JP5458717B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5458717B2
JP5458717B2 JP2009171428A JP2009171428A JP5458717B2 JP 5458717 B2 JP5458717 B2 JP 5458717B2 JP 2009171428 A JP2009171428 A JP 2009171428A JP 2009171428 A JP2009171428 A JP 2009171428A JP 5458717 B2 JP5458717 B2 JP 5458717B2
Authority
JP
Japan
Prior art keywords
cooling water
gas
temperature
liquid separator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009171428A
Other languages
Japanese (ja)
Other versions
JP2011027292A (en
Inventor
正志 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009171428A priority Critical patent/JP5458717B2/en
Publication of JP2011027292A publication Critical patent/JP2011027292A/en
Application granted granted Critical
Publication of JP5458717B2 publication Critical patent/JP5458717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、空気調和機等の冷凍装置における冷凍機油の回収方法に関する。   The present invention relates to a method for recovering refrigerating machine oil in a refrigerating apparatus such as an air conditioner.

圧縮機を用いた冷凍装置において、この圧縮機から吐出される冷媒には冷凍機油が溶け込んでいることが多い。このため圧縮機の吐出側配管には油分離器を設けて、冷媒に溶け込んでいた冷凍機油はここで分離して圧縮機へ戻すと共に、冷媒のみを凝縮器へ導くようにしている。しかしながら、油分離器でも完全に冷凍機油を分離することはできないので、分離しきれなかった冷凍機油が溶け込んだ状態の冷媒が凝縮器へ導かれることは否めなかった。
特開2004−286240号公報
In a refrigerating apparatus using a compressor, refrigerating machine oil is often dissolved in the refrigerant discharged from the compressor. For this reason, an oil separator is provided in the discharge side piping of the compressor so that the refrigeration oil dissolved in the refrigerant is separated and returned to the compressor, and only the refrigerant is guided to the condenser. However, since the refrigeration oil cannot be completely separated even by the oil separator, it cannot be denied that the refrigerant in a state in which the refrigeration oil that could not be separated is introduced is led to the condenser.
JP 2004-286240 A

上記のように、油分離器で分離しきれなかった冷凍機油は凝縮器へ導かれるのだが、例えば空気調和機においては室内熱交換器と室外熱交換を通過する際に、これら熱交換器や冷媒配管の内面にへばりついてしまい、圧縮機に戻る油量は減少する。特に、室内熱交換器が内蔵された室内ユニットと室外熱交換器が内蔵された室外ユニットとをユニット間配管でつなぐような分離型空気調和機において、そのユニット間配管が長配管の場合(「業務用エアコン」の場合が多い)、気液分離器に戻る冷凍機油の量は、短配管の場合と比べて少なくなる。これによって、圧縮機が油切れとなり、圧縮機の摺動部分の磨耗が通常より早くなり、圧縮機の寿命が短くなることが考えられる。   As described above, the refrigeration oil that could not be separated by the oil separator is led to the condenser.For example, in an air conditioner, when passing through the indoor heat exchanger and the outdoor heat exchange, these heat exchangers and The amount of oil that reaches the inner surface of the refrigerant pipe and returns to the compressor decreases. In particular, in a separation type air conditioner in which an indoor unit having an indoor heat exchanger and an outdoor unit having an outdoor heat exchanger are connected by an inter-unit pipe, the inter-unit pipe is a long pipe (" In many cases, “commercial air conditioners”), the amount of refrigerating machine oil returning to the gas-liquid separator is smaller than in the case of short piping. As a result, it is considered that the compressor runs out of oil, wear of the sliding portion of the compressor becomes faster than usual, and the life of the compressor is shortened.

本発明は、圧縮機に戻る冷凍機油の量を適切に保って、圧縮機の摺動部分の摩耗を抑えて、圧縮機の長寿命化を図ることを目的とする。   An object of the present invention is to prolong the life of a compressor by appropriately maintaining the amount of refrigerating machine oil returning to the compressor and suppressing wear of sliding portions of the compressor.

請求項1に係る発明は、ガスエンジンで駆動される圧縮機、凝縮器、減圧器、蒸発器、気液分離器を順次つないで冷凍サイクルを形成すると共に、この気液分離器には冷凍機油が溶け込んだ液冷媒が貯留され、この気液分離器の下部に溜まった冷凍機油をこの気液分離器内に位置し前記圧縮機につながる吸込管のオイル孔からこの圧縮機に戻すようにした冷凍装置において、前記気液分離器内の冷凍機油が溶け込んだ液冷媒を加熱してこの液冷媒と冷凍機油とを分離させる加熱用の熱交換器を設け、この熱交換器には、前記ガスエンジンからの冷却水を直接導く高温冷却水、もしくはこの高温冷却水をラジエータで冷却してこの高温冷却水よりも低温の中温冷却水のいずれかを流すように切り替える弁を設けて、
前記凝縮器の温度が所定温度以上もしくは前記圧縮機の吐出温度が所定温度以上の場合には、前記中温冷却水で前記気液分離器内の液冷媒を加熱し、この加熱でも上記凝縮器温度が所定温度以下もしくは上記圧縮機吐出温度が所定温度以下にならない場合には、前記高温冷却水による前記気液分離器内の液冷媒の加熱に切り替えて、前記気液分離器内の液冷媒の加熱して、この加熱で分離された冷凍機油をオイル戻し孔から圧縮機へ戻すようにしたものである。

The invention according to claim 1 forms a refrigeration cycle by sequentially connecting a compressor, a condenser, a decompressor, an evaporator, and a gas-liquid separator driven by a gas engine. The liquid refrigerant in which the gas is dissolved is stored, and the refrigeration oil accumulated in the lower part of the gas-liquid separator is located in the gas-liquid separator and returned to the compressor through the oil hole of the suction pipe connected to the compressor. In the refrigeration apparatus, a heating heat exchanger for heating the liquid refrigerant in which the refrigerating machine oil in the gas-liquid separator is dissolved to separate the liquid refrigerant from the refrigerating machine oil is provided, and the heat exchanger includes the gas A high-temperature cooling water that directly leads the cooling water from the engine, or a valve that switches this high-temperature cooling water with a radiator and switching to flow either an intermediate-temperature cooling water that is lower than this high-temperature cooling water,
When the temperature of the condenser is equal to or higher than a predetermined temperature or the discharge temperature of the compressor is equal to or higher than a predetermined temperature, the liquid refrigerant in the gas-liquid separator is heated with the intermediate temperature cooling water, and even with this heating, the condenser temperature Is switched to heating of the liquid refrigerant in the gas-liquid separator with the high-temperature cooling water, and the liquid refrigerant in the gas-liquid separator is The refrigeration oil separated by heating is returned to the compressor through the oil return hole.

