JP2009036502A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009036502A
JP2009036502A JP2007295441A JP2007295441A JP2009036502A JP 2009036502 A JP2009036502 A JP 2009036502A JP 2007295441 A JP2007295441 A JP 2007295441A JP 2007295441 A JP2007295441 A JP 2007295441A JP 2009036502 A JP2009036502 A JP 2009036502A
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
outdoor heat
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007295441A
Other languages
Japanese (ja)
Inventor
Takashi Kakuwa
孝 嘉久和
Tomiyuki Noma
富之 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007295441A priority Critical patent/JP2009036502A/en
Priority to CN2008101279295A priority patent/CN101344340B/en
Publication of JP2009036502A publication Critical patent/JP2009036502A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve defrosting capacity in a heating cycle, and to improve defrosting finish determining accuracy. <P>SOLUTION: A refrigerating cycle has a compressor 1, a four-way valve 8, an indoor heat exchanger 3, a pressure reducer 4 and an outdoor heat exchanger 5, and has a first bypass circuit 18 connecting a part between the outdoor heat exchanger 5 and the pressure reducer 4 and a part between the compressor 1 and a delivery pipe 2, and a second bypass circuit 19 connecting the delivery pipe 2 of the compressor 1 to a suction part of the compressor 1, and is constituted by arranging an opening-closing mechanism 7 in the first and second bypass circuits 18 and 19. Heating defrosting operation can melt frost by raising the refrigerant temperature and pressure of the outdoor heat exchanger 5, without sending cold air into a room, by putting the pressure reducer 4 in a blocked-up state, by changing the four-way valve 8 to a cooling operation cycle from the heating cycle, after performing defrosting operation of the heating cycle up to a predetermined condition. The pressure reducer 4 is opened in predetermined opening, and the defrosting finish determining accuracy can be improved by circulating a refrigerant a little to the indoor heat exchanger 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は暖房サイクルで除霜運転を可能とする除霜サイクルにおいて、除霜能力の向上と除霜終了判定制御の精度向上を可能とする空気調和機に関するものである。   The present invention relates to an air conditioner capable of improving the defrosting capability and improving the accuracy of defrosting end determination control in a defrosting cycle that enables a defrosting operation in a heating cycle.

従来、空気調和機の暖房運転を行う冷凍サイクルの場合、四方弁は圧縮機から吐出される高温高圧冷媒を室内熱交換器へと循環させ、冷媒は高圧の液冷媒へと凝縮される。この冷媒は室外膨張弁へ流れて低温低圧冷媒へと断熱膨張し、その後、室外熱交換器において室外空気から吸熱し、ガス状の低圧冷媒としてアキュームレーターを介して圧縮機へ戻る。このとき、室外気温が氷点下等で低い場合、室外熱交換器に空気中の水分が霜となって着霜する。着霜した熱交換器は熱交換能力が極度に低下し、暖房能力が十分に得られなくなるため、これを融かす必要がある。この時従来の空気調和機においては、暖房運転から四方弁を逆転させ冷房サイクルとし、室内ファンと室外ファンを停止させて室外熱交換器に高温高圧冷媒を循環させ、熱交換器に着いた霜や氷を融かす方法が一般的であった。   Conventionally, in the case of a refrigeration cycle that performs heating operation of an air conditioner, a four-way valve circulates a high-temperature high-pressure refrigerant discharged from a compressor to an indoor heat exchanger, and the refrigerant is condensed into a high-pressure liquid refrigerant. This refrigerant flows to the outdoor expansion valve and adiabatically expands to a low-temperature low-pressure refrigerant, and then absorbs heat from outdoor air in the outdoor heat exchanger and returns to the compressor as a gaseous low-pressure refrigerant through the accumulator. At this time, when the outdoor air temperature is low, such as below freezing, moisture in the air forms frost on the outdoor heat exchanger. The frosted heat exchanger has extremely low heat exchange capacity and cannot sufficiently obtain heating capacity, so it is necessary to melt it. At this time, in the conventional air conditioner, the four-way valve is reversed from the heating operation to the cooling cycle, the indoor fan and the outdoor fan are stopped, the high-temperature and high-pressure refrigerant is circulated in the outdoor heat exchanger, and the frost attached to the heat exchanger The method of melting ice and ice was common.

そこで四方弁を切り替える必要のない除霜方法として、暖房運転時に、暖房サイクルのままで吐出ガスをバイパスするなどして除霜運転を行う空気調和機があり、その場合は除霜運転が終了するまで暖房サイクルを維持している(例えば、特許文献1参照)。   Therefore, as a defrosting method that does not require switching of the four-way valve, there is an air conditioner that performs the defrosting operation by bypassing the discharge gas while maintaining the heating cycle during the heating operation, in which case the defrosting operation ends. The heating cycle is maintained up to (for example, see Patent Document 1).

図3は、特許文献1に記載された従来の空気調和機を示すものである。図3に示すように、圧縮機1と、吐出管2と、室内熱交換器3と、電動膨張弁4と、液管15と、室外熱交換器5と、アキュームレーター6と、バイパス回路16と、開閉弁17から構成されている。上記構成において、暖房運転時に除霜運転を行うときには、四方弁8はそのまま暖房サイクルを維持させ、室外膨張弁4は全開、室外ファン14は停止、室内ファン13は弱風運転、バイパス回路16の開放弁17を開として吐出ガスをバイパス回路に流すようにしている。こうすることによって室内は暖房運転を継続可能となり、四方弁8を切り替えないのでオイル切れ等の不具合も避けることができる。
特開平2−17370号公報
FIG. 3 shows a conventional air conditioner described in Patent Document 1. As shown in FIG. As shown in FIG. 3, the compressor 1, the discharge pipe 2, the indoor heat exchanger 3, the electric expansion valve 4, the liquid pipe 15, the outdoor heat exchanger 5, the accumulator 6, and the bypass circuit 16. And the on-off valve 17. In the above configuration, when the defrosting operation is performed during the heating operation, the four-way valve 8 maintains the heating cycle as it is, the outdoor expansion valve 4 is fully opened, the outdoor fan 14 is stopped, the indoor fan 13 is operated with low wind, and the bypass circuit 16 The release valve 17 is opened so that the discharge gas flows through the bypass circuit. By doing so, the indoor heating operation can be continued and the four-way valve 8 is not switched, so that problems such as running out of oil can be avoided.
Japanese Patent Laid-Open No. 2-17370

しかしながら、前記従来の除霜運転時に冷房サイクルに切り替える構成では、暖房運転を一旦停止するために室内温度が低下し、四方弁を逆転させるため冷媒音の発生や圧縮機1のオイル切れ、冷媒の液戻りなどの課題を有していた。   However, in the configuration of switching to the cooling cycle during the conventional defrosting operation, the room temperature is lowered to temporarily stop the heating operation, and the four-way valve is reversed to generate refrigerant noise, run out of the compressor 1 oil, It had problems such as liquid return.

また、除霜運転時にも暖房サイクルとする構成では、室外熱交換器を循環する冷媒は圧力が低下した冷媒であり、室外熱交換器の温度が十分に上昇できないために霜の融け残りが発生したり、除霜終了判定が困難であるという課題を有していた。   In addition, in the configuration in which the heating cycle is performed even during the defrosting operation, the refrigerant circulating in the outdoor heat exchanger is a refrigerant whose pressure has dropped, and the temperature of the outdoor heat exchanger cannot sufficiently rise, resulting in unmelted frost. Or has a problem that it is difficult to determine the end of defrosting.

本発明は、前記従来の課題を解決するもので、室外熱交換器への霜の融け残りを防止し、除霜終了判定の精度向上を可能とする空気調和機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the air conditioner which prevents the unmelted frost to an outdoor heat exchanger and can improve the precision of a defrost end determination. .

前記従来の課題を解決するために、本発明の空気調和機は、圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒配管で連結し、前記室外熱交換器と前記減圧器の間と前記圧縮機吐出管の間とを連結する第1のバイパス回路と、前記圧縮機吐出管と圧縮機吸入部を連結する第2のバイパス回路を備え、前記第1と第2のバイパス回路に開閉機構を
設けた冷凍サイクルにおいて、暖房除霜運転を、暖房サイクルの除霜運転を所定の条件まで行った後、前記四方弁が暖房サイクルとなっている状態から冷房サイクルへ変更し、前期バイパス回路上の前記開閉機構は開放のままとし、前記減圧器は閉弁もしくは略閉塞状態として行うようにしたものである。
In order to solve the conventional problems, an air conditioner according to the present invention includes a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger connected by a refrigerant pipe, and the outdoor heat exchanger and the A first bypass circuit that connects between the pressure reducer and the compressor discharge pipe; and a second bypass circuit that connects the compressor discharge pipe and the compressor suction portion. In the refrigeration cycle provided with an open / close mechanism in the bypass circuit, the heating defrosting operation is changed from the state in which the four-way valve is in the heating cycle to the cooling cycle after the heating cycle defrosting operation is performed up to a predetermined condition. The open / close mechanism on the bypass circuit is left open, and the pressure reducer is closed or substantially closed.

これによって、室内熱交換器に冷媒を循環させず、四方弁が冷房サイクルの状態となっても冷風を室内へ送ることがないようにして、室外熱交換器の冷媒圧力を上昇させ、熱交換器温度を上昇させることで霜を融かすことができる。   As a result, the refrigerant is not circulated through the indoor heat exchanger, and even if the four-way valve is in the cooling cycle, the cold air is not sent into the room, the refrigerant pressure in the outdoor heat exchanger is increased, and heat exchange is performed. The frost can be melted by raising the vessel temperature.

また、本発明の空気調和機は、前述した後、前記減圧器を所定開度に開放し、冷媒を僅かに室内熱交換器へ循環させるものである。これによって冷媒が室外熱交換器から室内熱交換器へ循環するため、室外熱交換器温度を検出するために配置された配管温度センサーが室外熱交換器の正確な温度を検出することができるようになり、より精度の高い除霜終了判定が可能となる。   Moreover, the air conditioner of this invention opens the said decompressor to predetermined opening degree after being mentioned above, and circulates a refrigerant | coolant to an indoor heat exchanger slightly. As a result, the refrigerant circulates from the outdoor heat exchanger to the indoor heat exchanger, so that the pipe temperature sensor arranged for detecting the outdoor heat exchanger temperature can detect the accurate temperature of the outdoor heat exchanger. Thus, it is possible to determine the completion of defrosting with higher accuracy.

本発明の空気調和機は、暖房運転における除霜運転時に、室外熱交換器の霜の融け残りを防止したりや、除霜終了を正確に判定することができる。   The air conditioner of the present invention can prevent the frost from remaining in the outdoor heat exchanger during the defrosting operation in the heating operation, or can accurately determine the end of the defrosting.

第1の発明は暖房除霜運転を、暖房サイクルの除霜運転を所定の条件まで行った後、四方弁が暖房サイクルとなっている状態から冷房運転サイクルへ変更し、バイパス回路上の前記開閉機構は開放のままとし、減圧器は閉弁もしくは略閉塞状態として行うようにすることにより、室外熱交換器の冷媒圧力を上昇させ、熱交換器温度を上昇させることで霜を融かすことができる。   In the first aspect of the invention, the heating / defrosting operation is changed from the state where the four-way valve is in the heating cycle to the cooling operation cycle after the heating cycle defrosting operation is performed to a predetermined condition, and the opening / closing on the bypass circuit is performed. The mechanism remains open and the decompressor is closed or in a substantially closed state, thereby increasing the refrigerant pressure in the outdoor heat exchanger and increasing the heat exchanger temperature to thaw frost. it can.

第2の発明は、特に第1の発明において、暖房除霜運転を開始した後、所定の時間が経過した場合、又は室外熱交換器に取り付けられた配管温度センサーの検出温度があらかじめ定められた所定の温度以上となった場合に、減圧器を所定の開度にして冷媒を室内熱交換器へと循環させ、その後前記室外熱交換器の配管温度センサーの検出温度によって除霜終了を判定することにより、正確な除霜終了判定をすることができる。   In the second invention, in particular, in the first invention, when a predetermined time has elapsed after starting the heating defrosting operation, or the detection temperature of the pipe temperature sensor attached to the outdoor heat exchanger is predetermined. When the temperature exceeds a predetermined temperature, the decompressor is set to a predetermined opening degree, the refrigerant is circulated to the indoor heat exchanger, and then the end of the defrosting is determined based on the temperature detected by the piping temperature sensor of the outdoor heat exchanger. Thus, it is possible to accurately determine the end of defrosting.

第3の発明は、特に、第1または第2の発明のバイパス回路の開閉機構を全閉可能な膨張弁とすることにより、冷凍サイクルの最適化を行うことができる。   In the third aspect of the invention, in particular, the refrigeration cycle can be optimized by making the opening / closing mechanism of the bypass circuit of the first or second aspect of the invention an expansion valve that can be fully closed.

第4の発明は、特に、第1または第2の発明のバイパス回路の開閉機構を電磁二方弁とすることにより、製造原価の低減を行うことができる。   In the fourth aspect of the invention, in particular, the manufacturing cost can be reduced by using an electromagnetic two-way valve as the opening / closing mechanism of the bypass circuit of the first or second aspect of the invention.

第5の発明は、特に、第1または第2の発明の減圧器を全閉可能な膨張弁とすることにより、冷凍サイクルの最適化を行うことができる。   In the fifth aspect of the invention, in particular, the refrigeration cycle can be optimized by using the decompressor of the first or second aspect of the invention as an expansion valve that can be fully closed.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の冷凍サイクル図を示すものである。図1において、冷凍サイクルは圧縮機1と室内熱交換器3と減圧器として全閉可能な膨張弁4と室外熱交換器5と四方弁8を冷媒配管で連結して構成されている。さらに、圧縮機1の吐出管2から、室外熱交換器5と膨張弁4の間の接続配管4aにバイパス回路Aを設け、その途中には電磁二方弁7とキャピラリーチューブ9Aと逆止弁10Aを配置
する。また、電磁二方弁7とキャピラリーチューブ9Aの間とアキュームレーター6の間にバイパス回路Bを設ける。バイパス回路Bにもキャピラリーチューブ9Bと逆止弁10Bを配置する。
(Embodiment 1)
FIG. 1 shows a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention. In FIG. 1, the refrigeration cycle includes a compressor 1, an indoor heat exchanger 3, an expansion valve 4 that can be fully closed as a decompressor, an outdoor heat exchanger 5, and a four-way valve 8 connected by refrigerant piping. Further, a bypass circuit A is provided from the discharge pipe 2 of the compressor 1 to a connecting pipe 4a between the outdoor heat exchanger 5 and the expansion valve 4, and an electromagnetic two-way valve 7, a capillary tube 9A, and a check valve are provided in the middle. 10A is arranged. Further, a bypass circuit B is provided between the electromagnetic two-way valve 7 and the capillary tube 9 </ b> A and between the accumulator 6. A capillary tube 9B and a check valve 10B are also arranged in the bypass circuit B.

上記構成において、四方弁8を暖房サイクルのまま室外膨張弁4を所定の開度に開放すると、室内熱交換器3中の高温高圧冷媒は気液二相の弱高温状態(+5℃〜10℃程度)のまま着霜した室外熱交換器5へ流入する。この高温冷媒によって室外熱交換器5に付着した霜や氷が融かされる。ただしこの時、気液二相で流入した冷媒は、ガス成分が液化することで放熱するメカニズムのため、熱交換器を循環するにつれ液冷媒成分が増加し、圧縮機1へ戻るときには液成分が大部分を占めてしまう。このため圧縮機1の液戻り現象や、吐出温度の低下による吐出スーパーヒート(加熱度)不足などの信頼性を損なうという課題があった。また吐出温度が低下することによって、室外膨張弁4から室外熱交換器5へ循環する冷媒の乾き度も低下してしまい、室外熱交換器5の霜や氷を融かす除霜能力も低下してしまう。   In the above configuration, when the outdoor expansion valve 4 is opened to a predetermined opening while the four-way valve 8 remains in the heating cycle, the high-temperature and high-pressure refrigerant in the indoor heat exchanger 3 is in a gas-liquid two-phase weak and high temperature state (+ 5 ° C. to 10 ° C. It flows into the outdoor heat exchanger 5 that has been frosted. Frost and ice adhering to the outdoor heat exchanger 5 are melted by this high-temperature refrigerant. However, at this time, the refrigerant flowing in the gas-liquid two-phase is a mechanism that dissipates heat when the gas component is liquefied, so that the liquid refrigerant component increases as it circulates through the heat exchanger, and the liquid component returns to the compressor 1 when it returns. Will occupy the majority. For this reason, there existed a subject of impairing reliability, such as the liquid return phenomenon of the compressor 1, and insufficient discharge superheat (heating degree) by the fall of discharge temperature. Moreover, when the discharge temperature decreases, the dryness of the refrigerant circulating from the outdoor expansion valve 4 to the outdoor heat exchanger 5 also decreases, and the defrosting ability of the outdoor heat exchanger 5 for melting frost and ice also decreases. End up.

そこで、圧縮機1の吐出ガスを室外膨張弁4と室外熱交換器5の間へバイパスさせることで、室外熱交換器5を循環させる冷媒の温度と圧力を上昇させ、除霜能力を向上させる。また同時に吐出ガスを、電磁二方弁7通過後に分岐させて圧縮機1吸入へも流入させる。こうすることによって、圧縮機吸入ガスの乾き度を維持し、前述した信頼性上の課題や吐出温度の低下を防ぐことができる。   Therefore, by bypassing the discharge gas of the compressor 1 between the outdoor expansion valve 4 and the outdoor heat exchanger 5, the temperature and pressure of the refrigerant circulating in the outdoor heat exchanger 5 are increased, and the defrosting capability is improved. . At the same time, the discharge gas is branched after passing through the electromagnetic two-way valve 7 and flows into the compressor 1 intake. By doing so, it is possible to maintain the dryness of the compressor intake gas and prevent the above-described reliability problems and the decrease in the discharge temperature.

このようなサイクルによる除霜では、大きく2つの課題がある。一つは室外熱交換器5の温度が十分に上昇しないため、除霜能力が十分足りない場合が発生すること。もう一つには、霜が融けた場合と融けていない場合の判別が難しい事である。   There are two major problems in defrosting by such a cycle. One is that the temperature of the outdoor heat exchanger 5 does not rise sufficiently, and the case where the defrosting capacity is insufficient is generated. Another is that it is difficult to distinguish when the frost has melted and when it has not melted.

まず前述したような暖房サイクルで除霜運転を行いながら、あらかじめ定められた条件を満たした場合、本発明の実施例では、室外熱交換器5に取り付けられた配管温度センサーB12の検出温度が、所定の温度(例えば8℃)を上回る状態が所定時間(例えば1分)連続した場合、又は最大時間(例えば10分)を超えた場合に除霜終了を判定するが、最大時間を超えた場合には除霜が完全には終了していない場合を含んでいる。   First, when a predetermined condition is satisfied while performing the defrosting operation in the heating cycle as described above, in the embodiment of the present invention, the detected temperature of the pipe temperature sensor B12 attached to the outdoor heat exchanger 5 is: When a state exceeding a predetermined temperature (for example, 8 ° C.) continues for a predetermined time (for example, 1 minute), or when the maximum time (for example, 10 minutes) is exceeded, the end of defrosting is determined. Includes the case where the defrosting is not completely completed.

そこで暖房サイクルの除霜運転終了後に、室外の四方弁8を逆転させ冷房サイクル除霜運転を行う。この時の冷凍サイクルを図1に示す。こうすることによって、圧縮機1から吐出した高温高圧のガス冷媒は室外熱交換器5を暖房サイクル除霜時とは逆方向へ循環するようになる。つまり暖房サイクル除霜時には出口になっていた最も除霜し難い部分へ、最も高温の冷媒が流入することになり、除霜能力の向上を図ることができる。またこの時、バイパス上の電磁二方弁7は開放のままのため、圧縮機1を停止しなくても、圧力差が十分に小さいため、四方弁8切換に伴う冷媒音は最小限に抑えることができる。また圧縮機1のオイルも不足するような状態にはならない。   Therefore, after the defrosting operation of the heating cycle is completed, the outdoor four-way valve 8 is reversed to perform the cooling cycle defrosting operation. The refrigeration cycle at this time is shown in FIG. By doing so, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 circulates through the outdoor heat exchanger 5 in the direction opposite to that during the heating cycle defrosting. That is, the hottest refrigerant flows into the portion that is the most difficult to defrost at the time of defrosting the heating cycle, and the defrosting ability can be improved. At this time, since the electromagnetic two-way valve 7 on the bypass remains open, even if the compressor 1 is not stopped, the pressure difference is sufficiently small, so that the refrigerant noise caused by switching the four-way valve 8 is minimized. be able to. Further, the oil of the compressor 1 is not in a state where it is insufficient.

さらにこの時、室外膨張弁4を全閉とする場合と僅かに開放する場合がある。全閉とするのは室内へ低温低圧冷媒が完全に流れないようにするためで、冷媒音を完全に遮蔽し、室内での冷風回避を図ることができるという利点があるが、室外熱交換器5へ冷媒が溜まりこむため長時間連続運転することはできない。またこのままでは冷媒が循環しないため、室外熱交換器5が完全に除霜できたかどうかを判定することも困難である。僅かに開放した場合には逆に、室内へ冷媒が循環するため冷媒音や冷風の課題があるが、ごく僅かであれば問題はない。しかし、この場合でも長時間の運転は困難である。   At this time, the outdoor expansion valve 4 may be fully closed or may be slightly opened. The reason for fully closing is to prevent the low-temperature and low-pressure refrigerant from completely flowing into the room, which has the advantage of completely shielding the refrigerant sound and avoiding cold air in the room. Since the refrigerant accumulates in 5, it cannot be operated continuously for a long time. Further, since the refrigerant does not circulate in this state, it is difficult to determine whether or not the outdoor heat exchanger 5 has been completely defrosted. In contrast, when the air is slightly opened, the refrigerant circulates in the room, so that there are problems of refrigerant sound and cold air. However, even in this case, long-time operation is difficult.

この後本発明の実施例では、除霜判定を行うために室外膨張弁4を一定開度開放する。こうすることによって、室外熱交換器5は高圧側になり、霜が完全に融けていれば10℃
以上となり、融けていなければ0℃〜4℃程度のため、配管温度センサーのバラツキを考慮しても十分に除霜終了判定が可能となる。もし除霜が終了していないと判定した場合には、四方弁8を切換かつバイパス回路上の電磁二方弁7も閉塞へ戻し、冷房サイクル除霜を行う。この時使用する配管温度センサーは熱交換器出口になる配管温度センサーA11である。また判定するためには僅かな時間(例えば30秒)で判定可能なため、室内での不具合はない。
Thereafter, in the embodiment of the present invention, the outdoor expansion valve 4 is opened by a certain degree of opening in order to perform the defrosting determination. By doing so, the outdoor heat exchanger 5 becomes a high pressure side, and if the frost is completely melted, 10 ° C.
As described above, if it is not melted, it is about 0 ° C. to 4 ° C., and therefore it is possible to sufficiently determine the defrosting end even if the variation of the pipe temperature sensor is taken into consideration. If it is determined that the defrosting has not ended, the four-way valve 8 is switched and the electromagnetic two-way valve 7 on the bypass circuit is also returned to the closed state to perform the cooling cycle defrosting. The pipe temperature sensor used at this time is the pipe temperature sensor A11 that becomes the outlet of the heat exchanger. Further, since the determination can be made in a short time (for example, 30 seconds), there is no problem in the room.

以上のように構成された冷凍サイクルを用いた実際の制御フローを示したものが図2である。図2において、暖房運転中に除霜判定が行われ除霜運転がスタート(S1)する。そして室外配管温度センサーB12の検出温度が所定温度t以上となるか或いは所定時間T1経過した場合(S2)に、四方弁8を冷房サイクルへ切換える(S3)。こうすることによって、室外熱交換器5を流れる冷媒の方向が逆転する。暖房サイクルの除霜運転では出口側となり霜の融け残りが発生しやすい出口側に高温の吐出冷媒が流入するので、効果的な除霜が可能となる。またこの時膨張弁4は完全閉塞とし(S4)、室内へは冷媒を流さない。その後室外配管温度センサーA11の温度が所定の値t以上となるか或いは所定時間T2経過した場合(S5)に、膨張弁を所定の開度(僅かに冷媒が流れる程度とし、例えば、本発明では80パルス)にし(S6)、冷媒を僅かに室内側へ循環させる。こうすることによって室外熱交換器5の中を冷媒が循環し、配管温度センサーA11の検出温度によって熱交換器が融けているかどうかを精度良く判定することができる(S7)。もし室外配管温度センサーA11の検出温度が所定温度t以上であった場合には、そのまま暖房運転へ復帰させる(S8)。そうでない場合には融け残りがあると判定し、四方弁8を冷房サイクルへと切換、バイパス回路の電磁二方弁7は閉塞とした除霜運転を行う(S9)。 FIG. 2 shows an actual control flow using the refrigeration cycle configured as described above. In FIG. 2, the defrosting determination is performed during the heating operation, and the defrosting operation is started (S1). And if the detected temperature of the outdoor piping temperature sensor B12 is a lapse of a predetermined temperature t 1 or more and consisting or a predetermined time T1 (S2), switches the four-way valve 8 to the cooling cycle (S3). By doing so, the direction of the refrigerant flowing through the outdoor heat exchanger 5 is reversed. In the defrosting operation of the heating cycle, since the high-temperature discharged refrigerant flows into the outlet side where it becomes the outlet side and frost is not easily melted, effective defrosting is possible. At this time, the expansion valve 4 is completely closed (S4), and no refrigerant flows into the room. Then when the temperature of the outdoor piping temperature sensor A11 is that the lapse of a predetermined value t 2 or more and composed or the predetermined time T2 (S5), an expansion valve and the degree through which predetermined opening (slightly refrigerant, for example, the present invention 80 pulses) (S6), and the refrigerant is slightly circulated indoors. By doing so, it is possible to accurately determine whether the refrigerant circulates in the outdoor heat exchanger 5 and whether the heat exchanger is melted by the temperature detected by the pipe temperature sensor A11 (S7). If when the detected temperature of the outdoor piping temperature sensor A11 was the predetermined temperature t 3 or more, it is returned directly to the heating operation (S8). Otherwise, it is determined that there is unmelted, and the defrosting operation is performed in which the four-way valve 8 is switched to the cooling cycle and the electromagnetic two-way valve 7 of the bypass circuit is closed (S9).

以上のように、本実施の形態では、暖房サイクルでの除霜運転時に四方弁8を逆転させて冷房サイクルとすることによって、冷媒音や室内への冷風発生といった課題を発生させること無く、室外熱交換器5の除霜能力を向上させ、かつその除霜判定制御の精度向上を図ることができる。   As described above, in the present embodiment, the four-way valve 8 is reversed during the defrosting operation in the heating cycle so that the cooling cycle is performed, so that problems such as refrigerant noise and generation of cold air in the room can be avoided. The defrosting capability of the heat exchanger 5 can be improved, and the accuracy of the defrost determination control can be improved.

また、本実施の形態のバイパス上の電磁二方弁7を全閉可能な膨張弁とすることにより、特に、キャピラリーチューブ9が不要となり、原価を削減することができるとともに、冷凍サイクルの最適化を行うことができる。また、バイパス回路の開閉機構を電磁二方弁とすることにより、製造原価の低減を行うことができる。また、減圧器を全閉可能な膨張弁とすることにより、冷凍サイクルの最適化を行うことができる。   In addition, by making the electromagnetic two-way valve 7 on the bypass of the present embodiment an expansion valve that can be fully closed, the capillary tube 9 is not particularly necessary, the cost can be reduced, and the refrigeration cycle can be optimized. It can be performed. Moreover, the manufacturing cost can be reduced by using an electromagnetic two-way valve as the bypass circuit opening / closing mechanism. In addition, the refrigeration cycle can be optimized by using an expansion valve that can be fully closed.

以上のように、本発明にかかる除霜運転制御は、冷凍サイクルの信頼性を損なうことなく除霜能力の向上と除霜判定精度の向上が可能となる。   As described above, the defrosting operation control according to the present invention can improve the defrosting capability and improve the defrosting determination accuracy without impairing the reliability of the refrigeration cycle.

本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner in Embodiment 1 of the present invention 本発明の実施の形態1における制御フロー図Control flow diagram in Embodiment 1 of the present invention 従来の空気調和機の冷凍サイクル図Refrigeration cycle diagram of a conventional air conditioner

符号の説明Explanation of symbols

1 圧縮機
2 吐出管
3 室内熱交換器
4 膨張弁
4a 接続配管
5 室外熱交換器
6 アキュームレーター
7 電磁二方弁
8 四方弁
9 キャピラリーチューブ
10 逆支弁
11 室外配管温度センサーA
12 室外配管温度センサーB
13 室内ファン
14 室外ファン
15 液管
16 バイパス回路
17 開閉弁
18 第1のバイパス回路
19 第2のバイパス回路
DESCRIPTION OF SYMBOLS 1 Compressor 2 Discharge pipe 3 Indoor heat exchanger 4 Expansion valve 4a Connection piping 5 Outdoor heat exchanger 6 Accumulator 7 Electromagnetic two-way valve 8 Four-way valve 9 Capillary tube 10 Reverse branch valve 11 Outdoor piping temperature sensor A
12 Outdoor piping temperature sensor B
DESCRIPTION OF SYMBOLS 13 Indoor fan 14 Outdoor fan 15 Liquid pipe 16 Bypass circuit 17 On-off valve 18 1st bypass circuit 19 2nd bypass circuit

Claims (5)

圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器を冷媒配管で連結し、前記室外熱交換器と前記減圧器の間と前記圧縮機吐出管の間とを連結する第1のバイパス回路と、前記圧縮機吐出管と圧縮機吸入部を連結する第2のバイパス回路を備え、前記第1と第2のバイパス回路には開閉機構を設けた冷凍サイクルにおいて、暖房除霜運転を、暖房サイクルの除霜運転を所定の条件まで行った後、前記四方弁は冷房運転サイクルとし、前記バイパス回路上の前記開閉機構は開放とし、前記減圧器は閉弁もしくは略閉塞状態として行うようにしたことを特徴とする空気調和機。 A compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger are connected by a refrigerant pipe, and a first part that connects between the outdoor heat exchanger and the decompressor and between the compressor discharge pipes. And a second bypass circuit for connecting the compressor discharge pipe and the compressor suction section, and the first and second bypass circuits are provided with an opening / closing mechanism, in a heating defrosting operation After the defrosting operation of the heating cycle is performed to a predetermined condition, the four-way valve is set to a cooling operation cycle, the opening / closing mechanism on the bypass circuit is opened, and the pressure reducer is closed or substantially closed. An air conditioner characterized by the above. 暖房除霜運転を開始した後、所定の時間が経過した場合、又は室外熱交換器に取り付けられた配管温度センサーの検出温度があらかじめ定められた所定の温度以上となった場合に、減圧器を所定の開度として冷媒を室内熱交換器へと循環させ、その後前記室外熱交換器の配管温度センサーの検出温度によって除霜終了を判定することを特徴とする請求項1に記載の空気調和機。 When the specified time has elapsed after the start of the heating defrosting operation, or when the temperature detected by the pipe temperature sensor attached to the outdoor heat exchanger exceeds a predetermined temperature, the decompressor 2. The air conditioner according to claim 1, wherein the refrigerant is circulated to the indoor heat exchanger at a predetermined opening degree, and then the end of the defrosting is determined based on a temperature detected by a pipe temperature sensor of the outdoor heat exchanger. . 第1と第2のバイパス回路の開閉機構に全閉可能な膨張弁を配置したことを特徴とする請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein an expansion valve that can be fully closed is disposed in an opening / closing mechanism of the first and second bypass circuits. 第1と第2のバイパス回路の開閉機構に電磁二方弁を配置したことを特徴とする請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein an electromagnetic two-way valve is disposed in the opening and closing mechanism of the first and second bypass circuits. 減圧器に全閉可能な膨張弁を配置したことを特徴とする請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein an expansion valve that can be fully closed is disposed in the decompressor.
JP2007295441A 2007-07-10 2007-11-14 Air conditioner Pending JP2009036502A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007295441A JP2009036502A (en) 2007-07-10 2007-11-14 Air conditioner
CN2008101279295A CN101344340B (en) 2007-07-10 2008-07-01 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007180634 2007-07-10
JP2007295441A JP2009036502A (en) 2007-07-10 2007-11-14 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009036502A true JP2009036502A (en) 2009-02-19

Family

ID=40246390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295441A Pending JP2009036502A (en) 2007-07-10 2007-11-14 Air conditioner

Country Status (2)

Country Link
JP (1) JP2009036502A (en)
CN (1) CN101344340B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088590A1 (en) * 2011-12-12 2013-06-20 三菱電機株式会社 Outdoor unit and air-conditioning device
CN109000339A (en) * 2018-08-01 2018-12-14 泰豪科技股份有限公司 Defrost control device and air-conditioner set

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249293B2 (en) * 2010-09-09 2013-07-31 パナソニック株式会社 Air conditioner
CN102635969A (en) * 2012-04-11 2012-08-15 广东美的制冷设备有限公司 Air conditioner
CN102721149A (en) * 2012-05-08 2012-10-10 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN102645064A (en) * 2012-05-24 2012-08-22 钟学斌 Defrosting method and device of air source heat pump set
CN107631513A (en) * 2017-09-20 2018-01-26 珠海格力电器股份有限公司 Heat pump and its control method
CN109282542A (en) * 2018-09-26 2019-01-29 珠海格力电器股份有限公司 A kind of defrosting device, heat pump unit and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291759A (en) * 1985-10-15 1987-04-27 三菱電機株式会社 Defrostation system of refrigeration cycle for heat pump
JPH04366341A (en) * 1991-06-13 1992-12-18 Daikin Ind Ltd Air conditioner
JP2001133088A (en) * 1999-11-04 2001-05-18 Sharp Corp Air-conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291759A (en) * 1985-10-15 1987-04-27 三菱電機株式会社 Defrostation system of refrigeration cycle for heat pump
JPH04366341A (en) * 1991-06-13 1992-12-18 Daikin Ind Ltd Air conditioner
JP2001133088A (en) * 1999-11-04 2001-05-18 Sharp Corp Air-conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088590A1 (en) * 2011-12-12 2013-06-20 三菱電機株式会社 Outdoor unit and air-conditioning device
JPWO2013088590A1 (en) * 2011-12-12 2015-04-27 三菱電機株式会社 Outdoor unit and air conditioner
US9759475B2 (en) 2011-12-12 2017-09-12 Mitsubishi Electric Corporation Outdoor unit and air-conditioning apparatus
CN109000339A (en) * 2018-08-01 2018-12-14 泰豪科技股份有限公司 Defrost control device and air-conditioner set

Also Published As

Publication number Publication date
CN101344340B (en) 2011-07-27
CN101344340A (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP6022058B2 (en) Heat source side unit and refrigeration cycle apparatus
US10508826B2 (en) Refrigeration cycle apparatus
JP4069947B2 (en) Refrigeration equipment
JP2009036502A (en) Air conditioner
JP2007051825A (en) Air-conditioner
JP5653451B2 (en) Heat pump type water heater
JP2008096033A (en) Refrigerating device
JP4462435B2 (en) Refrigeration equipment
US6609390B1 (en) Two-refrigerant refrigerating device
JP2015064169A (en) Hot water generation device
KR20130114154A (en) Refrigeration cycle device
JP5062039B2 (en) Refrigeration equipment
JP2007255866A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2006098044A (en) Refrigeration device
WO2015037057A1 (en) Refrigerating device
JP4269476B2 (en) Refrigeration equipment
JP2006183987A (en) Refrigerating device
WO2011093080A1 (en) Refrigeration device
JP2006162240A (en) Refrigerating device
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP4375393B2 (en) Refrigeration equipment
JP2007051820A (en) Air conditioner
JP4023386B2 (en) Refrigeration equipment
JP2007298188A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

RD01 Notification of change of attorney

Effective date: 20101013

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A131 Notification of reasons for refusal

Effective date: 20121002

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219