressor 6 is driven. Here, as shown in FIG. 4, the compressor 6 is preferably driven after a predetermined time has elapsed after the control of the cooling water valve 15 in order to minimize the inflow of liquid refrigerant. 4A is a diagram showing the drive time of the compressor drive unit 12, FIG. 4B is the compressor 6, FIG. 4C is a diagram showing the drive time of the cooling water valve 15, and the B region of FIG. 4C is the heated cooling water. Is a region facing the refrigerant heating unit 11 along the refrigerant heating circulation path, and region A represents a region where the heated cooling water is directed to the outdoor heat exchange unit 2 along the outdoor heat exchange circulation path. That is, FIG. 4C illustrates that the air conditioner is initially driven during the cooling operation. However, when the air conditioner performs the heating operation, the A region maintains the same state as the B region.

また、制御部22は、温度感知部20によって感知された冷却水の温度が基準温度を超過する時、膨張弁7を開放することによって(S15)、圧縮機6に冷媒が流入されるようにする。   Further, the control unit 22 opens the expansion valve 7 when the temperature of the cooling water detected by the temperature detection unit 20 exceeds the reference temperature (S15), so that the refrigerant flows into the compressor 6. To do.

次に、制御部22は、過熱度検出部部21によって検出された冷媒の過熱度が所定の基準過熱度を超過するか否かを判断する(S16)。ここで、制御部22は、過熱度検出部21によって検出された過熱度が基準過熱度を超過する場合、冷却水弁15を定常的に動作させる(S17)。即ち、制御部22は、前述したように、暖房運転や冷房運転に従って冷却水15を制御する。   Next, the control unit 22 determines whether or not the superheat degree of the refrigerant detected by the superheat degree detection unit 21 exceeds a predetermined reference superheat degree (S16). Here, the control part 22 operates the cooling water valve 15 steadily, when the superheat degree detected by the superheat degree detection part 21 exceeds a reference | standard superheat degree (S17). That is, as described above, the control unit 22 controls the cooling water 15 according to the heating operation or the cooling operation.

前述した実施形態では、制御部22が圧縮機駆動部12の初期起動時に温度感知部20によって感知された温度に基づいて冷却水弁15及び動力開閉部13を制御したが、圧縮機駆動部12の初期駆動時に所定の時間が経過した後、冷却水弁15を開放し動力開閉部13を開放するように設けられることもできる。   In the above-described embodiment, the control unit 22 controls the cooling water valve 15 and the power switching unit 13 based on the temperature sensed by the temperature sensing unit 20 at the initial startup of the compressor driving unit 12. After a predetermined time elapses during the initial driving, the cooling water valve 15 may be opened and the power opening / closing unit 13 may be opened.

このように、圧縮機駆動部12と圧縮機6との間の動力伝達を開閉する動力開閉部13と、圧縮機駆動部12を冷却させるための冷却水が循環し圧縮機駆動部12を冷却させた冷却水によって圧縮機6に流入される冷媒を加熱するための冷媒加熱循環経路を形成する冷却水管23と、冷却水管23の冷媒加熱循環経路上に設けられて圧縮機駆動部12を冷却させた冷却水によって圧縮機6に流入される冷媒が加熱される冷媒加熱部11と、圧縮機駆動部12を冷却させた冷却水が冷媒加熱循環経路に沿って循環することを開閉する冷却水弁15、圧縮機駆動部12の初期駆動時に動力開閉部13及び冷却水弁15が閉鎖された状態で圧縮機駆動部12を駆動させた後所定の時間の経過後に動力開閉部13及び冷却水弁15を開放する制御部22を設けることによって、初期駆動時に圧縮機6に液冷媒の流入を最小化させることができる。   In this way, the power opening / closing unit 13 that opens and closes the power transmission between the compressor driving unit 12 and the compressor 6 and the cooling water for cooling the compressor driving unit 12 circulates to cool the compressor driving unit 12. The cooling water pipe 23 that forms the refrigerant heating circulation path for heating the refrigerant flowing into the compressor 6 by the cooled cooling water, and the refrigerant driving circulation path of the cooling water pipe 23 provided on the cooling water pipe 23 cools the compressor driving unit 12. The refrigerant heating unit 11 that heats the refrigerant flowing into the compressor 6 by the cooled cooling water, and the cooling water that opens and closes the cooling water that has cooled the compressor driving unit 12 circulates along the refrigerant heating circulation path After driving the compressor drive unit 12 in a state in which the power opening / closing unit 13 and the cooling water valve 15 are closed when the valve 15 and the compressor driving unit 12 are initially driven, the power opening / closing unit 13 and the cooling water are passed after a predetermined time has elapsed. Control unit 2 for opening the valve 15 By providing, it is possible to minimize the inflow of the liquid refrigerant to the compressor 6 at the time of initial drive.