この構成によれば、圧縮機を駆動するガスエンジンの排熱を有効に利用して気液分離器内を加熱して、冷媒に溶け込んだ冷凍機油を分離して、この冷凍機油を圧縮機に戻すことができる。
According to this structure, the exhaust heat of the gas engine that drives the compressor is effectively used to heat the inside of the gas-liquid separator to separate the refrigerating machine oil dissolved in the refrigerant, and this refrigerating machine oil is supplied to the compressor. Can be returned.

以下、図面を参照して本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係るガスヒートポンプ(GHP)式の空気調和装置に使用される室外ユニット100内の冷媒回路の概要図である。なお、この回路図において、冷媒回路を実線で示し、冷却水回路を実線の太線で示し、また、排気ガス回路を一点鎖線で示している。   FIG. 1 is a schematic diagram of a refrigerant circuit in an outdoor unit 100 used in a gas heat pump (GHP) type air conditioner according to an embodiment of the present invention. In this circuit diagram, the refrigerant circuit is indicated by a solid line, the cooling water circuit is indicated by a thick solid line, and the exhaust gas circuit is indicated by a one-dot chain line.

図1に示す室外ユニット100内の冷媒回路110は、ガスエンジン1、このガスエンジン1とVベルト2で連結された圧縮機3、この圧縮機3から冷媒配管を介して右回りに順に接続される油分離器4、四方弁5、ファン17,17による吸込空気によって冷却される室外熱交換器6、並設された電動弁7、プレート熱交換部36、および、気液分離器11を備え、この気液分離器11が圧縮機3に接続されて冷媒が循環するようになっている。また、室内ユニット140,150を備えており、この室内ユニット140,150に開閉弁9,10を介して冷媒配管が接続されている。これら室外ユニット100と室内ユニット140、150はユニット間配管でつながれている。   The refrigerant circuit 110 in the outdoor unit 100 shown in FIG. 1 is connected in order clockwise from the gas engine 1, the compressor 3 connected to the gas engine 1 by the V-belt 2, and the compressor 3 via the refrigerant pipe. The oil separator 4, the four-way valve 5, the outdoor heat exchanger 6 cooled by the air sucked by the fans 17, 17, the electric valve 7 arranged in parallel, the plate heat exchanger 36, and the gas-liquid separator 11 are provided. The gas-liquid separator 11 is connected to the compressor 3 so that the refrigerant circulates. In addition, indoor units 140 and 150 are provided, and refrigerant pipes are connected to the indoor units 140 and 150 via on-off valves 9 and 10. The outdoor unit 100 and the indoor units 140 and 150 are connected by inter-unit piping.

また、図1において実線で示す矢印は、冷房サイクルの場合の冷媒の流れを示し、点線で示す矢印は、暖房サイクルの場合の冷媒の流れを示し、四方弁5を切り換えることで、これらの運転のサイクルを切り換えることができるようになっている。なお、この冷媒回路110には、電動弁であるバイパス弁12、電動弁であるリキッド弁13、圧力スイッチ14、高圧側の圧力センサ15、低圧側の圧力センサ16、逆止弁18、および、サブクーラ19が設けられている。   In FIG. 1, the solid arrows indicate the refrigerant flow in the cooling cycle, and the dotted arrows indicate the refrigerant flow in the heating cycle. By switching the four-way valve 5, these operations are performed. The cycle can be switched. The refrigerant circuit 110 includes a bypass valve 12, which is an electric valve, a liquid valve 13, which is an electric valve, a pressure switch 14, a high pressure sensor 15, a low pressure sensor 16, a check valve 18, and A subcooler 19 is provided.

一方、室外ユニット100内の冷却水回路120は、ガスエンジン1から冷却水配管を介して順に接続される温水三方弁37(電動クーラ三方弁ともいう)、冷却水三方弁20、ラジエータ39、エア抜き弁40、リザーバタンク22、および、冷却水ポンプ21を備え、この冷却水ポンプ21がガスエンジン1の排気ガス熱交換器23に接続されて冷却水が循環するようになっている。また、排気ガス熱交換器23には、排気マフラ24が接続されており、この排気マフラ24には、排気トップ25およびドレンフィルタ26が接続されている。   On the other hand, the cooling water circuit 120 in the outdoor unit 100 includes a hot water three-way valve 37 (also referred to as an electric cooler three-way valve), a cooling water three-way valve 20, a radiator 39, an air connected in order from the gas engine 1 through a cooling water pipe. A drain valve 40, a reservoir tank 22, and a cooling water pump 21 are provided, and the cooling water pump 21 is connected to the exhaust gas heat exchanger 23 of the gas engine 1 so that the cooling water circulates. An exhaust muffler 24 is connected to the exhaust gas heat exchanger 23, and an exhaust top 25 and a drain filter 26 are connected to the exhaust muffler 24.

また、ガスエンジン1には、図1に示すように、燃焼ガス遮断弁27,27、ゼロガバナ28、電動弁である燃料調整弁29、エアクリーナ30、ステッピングモータ31、オイルレベルスイッチ33を内蔵したサブオイルパン32、オイルポンプ34、および、オイルキャッチャ35がそれぞれ接続されている。この燃焼ガス遮断弁27の開閉およびステッピングモータ31の動きによって、燃料であるガスがガスエンジン1に供給されることになる。   Further, as shown in FIG. 1, the gas engine 1 includes combustion gas cutoff valves 27, 27, a zero governor 28, a fuel adjustment valve 29 that is an electric valve, an air cleaner 30, a stepping motor 31, and an oil level switch 33. An oil pan 32, an oil pump 34, and an oil catcher 35 are connected to each other. By opening / closing the combustion gas cutoff valve 27 and the movement of the stepping motor 31, gas as fuel is supplied to the gas engine 1.

冷却水回路120において、温水三方弁37および冷却水ポンプ21を接続する配管経路によってガスエンジン1を通過した冷却水をガスエンジン1に戻す第1経路が形成されている。また、ガスエンジン1を通過した冷却水を、温水三方弁37、冷却水三方弁20、および、プレート熱交換部36を通過させて第1経路に戻す第2経路と、温水三方弁37、冷却水三方弁20、および、ラジエータ39を通過させて第1経路に戻す第3経路とを形成可能に構成されている。   In the cooling water circuit 120, a first path for returning the cooling water that has passed through the gas engine 1 to the gas engine 1 is formed by a piping path that connects the hot water three-way valve 37 and the cooling water pump 21. The cooling water that has passed through the gas engine 1 passes through the hot water three-way valve 37, the cooling water three-way valve 20, and the plate heat exchanging section 36 and returns to the first path, the hot water three-way valve 37, and the cooling water. A water three-way valve 20 and a third path that passes through the radiator 39 and returns to the first path can be formed.

