JP2010002173A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2010002173A
JP2010002173A JP2009121010A JP2009121010A JP2010002173A JP 2010002173 A JP2010002173 A JP 2010002173A JP 2009121010 A JP2009121010 A JP 2009121010A JP 2009121010 A JP2009121010 A JP 2009121010A JP 2010002173 A JP2010002173 A JP 2010002173A
Authority
JP
Japan
Prior art keywords
supercooling
refrigerant
degree
expansion mechanism
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121010A
Other languages
Japanese (ja)
Inventor
Kenichi Masaki
謙一 正木
Yasuhiro Kondo
康弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009121010A priority Critical patent/JP2010002173A/en
Publication of JP2010002173A publication Critical patent/JP2010002173A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator eliminating a leakage loss caused by a slide valve, improving operation efficiency, and improving an economizer effect. <P>SOLUTION: This refrigerator includes a screw compressor 1, a condenser 2, a main expansion valve 3, an evaporator 4, a supercooling expansion valve 5, and a supercooling heat exchanger 6. A first temperature sensor 21 is provided immediately before upstream of the main expansion valve 3, a second temperature sensor 22 is provided immediately after downstream of the screw compressor 1, and the screw compressor 1 is provided with a pressure sensor 23 detecting the pressure of a delivered refrigerant. A calculation section 24 calculates the supercooling degree of the refrigerant immediately before upstream of the main expansion valve 3 from the results detected by the first temperature sensor 21, the second temperature sensor 22 and the pressure sensor 23. A control section 7 reduces the opening of the supercooling expansion valve 5 as the capability of the refrigerator is a low load (required supercooling degree is small), and controls the capacity of the refrigerator. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば、空冷ヒートポンプチラー等の冷凍装置に関する。   The present invention relates to a refrigeration apparatus such as an air cooling heat pump chiller.

従来、冷凍装置としては、図3に示すように、スライド弁101aを有するスクリュー圧縮機101と、凝縮器102と、主膨張弁103と、蒸発器104とを備えたものがある(特許第1510124号公報:特許文献1参照)。   Conventionally, as shown in FIG. 3, a refrigeration apparatus includes a screw compressor 101 having a slide valve 101a, a condenser 102, a main expansion valve 103, and an evaporator 104 (Patent No. 1510124). Gazette: see Patent Document 1).

スクリュー圧縮機101、凝縮器102、主膨張弁103および蒸発器104は、順に、冷媒流路110を介して、環状に接続されている。   The screw compressor 101, the condenser 102, the main expansion valve 103, and the evaporator 104 are sequentially connected in an annular shape via the refrigerant flow path 110.

凝縮器102と主膨張弁103の間の冷媒流路110とスクリュー圧縮機101の中間ポートとを接続するエコノマイザ流路111が設けられている。   An economizer channel 111 that connects the refrigerant channel 110 between the condenser 102 and the main expansion valve 103 and the intermediate port of the screw compressor 101 is provided.

このエコノマイザ流路111には、過冷却用膨張弁105と、過冷却用熱交換器106とが設けられている。この過冷却用熱交換器106は、エコノマイザ熱交換器であり、凝縮器102と主膨張弁103の間の冷媒流路110を流れる冷媒と、過冷却用膨張弁105を通過した冷媒との熱交換を行う。   The economizer flow path 111 is provided with a supercooling expansion valve 105 and a supercooling heat exchanger 106. The supercooling heat exchanger 106 is an economizer heat exchanger, and heat between the refrigerant flowing through the refrigerant flow path 110 between the condenser 102 and the main expansion valve 103 and the refrigerant that has passed through the supercooling expansion valve 105. Exchange.

この冷凍装置の容量制御は、スクリュー圧縮機101のスライド弁101aにより、行う。つまり、冷凍装置の容量を全負荷とする場合、図4Aに示すように、スライド弁101aの位置を全負荷位置にして、スクリューローター101bの溝部に吸い込んだ冷媒ガスを、圧縮機の吸入側Lへ戻すことなく、圧縮する。このとき、エコノマイザ流路111からの冷媒は、中間ポート101cを介して、スクリューローター101bの溝部に吸い込まれ、圧縮機の過熱を防止してエコノマイザ効果を得ることができる。   The capacity control of the refrigeration apparatus is performed by the slide valve 101a of the screw compressor 101. That is, when the capacity of the refrigeration apparatus is set to the full load, as shown in FIG. 4A, the position of the slide valve 101a is set to the full load position, and the refrigerant gas sucked into the groove portion of the screw rotor 101b is taken into Compress without returning. At this time, the refrigerant from the economizer flow path 111 is sucked into the groove portion of the screw rotor 101b through the intermediate port 101c, and the economizer effect can be obtained by preventing overheating of the compressor.

一方、冷凍装置の容量を低負荷とする場合、図4Bに示すように、スライド弁101aの位置を低負荷位置にして、スクリューローター101bの溝部に吸い込んだ冷媒ガスの一部を、スクリューローターの吸入側Lへ戻すことによって、圧縮機の吐出ガス量を制御して、容量制御を行う。このスライド弁101aは、油圧ピストンやコントロールモーターにより駆動され、その位置に応じて連続的にスクリュー圧縮機101の容量を変更できる。   On the other hand, when the capacity of the refrigeration apparatus is low, as shown in FIG. 4B, the position of the slide valve 101a is set to the low load position, and a part of the refrigerant gas sucked into the groove of the screw rotor 101b is removed from the screw rotor. By returning to the suction side L, the discharge gas amount of the compressor is controlled, and the capacity control is performed. The slide valve 101a is driven by a hydraulic piston or a control motor, and can continuously change the capacity of the screw compressor 101 in accordance with its position.

特許第1510124号公報Japanese Patent No. 1510124

しかしながら、上記従来の冷凍装置では、スライド弁101aの全負荷位置からの移動量が大きくなる(低負荷になる)に従い、バイパスガス量が増えて損失が増大し、運転効率が低下する問題があった。   However, the above-described conventional refrigeration apparatus has a problem that the amount of bypass gas increases and loss increases as the amount of movement of the slide valve 101a from the full load position increases (lower load), resulting in a decrease in operating efficiency. It was.

また、スライド弁101aの位置が低負荷側に移動すると、中間ポート101cが、スクリューローターの吸入側Lに通ずることになって、エコノマイザ流路111からの冷媒は、スクリューローターの吸入側Lに漏れて、エコノマイザ効果が低減する問題があった。   Further, when the position of the slide valve 101a moves to the low load side, the intermediate port 101c communicates with the suction side L of the screw rotor, and the refrigerant from the economizer channel 111 leaks to the suction side L of the screw rotor. Therefore, there is a problem that the economizer effect is reduced.

そこで、この発明の課題は、スライド弁による漏れの損失をなくすことができて、運転効率を向上し、かつ、エコノマイザ効果を向上できる冷凍装置を提供することにある。   Therefore, an object of the present invention is to provide a refrigeration apparatus that can eliminate the loss of leakage due to the slide valve, improve the operation efficiency, and improve the economizer effect.

上記課題を解決するため、この発明の冷凍装置は、
吸い込んだ冷媒を吸入側へ戻すことによって容量を制御するスライド弁を有するスクリュー圧縮機と、
凝縮器と、
主膨張機構と、
蒸発器と
を備え、
上記凝縮器と上記主膨張機構の間の冷媒流路と上記スクリュー圧縮機の中間ポートとを接続するエコノマイザ流路が設けられ、
このエコノマイザ流路には、過冷却用膨張機構と、上記凝縮器と上記主膨張機構の間の上記冷媒流路を流れる冷媒と上記過冷却用膨張機構を通過した冷媒との熱交換を行う過冷却用熱交換器とが設けられ、
上記主膨張機構と上記過冷却用熱交換器の間の冷媒流路の冷媒の過冷却度を検出する過冷却度検出部と、
この過冷却度検出部が検出した過冷却度が設定値になるように、上記過冷却用膨張機構の開度を制御する制御部と
を備えることを特徴としている。
In order to solve the above problems, the refrigeration apparatus of the present invention provides:
A screw compressor having a slide valve for controlling the capacity by returning the sucked refrigerant to the suction side;
A condenser,
A main expansion mechanism;
With an evaporator,
An economizer flow path connecting a refrigerant flow path between the condenser and the main expansion mechanism and an intermediate port of the screw compressor is provided;
The economizer flow path includes a supercooling expansion mechanism, a heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant flow path between the condenser and the main expansion mechanism, and the refrigerant that has passed through the supercooling expansion mechanism. A cooling heat exchanger,
A supercooling degree detection unit for detecting the degree of supercooling of the refrigerant in the refrigerant flow path between the main expansion mechanism and the supercooling heat exchanger;
And a controller that controls the opening degree of the supercooling expansion mechanism so that the degree of supercooling detected by the supercooling degree detector is a set value.

この発明の冷凍装置によれば、制御部は、過冷却度検出部が検出した過冷却度が設定値になるように、過冷却用膨張機構の開度を制御するので、制御部は、冷凍装置の能力が低負荷(要求される過冷却度が小さい)ほど、過冷却用膨張機構の開度を小さくして、冷凍装置の容量制御を行う。   According to the refrigeration apparatus of the present invention, the control unit controls the opening degree of the supercooling expansion mechanism so that the supercooling degree detected by the supercooling degree detection unit becomes the set value. The capacity of the refrigeration apparatus is controlled by reducing the degree of opening of the supercooling expansion mechanism as the capacity of the apparatus is low (the required degree of supercooling is small).

つまり、過冷却用熱交換器(エコノマイザ)により獲得できる過冷却度を制御することにより容量制御を行い、これによって、スライド弁の位置を従来よりも全負荷側に位置させることにより、従来のスライド弁のみによる容量制御の場合に低負荷になるほどバイパス量が増えて圧縮機性能ならびにエコノマイザ効果を低減させることを抑制し、中間から低負荷での効率を改善できる。   In other words, capacity control is performed by controlling the degree of supercooling that can be obtained by a supercooling heat exchanger (economizer), and thereby the slide valve is positioned closer to the full load than the conventional slide. In the case of capacity control using only the valve, the amount of bypass increases as the load becomes lower, and the compressor performance and the economizer effect are suppressed from being reduced, so that the efficiency from the middle to the low load can be improved.

したがって、スライド弁による漏れの損失をなくすことができて、運転効率を向上し、かつ、エコノマイザ効果を向上できる。   Therefore, the loss of leakage due to the slide valve can be eliminated, the operation efficiency can be improved, and the economizer effect can be improved.

また、一実施形態の冷凍装置では、上記エコノマイザ流路には、上記過冷却用膨張機構と上記過冷却用熱交換器をバイパスするバイパス流路が接続され、このバイパス流路には、電気的駆動弁が設けられている。   In one embodiment, the economizer channel is connected to a bypass channel that bypasses the supercooling expansion mechanism and the supercooling heat exchanger, and the bypass channel is electrically connected to the bypass channel. A drive valve is provided.

この実施形態の冷凍装置によれば、エコノマイザ流路には、過冷却用膨張機構と過冷却用熱交換器をバイパスするバイパス流路が接続され、このバイパス流路には、電気的駆動弁が設けられているので、冷凍装置の能力が低負荷になるに伴い過冷却用膨張機構の開度が小さくなって、スクリュー圧縮機への中間インジェクション量が低減して、スクリュー圧縮機の吐出温度が上昇する問題が生じた場合でも、電気的駆動弁を開とし、液冷媒をスクリュー圧縮機にバイパスさせて、スクリュー圧縮機の過熱を防止できる。   According to the refrigeration apparatus of this embodiment, the economizer flow path is connected to a bypass flow path that bypasses the supercooling expansion mechanism and the supercooling heat exchanger, and an electrically driven valve is connected to the bypass flow path. Therefore, as the capacity of the refrigeration system becomes low, the opening degree of the supercooling expansion mechanism becomes smaller, the amount of intermediate injection into the screw compressor is reduced, and the discharge temperature of the screw compressor is reduced. Even when the problem of rising occurs, it is possible to prevent the overheating of the screw compressor by opening the electric drive valve and bypassing the liquid refrigerant to the screw compressor.

また、一実施形態の冷凍装置では、上記電気的駆動弁は、上記スクリュー圧縮機から吐出された冷媒の温度に基づいて、制御される。   Moreover, in the refrigeration apparatus of one embodiment, the electric drive valve is controlled based on the temperature of the refrigerant discharged from the screw compressor.

この実施形態の冷凍装置によれば、電気的駆動弁は、スクリュー圧縮機から吐出された冷媒の温度に基づいて、制御されるので、電気的駆動弁は、スクリュー圧縮機の吐出温度が所定値を越えたときに、開となって、スクリュー圧縮機の過熱を防止できる。   According to the refrigeration apparatus of this embodiment, since the electrically driven valve is controlled based on the temperature of the refrigerant discharged from the screw compressor, the electrically driven valve has a discharge temperature of the screw compressor of a predetermined value. When the value exceeds the upper limit, the screw compressor is opened to prevent overheating of the screw compressor.

また、一実施形態の冷凍装置では、上記制御部は、要求される負荷が第1領域内にあるとき、上記過冷却用膨張機構の開度または上記スライド弁の開度のうちの少なくとも上記過冷却用膨張機構の開度を制御して、容量を制御する一方、要求される負荷が上記第1領域よりも小さい第2領域内にあるとき、上記スライド弁の開度を制御して、容量を制御する。   Further, in the refrigeration apparatus of one embodiment, when the required load is in the first region, the control unit at least the excess of the opening of the expansion mechanism for supercooling or the opening of the slide valve. While controlling the opening of the cooling expansion mechanism to control the capacity, when the required load is in the second area smaller than the first area, the opening of the slide valve is controlled to To control.

この実施形態の冷凍装置によれば、上記制御部は、要求される負荷が第1領域内にあるとき、上記過冷却用膨張機構の開度または上記スライド弁の開度のうちの少なくとも上記過冷却用膨張機構の開度を制御して、容量を制御する一方、要求される負荷が上記第1領域よりも小さい第2領域内にあるとき、上記スライド弁の開度を制御して、容量を制御するので、要求される負荷が第1領域内にあるとき、スライド弁に頼らずに容量を制御でき、または、スライド弁の開度を小さくして運転できて、スライド弁のバイパスによる損失を低減できる。   According to the refrigeration apparatus of this embodiment, when the required load is in the first region, the control unit at least the excess of the opening of the supercooling expansion mechanism or the opening of the slide valve. While controlling the opening of the cooling expansion mechanism to control the capacity, when the required load is in the second area smaller than the first area, the opening of the slide valve is controlled to Therefore, when the required load is in the first region, the capacity can be controlled without relying on the slide valve, or the slide valve can be operated with a small opening, and the loss due to the slide valve bypass. Can be reduced.

この発明の冷凍装置によれば、制御部は、過冷却度検出部が検出した過冷却度が設定値になるように、過冷却用膨張機構の開度を制御するので、スライド弁による漏れの損失をなくすことができて、運転効率を向上し、かつ、エコノマイザ効果を向上できる。   According to the refrigeration apparatus of the present invention, the control unit controls the opening degree of the supercooling expansion mechanism so that the supercooling degree detected by the supercooling degree detection unit becomes the set value. Loss can be eliminated, driving efficiency can be improved, and the economizer effect can be improved.

本発明の冷凍装置の一実施形態を示す簡略構成図である。It is a simplified lineblock diagram showing one embodiment of the refrigerating device of the present invention. 冷媒がR407Cであるときの高圧圧力からの飽和温度の換算テーブルである。It is a conversion table of the saturation temperature from a high pressure when a refrigerant | coolant is R407C. 冷媒がR407Cであるときの低圧圧力からの飽和温度の換算テーブルである。It is a conversion table of the saturation temperature from the low pressure when the refrigerant is R407C. 従来の冷凍装置を示す簡略構成図である。It is a simplified block diagram which shows the conventional freezing apparatus. 冷凍装置の容量を全負荷とする場合を示す作用説明図である。It is effect | action explanatory drawing which shows the case where the capacity | capacitance of a freezing apparatus is made into full load. 冷凍装置の容量を低負荷とする場合を示す作用説明図である。It is effect | action explanatory drawing which shows the case where the capacity | capacitance of a freezing apparatus is made into low load. スライド弁および過冷却用膨張弁の負荷に対する制御を説明する説明図である。It is explanatory drawing explaining control with respect to the load of a slide valve and the expansion valve for supercooling.

以下、この発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

図1は、この発明の冷凍装置の一実施形態である簡略構成図を示している。この冷凍装置は、スライド弁1aを有するスクリュー圧縮機1と、凝縮器2と、(主膨張機構としての)主膨張弁3と、蒸発器4とを備えている。   FIG. 1 shows a simplified configuration diagram as an embodiment of the refrigeration apparatus of the present invention. This refrigeration apparatus includes a screw compressor 1 having a slide valve 1a, a condenser 2, a main expansion valve 3 (as a main expansion mechanism), and an evaporator 4.

スクリュー圧縮機1と、凝縮器2と、主膨張弁3と、蒸発器4とは、順に、冷媒流路10を介して、環状に接続されている。冷媒は、矢印に示すように、スクリュー圧縮機1、凝縮器2、主膨張弁3および蒸発器4を、順に、流れる。   The screw compressor 1, the condenser 2, the main expansion valve 3, and the evaporator 4 are sequentially connected in an annular shape via the refrigerant flow path 10. As shown by the arrows, the refrigerant flows through the screw compressor 1, the condenser 2, the main expansion valve 3, and the evaporator 4 in order.

スクリュー圧縮機1やスライド弁1aは、上述の背景技術で説明した図4Aと図4Bのスクリュー圧縮機101やスライド弁101aと同じであるので、その説明を省略する。つまり、スライド弁1aは、吸い込んだ冷媒を吸入側へ戻すことによって容量を制御する。   Since the screw compressor 1 and the slide valve 1a are the same as the screw compressor 101 and the slide valve 101a of FIGS. 4A and 4B described in the background art above, description thereof is omitted. That is, the slide valve 1a controls the capacity by returning the sucked refrigerant to the suction side.

凝縮器2には、ファンが設けられ、ファンにより送られた空気と冷媒流路10内の冷媒との熱交換を行う。   The condenser 2 is provided with a fan, and performs heat exchange between the air sent by the fan and the refrigerant in the refrigerant flow path 10.

蒸発器4には、水流路が設けられ、この水流路を流れる水と冷媒流路10内の冷媒との熱交換を行う。蒸発器4としては、例えば、プレート式熱交換器を用いるが、二重管式熱交換器やシェルアンドチューブ式熱交換器等を用いてもよい。   The evaporator 4 is provided with a water flow path, and performs heat exchange between the water flowing through the water flow path and the refrigerant in the refrigerant flow path 10. As the evaporator 4, for example, a plate heat exchanger is used, but a double tube heat exchanger, a shell and tube heat exchanger, or the like may be used.

凝縮器2と主膨張弁3の間の冷媒流路10とスクリュー圧縮機1の中間ポート(図4Aと図4Bの中間ポート101c)とを接続するエコノマイザ流路11が設けられている。   An economizer flow path 11 that connects the refrigerant flow path 10 between the condenser 2 and the main expansion valve 3 and the intermediate port of the screw compressor 1 (the intermediate port 101c in FIGS. 4A and 4B) is provided.

このエコノマイザ流路11には、(過冷却用膨張機構としての)過冷却用膨張弁5と、過冷却用熱交換器6とが設けられている。過冷却用膨張弁5としては、例えば、電子膨張弁を用いる。   The economizer flow path 11 is provided with a supercooling expansion valve 5 (as a supercooling expansion mechanism) and a supercooling heat exchanger 6. For example, an electronic expansion valve is used as the subcooling expansion valve 5.

過冷却用熱交換器6は、過冷却用膨張弁5よりも、スクリュー圧縮機1側に配置されている。過冷却用熱交換器6は、エコノマイザ熱交換器であり、凝縮器2と主膨張弁3の間の冷媒流路10を流れる冷媒と、過冷却用膨張弁5を通過した冷媒との熱交換を行う。   The supercooling heat exchanger 6 is disposed closer to the screw compressor 1 than the supercooling expansion valve 5 is. The supercooling heat exchanger 6 is an economizer heat exchanger, and exchanges heat between the refrigerant flowing through the refrigerant flow path 10 between the condenser 2 and the main expansion valve 3 and the refrigerant that has passed through the supercooling expansion valve 5. I do.

この過冷却用熱交換器6は、凝縮器2と主膨張弁3の間の冷媒流路10内の冷媒を冷却する。また、エコノマイザ流路11内の冷媒は、上述の背景技術で説明した図4Aと図4Bに示すように、中間ポート101cを介して、スクリューローター101bの溝部に吸い込まれ、圧縮機の過熱を防止してエコノマイザ効果を得ることができる。   The supercooling heat exchanger 6 cools the refrigerant in the refrigerant flow path 10 between the condenser 2 and the main expansion valve 3. Further, as shown in FIGS. 4A and 4B described in the background art above, the refrigerant in the economizer channel 11 is sucked into the groove portion of the screw rotor 101b through the intermediate port 101c to prevent overheating of the compressor. The economizer effect can be obtained.

過冷却用熱交換器6と主膨張弁3の間の冷媒流路10で、主膨張弁3の上流側直前に、第1温度センサ21が設けられ、この第1温度センサ21は、冷媒流路10内の冷媒の温度を検出する。   In the refrigerant flow path 10 between the supercooling heat exchanger 6 and the main expansion valve 3, a first temperature sensor 21 is provided immediately upstream of the main expansion valve 3, and the first temperature sensor 21 is connected to the refrigerant flow. The temperature of the refrigerant in the passage 10 is detected.

スクリュー圧縮機1と凝縮器2の間の冷媒流路10で、スクリュー圧縮機1の下流側直後に、第2温度センサ22が設けられ、この第2温度センサ22は、冷媒流路10内の冷媒の温度を検出する。   A second temperature sensor 22 is provided in the refrigerant flow path 10 between the screw compressor 1 and the condenser 2 immediately after the downstream side of the screw compressor 1, and the second temperature sensor 22 is provided in the refrigerant flow path 10. The refrigerant temperature is detected.

スクリュー圧縮機1には、吐出される冷媒の圧力を検出する圧力センサ23が設けられ、この圧力センサ23は、スクリュー圧縮機1から吐出される冷媒の圧力を検出する。   The screw compressor 1 is provided with a pressure sensor 23 that detects the pressure of the discharged refrigerant. The pressure sensor 23 detects the pressure of the refrigerant discharged from the screw compressor 1.

第1温度センサ21、第2温度センサ22および圧力センサ23の検出結果から、演算部24により、過冷却用熱交換器6と主膨張弁3の間の冷媒流路10の冷媒の過冷却度を演算する。つまり、演算部24は、主膨張弁3の上流側直前の冷媒の過冷却度を、検出する。   From the detection results of the first temperature sensor 21, the second temperature sensor 22, and the pressure sensor 23, the degree of supercooling of the refrigerant in the refrigerant flow path 10 between the supercooling heat exchanger 6 and the main expansion valve 3 is calculated by the calculation unit 24. Is calculated. That is, the arithmetic unit 24 detects the degree of supercooling of the refrigerant immediately before the upstream side of the main expansion valve 3.

要するに、第1温度センサ21、第2温度センサ22、圧力センサ23および演算部24は、過冷却度検出部を構成し、この過冷却度検出部は、過冷却用熱交換器6と主膨張弁3の間の冷媒流路10の冷媒の過冷却度を検出する。   In short, the 1st temperature sensor 21, the 2nd temperature sensor 22, the pressure sensor 23, and the calculating part 24 comprise a supercooling degree detection part, and this supercooling degree detection part is the heat exchanger 6 for supercooling, and main expansion. The degree of supercooling of the refrigerant in the refrigerant flow path 10 between the valves 3 is detected.

過冷却度検出部が検出した過冷却度が設定値になるように、制御部7により、過冷却用膨張弁5の開度を制御する。この制御部7は、演算部24を含んでいる。   The controller 7 controls the opening degree of the supercooling expansion valve 5 so that the supercooling degree detected by the supercooling degree detection unit becomes a set value. The control unit 7 includes a calculation unit 24.

エコノマイザ流路11には、過冷却用膨張弁5と過冷却用熱交換器6をバイパスするバイパス流路12が接続されている。このバイパス流路12は、過冷却用膨張弁5の上流側と過冷却用熱交換器6の下流側とを接続する。   A bypass flow path 12 that bypasses the supercooling expansion valve 5 and the supercooling heat exchanger 6 is connected to the economizer flow path 11. The bypass flow path 12 connects the upstream side of the supercooling expansion valve 5 and the downstream side of the supercooling heat exchanger 6.

このバイパス流路12には、(電気的駆動弁としての)電磁弁8が設けられている。この電磁弁8は、スクリュー圧縮機1から吐出された冷媒の温度に基づいて、制御される。つまり、制御部7は、第2温度センサ22の検出結果に基づいて、電磁弁8を制御する。   The bypass passage 12 is provided with an electromagnetic valve 8 (as an electrically driven valve). The electromagnetic valve 8 is controlled based on the temperature of the refrigerant discharged from the screw compressor 1. That is, the control unit 7 controls the electromagnetic valve 8 based on the detection result of the second temperature sensor 22.

次に、上記構成の冷凍装置の容量制御を説明すると、冷凍装置の能力が低負荷(要求される過冷却度が小さい)ほど、制御部7により、過冷却用膨張弁5の開度を小さくして、冷凍装置の容量制御を行う。このとき、スライド弁1aの位置は、図4Aに示すように、全負荷位置にあり、スクリューローター101bの溝部に吸い込んだ冷媒ガスを、圧縮機の吸入側Lへ戻すことなく、圧縮する。   Next, capacity control of the refrigeration apparatus having the above-described configuration will be described. The lower the load of the refrigeration apparatus (the smaller the required degree of supercooling), the smaller the opening degree of the supercooling expansion valve 5 is made by the control unit 7. Then, the capacity control of the refrigeration apparatus is performed. At this time, the position of the slide valve 1a is at the full load position as shown in FIG. 4A, and the refrigerant gas sucked into the groove portion of the screw rotor 101b is compressed without returning to the suction side L of the compressor.

ここで、冷凍装置の能力は、凝縮器2並びに過冷却用熱交換器6で獲得できる主膨張弁3の直前の過冷却度に依存する。言い換えると、過冷却用熱交換器6により獲得できる過冷却度により能力が決定される。   Here, the capacity of the refrigeration system depends on the degree of supercooling immediately before the main expansion valve 3 that can be obtained by the condenser 2 and the supercooling heat exchanger 6. In other words, the capacity is determined by the degree of supercooling that can be obtained by the heat exchanger 6 for supercooling.

このように、過冷却用膨張弁5の開度を制御して、主膨張弁3の直前の過冷却度を制御することにより、スライド弁1aに頼らずに、容量制御を行う。なお、主膨張弁3が全閉になっても、負荷低減が要求されれば、図4B参照の従来のスライド弁による容量制御を行う。   Thus, by controlling the degree of supercooling immediately before the main expansion valve 3 by controlling the opening degree of the supercooling expansion valve 5, the capacity control is performed without depending on the slide valve 1a. Even if the main expansion valve 3 is fully closed, if load reduction is required, capacity control is performed by the conventional slide valve shown in FIG. 4B.

次に、主膨張弁3の直前の冷媒の過冷却度を、演算部24により、検出する方法を説明する。   Next, a method for detecting the degree of supercooling of the refrigerant immediately before the main expansion valve 3 by the calculation unit 24 will be described.

まず、第1温度センサ21および第2温度センサ22により冷媒の温度を検出し、圧力センサ23により冷媒の圧力を検出する。   First, the temperature of the refrigerant is detected by the first temperature sensor 21 and the second temperature sensor 22, and the pressure of the refrigerant is detected by the pressure sensor 23.

そして、図2Aと図2Bに示す換算テーブルを用いて、圧力センサ23により検出された圧力に対する相当飽和温度を求める。図2Aは、冷媒がR407Cであるときの高圧圧力からの飽和温度の換算テーブルを示し、図2Bは、冷媒がR407Cであるときの低圧圧力からの飽和温度の換算テーブルを示す。   Then, the equivalent saturation temperature for the pressure detected by the pressure sensor 23 is obtained using the conversion tables shown in FIGS. 2A and 2B. 2A shows a conversion table for saturation temperature from high pressure when the refrigerant is R407C, and FIG. 2B shows a conversion table for saturation temperature from low pressure when the refrigerant is R407C.

その後、相当飽和温度から、第1温度センサ21により検出された主膨張弁3の直前の温度を引いて、主膨張弁3の直前の冷媒の過冷却度を求める。   Thereafter, the subcooling degree of the refrigerant immediately before the main expansion valve 3 is obtained by subtracting the temperature immediately before the main expansion valve 3 detected by the first temperature sensor 21 from the equivalent saturation temperature.

また、第2温度センサ22により検出されたスクリュー圧縮機1の直後の温度から、相当飽和温度を引いて、スクリュー圧縮機1から吐出された冷媒ガスの過熱度を求めて、スクリュー圧縮機1の状態を検知する。   In addition, by subtracting the corresponding saturation temperature from the temperature immediately after the screw compressor 1 detected by the second temperature sensor 22, the degree of superheat of the refrigerant gas discharged from the screw compressor 1 is obtained, and the screw compressor 1 Detect state.

上記構成の冷凍装置によれば、制御部7は、過冷却度検出部が検出した過冷却度が設定値になるように、過冷却用膨張弁5の開度を制御するので、制御部7は、冷凍装置の能力が低負荷(要求される過冷却度が小さい)ほど、過冷却用膨張弁5の開度を小さくして、冷凍装置の容量制御を行う。   According to the refrigeration apparatus having the above configuration, the control unit 7 controls the opening degree of the supercooling expansion valve 5 so that the supercooling degree detected by the supercooling degree detection unit becomes the set value. The capacity of the refrigerating apparatus is controlled by decreasing the opening degree of the supercooling expansion valve 5 as the capacity of the refrigerating apparatus is lower (the required degree of supercooling is smaller).

これによって、スライド弁1aの位置を従来よりも全負荷側に位置させることにより、従来のスライド弁1aのみによる容量制御の場合に低負荷になるほどバイパス量が増えて圧縮機性能ならびにエコノマイザ効果を低減させることを抑制し、中間から低負荷での効率を改善できる。   As a result, the position of the slide valve 1a is positioned closer to the full load than the conventional one, and in the case of capacity control using only the conventional slide valve 1a, the amount of bypass increases as the load becomes lower, reducing the compressor performance and the economizer effect. It is possible to improve the efficiency from middle to low load.

したがって、スライド弁1aによる漏れの損失をなくすことができて、運転効率を向上し、かつ、エコノマイザ効果を向上できる。   Therefore, the loss of leakage due to the slide valve 1a can be eliminated, the operating efficiency can be improved, and the economizer effect can be improved.

また、エコノマイザ流路11には、凝縮器2と主膨張弁3の間の冷媒流路10とスクリュー圧縮機1とを連通するバイパス流路12が設けられ、このバイパス流路12には、電磁弁8が設けられているので、冷凍装置の能力が低負荷になるに伴い過冷却用膨張弁5の開度が小さくなって、スクリュー圧縮機1への中間インジェクション量が低減して、スクリュー圧縮機1の吐出温度が上昇する問題が生じた場合でも、電磁弁8を開とし、液冷媒をスクリュー圧縮機1にバイパスさせて、スクリュー圧縮機1の過熱を防止できる。   The economizer flow path 11 is provided with a bypass flow path 12 that communicates the refrigerant flow path 10 between the condenser 2 and the main expansion valve 3 and the screw compressor 1. Since the valve 8 is provided, the opening degree of the supercooling expansion valve 5 is reduced as the capacity of the refrigeration system is reduced, and the amount of intermediate injection into the screw compressor 1 is reduced. Even when the discharge temperature of the machine 1 rises, the solenoid valve 8 can be opened and the liquid refrigerant can be bypassed to the screw compressor 1 to prevent overheating of the screw compressor 1.

また、電磁弁8は、スクリュー圧縮機1から吐出された冷媒の温度に基づいて、制御されるので、電磁弁8は、スクリュー圧縮機1の吐出温度が所定値を越えたときに、開となって、スクリュー圧縮機1の過熱を防止できる。   Further, since the solenoid valve 8 is controlled based on the temperature of the refrigerant discharged from the screw compressor 1, the solenoid valve 8 is opened when the discharge temperature of the screw compressor 1 exceeds a predetermined value. Thus, overheating of the screw compressor 1 can be prevented.

次に、図5を用いて、上記制御部7による上記スライド弁1aおよび上記過冷却用膨張弁5の制御について説明する。図5では、横軸に、要求される負荷を示し、縦軸に、COP変化率、圧縮機ロード、過冷却度の制御値およびバイパス流路12の電磁弁8の開閉を示す。   Next, the control of the slide valve 1a and the supercooling expansion valve 5 by the control unit 7 will be described with reference to FIG. In FIG. 5, the abscissa indicates the required load, and the ordinate indicates the COP change rate, the compressor load, the control value of the supercooling degree, and the opening / closing of the electromagnetic valve 8 in the bypass flow path 12.

ここで、負荷が、100%から第1設定値までの範囲を、高負荷領域Z0とし、負荷が、第1設定値からこの第1設定値より小さい第2設定値までの範囲を、第1領域Z1とし、負荷が、第2設定値から0%までの範囲を、第2領域Z2とする。第1領域Z1と第2領域Z2とを加えた範囲を、低負荷の第3領域Z3とする。   Here, the load ranges from 100% to the first set value as the high load region Z0, and the load ranges from the first set value to the second set value smaller than the first set value. The area is Z1, and the range where the load is from the second set value to 0% is the second area Z2. A range obtained by adding the first region Z1 and the second region Z2 is a third region Z3 with a low load.

上記圧縮機ロードとは、スライド弁1aの開度を示し、圧縮機ロードを小さくすることは、スライド弁1aの開度を大きくすることを、意味する。圧縮機ロード100%とは、スライド弁1aの全閉状態(全負荷状態)を示す。   The compressor load indicates the opening degree of the slide valve 1a, and decreasing the compressor load means increasing the opening degree of the slide valve 1a. The compressor load of 100% indicates a fully closed state (full load state) of the slide valve 1a.

上記過冷却度の制御値とは、過冷却用膨張弁5の開度を示し、過冷却度の制御値を小さくすることは、過冷却用膨張弁5の開度を小さくすることを、意味する。過冷却度の制御値0とは、過冷却用膨張弁5の全閉状態を示す。   The control value of the degree of supercooling indicates the opening degree of the supercooling expansion valve 5, and reducing the control value of the degree of supercooling means that the opening degree of the supercooling expansion valve 5 is reduced. To do. The supercooling degree control value 0 indicates the fully closed state of the supercooling expansion valve 5.

図5に示すように、上記制御部7は、要求される負荷が上記高負荷領域Z0内にあるとき、通常の制御を行い、過冷却度の制御値(過冷却用膨張弁5の開度)を一定とし、圧縮機ロード(スライド弁1aの開度)を変化させ、電磁弁8を閉状態とする。   As shown in FIG. 5, the control unit 7 performs normal control when the required load is within the high load region Z0, and controls the supercooling degree control value (opening degree of the supercooling expansion valve 5). ) Is constant, the compressor load (the opening degree of the slide valve 1a) is changed, and the electromagnetic valve 8 is closed.

また、上記制御部7は、要求される負荷が上記第1領域Z1内にあるとき、過冷却度の制御値(過冷却用膨張弁5の開度)を実線に示すように変化させ、圧縮機ロード(スライド弁1aの開度)を実線に示すように上記高負荷領域Z0における変化(開度)よりも小さい変化(開度)とし、電磁弁8を閉状態とする。つまり、第1領域Z1内では、過冷却用膨張弁5の開度とスライド弁1aの開度を制御し、高負荷領域Z0における過冷却度一定の制御の場合よりも、スライド弁1aの開度をより小さい状態で制御する。   Further, when the required load is in the first region Z1, the control unit 7 changes the control value of the degree of supercooling (the degree of opening of the supercooling expansion valve 5) as indicated by the solid line, and compresses The machine load (opening degree of the slide valve 1a) is set to a change (opening degree) smaller than the change (opening degree) in the high load region Z0 as indicated by a solid line, and the electromagnetic valve 8 is closed. That is, in the first region Z1, the opening degree of the supercooling expansion valve 5 and the opening degree of the slide valve 1a are controlled, and the slide valve 1a is opened more than in the case where the supercooling degree is constant in the high load region Z0. Control the degree in a smaller state.

また、上記制御部7は、要求される負荷が上記第2領域Z2内にあるとき、過冷却度の制御値(過冷却用膨張弁5の開度)を実線に示すように0とし(つまり、エコノマイザ流路11を閉じる)、圧縮機ロード(スライド弁1aの開度)を実線に示すように変化させ、電磁弁8を開状態とする。つまり、第2領域Z2内では、スライド弁1aの開度を制御して、容量を制御する。   Further, when the required load is in the second region Z2, the control unit 7 sets the control value of the degree of supercooling (the degree of opening of the supercooling expansion valve 5) to 0 as indicated by a solid line (that is, , The economizer flow path 11 is closed), the compressor load (the opening degree of the slide valve 1a) is changed as indicated by the solid line, and the electromagnetic valve 8 is opened. That is, in the second region Z2, the opening degree of the slide valve 1a is controlled to control the capacity.

ここで、上記第3領域Z3において、上記高負荷領域Z0の制御と同様の通常の制御を行うと、過冷却度の制御値は、仮想線に示すように一定となり、圧縮機ロードは、仮想線に示すように変化して、COP変化率は、仮想線に示すように低いものとなる。   Here, in the third region Z3, when normal control similar to the control in the high load region Z0 is performed, the control value of the degree of supercooling becomes constant as shown by the phantom line, and the compressor load is As shown by the line, the COP change rate is low as shown by the phantom line.

しかし、上記第3領域Z3において、上述のように過冷却度の制御値および圧縮機ロードを実線に示すように制御することで、COP変化率を実線に示すように向上できる。つまり、要求される負荷の低下に対して、この負荷が第1領域Z1内にあるとき、過冷却用膨張弁5の開度を制御することで、スライド弁1aの開度を小さくして運転できて、容量を制御できて、スライド弁1aのバイパスによる損失を低減できる。   However, in the third region Z3, by controlling the supercooling degree control value and the compressor load as shown by the solid line as described above, the COP change rate can be improved as shown by the solid line. That is, when the load falls within the first region Z1 with respect to the required load reduction, the opening degree of the slide valve 1a is reduced by controlling the opening degree of the supercooling expansion valve 5. Thus, the capacity can be controlled, and the loss due to the bypass of the slide valve 1a can be reduced.

なお、上記第1領域Z1内において、圧縮機ロード(スライド弁1aの開度)を一定としてもよい。つまり、第1領域Z1内では、スライド弁1aに頼らずに、過冷却用膨張弁5の開度のみを制御して、容量を制御するようにしてもよい。したがって、スライド弁1aのバイパスによる損失を一層低減できる。   In the first region Z1, the compressor load (the opening degree of the slide valve 1a) may be constant. That is, in the first region Z1, the capacity may be controlled by controlling only the opening degree of the supercooling expansion valve 5 without depending on the slide valve 1a. Therefore, the loss due to the bypass of the slide valve 1a can be further reduced.

なお、この発明は上述の実施形態に限定されない。例えば、バイパス流路12や電磁弁8を設けなくてもよい。また、主膨張機構として、主膨張弁3以外に、キャピラリーチューブであってもよい。また、電気的駆動弁として、電磁弁8以外に、電動弁であってもよい。   In addition, this invention is not limited to the above-mentioned embodiment. For example, the bypass flow path 12 and the electromagnetic valve 8 may not be provided. The main expansion mechanism may be a capillary tube in addition to the main expansion valve 3. In addition to the electromagnetic valve 8, an electrically driven valve may be used as the electrically driven valve.

1 スクリュー圧縮機
1a スライド弁
2 凝縮器
3 主膨張弁(主膨張機構)
4 蒸発器
5 過冷却用膨張弁(過冷却用膨張機構)
6 過冷却用熱交換器
7 制御部
8 電磁弁(電気的駆動弁)
10 冷媒流路
11 エコノマイザ流路
12 バイパス流路
21 第1温度センサ(過冷却度検出部)
22 第2温度センサ(過冷却度検出部)
23 圧力センサ(過冷却度検出部)
24 演算部(過冷却度検出部)
Z1 第1領域
Z2 第2領域
1 Screw compressor 1a Slide valve 2 Condenser 3 Main expansion valve (main expansion mechanism)
4 Evaporator 5 Supercooling expansion valve (Supercooling expansion mechanism)
6 Heat exchanger for supercooling 7 Control unit 8 Solenoid valve (electrically driven valve)
DESCRIPTION OF SYMBOLS 10 Refrigerant flow path 11 Economizer flow path 12 Bypass flow path 21 1st temperature sensor (supercooling degree detection part)
22 2nd temperature sensor (supercooling degree detection part)
23 Pressure sensor (supercooling degree detector)
24 Calculation unit (supercooling degree detection unit)
Z1 first region Z2 second region

Claims (4)

吸い込んだ冷媒を吸入側へ戻すことによって容量を制御するスライド弁(1a)を有するスクリュー圧縮機(1)と、
凝縮器(2)と、
主膨張機構(3)と、
蒸発器(4)と
を備え、
上記凝縮器(2)と上記主膨張機構(3)の間の冷媒流路(10)と上記スクリュー圧縮機(1)の中間ポートとを接続するエコノマイザ流路(11)が設けられ、
このエコノマイザ流路(11)には、過冷却用膨張機構(5)と、上記凝縮器(2)と上記主膨張機構(3)の間の上記冷媒流路(10)を流れる冷媒と上記過冷却用膨張機構(5)を通過した冷媒との熱交換を行う過冷却用熱交換器(6)とが設けられ、
上記主膨張機構(3)と上記過冷却用熱交換器(6)の間の冷媒流路(10)の冷媒の過冷却度を検出する過冷却度検出部(21,22,23,24)と、
この過冷却度検出部(21,22,23,24)が検出した過冷却度が設定値になるように、上記過冷却用膨張機構(5)の開度を制御する制御部(7)と
を備えることを特徴とする冷凍装置。
A screw compressor (1) having a slide valve (1a) for controlling the capacity by returning the sucked refrigerant to the suction side;
A condenser (2),
A main expansion mechanism (3);
An evaporator (4),
An economizer channel (11) connecting the refrigerant channel (10) between the condenser (2) and the main expansion mechanism (3) and the intermediate port of the screw compressor (1) is provided;
The economizer flow path (11) includes a supercooling expansion mechanism (5), a refrigerant flowing through the refrigerant flow path (10) between the condenser (2) and the main expansion mechanism (3), and the excessive flow. A supercooling heat exchanger (6) that performs heat exchange with the refrigerant that has passed through the cooling expansion mechanism (5),
Supercooling degree detection units (21, 22, 23, 24) for detecting the degree of supercooling of the refrigerant in the refrigerant flow path (10) between the main expansion mechanism (3) and the supercooling heat exchanger (6). When,
A control unit (7) for controlling the opening degree of the supercooling expansion mechanism (5) so that the supercooling degree detected by the supercooling degree detection unit (21, 22, 23, 24) becomes a set value; A refrigeration apparatus comprising:
請求項1に記載の冷凍装置において、
上記エコノマイザ流路(11)には、上記過冷却用膨張機構(5)と上記過冷却用熱交換器(6)をバイパスするバイパス流路(12)が接続され、
このバイパス流路(12)には、電気的駆動弁(8)が設けられていることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1,
The economizer channel (11) is connected to a bypass channel (12) that bypasses the supercooling expansion mechanism (5) and the supercooling heat exchanger (6),
An electrical drive valve (8) is provided in the bypass channel (12).
請求項2に記載の冷凍装置において、
上記電気的駆動弁(8)は、上記スクリュー圧縮機(1)から吐出された冷媒の温度に基づいて、制御されることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 2,
The electric drive valve (8) is controlled based on the temperature of the refrigerant discharged from the screw compressor (1).
請求項1から3の何れか一つに記載の冷凍装置において、
上記制御部(7)は、要求される負荷が第1領域(Z1)内にあるとき、上記過冷却用膨張機構(5)の開度または上記スライド弁(1a)の開度のうちの少なくとも上記過冷却用膨張機構(5)の開度を制御して、容量を制御する一方、要求される負荷が上記第1領域(Z1)よりも小さい第2領域(Z2)内にあるとき、上記スライド弁(1a)の開度を制御して、容量を制御することを特徴とする冷凍装置。
The refrigeration apparatus according to any one of claims 1 to 3,
When the required load is in the first region (Z1), the control unit (7) has at least one of the opening degree of the supercooling expansion mechanism (5) and the opening degree of the slide valve (1a). When the required load is in the second region (Z2) smaller than the first region (Z1) while controlling the capacity by controlling the opening degree of the expansion mechanism (5) for supercooling, the above A refrigerating apparatus for controlling the capacity by controlling the opening of the slide valve (1a).
JP2009121010A 2008-05-19 2009-05-19 Refrigerator Pending JP2010002173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121010A JP2010002173A (en) 2008-05-19 2009-05-19 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008130469 2008-05-19
JP2009121010A JP2010002173A (en) 2008-05-19 2009-05-19 Refrigerator

Publications (1)

Publication Number Publication Date
JP2010002173A true JP2010002173A (en) 2010-01-07

Family

ID=41584034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121010A Pending JP2010002173A (en) 2008-05-19 2009-05-19 Refrigerator

Country Status (1)

Country Link
JP (1) JP2010002173A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200362A (en) * 2011-04-22 2011-09-28 上海海事大学 Closed economizer adopting double-pressure cycle principle
JP2012154575A (en) * 2011-01-27 2012-08-16 Panasonic Corp Refrigeration cycle apparatus, and hot water heating apparatus with the same
KR101177430B1 (en) 2011-03-02 2012-08-30 이진국 Heat pump system with cooling and heating using renewable energy
JP2013002800A (en) * 2011-06-22 2013-01-07 Panasonic Corp Refrigeration cycle apparatus, and hydronic heater having the refrigeration cycle apparatus
JP2013142487A (en) * 2012-01-10 2013-07-22 Hitachi Appliances Inc Refrigeration device and refrigeration unit
JP2013164251A (en) * 2012-02-13 2013-08-22 Panasonic Corp Refrigerating apparatus
KR102173814B1 (en) * 2020-08-25 2020-11-04 (주)대성마리프 Cascade heat pump system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154575A (en) * 2011-01-27 2012-08-16 Panasonic Corp Refrigeration cycle apparatus, and hot water heating apparatus with the same
EP2482013A3 (en) * 2011-01-27 2013-01-02 Panasonic Corporation Refrigeration cycle apparatus
KR101177430B1 (en) 2011-03-02 2012-08-30 이진국 Heat pump system with cooling and heating using renewable energy
CN102200362A (en) * 2011-04-22 2011-09-28 上海海事大学 Closed economizer adopting double-pressure cycle principle
JP2013002800A (en) * 2011-06-22 2013-01-07 Panasonic Corp Refrigeration cycle apparatus, and hydronic heater having the refrigeration cycle apparatus
JP2013142487A (en) * 2012-01-10 2013-07-22 Hitachi Appliances Inc Refrigeration device and refrigeration unit
JP2013164251A (en) * 2012-02-13 2013-08-22 Panasonic Corp Refrigerating apparatus
KR102173814B1 (en) * 2020-08-25 2020-11-04 (주)대성마리프 Cascade heat pump system

Similar Documents

Publication Publication Date Title
JP2011208860A (en) Air conditioner
JP2010002173A (en) Refrigerator
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP5375919B2 (en) heat pump
EP3712541B1 (en) Heat pump system
JP2019138499A (en) Air conditioning apparatus
JP2007232230A (en) Refrigerating device
WO2020203708A1 (en) Refrigeration cycle device
JP5157580B2 (en) Refrigeration equipment
JP6091616B2 (en) Refrigeration cycle equipment
JP6498299B2 (en) Refrigeration cycle equipment
JP2011133207A (en) Refrigerating apparatus
JP2014163624A (en) Turbo refrigerator
JP2015014372A (en) Air conditioner
JP2006525488A (en) Vapor compression system
US11573039B2 (en) Heat source unit and refrigeration apparatus
JP5790675B2 (en) heat pump
JP2017150689A (en) Air conditioner
JP2012149834A (en) Heat pump
JP2016128734A (en) Refrigeration device
JP2018119707A (en) Refrigerant circuit system and control method
JP2006177598A (en) Refrigerating cycle device
JP2013092369A5 (en)
JP6630627B2 (en) Turbo refrigerator
JP2015105783A (en) Turbo refrigerator