また、初期駆動時に圧縮機6に液冷媒が流入されることを防止するためアキュームレータ9の容量を大きくする必要が無くて、製造コストを減少させることができる。   Further, it is not necessary to increase the capacity of the accumulator 9 in order to prevent the liquid refrigerant from flowing into the compressor 6 during the initial drive, and the manufacturing cost can be reduced.

本発明による空調機の構成を示す図である。It is a figure which shows the structure of the air conditioner by this invention. 本発明による空調機の制御ブロック図である。It is a control block diagram of the air conditioner by this invention. 本発明による空調機の制御フローチャートである。It is a control flowchart of the air conditioner by this invention. 本発明による空調機の圧縮機駆動部、圧縮機及び冷却水弁の駆動時間を示す図である。It is a figure which shows the drive time of the compressor drive part of an air conditioner by this invention, a compressor, and a cooling water valve.

符号の説明Explanation of symbols

1 室内熱交換部
2 室外熱交換部
3 室外熱交換部
4 冷却水放熱器
5 送風ファン
6 圧縮機
7 膨張弁
8 オイル分離器
9 アキュムレータ
10 四方弁
11 冷媒加熱部
12 圧縮機駆動部
13 動力開閉部
14 サーモスタット
15 冷却水弁
16 冷却水タンク
17 排気ガス熱交換部
18 排気マフラー
19 冷却水ポンプ
20 温度感知部
21 過熱度検出部
22 制御部
DESCRIPTION OF SYMBOLS 1 Indoor heat exchange part 2 Outdoor heat exchange part 3 Outdoor heat exchange part 4 Cooling water radiator 5 Blower fan 6 Compressor 7 Expansion valve 8 Oil separator 9 Accumulator 10 Four-way valve 11 Refrigerant heating part 12 Compressor drive part 13 Power opening and closing Unit 14 Thermostat 15 Cooling water valve 16 Cooling water tank 17 Exhaust gas heat exchange unit 18 Exhaust muffler 19 Cooling water pump 20 Temperature sensing unit 21 Superheat detection unit 22 Control unit

Claims (8)