電磁弁54は、制御部70によって開閉状態が制御され、開の状態とされた場合には、冷却水ポンプ21から冷却水配管53を介して吐出される冷却水を、冷却水配管55を介して気液分離器11に設けられた冷却水熱交換器81(後述する)に導く。電磁弁52は、同様に制御部70によって開閉状態が制御され、開の状態とされた場合には、温水三方弁37からから冷却水配管51を介して吐出される冷却水を、冷却水配管55を介して気液分離器11内に設けられた冷却水熱交換器81に導く。なお、電磁弁52から気液分離器11内の冷却水熱交換器81に導かれる冷却水は、ガスエンジン1においてシリンダおよび排気ガスとの間で熱交換を行っており、また、電磁弁54から冷却水熱交換器81に導かれる冷却水はラジエータ39またはプレート熱交換部36によって冷却されている。したがって、電磁弁52から吐出される冷却水の方が、電磁弁54から吐出される冷却水よりも温度が高いため、電磁弁52から吐出される冷却水を高温冷却水と呼び、電磁弁54から吐出される冷却水を中温冷却水と呼ぶ。また、高温冷却水が流れる回路を高温ブライン回路と称し、中温冷却水が流れる回路を中温ブライン回路と称する。   When the open / close state of the solenoid valve 54 is controlled by the control unit 70 and the solenoid valve 54 is opened, the cooling water discharged from the cooling water pump 21 through the cooling water pipe 53 is passed through the cooling water pipe 55. To the cooling water heat exchanger 81 (described later) provided in the gas-liquid separator 11. Similarly, when the solenoid valve 52 is controlled to be opened and closed by the control unit 70 and is opened, the cooling water discharged from the hot water three-way valve 37 through the cooling water pipe 51 is supplied to the cooling water pipe. It is led to a cooling water heat exchanger 81 provided in the gas-liquid separator 11 through 55. The cooling water led from the electromagnetic valve 52 to the cooling water heat exchanger 81 in the gas-liquid separator 11 exchanges heat between the cylinder and the exhaust gas in the gas engine 1, and the electromagnetic valve 54. The cooling water led to the cooling water heat exchanger 81 is cooled by the radiator 39 or the plate heat exchange unit 36. Therefore, the cooling water discharged from the electromagnetic valve 52 has a higher temperature than the cooling water discharged from the electromagnetic valve 54, and hence the cooling water discharged from the electromagnetic valve 52 is called high temperature cooling water. The cooling water discharged from is called medium temperature cooling water. A circuit through which high-temperature cooling water flows is referred to as a high-temperature brine circuit, and a circuit through which intermediate-temperature cooling water flows is referred to as an intermediate-temperature brine circuit.

図2は、図1に示す気液分離器11の内部構造の一例を示す図である。気液分離器11の内部には、電磁弁54(図1参照)から供給される中温冷却水または電磁弁52(図1参照)から供給される高温冷却水が導かれ、中温冷却水または高温冷却水と、気液分離器11に貯留する冷凍機油の溶け込んだ液冷媒との間で熱交換を行わせる冷却水熱交換器81が配置される。なお、熱交換を確実に行うため、冷却水熱交換器81は、液冷媒の貯留する気液分離器11の下部に位置するように設置することが望ましい。   FIG. 2 is a diagram showing an example of the internal structure of the gas-liquid separator 11 shown in FIG. Medium-temperature cooling water supplied from the electromagnetic valve 54 (see FIG. 1) or high-temperature cooling water supplied from the electromagnetic valve 52 (see FIG. 1) is led into the gas-liquid separator 11, and the intermediate-temperature cooling water or high-temperature cooling water is supplied. A cooling water heat exchanger 81 is disposed to exchange heat between the cooling water and the liquid refrigerant in which the refrigerating machine oil stored in the gas-liquid separator 11 is dissolved. In addition, in order to perform heat exchange reliably, it is desirable to install the cooling water heat exchanger 81 so as to be positioned below the gas-liquid separator 11 in which the liquid refrigerant is stored.

また、冷却水熱交換器81の冷却水の入口配管Cには図1の気液分離器11の配管Aが接続され、冷却水の出口配管Dには図1の気液分離器11の配管Bが接続される。   1 is connected to the cooling water inlet pipe C of the cooling water heat exchanger 81, and the cooling water outlet pipe D is connected to the piping of the gas-liquid separator 11 of FIG. B is connected.

空気調和装置は、図1において室外ユニット100および室内ユニット140,150の各部を制御するための制御部70を有している。この制御部70は、各種温度センサを有するとともに、室内ユニット140,150の室内制御装置(図示せず)と通信可能に接続されている。そして、この制御部70は、室内リモコン(図示せず)に入力されたユーザの指示を室内制御装置を介して取得し、冷房運転を行う場合には、図1に示すように、四方弁5を実線の位置(冷房運転の位置)に切り換え、ガスエンジン1の駆動により圧縮機3から吐出された冷媒を図に実線矢印で示す方向に流して、室外熱交換器6を凝縮器として機能させ、室内熱交換器141,151(図1参照)を蒸発器として機能させる一方、暖房運転を行う場合には、四方弁5を破線の位置(暖房運転の位置)に切り換え、圧縮機3から吐出された冷媒を図に破線矢印で示す方向に流して、室内熱交換器141,151を凝縮器として機能させ、室外熱交換器6を蒸発器として機能させる。また、制御部70は、電動弁7,142,152の開度を制御し、これらを通過する冷媒量を調整することにより、各被調和室が設定温度となるように制御する。   The air conditioner has a control unit 70 for controlling each unit of the outdoor unit 100 and the indoor units 140 and 150 in FIG. The control unit 70 includes various temperature sensors and is communicably connected to indoor control devices (not shown) of the indoor units 140 and 150. When the control unit 70 obtains a user instruction input to an indoor remote controller (not shown) via the indoor control device and performs a cooling operation, the four-way valve 5 is used as shown in FIG. Is switched to the position of the solid line (cooling operation position), and the refrigerant discharged from the compressor 3 by driving the gas engine 1 is caused to flow in the direction indicated by the solid line arrow in the figure so that the outdoor heat exchanger 6 functions as a condenser. While the indoor heat exchangers 141 and 151 (see FIG. 1) function as evaporators, when heating operation is performed, the four-way valve 5 is switched to the broken line position (heating operation position) and discharged from the compressor 3. The refrigerant thus flowed is caused to flow in the direction indicated by the broken-line arrows in the figure, causing the indoor heat exchangers 141 and 151 to function as condensers and the outdoor heat exchanger 6 to function as evaporators. In addition, the control unit 70 controls the opening degree of the motor-operated valves 7, 142, and 152, and adjusts the amount of refrigerant passing through the motor valves 7, 142, and 152 so that each conditioned room has a set temperature.

また、制御部70は、温水三方弁37および冷却水三方弁20の開度を制御し、第1、第2、および、第3経路に流れる冷却水の流量を制御することにより、ガスエンジン1の排熱を回収し、空気調和装置の運転効率を向上させる。より詳細には、例えば、ガスエンジン1の始動直後のように、冷却水の温度が低い場合には、第1経路に冷却水を循環させる。また、冷却水の温度が高くなった場合であって、暖房運転時に暖房負荷が大きいときには、第2経路に冷却水を循環させ、プレート熱交換部36によって冷却水の熱を冷媒に回収させることにより、暖房負荷に対応するとともに、運転効率を向上させる。さらに、冷却水の温度が高くなった場合であって、暖房運転時に暖房負荷が小さいとき、または、冷房運転時には、第3経路に冷却水を循環させ、冷却水の熱をラジエータ39から外気に放熱させる。   Further, the control unit 70 controls the opening degree of the hot water three-way valve 37 and the cooling water three-way valve 20, and controls the flow rate of the cooling water flowing through the first, second, and third paths, whereby the gas engine 1 is controlled. The exhaust heat is recovered and the operating efficiency of the air conditioner is improved. More specifically, for example, when the temperature of the cooling water is low, such as immediately after the gas engine 1 is started, the cooling water is circulated through the first path. Further, when the temperature of the cooling water becomes high and the heating load is large during the heating operation, the cooling water is circulated through the second path, and the heat of the cooling water is collected by the refrigerant by the plate heat exchange unit 36. Thus, it can cope with the heating load and improve the operation efficiency. Further, when the temperature of the cooling water is high and the heating load is small during the heating operation, or during the cooling operation, the cooling water is circulated through the third path, and the heat of the cooling water is transferred from the radiator 39 to the outside air. Dissipate heat.

次に、図3のフローチャートを参照して、以上の実施形態の冷房運転時における動作について説明する。図3に示すフローチャートの処理が開始されると、以下のステップが実行される。すなわち、ステップS10では、制御部70(図1参照)は、空気調和装置の冷房運転を開始する。より詳細には、制御部70は、ガスエンジン1を始動し、圧縮機3の駆動を開始するとともに、四方弁5を実線の位置(冷房運転の位置)に切り換え、ガスエンジン1の駆動により圧縮機3から吐出された冷媒を図に実線矢印で示す方向に流して、室外熱交換器6を凝縮器として機能させ、室内熱交換器141,151を蒸発器として機能させる。なお、このとき、電磁弁52,54は閉状態に制御されるので、気液分離器11には、冷却水は供給されない。   Next, with reference to the flowchart of FIG. 3, the operation | movement at the time of the air_conditionaing | cooling operation of the above embodiment is demonstrated. When the processing of the flowchart shown in FIG. 3 is started, the following steps are executed. That is, in step S10, the control unit 70 (see FIG. 1) starts the cooling operation of the air conditioner. More specifically, the control unit 70 starts the gas engine 1 and starts driving the compressor 3, and switches the four-way valve 5 to a solid line position (cooling operation position), and compresses by driving the gas engine 1. The refrigerant discharged from the machine 3 is caused to flow in the direction indicated by the solid line arrow in the figure so that the outdoor heat exchanger 6 functions as a condenser and the indoor heat exchangers 141 and 151 function as evaporators. At this time, since the solenoid valves 52 and 54 are controlled to be closed, no cooling water is supplied to the gas-liquid separator 11.

ステップS11では、制御部70は、運転開始から10分が経過したか否かを判定し、10分が経過した場合(ステップS11;Yes)には通常運転ステップS12に進み、それ以外の場合(ステップS11;No)には10分が経過するまで同様の処理を繰り返す。なお、10分が経過するのを待つのは、運転開始後の過渡状態においては、圧縮機3への液バック(液相冷媒が圧縮機3へ流入すること)を防止する目的で、電動弁142,152を開閉する制御を行う場合があり、その場合には過熱度が上昇することがあるのでそのような場合を除外するためである。   In step S11, the control unit 70 determines whether or not 10 minutes have elapsed from the start of operation. If 10 minutes have elapsed (step S11; Yes), the control unit 70 proceeds to normal operation step S12, and otherwise ( In step S11; No), the same process is repeated until 10 minutes have elapsed. The reason for waiting for 10 minutes to pass is that the motor-operated valve is used for the purpose of preventing liquid back to the compressor 3 (liquid phase refrigerant flowing into the compressor 3) in a transient state after the start of operation. This is to exclude such a case because the superheat degree may increase in some cases.

ステップS12では、制御部70は、通常冷房運転を実行する。なお、このとき、電磁弁52,54はどちらも閉状態であるので、気液分離器11には、冷却水は供給されない。   In step S12, the control unit 70 performs a normal cooling operation. At this time, since both the solenoid valves 52 and 54 are closed, the cooling water is not supplied to the gas-liquid separator 11.

ステップS13では、凝縮温度制御または吐出温度制御が必要か否かを判定し、制御が必要な場合はステップS14に進み、それ以外の場合にはステップS15に進む。尚、凝縮温度制御とは室外熱交換器の温度T(図1参照)が所定の温度以下となるように、また圧力が高くなりすぎないように室外ユニット100のファン17の回転数や、エンジン1の回転数を制御することであり、吐出温度制御とは圧縮機の吐出側配管の温度T(図1参照)が所定の温度以下となるように圧縮機3の回転数を増減することである。これらの制御の必要性がある場合、通常運転が困難となり、エンジン1の回転数を下げるなどの運転能力を下げる必要がある。気液分離器11の加熱は、冷媒の高圧圧力を上昇させることにつながるため、このような制御に入らない運転状態での気液分離器11の加熱が前提となる。 In step S13, it is determined whether or not the condensation temperature control or the discharge temperature control is necessary. If control is necessary, the process proceeds to step S14, and otherwise, the process proceeds to step S15. Condensation temperature control refers to the rotational speed of the fan 17 of the outdoor unit 100 so that the temperature T 1 (see FIG. 1) of the outdoor heat exchanger is not more than a predetermined temperature and the pressure is not too high. Controlling the rotational speed of the engine 1 is discharge temperature control, in which the rotational speed of the compressor 3 is increased or decreased so that the temperature T 2 (see FIG. 1) of the discharge-side piping of the compressor becomes a predetermined temperature or less. That is. When there is a need for such control, normal operation becomes difficult, and it is necessary to lower the driving ability such as lowering the rotational speed of the engine 1. Since the heating of the gas-liquid separator 11 leads to an increase in the high-pressure pressure of the refrigerant, the heating of the gas-liquid separator 11 in an operating state that does not enter such control is a prerequisite.

ステップS14では、凝縮温度制御、吐出温度制御を行う。   In step S14, condensation temperature control and discharge temperature control are performed.

ステップS15では、制御部70は、中温ブライン回路の電磁弁54を開状態にする。このとき、電磁弁52は閉状態とされている。この結果、冷却水ポンプ21から吐出された冷却水は、電磁弁54を経由し、気液分離器11内に配置された冷却水熱交換器81を流れた後、冷却水配管56を経由して冷却水ポンプ21に戻される。前述のように、冷却水ポンプ21から吐出された冷却水は、ラジエータ39によって冷却されているので、ガスエンジン1から吐出された冷却水に比較して温度が低い中温冷却水であり、例えば、60℃程度である。   In step S15, the control unit 70 opens the electromagnetic valve 54 of the medium temperature brine circuit. At this time, the electromagnetic valve 52 is closed. As a result, the cooling water discharged from the cooling water pump 21 flows through the cooling water heat exchanger 81 disposed in the gas-liquid separator 11 via the electromagnetic valve 54, and then passes through the cooling water pipe 56. And returned to the cooling water pump 21. As described above, since the cooling water discharged from the cooling water pump 21 is cooled by the radiator 39, the cooling water discharged from the gas engine 1 is medium temperature cooling water having a lower temperature than the cooling water discharged from the gas engine 1, for example, It is about 60 ° C.

ステップS16では、再度凝縮温度制御または吐出温度制御が必要か否かを判定し、制御が必要な場合はステップS17に進み、それ以外の場合にはステップS18に進む。   In step S16, it is determined again whether or not the condensation temperature control or the discharge temperature control is necessary. If the control is necessary, the process proceeds to step S17. Otherwise, the process proceeds to step S18.

ステップS17では、制御部70は、中温ブライン回路の電磁弁54を閉状態にする。このとき、電磁弁52,54は閉状態に制御されるので、気液分離器11には、冷却水は供給されなくなる。   In step S17, the control unit 70 closes the electromagnetic valve 54 of the medium temperature brine circuit. At this time, since the solenoid valves 52 and 54 are controlled to be closed, the gas-liquid separator 11 is not supplied with cooling water.

ステップS18では、制御部70は、中温ブライン回路の電磁弁54を閉め、高温ブライン回路の電磁弁52を開状態にする。この結果、ガスエンジン1から吐出された冷却水は、電磁弁52を経由し、気液分離器11内に配置された冷却水熱交換器81を流れた後、冷却水配管56を経由して冷却水ポンプ21に戻される。前述のように、ガスエンジン1から吐出された冷却水は、ラジエータ39によって冷却された中温冷却水よりも温度が高い高温冷却水であり、例えば、80℃程度である。   In step S18, the control unit 70 closes the electromagnetic valve 54 of the medium temperature brine circuit and opens the electromagnetic valve 52 of the high temperature brine circuit. As a result, the cooling water discharged from the gas engine 1 flows through the cooling water heat exchanger 81 disposed in the gas-liquid separator 11 via the electromagnetic valve 52, and then passes through the cooling water pipe 56. It is returned to the cooling water pump 21. As described above, the cooling water discharged from the gas engine 1 is high-temperature cooling water having a temperature higher than that of the medium-temperature cooling water cooled by the radiator 39, and is about 80 ° C., for example.

ステップS19では、凝縮温度制御または吐出温度制御が必要か否かを判定し、制御が必要な場合はステップS20に進み、それ以外の場合には同様の処理を繰り返す。   In step S19, it is determined whether or not the condensation temperature control or the discharge temperature control is necessary. If the control is necessary, the process proceeds to step S20, and otherwise the same process is repeated.

ステップS20では、制御部70は、高温ブライン回路の電磁弁52を閉め、中温ブライン回路の電磁弁54を開状態にする。この結果、ガスエンジン1から吐出された冷却水は、電磁弁54を経由し、気液分離器11内に配置された冷却水熱交換器81を流れた後、冷却水配管56を経由して冷却水ポンプ21に戻される。   In step S20, the control unit 70 closes the solenoid valve 52 of the high-temperature brine circuit and opens the solenoid valve 54 of the medium-temperature brine circuit. As a result, the cooling water discharged from the gas engine 1 flows through the cooling water heat exchanger 81 arranged in the gas-liquid separator 11 via the electromagnetic valve 54, and then passes through the cooling water pipe 56. It is returned to the cooling water pump 21.

ここで、冷凍機油は圧力が高いほど、また温度が低いほど冷媒に溶け込みやすい性質があるので、気液分離器11を低圧、高温に保つことができれば気液分離器11内の液冷媒と冷凍機油は分離されやすくなる。このため、気液分離器11を熱交換器81で加熱し、冷凍機油が溶け込んだ液冷媒を高温に保つことで、気液分離器11内部に貯留された冷媒とその冷媒に溶け込んだ冷凍機油との分離は促進される。このようにして分離された冷凍機油は気液分離器11内の下部に溜まり、オイル戻し孔80により速やかに圧縮機3へ戻される。特に、ステップS13において凝縮温度制御または吐出温度制御が必要ない場合、ステップS15において中温冷却水を冷却水熱交換器81に導く。さらに、この状態でステップS16において凝縮温度制御または吐出温度制御が必要ない場合、ステップS18において中温冷却水よりも高温の高温冷却水を冷却水熱交換器81に導く。このようにして、中温冷却水を利用しても吐出温度制御が必要ない場合、中温冷却水よりもさらに高温の高温冷却水を冷却水熱交換器81に導くようにした。このため、2種類の温度の異なる熱源からの熱を利用することにより、気液分離器11内部に貯留された冷媒とその冷媒に溶け込んだ冷凍機油との分離の促進が確実に行える。また、段階的に温度が低い熱源から高い熱源を用いて加熱することにより、冷媒の温度が上昇し過ぎることを防止することができる。   Here, since the refrigerating machine oil has a property of being easily dissolved in the refrigerant as the pressure is higher and the temperature is lower, if the gas-liquid separator 11 can be maintained at a low pressure and a high temperature, the liquid refrigerant in the gas-liquid separator 11 and the refrigeration can be obtained. Machine oil is easily separated. For this reason, the gas-liquid separator 11 is heated by the heat exchanger 81, and the liquid refrigerant in which the refrigerating machine oil is dissolved is kept at a high temperature, so that the refrigerant stored in the gas-liquid separator 11 and the refrigerating machine oil dissolved in the refrigerant are stored. Separation from is promoted. The refrigerating machine oil separated in this way accumulates in the lower part in the gas-liquid separator 11 and is quickly returned to the compressor 3 through the oil return hole 80. In particular, when the condensation temperature control or the discharge temperature control is not required in step S13, the intermediate temperature cooling water is guided to the cooling water heat exchanger 81 in step S15. Further, in this state, when the condensation temperature control or the discharge temperature control is not required in step S16, the high-temperature cooling water having a temperature higher than the medium-temperature cooling water is led to the cooling water heat exchanger 81 in step S18. In this way, when the discharge temperature control is not required even when the medium temperature cooling water is used, the high temperature cooling water higher than the medium temperature cooling water is guided to the cooling water heat exchanger 81. For this reason, by utilizing the heat from the two types of heat sources having different temperatures, the separation of the refrigerant stored in the gas-liquid separator 11 and the refrigerating machine oil dissolved in the refrigerant can be surely promoted. Moreover, it can prevent that the temperature of a refrigerant | coolant rises too much by heating using a high heat source from a heat source with low temperature in steps.

以上に説明したように、本発明の実施形態によれば、油分離器4は圧縮機3の吐出側配管60に設けており、圧縮機3からの吐出冷媒に含まれている冷凍機油を分離して、戻し管61を介して気液分離器11へ導く。油分離器4で分離された冷凍機油は、適切な油量を保つために速やかに圧縮機3に戻ることが理想であるが、圧縮機3に冷凍機油とともに液冷媒が流れ込むという液バックを防止するために気液分離器11を介す必要がある。また、冷凍機油を速やかに気液分離器11から圧縮機3に戻すために、単純にオイル戻し孔80を大きくしてしまうと、この場合もオイル戻し孔80を介して冷凍機油だけでなく液冷媒も圧縮機へ戻るため、液バックをおこす可能性がある。そこで、気液分離器11を高温に保つことで液冷媒と冷凍機油の分離を促進させ、さらに気液分離器11の吸込管下部に図6で示すようにオイル戻し孔801を複数個に増やす、あるいは図7で示すようにオイル戻し孔802を下方になるほど大きくすることにより、気液分離器11の下部に貯留する冷凍機油をスムーズに圧縮機3に戻すことができる。この場合、冷凍機油91は液冷媒92よりも下部に貯留する。   As described above, according to the embodiment of the present invention, the oil separator 4 is provided in the discharge side pipe 60 of the compressor 3 and separates the refrigeration oil contained in the refrigerant discharged from the compressor 3. Then, it is guided to the gas-liquid separator 11 through the return pipe 61. Although it is ideal that the refrigeration oil separated by the oil separator 4 returns to the compressor 3 quickly in order to maintain an appropriate amount of oil, the liquid back that liquid refrigerant flows into the compressor 3 together with the refrigeration oil is prevented. In order to do so, it is necessary to pass through the gas-liquid separator 11. Further, if the oil return hole 80 is simply enlarged in order to quickly return the refrigeration oil from the gas-liquid separator 11 to the compressor 3, not only the refrigeration oil but also the liquid is returned via the oil return hole 80 in this case. Since the refrigerant also returns to the compressor, there is a possibility of causing a liquid back. Therefore, by keeping the gas-liquid separator 11 at a high temperature, the separation of the liquid refrigerant and the refrigerating machine oil is promoted, and the oil return holes 801 are increased to a plurality at the lower portion of the suction pipe of the gas-liquid separator 11 as shown in FIG. Alternatively, as shown in FIG. 7, the refrigeration oil stored in the lower portion of the gas-liquid separator 11 can be smoothly returned to the compressor 3 by increasing the oil return hole 802 downward. In this case, the refrigerating machine oil 91 is stored below the liquid refrigerant 92.

以下にガスエンジンの排気ガスの熱を利用した参考例について図4で述べる。
A reference example using the heat of the exhaust gas of the gas engine will be described below with reference to FIG.

図4は、排気ガスの熱を利用した実施形態を示すものであり、具体的には気液分離器11の加熱に排気ガスを用いた。電磁弁44は、制御部70によって開閉状態が制御され、開状態とされた場合には、排気ガス熱交換器23の出口の排気ガスの一部を排気ガス配管43を介して気液分離器11内に設けられた排気ガス熱交換器81に導く。電磁弁42は、同様に制御部70によって開閉状態が制御され、開状態とされた場合には、排気ガス熱交換器23の入口の排気ガスの一部を、排気ガス配管41を介して、気液分離器11内に設けられた排気ガス熱交換器81に導く。なお、電磁弁42から吐出される排気ガスの方が、電磁弁44から吐出される排気ガスよりも温度が高いため、電磁弁42から吐出される排気ガスを高温排気ガスと呼び、電磁弁44から吐出される排気ガスを中温排気ガスと呼ぶ。また、高温排気ガスが流れる回路を高温排気ガス回路と称し、中温排気ガスが流れる回路を中温排気ガス回路と称する。要するに、図1との相違点は、気液分離器11には冷却水配管55,56ではなく、エンジンの排気ガス配管45,46を接続し気液分離器11を加熱する点である。尚、図1と同様な作用を行うものは、図1の符号と同一符号を付してその説明は省略する。   FIG. 4 shows an embodiment using the heat of the exhaust gas. Specifically, the exhaust gas is used for heating the gas-liquid separator 11. When the solenoid valve 44 is opened and closed by the control unit 70 and is opened, a part of the exhaust gas at the outlet of the exhaust gas heat exchanger 23 is separated from the gas-liquid separator via the exhaust gas pipe 43. 11 is led to an exhaust gas heat exchanger 81 provided in the inside. Similarly, when the open / close state of the solenoid valve 42 is controlled by the control unit 70 and is opened, a part of the exhaust gas at the inlet of the exhaust gas heat exchanger 23 is passed through the exhaust gas pipe 41. It guides to the exhaust gas heat exchanger 81 provided in the gas-liquid separator 11. Since the exhaust gas discharged from the electromagnetic valve 42 has a higher temperature than the exhaust gas discharged from the electromagnetic valve 44, the exhaust gas discharged from the electromagnetic valve 42 is referred to as a high temperature exhaust gas. The exhaust gas discharged from is called medium temperature exhaust gas. A circuit through which high-temperature exhaust gas flows is referred to as a high-temperature exhaust gas circuit, and a circuit through which intermediate-temperature exhaust gas flows is referred to as a medium-temperature exhaust gas circuit. In short, the difference from FIG. 1 is that not the cooling water pipes 55 and 56 but the exhaust gas pipes 45 and 46 of the engine are connected to the gas-liquid separator 11 to heat the gas-liquid separator 11. In addition, what performs the same effect | action as FIG. 1 attaches | subjects the same code | symbol as the code | symbol of FIG. 1, and abbreviate | omits the description.

図5は、気液分離器11の参考例を示す図であり、気液分離器11に冷却水熱交換器を取り付ける方法として、気液分離器11外部に冷却水熱交換器82を巻きつけてもよい。なお、この場合も、冷却水熱交換器81(図2参照)同様に、冷却水熱交換器82は、液冷媒の貯留する気液分離器11の下部に位置するように設置することが望ましい。
FIG. 5 is a diagram showing a reference example of the gas-liquid separator 11. As a method of attaching the cooling water heat exchanger to the gas-liquid separator 11, a cooling water heat exchanger 82 is wound around the gas-liquid separator 11. May be. In this case as well, like the cooling water heat exchanger 81 (see FIG. 2), it is desirable that the cooling water heat exchanger 82 be installed so as to be positioned below the gas-liquid separator 11 in which the liquid refrigerant is stored. .

以上の実施形態では、中温冷却水および高温冷却水を図1の冷却水ポンプ21の出口および温水三方弁37の出口から取り出すようにしたが、これ以外の場所から取り出すようにしてもよい。要するに、気液分離器11に貯留する液冷媒を加熱することができる異なる2種類の温度の冷却水が得られればよい。


In the above embodiment, the intermediate temperature cooling water and the high temperature cooling water are taken out from the outlet of the cooling water pump 21 and the outlet of the hot water three-way valve 37 in FIG. 1, but may be taken out from other places. In short, it is only necessary to obtain two different types of cooling water capable of heating the liquid refrigerant stored in the gas-liquid separator 11.


また、以上の実施形態では、気液分離器11内部の冷却水熱交換器81は、螺旋状に巻回された構造としたが、例えば、直線形状や、波形形状等でもよい。   Moreover, in the above embodiment, the cooling water heat exchanger 81 inside the gas-liquid separator 11 has a spirally wound structure, but may be, for example, a linear shape or a corrugated shape.

また、以上の実施形態では、あらかじめ決められた所定範囲内の場合に気液分離器11を加熱することにより、圧縮機3内の冷凍機油の戻りをスムーズに行うことができる。   Moreover, in the above embodiment, the refrigerating machine oil in the compressor 3 can be smoothly returned by heating the gas-liquid separator 11 within the predetermined range determined in advance.

また、以上の実施形態では、気液分離器11で分離された冷凍機油をオイル戻し孔によって効率よく速やかに圧縮機3へ戻すことができる。このため、室外熱交換機6配管内部、室内熱交換器141,151配管内部の冷凍機油の付着が低減され、室外熱交換機6、室内熱交換器141,151の熱伝導率の向上が期待できる。   Moreover, in the above embodiment, the refrigerating machine oil separated by the gas-liquid separator 11 can be returned to the compressor 3 quickly and efficiently by the oil return hole. For this reason, the adhesion of the refrigeration oil inside the outdoor heat exchanger 6 pipe and the indoor heat exchangers 141 and 151 pipes is reduced, and improvement in the thermal conductivity of the outdoor heat exchanger 6 and the indoor heat exchangers 141 and 151 can be expected.

また、以上の実施形態では、空気調和装置は、1台の室外ユニット100と、2台の室内ユニット140,150を有するようにしたが、室外ユニットを複数台有していたり、室内ユニット140,150を1台または3台以上有していたりするようにしてもよい。   In the above embodiment, the air conditioner has one outdoor unit 100 and two indoor units 140 and 150. However, the air conditioner has a plurality of outdoor units, One or three or more 150 may be provided.

また、以上の実施形態では、ガスエンジンヒートポンプ式の空気調和装置の冷房運転時に本発明を適用する場合を例に挙げて説明したが、暖房運転時に本発明を適用することも可能である。暖房運転時は、冷却水や排気ガスの熱エネルギーが暖房能力を高めることになるため、圧縮機3への冷凍機油の戻り性の向上に加えて運転能力が上がる。また、ガスエンジンヒートポンプ型の空気調和装置だけではなく、ショーケース等の他の冷凍装置に適用することもできる。   In the above embodiment, the case where the present invention is applied during cooling operation of a gas engine heat pump type air conditioner has been described as an example, but the present invention can also be applied during heating operation. During the heating operation, the heat energy of the cooling water and the exhaust gas enhances the heating capacity, so that the operating capacity increases in addition to the improvement of the returnability of the refrigeration oil to the compressor 3. Further, the present invention can be applied not only to a gas engine heat pump type air conditioner but also to other refrigeration apparatuses such as a showcase.

本発明の実施形態に係るガスエンジンヒートポンプ式冷凍装置の構成図である。1 is a configuration diagram of a gas engine heat pump refrigeration apparatus according to an embodiment of the present invention. 図1に示した気液分離器の詳細構成を示す図である。It is a figure which shows the detailed structure of the gas-liquid separator shown in FIG. 図1のガスエンジンヒートポンプ式空気調和機において実行される処理の一例である。It is an example of the process performed in the gas engine heat pump type air conditioner of FIG. 本発明の他の実施形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 図2に示した気液分離器の他の第1実施形態である。It is other 1st Embodiment of the gas-liquid separator shown in FIG. 図2に示した気液分離器の他の第2実施形態である。It is other 2nd Embodiment of the gas-liquid separator shown in FIG. 図2に示した気液分離器の他の第3実施形態である。It is other 3rd Embodiment of the gas-liquid separator shown in FIG.

1…ガスエンジン
3…圧縮機
4…油分離器
6…室外熱交換器
11…気液分離器
60…圧縮機の吐出側配管
80…オイル戻し孔(オイル戻し手段)
81…冷却水熱交換器
100…室外ユニット
140、150…室内ユニット
141、151…室内熱交換器
DESCRIPTION OF SYMBOLS 1 ... Gas engine 3 ... Compressor 4 ... Oil separator 6 ... Outdoor heat exchanger 11 ... Gas-liquid separator 60 ... Compressor discharge side piping 80 ... Oil return hole (oil return means)
81 ... Cooling water heat exchanger 100 ... Outdoor unit 140, 150 ... Indoor unit 141, 151 ... Indoor heat exchanger

Claims (1)

ガスエンジンで駆動される圧縮機、凝縮器、減圧器、蒸発器、気液分離器を順次つないで冷凍サイクルを形成すると共に、この気液分離器には冷凍機油が溶け込んだ液冷媒が貯留され、この気液分離器の下部に溜まった冷凍機油をこの気液分離器内に位置し前記圧縮機につながる吸込管のオイル孔からこの圧縮機に戻すようにした冷凍装置において、前記気液分離器内の冷凍機油が溶け込んだ液冷媒を加熱してこの液冷媒と冷凍機油とを分離させる加熱用の熱交換器を設け、この熱交換器には、前記ガスエンジンからの冷却水を直接導く高温冷却水、もしくはこの高温冷却水をラジエータで冷却してこの高温冷却水よりも低温の中温冷却水のいずれかを流すように切り替える弁を設けて、前記凝縮器の温度が所定温度以上もしくは前記圧縮機の吐出温度が所定温度以上の場合には、前記中温冷却水で前記気液分離器内の液冷媒を加熱し、この加熱でも上記凝縮器温度が所定温度以下もしくは上記圧縮機吐出温度が所定温度以下にならない場合には、前記高温冷却水による前記気液分離器内の液冷媒の加熱に切り替えて、前記気液分離器内の液冷媒の加熱して、この加熱で分離された冷凍機油をオイル戻し孔から圧縮機へ戻すようにしたことを特徴とする冷凍装置。 A compressor, condenser, decompressor, evaporator, and gas-liquid separator driven by a gas engine are connected in sequence to form a refrigeration cycle. The gas-liquid separator stores liquid refrigerant in which refrigeration oil is dissolved. In the refrigerating apparatus, the refrigerating machine oil accumulated in the lower part of the gas-liquid separator is located in the gas-liquid separator and is returned to the compressor through an oil hole of a suction pipe connected to the compressor. A heating heat exchanger is provided for heating the liquid refrigerant in which the refrigerator oil in the chamber is dissolved to separate the liquid refrigerant and the refrigerator oil, and the cooling water from the gas engine is directly guided to the heat exchanger. A high-temperature cooling water or a valve that switches the high-temperature cooling water so that either the high-temperature cooling water or a medium-temperature cooling water that is lower than the high-temperature cooling water flows through the radiator is provided, and the condenser temperature is equal to or higher than a predetermined temperature or Compressor When the discharge temperature is equal to or higher than a predetermined temperature, the liquid refrigerant in the gas-liquid separator is heated with the intermediate temperature cooling water, and even in this heating, the condenser temperature is lower than the predetermined temperature or the compressor discharge temperature is lower than the predetermined temperature. If not, the heating is switched to the heating of the liquid refrigerant in the gas-liquid separator by the high-temperature cooling water, the liquid refrigerant in the gas-liquid separator is heated, and the refrigerating machine oil separated by this heating is oiled A refrigeration apparatus characterized in that it is returned from the return hole to the compressor .
JP2009171428A 2009-07-22 2009-07-22 Refrigeration equipment Expired - Fee Related JP5458717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171428A JP5458717B2 (en) 2009-07-22 2009-07-22 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171428A JP5458717B2 (en) 2009-07-22 2009-07-22 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2011027292A JP2011027292A (en) 2011-02-10
JP5458717B2 true JP5458717B2 (en) 2014-04-02

Family

ID=43636245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171428A Expired - Fee Related JP5458717B2 (en) 2009-07-22 2009-07-22 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5458717B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423125B (en) * 2012-04-17 2016-12-14 苏州徕卡节能电气技术有限公司 Heat energy recycling system of air compressor
JP6758948B2 (en) * 2016-06-27 2020-09-23 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle equipment accumulator
CN107339821A (en) * 2017-01-16 2017-11-10 上海悠太节能科技中心(有限合伙) Air source heat pump system with heat reclamation device
JP7199032B2 (en) * 2018-07-30 2023-01-05 パナソニックIpマネジメント株式会社 air conditioner
CN109405318A (en) * 2018-10-17 2019-03-01 苏州必信空调有限公司 It is a kind of with the refrigeration system and its control method that freely cool down

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055580A (en) * 1991-06-26 1993-01-14 Aisin Seiki Co Ltd Foreign matter filter device for refrigerant circuit
KR0152286B1 (en) * 1992-10-22 1998-11-02 윤종용 Cooling/heating airconditioner and its control method
JP3214221B2 (en) * 1994-04-11 2001-10-02 株式会社日立製作所 refrigerator
JPH1047817A (en) * 1996-07-31 1998-02-20 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JP2008121926A (en) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd Refrigeration air conditioner

Also Published As

Publication number Publication date
JP2011027292A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JPH1062028A (en) Air conditioner
KR100586989B1 (en) Air condition system for cooling and heating and control method thereof
JP5458717B2 (en) Refrigeration equipment
JP4001149B2 (en) Air conditioner
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
JPWO2017006452A1 (en) Air conditioner
JP5157580B2 (en) Refrigeration equipment
JP5145026B2 (en) Air conditioner
JP3941817B2 (en) Air conditioner
JP3798418B2 (en) air conditioner
JP2017187227A (en) Cooling device
JP2014085078A (en) Air conditioner
JP5223873B2 (en) Air conditioner
KR20050026591A (en) Refrigerant heating type air conditioner
JP2014077560A (en) Air conditioner
KR102017405B1 (en) Heat pump
JP2005140433A (en) Air conditioner
JP2008051464A (en) Air conditioner
JP4086719B2 (en) Air conditioner and control method of air conditioner
JP2011089706A (en) Air conditioner
JP4169521B2 (en) Air conditioner
JP2009281645A (en) Air conditioner and control method for air conditioner
JP2002168534A (en) Heat pump system of air conditioner
JP2013072561A (en) Refrigeration unit for container
JP2020020492A (en) Air conditioner

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

LAPS Cancellation because of no payment of annual fees