JP5157580B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5157580B2
JP5157580B2 JP2008085754A JP2008085754A JP5157580B2 JP 5157580 B2 JP5157580 B2 JP 5157580B2 JP 2008085754 A JP2008085754 A JP 2008085754A JP 2008085754 A JP2008085754 A JP 2008085754A JP 5157580 B2 JP5157580 B2 JP 5157580B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
flow path
valve
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008085754A
Other languages
Japanese (ja)
Other versions
JP2009236447A (en
Inventor
謙一 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008085754A priority Critical patent/JP5157580B2/en
Publication of JP2009236447A publication Critical patent/JP2009236447A/en
Application granted granted Critical
Publication of JP5157580B2 publication Critical patent/JP5157580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば、空冷ヒートポンプチラー等の冷凍装置に関する。   The present invention relates to a refrigeration apparatus such as an air cooling heat pump chiller.

従来、冷凍装置としては、圧縮機101と、空気熱交換器102と、膨張弁103と、水熱交換器104とを備えたものがある(特開2003−83644号公報:特許文献1参照)。   Conventionally, a refrigeration apparatus includes a compressor 101, an air heat exchanger 102, an expansion valve 103, and a water heat exchanger 104 (see Japanese Patent Application Laid-Open No. 2003-83644: Patent Document 1). .

上記圧縮機101、上記空気熱交換器102、上記膨張弁103および上記水熱交換器104は、順に、冷媒流路110を介して、環状に接続されている。   The compressor 101, the air heat exchanger 102, the expansion valve 103, and the water heat exchanger 104 are sequentially connected in an annular shape via a refrigerant flow path 110.

この冷媒流路110に、冷房運転時と暖房運転時との冷媒の流れを変える四方弁105が設けられている。   The refrigerant flow path 110 is provided with a four-way valve 105 that changes the flow of the refrigerant during the cooling operation and the heating operation.

上記膨張弁103と上記水熱交換器104との間の冷媒流路110に、バイパス流路111の一端が接続され、この第1バイパス流路111の他端に、冷媒調整器106が接続されている。   One end of a bypass flow path 111 is connected to the refrigerant flow path 110 between the expansion valve 103 and the water heat exchanger 104, and a refrigerant regulator 106 is connected to the other end of the first bypass flow path 111. ing.

この冷凍装置の冷媒流れを説明すると、冷房運転時では、実線の矢印に示すように、圧縮機101で圧縮された冷媒は、順に、四方弁105、空気熱交換器102、膨張弁103および水熱交換器104を通って、圧縮機101へ戻ってくる。このとき、空気熱交換器102は、凝縮器となり、水熱交換器104は、蒸発器となる。   The refrigerant flow of this refrigeration apparatus will be described. During the cooling operation, the refrigerant compressed by the compressor 101 is, in order, the four-way valve 105, the air heat exchanger 102, the expansion valve 103, and water as indicated by the solid line arrows. It returns to the compressor 101 through the heat exchanger 104. At this time, the air heat exchanger 102 serves as a condenser, and the water heat exchanger 104 serves as an evaporator.

一方、暖房運転時では、点線の矢印に示すように、圧縮機101で圧縮された冷媒は、順に、四方弁105、水熱交換器104、膨張弁103、空気熱交換器102を通って、圧縮機101へ戻ってくる。このとき、空気熱交換器102は、蒸発器となり、水熱交換器104は、凝縮器となる。   On the other hand, during the heating operation, as indicated by the dotted arrows, the refrigerant compressed by the compressor 101 sequentially passes through the four-way valve 105, the water heat exchanger 104, the expansion valve 103, and the air heat exchanger 102. Return to the compressor 101. At this time, the air heat exchanger 102 serves as an evaporator, and the water heat exchanger 104 serves as a condenser.

ここで、冷房運転時と暖房運転時で冷媒流路110に必要な冷媒量を比較すると、水熱交換器104の方が空気熱交換器102よりも冷媒を凝縮する効率が良いので、冷房運転時よりも暖房運転時の方が冷媒流路110に必要な冷媒量は少なくて済む。   Here, when the amount of refrigerant necessary for the refrigerant flow path 110 is compared between the cooling operation and the heating operation, the water heat exchanger 104 is more efficient in condensing the refrigerant than the air heat exchanger 102. The amount of refrigerant required for the refrigerant flow path 110 is smaller during the heating operation than during the time.

このため、暖房運転時では、余剰分の冷媒液は、バイパス流路111を介して、冷媒調整器106に流れ込んで、貯留される。一方、冷房運転時では、冷媒流路110に必要な冷媒量が不足するため、冷媒調整器106から冷媒液が冷媒流路110に流れ込み、不足分を補う。
特開2003−83644号公報(図4)
For this reason, at the time of heating operation, the excess refrigerant liquid flows into the refrigerant regulator 106 via the bypass channel 111 and is stored. On the other hand, during the cooling operation, the amount of refrigerant necessary for the refrigerant flow path 110 is insufficient, so that the refrigerant liquid flows from the refrigerant regulator 106 into the refrigerant flow path 110 to compensate for the shortage.
Japanese Patent Laying-Open No. 2003-83644 (FIG. 4)

しかしながら、上記従来の冷凍装置では、水熱交換器104における水温が比較的高くてバイパス流路111の内圧が高くなり、かつ、外気が低温で冷媒調整器106の内圧が低くなり、冷媒調整器106の内圧がバイパス流路111の内圧よりも低くなった状態で、冷房運転を行うと、冷媒が冷媒調整器106に逆流して、冷房運転時の冷媒流路における冷媒が不足する問題があった。そして、冷媒流路における冷媒不足により、低圧保護装置の作動や水熱交換器の凍結による異常停止をおこす問題があった。   However, in the conventional refrigeration apparatus, the water temperature in the water heat exchanger 104 is relatively high, the internal pressure of the bypass channel 111 is high, the internal pressure of the refrigerant regulator 106 is low when the outside air is low, and the refrigerant regulator If the cooling operation is performed in a state where the internal pressure of 106 is lower than the internal pressure of the bypass flow path 111, the refrigerant flows back to the refrigerant regulator 106, resulting in a shortage of refrigerant in the refrigerant flow path during the cooling operation. It was. And there existed a problem which causes the abnormal stop by the action | operation of a low-pressure protective device or the freezing of a water heat exchanger by the refrigerant | coolant shortage in a refrigerant | coolant flow path.

そこで、この発明の課題は、冷房運転時の冷媒流路における冷媒不足を防止できる冷凍装置を提供することにある。   Therefore, an object of the present invention is to provide a refrigeration apparatus that can prevent a refrigerant shortage in a refrigerant flow path during cooling operation.

上記課題を解決するため、この発明の冷凍装置は、
圧縮機と、空気熱交換器と、膨張機構と、水熱交換器とを備え、
上記圧縮機、上記空気熱交換器、上記膨張機構および上記水熱交換器は、順に、冷媒流路を介して、環状に接続され、
この冷媒流路に、冷房運転時と暖房運転時との冷媒の流れを変える切換弁が設けられ、
上記膨張機構と上記水熱交換器との間の冷媒流路に、第1バイパス流路の一端が接続され、この第1バイパス流路の他端に、冷媒調整器が接続され、
上記空気熱交換器と上記膨張機構との間の冷媒流路に、第2バイパス流路の一端が接続され、この第2バイパス流路の他端に、上記冷媒調整器が接続され、
上記第1バイパス流路に、第3バイパス流路の両端が接続され、
上記第3バイパス流路に、第1電気的駆動弁が設けられ、
上記第2バイパス流路に、第2電気的駆動弁が設けられ
上記第1電気的駆動弁および上記第2電気的駆動弁に電気的に接続された制御部を有し、
この制御部は、冷房運転時に、上記第1電気的駆動弁を閉じ、冷房運転始動時の一定時間だけ、上記第2電気的駆動弁を開けることを特徴としている。
In order to solve the above problems, the refrigeration apparatus of the present invention provides:
A compressor, an air heat exchanger, an expansion mechanism, and a water heat exchanger;
The compressor, the air heat exchanger, the expansion mechanism, and the water heat exchanger are sequentially connected in a ring shape via a refrigerant flow path,
This refrigerant flow path is provided with a switching valve that changes the flow of refrigerant during cooling operation and heating operation,
One end of a first bypass channel is connected to the refrigerant channel between the expansion mechanism and the water heat exchanger, and a refrigerant regulator is connected to the other end of the first bypass channel,
One end of a second bypass channel is connected to the refrigerant channel between the air heat exchanger and the expansion mechanism, and the refrigerant regulator is connected to the other end of the second bypass channel,
Both ends of the third bypass channel are connected to the first bypass channel,
A first electrically driven valve is provided in the third bypass flow path,
A second electrically driven valve is provided in the second bypass flow path ;
A control unit electrically connected to the first electric drive valve and the second electric drive valve;
This control unit is characterized in that, during the cooling operation, the first electric drive valve is closed and the second electric drive valve is opened for a certain period of time when the cooling operation is started .

この発明の冷凍装置によれば、上記圧縮機、上記空気熱交換器、上記膨張機構、上記水熱交換器、上記切換弁、上記冷媒調整器、上記第1電気的駆動弁および上記第2電気的駆動弁を有し、この制御部は、冷房運転時に、第1電気的駆動弁を閉じ、冷房運転始動時の一定時間だけ、第2電気的駆動弁を開けるので、水熱交換器における水温が比較的高くて第1バイパス流路の内圧が高くなり、かつ、外気が低温で冷媒調整器の内圧が低くなり、冷媒調整器の内圧が第1バイパス流路の内圧よりも低くなった状態で、冷房運転を行っても、冷房運転始動時の一定時間だけ、第2電気的駆動弁を開けることで、冷媒調整器の内圧を第1バイパス流路の内圧よりも高くできて、冷媒調整器から第1バイパス流路を介して冷媒流路に冷媒を流入できる。 According to the refrigeration apparatus of the present invention, the compressor, the air heat exchanger, the expansion mechanism, the water heat exchanger, the switching valve, the refrigerant regulator, the first electric drive valve, and the second electric valve. This control unit closes the first electric drive valve during cooling operation, and opens the second electric drive valve for a certain period of time at the start of cooling operation, so that the water temperature in the water heat exchanger is Is relatively high, the internal pressure of the first bypass flow path is high, and the external pressure is low, the internal pressure of the refrigerant regulator is low, and the internal pressure of the refrigerant regulator is lower than the internal pressure of the first bypass flow path Thus, even if the cooling operation is performed, the internal pressure of the refrigerant regulator can be made higher than the internal pressure of the first bypass channel by opening the second electrically driven valve for a certain period of time at the start of the cooling operation. Refrigerant can flow into the refrigerant flow path from the vessel via the first bypass flow path

このように、冷房運転開始時に、冷媒流路から第1バイパス流路を介して冷媒調整器に冷媒が逆流することを防止できて、冷房運転時の冷媒流路における冷媒不足を防止できる。そして、冷媒流路における冷媒不足による、低圧保護装置の作動や水熱交換器の凍結による異常停止を、防止できる。   As described above, at the start of the cooling operation, it is possible to prevent the refrigerant from flowing backward from the refrigerant channel to the refrigerant regulator via the first bypass channel, and it is possible to prevent a shortage of the refrigerant in the refrigerant channel during the cooling operation. And the abnormal stop by the action | operation of a low-pressure protection apparatus or the freezing of a water heat exchanger by the refrigerant | coolant shortage in a refrigerant | coolant flow path can be prevented.

また、一実施形態の冷凍装置では、上記第3バイパス流路の両端の間の第1バイパス流路に、上記冷媒調整器から冷媒流路への一方向に冷媒を流す逆止弁が設けられている。   In one embodiment, a check valve is provided in the first bypass channel between both ends of the third bypass channel to allow the refrigerant to flow in one direction from the refrigerant regulator to the refrigerant channel. ing.

この実施形態の冷凍装置によれば、上記第1バイパス流路に、上記冷媒調整器から冷媒流路への一方向に冷媒を流す逆止弁が設けられているので、冷房運転時に、第1電気的駆動弁を閉じ、冷房運転始動時の一定時間だけ、第2電気的駆動弁を開けることで、冷房運転時に、冷媒流路から第1バイパス流路を介して冷媒調整器に冷媒が逆流することを確実に防止できる。   According to the refrigeration apparatus of this embodiment, the first bypass flow path is provided with the check valve that allows the refrigerant to flow in one direction from the refrigerant regulator to the refrigerant flow path. By closing the electric drive valve and opening the second electric drive valve for a fixed time at the start of the cooling operation, the refrigerant flows back from the refrigerant flow path to the refrigerant regulator via the first bypass flow path during the cooling operation. Can be surely prevented.

また、一実施形態の冷凍装置では、
上記制御部は、暖房運転時に、上記第1電気的駆動弁を開け、上記第2電気的駆動弁を閉じる。
In one embodiment of the refrigeration apparatus,
The controller may, at the time of warm bunch operation, opening the first electrical drive valve, closes the second electrical drive valve.

この実施形態の冷凍装置によれば、上記制御部は、暖房運転時に、上記第1電気的駆動弁を開け、上記第2電気的駆動弁を閉じるので、暖房運転時に、冷媒流路における余剰の冷媒を、冷媒調整器に確実に戻すことができる。 According to the refrigeration apparatus of this embodiment, the control unit, during warm bunch operation, opening the first electrical driving valve, since closing the second electrical drive valve, during warm bunch operation, in the refrigerant flow path Excess refrigerant can be reliably returned to the refrigerant regulator.

この発明の冷凍装置によれば、上記圧縮機、上記空気熱交換器、上記膨張機構、上記水熱交換器、上記切換弁、上記冷媒調整器、上記第1電気的駆動弁および上記第2電気的駆動弁を有しているので、冷房運転時の冷媒流路における冷媒不足を防止できる。   According to the refrigeration apparatus of the present invention, the compressor, the air heat exchanger, the expansion mechanism, the water heat exchanger, the switching valve, the refrigerant regulator, the first electric drive valve, and the second electric valve. Since the drive valve is provided, it is possible to prevent a refrigerant shortage in the refrigerant flow path during the cooling operation.

以下、この発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

図1は、この発明の冷凍装置の一実施形態である簡略構成図を示している。この冷凍装置は、圧縮機1と、空気熱交換器2と、(膨張機構としての)膨張弁3と、水熱交換器4とを備えている。   FIG. 1 shows a simplified configuration diagram as an embodiment of the refrigeration apparatus of the present invention. This refrigeration apparatus includes a compressor 1, an air heat exchanger 2, an expansion valve 3 (as an expansion mechanism), and a water heat exchanger 4.

上記圧縮機1、上記空気熱交換器2、上記膨張弁3および上記水熱交換器4は、順に、冷媒流路10を介して、環状に接続されている。   The compressor 1, the air heat exchanger 2, the expansion valve 3, and the water heat exchanger 4 are sequentially connected in an annular manner via a refrigerant flow path 10.

上記空気熱交換器2には、ファンが設けられ、ファンにより送られた空気と熱交換を行う。上記水熱交換器4には、水配管が設けられ、水配管を流れる水と熱交換を行う。   The air heat exchanger 2 is provided with a fan, and performs heat exchange with air sent by the fan. The water heat exchanger 4 is provided with a water pipe, and performs heat exchange with water flowing through the water pipe.

この冷媒流路10に、(切換弁としての)四方弁5が設けられ、この四方弁5は、冷房運転時と暖房運転時との冷媒の流れを変える。   The refrigerant flow path 10 is provided with a four-way valve 5 (as a switching valve), and the four-way valve 5 changes the refrigerant flow during the cooling operation and the heating operation.

上記膨張弁3と上記水熱交換器4との間の冷媒流路10に、第1バイパス流路11の一端が接続され、この第1バイパス流路11の他端に、冷媒調整器6が接続されている。   One end of a first bypass channel 11 is connected to the refrigerant channel 10 between the expansion valve 3 and the water heat exchanger 4, and the refrigerant regulator 6 is connected to the other end of the first bypass channel 11. It is connected.

上記空気熱交換器2と上記膨張弁3との間の冷媒流路10に、第2バイパス流路12の一端が接続され、この第2バイパス流路12の他端に、上記冷媒調整器6が接続されている。   One end of the second bypass passage 12 is connected to the refrigerant passage 10 between the air heat exchanger 2 and the expansion valve 3, and the refrigerant regulator 6 is connected to the other end of the second bypass passage 12. Is connected.

上記第1バイパス流路11に、第3バイパス流路13の両端が接続されている。上記第3バイパス流路13に、(第1電気的駆動弁としての)第1電磁弁21が設けられている。上記第2バイパス流路12に、(第2電気的駆動弁としての)第2電磁弁22が設けられている。   Both ends of the third bypass channel 13 are connected to the first bypass channel 11. A first electromagnetic valve 21 (as a first electrically driven valve) is provided in the third bypass flow path 13. A second electromagnetic valve 22 (as a second electrically driven valve) is provided in the second bypass flow path 12.

上記第3バイパス流路13の両端の間の第1バイパス流路11に、逆止弁23が設けられ、この逆止弁23は、上記冷媒調整器6から冷媒流路10への一方向に冷媒を流す。   A check valve 23 is provided in the first bypass flow path 11 between both ends of the third bypass flow path 13, and the check valve 23 extends in one direction from the refrigerant regulator 6 to the refrigerant flow path 10. Pour refrigerant.

上記第1電磁弁21および上記第2電磁弁22に電気的に接続された制御部30が設けられている。   A control unit 30 electrically connected to the first electromagnetic valve 21 and the second electromagnetic valve 22 is provided.

この冷凍装置の冷媒流れを説明すると、冷房運転時では、実線の矢印に示すように、圧縮機1で圧縮された冷媒は、順に、四方弁5、空気熱交換器2、膨張弁3および水熱交換器4を通って、圧縮機1へ戻ってくる。このとき、空気熱交換器2は、凝縮器となり、水熱交換器4は、蒸発器となる。   The refrigerant flow of this refrigeration apparatus will be described. During the cooling operation, the refrigerant compressed by the compressor 1 is in order of the four-way valve 5, the air heat exchanger 2, the expansion valve 3, and the water as indicated by the solid line arrows. It returns to the compressor 1 through the heat exchanger 4. At this time, the air heat exchanger 2 serves as a condenser, and the water heat exchanger 4 serves as an evaporator.

一方、暖房運転時では、点線の矢印に示すように、圧縮機1で圧縮された冷媒は、順に、四方弁5、水熱交換器4、膨張弁3、空気熱交換器2を通って、圧縮機1へ戻ってくる。このとき、空気熱交換器2は、蒸発器となり、水熱交換器4は、凝縮器となる。   On the other hand, at the time of heating operation, as indicated by the dotted arrow, the refrigerant compressed by the compressor 1 sequentially passes through the four-way valve 5, the water heat exchanger 4, the expansion valve 3, and the air heat exchanger 2. Return to the compressor 1. At this time, the air heat exchanger 2 becomes an evaporator, and the water heat exchanger 4 becomes a condenser.

ここで、冷房運転時と暖房運転時で冷媒流路10に必要な冷媒量を比較すると、水熱交換器4の方が空気熱交換器2よりも冷媒を凝縮する効率が良いので、冷房運転時よりも暖房運転時の方が冷媒流路10に必要な冷媒量は少なくて済む。   Here, when the amount of refrigerant necessary for the refrigerant flow path 10 is compared between the cooling operation and the heating operation, the water heat exchanger 4 is more efficient in condensing the refrigerant than the air heat exchanger 2, and thus the cooling operation. The amount of refrigerant required for the refrigerant flow path 10 is smaller during the heating operation than at the time.

そして、上記制御部30は、冷房運転時に、第1電磁弁21を閉じ、冷房運転始動時の一定時間だけ、第2電磁弁22を開ける一方、暖房運転時に、第1電磁弁21を開け、第2電磁弁22を閉じる。   And the said control part 30 closes the 1st electromagnetic valve 21 at the time of air_conditionaing | cooling operation, and opens the 2nd electromagnetic valve 22 only for the fixed time at the time of air_conditioning | cooling operation start, while opening the 1st electromagnetic valve 21 at the time of heating operation, The second electromagnetic valve 22 is closed.

このため、暖房運転時では、余剰分の冷媒液は、第1バイパス流路11および第3バイパス流路13(第1電磁弁21)を通って、冷媒調整器6に流れ込んで、貯留される。   For this reason, during the heating operation, surplus refrigerant liquid flows into the refrigerant regulator 6 through the first bypass flow path 11 and the third bypass flow path 13 (first electromagnetic valve 21) and is stored. .

一方、冷房運転時では、冷媒流路10に必要な冷媒量が不足するため、冷媒調整器6の冷媒液が、第1バイパス流路11(逆止弁23)を通って、冷媒流路10に流れ込み、不足分を補う。   On the other hand, during the cooling operation, since the amount of refrigerant necessary for the refrigerant flow path 10 is insufficient, the refrigerant liquid of the refrigerant regulator 6 passes through the first bypass flow path 11 (check valve 23) and passes through the refrigerant flow path 10. To make up for the shortage.

このとき、水熱交換器4における水温が比較的高くて第1バイパス流路11の内圧が高くなり、かつ、外気が低温で冷媒調整器6の内圧が低くなり、冷媒調整器6の内圧が第1バイパス流路11の内圧よりも低くなった状態で、冷房運転を行っても、冷房運転始動時の一定時間だけ、第2電磁弁22を開けることで、冷媒調整器6の内圧を第1バイパス流路11の内圧よりも高くできて、冷媒調整器6から第1バイパス流路11を介して冷媒流路10に冷媒を流入できる。   At this time, the water temperature in the water heat exchanger 4 is relatively high, the internal pressure of the first bypass passage 11 is high, the internal temperature of the refrigerant regulator 6 is low because the outside air is low temperature, and the internal pressure of the refrigerant regulator 6 is low. Even if the cooling operation is performed in a state where the internal pressure of the first bypass passage 11 is lower, the internal pressure of the refrigerant regulator 6 is reduced by opening the second electromagnetic valve 22 for a certain period of time at the start of the cooling operation. The internal pressure of the first bypass passage 11 can be made higher, and the refrigerant can flow into the refrigerant passage 10 from the refrigerant regulator 6 via the first bypass passage 11.

このように、冷房運転開始時に、冷媒流路10から第1バイパス流路11を介して冷媒調整器6に冷媒が逆流することを防止できて、冷房運転時の冷媒流路10における冷媒不足を防止できる。   Thus, at the start of the cooling operation, it is possible to prevent the refrigerant from flowing back from the refrigerant flow channel 10 to the refrigerant regulator 6 via the first bypass flow channel 11, and the refrigerant shortage in the refrigerant flow channel 10 during the cooling operation can be prevented. Can be prevented.

なお、第2電磁弁22を開ける一定時間は、運転範囲で最も高低差圧が小さくなる条件にて冷媒調整器6に溜まった冷媒を戻すのに必要な時間のみで決定され、圧力、温度といった運転条件を検知し制御するといったことは必要としない。   The fixed time for opening the second electromagnetic valve 22 is determined only by the time required to return the refrigerant accumulated in the refrigerant regulator 6 under the condition that the highest differential pressure is the smallest in the operating range. There is no need to detect and control operating conditions.

上記構成の冷凍装置によれば、上記圧縮機1、上記空気熱交換器2、上記膨張弁3、上記水熱交換器4、上記四方弁5、上記冷媒調整器6、上記第1電磁弁21および上記第2電磁弁22を有しているので、冷媒調整器6の内圧が第1バイパス流路11の内圧よりも低くなった状態で冷房運転を行っても、冷房運転始動時の一定時間だけ、第2電磁弁22を開けることで、冷媒調整器6の内圧を第1バイパス流路11の内圧よりも高くできて、冷媒調整器6から第1バイパス流路11を介して冷媒流路10に冷媒を流入できる。   According to the refrigeration apparatus having the above configuration, the compressor 1, the air heat exchanger 2, the expansion valve 3, the water heat exchanger 4, the four-way valve 5, the refrigerant regulator 6, and the first electromagnetic valve 21. In addition, since the second electromagnetic valve 22 is provided, even if the cooling operation is performed in a state where the internal pressure of the refrigerant regulator 6 is lower than the internal pressure of the first bypass passage 11, a certain time at the start of the cooling operation is obtained. Only by opening the second electromagnetic valve 22, the internal pressure of the refrigerant regulator 6 can be made higher than the internal pressure of the first bypass channel 11, and the refrigerant channel from the refrigerant regulator 6 through the first bypass channel 11. The refrigerant can flow into 10.

したがって、冷房運転時の冷媒流路10における冷媒不足を防止できる。そして、冷媒流路10における冷媒不足による、低圧保護装置の作動や水熱交換器4の凍結による異常停止を、防止できる。また、冷凍装置の性能に影響を及ぼすことなく、比較的安価で、かつ運転範囲全域にて安定した運転が可能となる。   Therefore, the refrigerant shortage in the refrigerant flow path 10 during the cooling operation can be prevented. And the abnormal stop by the action | operation of a low-pressure protective device or the freezing of the water heat exchanger 4 by the refrigerant | coolant shortage in the refrigerant | coolant flow path 10 can be prevented. Further, it is possible to operate stably at a relatively low cost and in the entire operation range without affecting the performance of the refrigeration apparatus.

また、上記逆止弁23を有するので、冷房運転時に、第1電磁弁21を閉じ、冷房運転始動時の一定時間だけ、第2電磁弁22を開けることで、冷房運転時に、冷媒流路10から第1バイパス流路11を介して冷媒調整器6に冷媒が逆流することを確実に防止できる。   In addition, since the check valve 23 is provided, the first electromagnetic valve 21 is closed during the cooling operation, and the second electromagnetic valve 22 is opened for a certain period of time at the start of the cooling operation. Therefore, it is possible to reliably prevent the refrigerant from flowing back to the refrigerant regulator 6 through the first bypass flow path 11.

また、上記制御部30を有するので、冷房運転時に、冷媒流路10から第1バイパス流路11を介して冷媒調整器6に冷媒が逆流することを確実に防止できる一方、暖房運転時に、冷媒流路10における余剰の冷媒を、冷媒調整器6に確実に戻すことができる。   In addition, since the control unit 30 is included, it is possible to reliably prevent the refrigerant from flowing backward from the refrigerant flow path 10 to the refrigerant regulator 6 via the first bypass flow path 11 during the cooling operation, Excess refrigerant in the flow path 10 can be reliably returned to the refrigerant regulator 6.

なお、この発明は上述の実施形態に限定されない。例えば、上記逆止弁23を設けなくてもよい。また、膨張機構として、上記膨張弁3以外に、キャピラリーチューブであってもよい。また、切換弁として、上記四方弁5以外に、他の弁であってもよい。また、電気的駆動弁として、上記電磁弁21,22以外に、電動弁であってもよい。   In addition, this invention is not limited to the above-mentioned embodiment. For example, the check valve 23 may not be provided. In addition to the expansion valve 3, the expansion mechanism may be a capillary tube. In addition to the four-way valve 5, other valves may be used as the switching valve. In addition to the electromagnetic valves 21 and 22, an electrically driven valve may be an electric valve.

本発明の冷凍装置の一実施形態を示す簡略構成図である。It is a simplified lineblock diagram showing one embodiment of the refrigerating device of the present invention. 従来の冷凍装置を示す簡略構成図である。It is a simplified block diagram which shows the conventional freezing apparatus.

1 圧縮機
2 空気熱交換器
3 膨張弁(膨張機構)
4 水熱交換器
5 四方弁(切換弁)
6 冷媒調整器
10 冷媒流路
11 第1バイパス流路
12 第2バイパス流路
13 第3バイパス流路
21 第1電磁弁(第1電気的駆動弁)
22 第2電磁弁(第2電気的駆動弁)
23 逆止弁
30 制御部
DESCRIPTION OF SYMBOLS 1 Compressor 2 Air heat exchanger 3 Expansion valve (expansion mechanism)
4 Water heat exchanger 5 Four-way valve (switching valve)
6 Refrigerant regulator 10 Refrigerant flow path 11 First bypass flow path 12 Second bypass flow path 13 Third bypass flow path 21 First electromagnetic valve (first electrically driven valve)
22 Second solenoid valve (second electrically driven valve)
23 Check valve 30 Control unit

Claims (3)

圧縮機(1)と、空気熱交換器(2)と、膨張機構(3)と、水熱交換器(4)とを備え、
上記圧縮機(1)、上記空気熱交換器(2)、上記膨張機構(3)および上記水熱交換器(4)は、順に、冷媒流路(10)を介して、環状に接続され、
この冷媒流路(10)に、冷房運転時と暖房運転時との冷媒の流れを変える切換弁(5)が設けられ、
上記膨張機構(3)と上記水熱交換器(4)との間の冷媒流路(10)に、第1バイパス流路(11)の一端が接続され、この第1バイパス流路(11)の他端に、冷媒調整器(6)が接続され、
上記空気熱交換器(2)と上記膨張機構(3)との間の冷媒流路(10)に、第2バイパス流路(12)の一端が接続され、この第2バイパス流路(12)の他端に、上記冷媒調整器(6)が接続され、
上記第1バイパス流路(11)に、第3バイパス流路(13)の両端が接続され、
上記第3バイパス流路(13)に、第1電気的駆動弁(21)が設けられ、
上記第2バイパス流路(12)に、第2電気的駆動弁(22)が設けられ
上記第1電気的駆動弁(21)および上記第2電気的駆動弁(22)に電気的に接続された制御部(30)を有し、
この制御部(30)は、冷房運転時に、上記第1電気的駆動弁(21)を閉じ、冷房運転始動時の一定時間だけ、上記第2電気的駆動弁(22)を開けることを特徴とする冷凍装置。
A compressor (1), an air heat exchanger (2), an expansion mechanism (3), and a water heat exchanger (4);
The compressor (1), the air heat exchanger (2), the expansion mechanism (3), and the water heat exchanger (4) are sequentially connected in an annular manner via the refrigerant flow path (10),
The refrigerant flow path (10) is provided with a switching valve (5) that changes the flow of the refrigerant during the cooling operation and the heating operation,
One end of the first bypass channel (11) is connected to the refrigerant channel (10) between the expansion mechanism (3) and the water heat exchanger (4), and the first bypass channel (11). The refrigerant regulator (6) is connected to the other end of the
One end of a second bypass channel (12) is connected to the refrigerant channel (10) between the air heat exchanger (2) and the expansion mechanism (3), and the second bypass channel (12). The refrigerant regulator (6) is connected to the other end of the
Both ends of the third bypass channel (13) are connected to the first bypass channel (11),
A first electrically driven valve (21) is provided in the third bypass channel (13),
The second bypass flow path (12) is provided with a second electrically driven valve (22) ,
A control unit (30) electrically connected to the first electric drive valve (21) and the second electric drive valve (22);
The control unit (30) is characterized in that the first electric drive valve (21) is closed during cooling operation, and the second electric drive valve (22) is opened for a certain period of time when the cooling operation is started. Refrigeration equipment.
請求項1に記載の冷凍装置において、
上記第3バイパス流路(13)の両端の間の第1バイパス流路(11)に、上記冷媒調整器(6)から冷媒流路(10)への一方向に冷媒を流す逆止弁(23)が設けられていることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1,
A check valve that allows the refrigerant to flow in one direction from the refrigerant regulator (6) to the refrigerant flow path (10) into the first bypass flow path (11) between both ends of the third bypass flow path (13). 23) is provided.
請求項1または2に記載の冷凍装置において、
上記制御部(30)は、暖房運転時に、上記第1電気的駆動弁(21)を開け、上記第2電気的駆動弁(22)を閉じることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1 or 2,
The control unit (30), during warm bunch operation, the first open electric driving valve (21), refrigeration system, characterized in that closing said second electrical drive valve (22).
JP2008085754A 2008-03-28 2008-03-28 Refrigeration equipment Active JP5157580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085754A JP5157580B2 (en) 2008-03-28 2008-03-28 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085754A JP5157580B2 (en) 2008-03-28 2008-03-28 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009236447A JP2009236447A (en) 2009-10-15
JP5157580B2 true JP5157580B2 (en) 2013-03-06

Family

ID=41250612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085754A Active JP5157580B2 (en) 2008-03-28 2008-03-28 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5157580B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923680A (en) * 2015-08-28 2018-04-17 三菱电机株式会社 Refrigerating circulatory device
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148001B2 (en) * 2012-12-14 2017-06-14 シャープ株式会社 Air conditioner
JP6250428B2 (en) * 2014-02-12 2017-12-20 東芝キヤリア株式会社 Refrigeration cycle equipment
KR102165353B1 (en) * 2014-06-09 2020-10-13 엘지전자 주식회사 Refrigerant system
US10724777B2 (en) * 2015-10-08 2020-07-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
EP4276384A4 (en) * 2021-01-05 2024-03-06 Mitsubishi Electric Corp Refrigeration cycle apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164437A (en) * 1991-12-12 1993-06-29 Hitachi Ltd Air conditioner
JP4115017B2 (en) * 1998-11-16 2008-07-09 三洋電機株式会社 Refrigeration air conditioner
JP4848608B2 (en) * 2001-09-12 2011-12-28 三菱電機株式会社 Refrigerant circuit
JP2003130472A (en) * 2001-10-19 2003-05-08 Fujitsu General Ltd Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923680A (en) * 2015-08-28 2018-04-17 三菱电机株式会社 Refrigerating circulatory device
CN107923680B (en) * 2015-08-28 2020-06-30 三菱电机株式会社 Refrigeration cycle device
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device
CN108139119B (en) * 2015-10-08 2020-06-05 三菱电机株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2009236447A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
US10539335B2 (en) Regenerative air conditioner
JP5157580B2 (en) Refrigeration equipment
JP4974714B2 (en) Water heater
CN101233375B (en) Method for preventing spill start in heat pump and controller
CN101258369B (en) Refrigeration device
JPWO2007083794A1 (en) Air conditioner
JP2011208860A (en) Air conditioner
EP2592368A2 (en) High-pressure control mechanism for air-cooled heat pump
JP6545252B2 (en) Refrigeration cycle device
WO2017175299A1 (en) Refrigeration cycle device
JP2007107771A (en) Refrigeration cycle device
JP2011007379A (en) Air conditioner
JP2009036502A (en) Air conditioner
JP2008241127A (en) Air conditioner
JP2010002173A (en) Refrigerator
JP2007051824A (en) Air-conditioner
JP5458717B2 (en) Refrigeration equipment
JP6072264B2 (en) Refrigeration equipment
CN101605668B (en) Combined operation and control of suction modulation and pulse width modulation valves
JP2012127518A (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
WO2013114461A1 (en) Air-conditioning unit and air-conditioning unit for railway vehicle
JP2013155992A (en) Heat pump cycle device
JP4687326B2 (en) Air conditioner
JPH11108473A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3