室内熱交換部及び室外熱交換部と、前記室内熱交換部及び前記室外熱交換部と閉ループを形成し、冷媒を圧縮させる圧縮機と、前記圧縮機を駆動させるための圧縮機駆動部と、を有する空調機において、
前記圧縮機駆動部と前記圧縮機の間の動力伝達を開閉する動力開閉部と、
前記圧縮機駆動部を冷却させるための冷却水が循環し、前記圧縮機駆動部を冷却させた冷却水によって前記圧縮機に流入される冷媒を加熱するための冷媒加熱循環経路を形成する冷却水管と、
前記冷却水管の前記冷媒加熱循環経路上に設けられて、前記圧縮機駆動部を冷却させた冷却水によって前記圧縮機に流入される冷媒を加熱する冷媒加熱部と、
前記圧縮機駆動部を冷却させた冷却水が前記冷媒加熱循環経路に沿って循環することを開閉する冷却水弁と、
前記圧縮機駆動部の初期駆動時に前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、所定の時間の経過後、前記動力開閉部及び前記冷却水弁を開放する制御部を含むことを特徴とする空調機。
An indoor heat exchange unit and an outdoor heat exchange unit, a compressor that forms a closed loop with the indoor heat exchange unit and the outdoor heat exchange unit, and compresses the refrigerant; and a compressor drive unit for driving the compressor; In an air conditioner having
A power opening and closing unit for opening and closing power transmission between the compressor driving unit and the compressor;
Cooling water pipes that form a refrigerant heating circulation path for circulating cooling water for cooling the compressor driving unit and heating the refrigerant flowing into the compressor by the cooling water that has cooled the compressor driving unit When,
A refrigerant heating unit that is provided on the refrigerant heating circulation path of the cooling water pipe and that heats the refrigerant flowing into the compressor with cooling water that has cooled the compressor driving unit;
A cooling water valve that opens and closes that the cooling water that has cooled the compressor driving unit circulates along the refrigerant heating circulation path;
After the compressor driving unit is driven in a state where the power opening / closing unit and the cooling water valve are closed at the time of initial driving of the compressor driving unit, the power switching unit and the cooling water are passed after a predetermined time has elapsed An air conditioner comprising a control unit for opening a valve.
前記圧縮機駆動部を冷却させた冷却水の温度を感知する温度感知部をさらに含み、
前記制御部は、前記圧縮機駆動部の初期駆動時に動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が所定の基準温度を超過する時、前記動力開閉部及び前記冷却水弁を開放することを特徴とする請求項1に記載の空調機。
A temperature sensing unit for sensing a temperature of cooling water that has cooled the compressor driving unit;
The controller drives the compressor drive unit with the power opening / closing unit and the cooling water valve closed when the compressor drive unit is initially driven, and then the temperature sensed by the temperature sensing unit is predetermined. 2. The air conditioner according to claim 1, wherein when the reference temperature is exceeded, the power opening and closing unit and the cooling water valve are opened.
前記制御部は、前記圧縮機駆動部の初期駆動時に前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が前記所定の基準温度を超過する時、前記冷却水弁の開放後、所定の時間の経過後、前記動力開閉部を開放することを特徴とする請求項2に記載の空調機。   The controller drives the compressor driving unit with the power opening / closing unit and the cooling water valve closed when the compressor driving unit is initially driven, and then detects the temperature detected by the temperature sensing unit. The air conditioner according to claim 2, wherein when the predetermined reference temperature is exceeded, the power opening / closing part is opened after a lapse of a predetermined time after the cooling water valve is opened. 前記室内熱交換部と前記室外熱交換部との間に設けられて冷媒を膨張させる膨張弁をさらに含み、
前記制御部は、前記圧縮機駆動部の初期駆動時に前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が前記所定の基準温度を超過する時、前記膨張弁を開放することを特徴とする請求項2に記載の空調機。
An expansion valve provided between the indoor heat exchange unit and the outdoor heat exchange unit to expand the refrigerant;
The controller drives the compressor driving unit with the power opening / closing unit and the cooling water valve closed when the compressor driving unit is initially driven, and then detects the temperature detected by the temperature sensing unit. The air conditioner according to claim 2, wherein the expansion valve is opened when the predetermined reference temperature is exceeded.
前記冷却水管は、前記圧縮機駆動部を冷却させた冷却水が前記室外熱交換器側に循環する室外熱交換循環経路を形成し、
前記冷却水弁は、前記圧縮機駆動部を冷却させた冷却水を前記冷媒加熱循環経路と前記室外熱交換循環経路の中でいずれか一つに沿って選択的に循環させることを特徴とする請求項4に記載の空調機。
The cooling water pipe forms an outdoor heat exchange circulation path through which the cooling water that has cooled the compressor driving unit circulates to the outdoor heat exchanger side,
The cooling water valve selectively circulates cooling water that has cooled the compressor driving unit along one of the refrigerant heating circulation path and the outdoor heat exchange circulation path. The air conditioner according to claim 4.
前記制御部は、前記圧縮機駆動部を冷却させた冷却水が、冷房運転時に前記室外熱交換循環経路に沿って循環し、暖房運転時に前記冷媒加熱循環経路に沿って循環するように前記冷却水弁を制御することを特徴とする請求項5に記載の空調機。   The controller is configured so that the cooling water that has cooled the compressor driving unit circulates along the outdoor heat exchange circulation path during cooling operation and circulates along the refrigerant heating circulation path during heating operation. The air conditioner according to claim 5, wherein the air valve is controlled. 前記圧縮機に流入される冷媒の過熱度を検出する過熱度検出部をさらに含み、
前記制御部は、前記圧縮機駆動部の初期駆動時前記動力開閉部及び前記冷却水弁が閉鎖された状態で前記圧縮機駆動部を駆動させた後、前記温度感知部によって感知された温度が所定の基準温度を超過した状態で前記過熱度検出部によって検出された過熱度が所定の基準過熱度を超過する場合、冷房運転または暖房運転に対応して前記冷却水弁を制御することを特徴とする請求項6に記載の空調機。
Further comprising a superheat degree detection unit for detecting the superheat degree of the refrigerant flowing into the compressor,
The control unit drives the compressor driving unit in a state where the power opening / closing unit and the cooling water valve are closed during initial driving of the compressor driving unit, and then the temperature sensed by the temperature sensing unit is detected. When the superheat degree detected by the superheat degree detection unit exceeds a predetermined reference superheat degree in a state where a predetermined reference temperature is exceeded, the cooling water valve is controlled corresponding to a cooling operation or a heating operation. The air conditioner according to claim 6.
前記動力伝達部は、マグネチッククラッチを含むことを特徴とする請求項1に記載の空調機。
The air conditioner according to claim 1, wherein the power transmission unit includes a magnetic clutch.
JP2005008360A 2004-01-14 2005-01-14 air conditioner Expired - Fee Related JP3798418B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040002691A KR100558392B1 (en) 2004-01-14 2004-01-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005201631A JP2005201631A (en) 2005-07-28
JP3798418B2 true JP3798418B2 (en) 2006-07-19

Family

ID=34825026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008360A Expired - Fee Related JP3798418B2 (en) 2004-01-14 2005-01-14 air conditioner

Country Status (3)

Country Link
JP (1) JP3798418B2 (en)
KR (1) KR100558392B1 (en)
CN (1) CN1325848C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105518B1 (en) * 2011-05-17 2012-01-13 유종이 A cooling system for energy saving green environment of four season
CN105758070B (en) * 2016-02-29 2018-01-23 珠海格力电器股份有限公司 The heat dissipating method of air-conditioning system and driven compressor plate
KR102405709B1 (en) * 2020-09-07 2022-06-03 엘지전자 주식회사 Air Conditioner
KR102407648B1 (en) * 2020-09-07 2022-06-10 엘지전자 주식회사 Air Conditioner
KR102409975B1 (en) * 2020-09-07 2022-06-15 엘지전자 주식회사 Air Conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996235A (en) * 1987-11-25 1991-02-26 Eli Lilly And Company 3,4-diphenylbutanamines
JPH04222360A (en) * 1990-12-25 1992-08-12 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner
JP3009481B2 (en) * 1990-12-26 2000-02-14 三菱重工業株式会社 Heat pump type air conditioner
JPH0861748A (en) * 1994-08-26 1996-03-08 Noritz Corp Operation controlling method for air conditioner

Also Published As

Publication number Publication date
JP2005201631A (en) 2005-07-28
CN1325848C (en) 2007-07-11
KR20050074796A (en) 2005-07-19
KR100558392B1 (en) 2006-03-10
CN1641276A (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US7377119B2 (en) Air conditioning system and control method thereof
CN101611275B (en) Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
JP6578959B2 (en) Vehicle coolant heating apparatus and vehicle coolant heating program
JP4001149B2 (en) Air conditioner
KR100550566B1 (en) A hotting drive method of heat pump multi-air conditioner
JP3798418B2 (en) air conditioner
JP5145026B2 (en) Air conditioner
JP3941817B2 (en) Air conditioner
JP5458717B2 (en) Refrigeration equipment
KR20030067558A (en) Air conditioner
JPH11230646A (en) Engine driven heat pump
KR20120122704A (en) An air conditioner and a control method the same
KR20050026591A (en) Refrigerant heating type air conditioner
KR102456828B1 (en) Heat pump system for vehicle
KR101533112B1 (en) Heat pump system and method for controlling the same
KR101321545B1 (en) Air conditioner
KR100734537B1 (en) Operation Algorithm for Removing Frost in a Gas Engine Heat Pump System And Apparatus therefor
KR102104818B1 (en) chiller
KR20140063930A (en) An engine-driven heat pump system
JPH11101495A (en) Fan controller and controlling method for multiroom air conditioner
JP2009192197A (en) Heat pump cycle system
JP4262901B2 (en) Refrigeration equipment
JP2019002586A (en) Heat pump system
JP2018021735A (en) Heat pump system
JP2021124206A (en) Heat pump type hot water heating system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees