JP2007232230A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2007232230A
JP2007232230A JP2006050706A JP2006050706A JP2007232230A JP 2007232230 A JP2007232230 A JP 2007232230A JP 2006050706 A JP2006050706 A JP 2006050706A JP 2006050706 A JP2006050706 A JP 2006050706A JP 2007232230 A JP2007232230 A JP 2007232230A
Authority
JP
Japan
Prior art keywords
oil
compressor
stage
cooler
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006050706A
Other languages
Japanese (ja)
Inventor
Yoshiki Nagasaki
芳樹 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006050706A priority Critical patent/JP2007232230A/en
Publication of JP2007232230A publication Critical patent/JP2007232230A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device free from problems, capable of maximizing a coefficient of performance at all times even when discharge pressure and suction pressure of a single-stage or multiple-stage compressing mechanism are changed. <P>SOLUTION: This refrigerating device comprises: a refrigerating cycle constituted by successively circularly connecting the single-stage compressing mechanism 10, an oil separator 8, a condenser 3, an expansion means 4 for a cooler, and the cooler 5; an oil injection circuit successively connected between an oil outlet of the oil separator 8 and an oil inlet of the single-stage compressing mechanism 10, and composed of a first oil cooler 20 for cooling the oil separated by the oil separator 8, and an oil flow rate adjusting means 51 for adjusting a flow rate of the oil injected to the single-stage compressing mechanism 10; a discharge temperature detecting means 102 detecting a refrigerant temperature of the discharge opening of the single-stage compressing mechanism 10; and a controller 200 controlling the oil flow rate adjusting means 51 on the basis of the refrigerant temperature detected by the discharge temperature detecting means 102. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、油冷式圧縮機を有する冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus having an oil-cooled compressor.

スクリュー圧縮機などにおいて、圧縮過程に生じる熱を除去するために、圧縮機吐出口に接続された油分離器内で吐出ガス中より分離された油を、油冷却器において冷却水等で冷却し、この冷却された油をオリフィス等(以下、固定絞りと称す。)を介して圧縮機構に注入する方式(以下、油冷式圧縮機と称す。)が知られている。
そして、従来の油冷式圧縮機には、冷却された油を圧縮器に供給する油冷回路を油回収容器の油面位置より下側位置に配設し、油冷回路の高所部位にガス抜き手段を設けたものが開示されてる(特許文献1参照)。
In a screw compressor or the like, in order to remove heat generated in the compression process, the oil separated from the discharge gas in the oil separator connected to the compressor discharge port is cooled with cooling water or the like in the oil cooler. A system (hereinafter referred to as an oil-cooled compressor) in which the cooled oil is injected into a compression mechanism via an orifice or the like (hereinafter referred to as a fixed throttle) is known.
In a conventional oil-cooled compressor, an oil-cooling circuit that supplies cooled oil to the compressor is disposed at a lower position than the oil level position of the oil recovery container, and the oil-cooled circuit is disposed at a high part of the oil-cooling circuit. The thing provided with the gas venting means is disclosed (refer patent document 1).

また、従来の冷凍装置の電動機の冷却は、電動機の外壁に冷却ジャケットを設け(以後、電動機冷却ジャケットと称す。)、電動機冷却ジャケットの冷却流路に冷却水を通水して、電動機発熱を除去する方法が一般的であったが、冷媒で電動機を冷却する場合は、電動機発熱分だけ冷却能力が消費されるため、装置の成績係数が低下するという問題があった。 この問題を解決するために従来の油圧式スクリュー圧縮機は、モーターケーシング部に冷却油を流入させ、モータ内の冷却を必要とする部位が冷却油に浸漬させるとともに、この冷却油を圧縮機本体内に導いている(特許文献2参照)。   In addition, for cooling the motor of a conventional refrigeration system, a cooling jacket is provided on the outer wall of the motor (hereinafter referred to as a motor cooling jacket), and cooling water is passed through the cooling flow path of the motor cooling jacket to generate motor heat. Although the method of removing was common, when cooling an electric motor with a refrigerant | coolant, since the cooling capability was consumed only for the motor heat_generation | fever, there existed a problem that the coefficient of performance of an apparatus fell. In order to solve this problem, the conventional hydraulic screw compressor has a cooling oil flowing into the motor casing, and a portion of the motor that requires cooling is immersed in the cooling oil. (Refer to Patent Document 2).

また、従来の2段形スクリュ圧縮機は、モーターケーシング内に、第1段、第2段スクリュロータを有する第1段、第2段圧縮機構を備え、第2段圧縮機構から油分離回収器に至り、この下部の油溜まり部から第1段スクリュロータ2の吐出側の軸受、軸封部、および第2段スクリュロータ3の軸受、軸封部に通じる第1給油流路と、第1段、第2段圧縮機機構間の下部の油溜まり部と第1段スクリュロータの吸込側の軸受とを連通させる第2給油流路とを設け、吸込容量を向上させている(特許文献3参照)。   In addition, the conventional two-stage screw compressor includes a first stage and a second stage compression mechanism having first and second stage screw rotors in a motor casing, and the oil separation and recovery device is provided from the second stage compression mechanism. The first oil supply flow path leading from the lower oil reservoir to the discharge-side bearing and shaft seal of the first-stage screw rotor 2, the bearing of the second-stage screw rotor 3, and the shaft seal; A lower oil reservoir between the first and second stage compressor mechanisms and a second oil supply passage for communicating the suction side bearing of the first stage screw rotor are provided to improve the suction capacity (Patent Document 3). reference).

特公平06−0068278号公報(第3頁、第1図)Japanese Examined Patent Publication No. 06-0068278 (page 3, Fig. 1) 特開2005−69062号公報(段落0010〜0016、図1、図2)Japanese Patent Laying-Open No. 2005-69062 (paragraphs 0010 to 0016, FIGS. 1 and 2) 特開平09−268988号公報(段落0010〜0014、図1)JP 09-268888 (paragraphs 0010 to 0014, FIG. 1)

近年、冷凍空調の分野においても、部分負荷運転時の成績係数の向上を目指して、圧縮機周波数をインバータによって変更することが一般的となってきた。
インバータによって、圧縮機周波数を定格周波数より大きく下げた運転を行なった場合(以下、低周波数運転と称す。)、圧縮機吸込冷媒量が定格時と比べて大幅に減少するので、圧縮過程での発熱量が定格時に比べて大幅に減少する。一方、周波数が変化しても吐出圧力と油注入部の差圧はあまり変化しないので、圧縮機構への油注入量は定格周波数での運転時と殆ど同じとなる。
この場合、圧縮機構へ過剰な油が注入されるので、圧縮機構内部の粘性抵抗が増大し、電動機入力が増大する。
その結果、上記の従来方式の油冷却式圧縮機を用いた冷凍装置は、いずれも低周波数運転時は、成績係数が悪化するという問題があった。
In recent years, in the field of refrigeration and air conditioning, it has become common to change the compressor frequency using an inverter in order to improve the coefficient of performance during partial load operation.
When the inverter is operated with the compressor frequency significantly lower than the rated frequency (hereinafter referred to as low frequency operation), the amount of refrigerant sucked by the compressor is greatly reduced compared to the rated time. The calorific value is greatly reduced compared to the rated value. On the other hand, even if the frequency changes, the pressure difference between the discharge pressure and the oil injection portion does not change so much, so the amount of oil injected into the compression mechanism is almost the same as during operation at the rated frequency.
In this case, since excessive oil is injected into the compression mechanism, the viscous resistance inside the compression mechanism increases, and the electric motor input increases.
As a result, the refrigeration apparatus using the conventional oil-cooled compressor has a problem that the coefficient of performance deteriorates during low-frequency operation.

この発明は、上記のような課題を解決するためになされたもので、単段または多段圧縮機構の吐出圧力および吸込圧力が変化しても常に成績係数を最大にし、かつ不具合の発生のない冷凍装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and always maximizes the coefficient of performance even when the discharge pressure and the suction pressure of the single-stage or multi-stage compression mechanism change. The object is to obtain a device.

この発明に係る冷凍装置は、圧縮機、油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、前記油分離器の油出口と前記圧縮機の油注入口の間に順次接続され、前記油分離器で分離された油を冷却する第1の油冷却器および前記圧縮機に注入される前記油の流量を調整する油流量調整手段からなる油注入回路と、
前記圧縮機の吐出口の冷媒温度を検知する圧縮機吐出温度検知手段と、この圧縮機吐出温度検知手段により検出された冷媒温度に基づいて前記油流量調整手段を制御する制御手段と、を備えたものである。
A refrigeration apparatus according to the present invention includes a refrigeration cycle in which a compressor, an oil separator, a condenser, an expansion means for a cooler, and a cooler are sequentially connected in an annular manner, an oil outlet of the oil separator, and an oil injection of the compressor. An oil injection circuit comprising a first oil cooler that is sequentially connected between the inlets and cools the oil separated by the oil separator, and an oil flow rate adjusting means that adjusts the flow rate of the oil injected into the compressor. When,
Compressor discharge temperature detection means for detecting the refrigerant temperature at the discharge port of the compressor, and control means for controlling the oil flow rate adjustment means based on the refrigerant temperature detected by the compressor discharge temperature detection means. It is a thing.

この発明によれば、圧縮機、油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、前記油分離器の油出口と前記圧縮機の油注入口の間に順次接続され、前記油分離器で分離された油を冷却する第1の油冷却器および前記圧縮機に注入される前記油の流量を調整する油流量調整手段からなる油注入回路と、前記圧縮機の吐出口の冷媒温度を検知する圧縮機吐出温度検知手段と、この圧縮機吐出温度検知手段により検出された冷媒温度に基づいて前記油流量調整手段を制御する制御手段と、を備えたので、低周波数運転時においても、油流量を最適に保つことができるので、成績係数を向上させることができる。   According to this invention, the compressor, the oil separator, the condenser, the expansion means for the cooler, and the cooler are sequentially connected in an annular manner, the oil outlet of the oil separator, and the oil inlet of the compressor An oil injection circuit comprising a first oil cooler for sequentially cooling the oil separated by the oil separator and an oil flow rate adjusting means for adjusting the flow rate of the oil injected into the compressor; Compressor discharge temperature detection means for detecting the refrigerant temperature at the discharge port of the compressor, and control means for controlling the oil flow rate adjustment means based on the refrigerant temperature detected by the compressor discharge temperature detection means. Therefore, the oil flow rate can be kept optimal even during low frequency operation, so that the coefficient of performance can be improved.

実施の形態1.
図1は本発明に係る実施の形態1を示す油流量調整手段を有する単段圧縮機を用いた冷凍装置の構成図である。
図1において冷凍装置は、単段圧縮機10、単段圧縮機10の圧縮機吐出口7、油分離器8の入口8a、油分離器8、冷媒ガス出口8b、凝縮器3、冷却器用膨張手段4、冷却器5、単段圧縮機10の吸込口6が冷媒配管を介して順次環状に連結されて冷凍サイクルが構成されている(冷媒の流れは図面上時計回りに循環する)。
一方、油分離器8の油分離器油出口8c、第1油冷却器20、油流量調整手段(単段用)51、単段圧縮機10の単段圧縮機油注入口10aが順次接続されて油注入回路が構成されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a refrigeration apparatus using a single-stage compressor having oil flow rate adjusting means according to Embodiment 1 of the present invention.
In FIG. 1, the refrigeration apparatus includes a single-stage compressor 10, a compressor discharge port 7 of the single-stage compressor 10, an inlet 8a of an oil separator 8, an oil separator 8, a refrigerant gas outlet 8b, a condenser 3, and an expansion for a cooler. The means 4, the cooler 5, and the suction port 6 of the single stage compressor 10 are sequentially connected in an annular manner through a refrigerant pipe to form a refrigeration cycle (the refrigerant flow circulates clockwise in the drawing).
On the other hand, the oil separator oil outlet 8c of the oil separator 8, the first oil cooler 20, the oil flow rate adjusting means (for single stage) 51, and the single stage compressor oil inlet 10a of the single stage compressor 10 are sequentially connected. An oil injection circuit is configured.

また、単段圧縮機10の圧縮機吐出口7の冷媒温度を検知する温度検知手段102が設けられ、温度検出手段102は、吐出温度から適正な油流量を算出する制御器200に接続されている。また、制御器200は、油流量調整手段51に接続され、油流量が適正量になるように制御している。   Further, a temperature detection means 102 for detecting the refrigerant temperature at the compressor discharge port 7 of the single stage compressor 10 is provided, and the temperature detection means 102 is connected to a controller 200 for calculating an appropriate oil flow rate from the discharge temperature. Yes. Further, the controller 200 is connected to the oil flow rate adjusting means 51 and controls the oil flow rate to be an appropriate amount.

次に、動作について説明する。
まず、冷凍サイクルの動作については、単段圧縮機10の圧縮機吐出口7から吐出された冷媒は、油分離器8で、高圧冷媒ガスと高圧油に分離される。高圧冷媒ガスは凝縮器3へ導かれ、凝縮器3で冷却水、外気等と熱交換して、凝縮液化し高圧液冷媒となる。冷却器用膨張手段4で、吸込圧力まで減圧された後、低圧二相冷媒となり冷却器5に流入する。低圧二相冷媒は冷却器5で、熱源より吸熱して蒸発し、単段圧縮機10の吸込口6より単段圧縮機10に吸入され、圧縮吐出され高温ガスとなり、圧縮機吐出口7に至る。
一方、油分離器8で分離された高圧油は、油分離器油出口8cより流出し、第1油冷却器20に流入する。流入した高圧油は油冷却器20内で冷却水等により冷却された後、油流量調整手段51を経て、単段圧縮機油注入口10aより単段圧縮機10に流入し、単段圧縮機10内部で圧縮機の吸込口6より吸入された冷媒ガスと合流する。
Next, the operation will be described.
First, regarding the operation of the refrigeration cycle, the refrigerant discharged from the compressor discharge port 7 of the single-stage compressor 10 is separated into high-pressure refrigerant gas and high-pressure oil by the oil separator 8. The high-pressure refrigerant gas is guided to the condenser 3, and exchanges heat with cooling water, outside air, etc. in the condenser 3 to be condensed and liquefied to become a high-pressure liquid refrigerant. After the pressure is reduced to the suction pressure by the cooler expansion means 4, the refrigerant becomes low-pressure two-phase refrigerant and flows into the cooler 5. The low-pressure two-phase refrigerant absorbs heat from the heat source and evaporates in the cooler 5, is sucked into the single-stage compressor 10 through the suction port 6 of the single-stage compressor 10, is compressed and discharged, and becomes high-temperature gas. It reaches.
On the other hand, the high-pressure oil separated by the oil separator 8 flows out from the oil separator oil outlet 8 c and flows into the first oil cooler 20. The high pressure oil that has flowed in is cooled by cooling water or the like in the oil cooler 20, and then flows into the single stage compressor 10 from the single stage compressor oil inlet 10 a via the oil flow rate adjusting means 51. The refrigerant merges with the refrigerant gas sucked from the suction port 6 of the compressor.

次に、油流量調整手段51の制御方法を説明する。
温度検出手段102により検出された吐出温度を制御器200に入力し、制御器200にて、検出された吐出温度とあらかじめ設定された許容温度範囲と比較する。検知された吐出温度が許容温度範囲より高い場合は、冷却不足であり油流量を増大させる。検知された吐出温度が許容温度範囲より低い場合は、冷却過剰であり油流量を減少させる。また、検出された吐出温度が許容温度範囲内である場合は、油流量は現状を維持する。
以上に説明した油流量調整手段51の制御方法についてまとめたものを表1に示す。
Next, a control method of the oil flow rate adjusting means 51 will be described.
The discharge temperature detected by the temperature detection means 102 is input to the controller 200, and the controller 200 compares the detected discharge temperature with a preset allowable temperature range. If the detected discharge temperature is higher than the allowable temperature range, cooling is insufficient and the oil flow rate is increased. If the detected discharge temperature is lower than the allowable temperature range, the cooling is excessive and the oil flow rate is reduced. Further, when the detected discharge temperature is within the allowable temperature range, the oil flow rate is maintained as it is.
Table 1 summarizes the control method of the oil flow rate adjusting means 51 described above.

Figure 2007232230
Figure 2007232230

以上のように、圧縮機、油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、前記油分離器の油出口と前記圧縮機の油注入口の間に順次接続され、前記油分離器で分離された油を冷却する第1の油冷却器および前記圧縮機に注入される前記油の流量を調整する油流量調整手段からなる油注入回路と、前記圧縮機の吐出口の冷媒温度を検知する圧縮機吐出温度検知手段と、この圧縮機吐出温度検知手段により検出された冷媒温度に基づいて前記油流量調整手段を制御する制御手段と、を備えたので、従来の固定絞りを介して圧縮機構へ油を注入する方式では、周波数が変化した場合は、圧縮機構に過剰な油が流入するため装置の成績係数を最大とすることができないのに対して、周波数が変化した場合も圧縮機構へ適正な量の油が圧縮機構に注入されるので、装置の成績係数を最大とすることができる。   As described above, the compressor, the oil separator, the condenser, the expansion means for the cooler, and the cooler are sequentially connected in an annular manner, and between the oil outlet of the oil separator and the oil inlet of the compressor. And an oil injection circuit comprising a first oil cooler for cooling the oil separated by the oil separator and an oil flow rate adjusting means for adjusting the flow rate of the oil injected into the compressor; Compressor discharge temperature detection means for detecting the refrigerant temperature at the discharge port of the compressor, and control means for controlling the oil flow rate adjustment means based on the refrigerant temperature detected by the compressor discharge temperature detection means. Therefore, in the conventional method of injecting oil into the compression mechanism through the fixed throttle, when the frequency changes, excessive oil flows into the compression mechanism, so the coefficient of performance of the device cannot be maximized. If the frequency changes Since proper amount of oil is injected into the compression mechanism to the compression mechanism, it is possible to maximize the coefficient of performance of the device.

なお、図2に示すように、油流量調整手段51として油回路電磁弁60を用いてもよい。
油流量を減少させる場合は、油回路電磁弁60を閉とし、油流量を増加させるときは、油回路電磁弁60を開とする。
図2において、油流量の調整を行なっている油回路電磁弁60は、1つの電磁弁で構成されているが複数の電磁弁を用いて、油流量の調整を行なってもよい。
また、油流量調整手段は、油回路電磁弁に限らず、ボールバルブ等の流量調整弁を用いてもよい。
As shown in FIG. 2, an oil circuit solenoid valve 60 may be used as the oil flow rate adjusting means 51.
When decreasing the oil flow rate, the oil circuit solenoid valve 60 is closed, and when increasing the oil flow rate, the oil circuit solenoid valve 60 is opened.
In FIG. 2, the oil circuit electromagnetic valve 60 that adjusts the oil flow rate is configured by one electromagnetic valve, but the oil flow rate may be adjusted using a plurality of electromagnetic valves.
The oil flow rate adjusting means is not limited to the oil circuit solenoid valve, and a flow rate adjusting valve such as a ball valve may be used.

実施の形態2
図3は本発明に係る実施の形態2を示す油流量調整手段を有する二段圧縮機を用いた冷凍装置の構成図である。
図3において、冷凍装置は、低段側圧縮機構1、高段側圧縮機構2、圧縮機2の圧縮機吐出口7、油分離器8の入口8a、油分離器8、冷媒ガス出口8b、凝縮器3、冷却器用膨張手段4、冷却器5、低段側圧縮機構1の吸込口6が冷媒配管を介して順次環状に連結されて冷凍サイクルが構成されている。
Embodiment 2
FIG. 3 is a configuration diagram of a refrigeration apparatus using a two-stage compressor having oil flow rate adjusting means according to Embodiment 2 of the present invention.
In FIG. 3, the refrigeration apparatus includes a low-stage compression mechanism 1, a high-stage compression mechanism 2, a compressor discharge port 7 of the compressor 2, an inlet 8a of an oil separator 8, an oil separator 8, a refrigerant gas outlet 8b, The condenser 3, the expansion means for cooler 4, the cooler 5, and the suction port 6 of the low-stage compression mechanism 1 are sequentially connected in an annular manner through a refrigerant pipe to constitute a refrigeration cycle.

一方、油分離器8の 油分離器油出口8cには、第1油冷却器20に接続され、第1油冷却器20の出口側は二つに分岐しており、一方は油流量調整手段(高段用)52を介して高段側圧縮機構2の高段側圧縮機構油注入口2aに接続され、もう一方は油流量調整手段(低段用)53を介して低段側圧縮機構1の低段側圧縮機構油注入口1aに接続されている。以上の構成によって油注入回路が構成されている。   On the other hand, the oil separator oil outlet 8c of the oil separator 8 is connected to the first oil cooler 20, and the outlet side of the first oil cooler 20 is branched into two, one of which is an oil flow rate adjusting means. The high-stage side compression mechanism 2 is connected to the high-stage side compression mechanism oil inlet 2a via the high-stage side compression mechanism 2 via the high-stage side compression mechanism 52, and the other is connected to the low-stage side compression mechanism via the oil flow rate adjusting means 53 (for low-stage). 1 is connected to a low-stage compression mechanism oil inlet 1a. The oil injection circuit is configured by the above configuration.

また、高段側圧縮機構2の圧縮機吐出口7の冷媒温度を検知する温度検知手段102、低段側圧縮機構1の吐出口である中間点9の冷媒温度を検知する温度検知手段101を設けている。温度検出手段102と温度検出手段101は、吐出温度から適正な油流量を算出する制御器200に接続されている。制御器200は、油流量調整手段(高段用)52および油流量調整手段(低段用)53と接続され、油流量が適正量になるように制御している。   Further, a temperature detecting means 102 for detecting the refrigerant temperature at the compressor discharge port 7 of the high stage side compression mechanism 2 and a temperature detecting means 101 for detecting the refrigerant temperature at the intermediate point 9 which is the discharge port of the low stage side compression mechanism 1 are provided. Provided. The temperature detection means 102 and the temperature detection means 101 are connected to a controller 200 that calculates an appropriate oil flow rate from the discharge temperature. The controller 200 is connected to the oil flow rate adjusting means (for high stage) 52 and the oil flow rate adjusting means (for low stage) 53, and controls the oil flow rate to be an appropriate amount.

次に、動作について説明する。まず、冷凍サイクルの動作については、高段側圧縮機構2の圧縮機吐出口7から吐出された冷媒は、油分離器8で、高圧冷媒ガスと高圧油に分離される。高圧冷媒ガスは凝縮器3へ導かれ、凝縮器3で冷却水、外気等と熱交換して、凝縮液化し高圧液冷媒となる。冷却器用膨張手段4で、吸込圧力まで減圧された後、低圧二相冷媒となり冷却器5に流入する。低圧二相冷媒は冷却器5で、熱源より吸熱して蒸発し、単段圧縮機10の吸込口より単段圧縮機10に吸入され、圧縮吐出され高温ガスとなり、圧縮機吐出口7に至る。   Next, the operation will be described. First, regarding the operation of the refrigeration cycle, the refrigerant discharged from the compressor discharge port 7 of the high-stage compression mechanism 2 is separated into high-pressure refrigerant gas and high-pressure oil by the oil separator 8. The high-pressure refrigerant gas is guided to the condenser 3, and exchanges heat with cooling water, outside air, etc. in the condenser 3 to be condensed and liquefied to become a high-pressure liquid refrigerant. After the pressure is reduced to the suction pressure by the cooler expansion means 4, the refrigerant becomes low-pressure two-phase refrigerant and flows into the cooler 5. The low-pressure two-phase refrigerant absorbs heat from the heat source and evaporates in the cooler 5, and is sucked into the single-stage compressor 10 from the suction port of the single-stage compressor 10, compressed and discharged into a high-temperature gas, and reaches the compressor discharge port 7. .

一方、油分離器8で分離された高圧油は、油分離器油出口8cより流出し、第1油冷却器20に流入する。流入した高圧油は油冷却器20内で冷却水等により冷却された後二つに分岐し、一方は油流量調整手段(高段用)52を経て、高段側圧縮機構油注入口2aより高段側圧縮機構2に流入し、もう一方は油流量調整手段(低段用)53を経て、低段側圧縮機構油注入口1aより低段側圧縮機構1に流入する。それぞれの圧縮機構において油は冷媒と合流し、それぞれの圧縮機構の吐出口より流出する。   On the other hand, the high-pressure oil separated by the oil separator 8 flows out from the oil separator oil outlet 8 c and flows into the first oil cooler 20. The high-pressure oil that has flowed in is cooled by cooling water or the like in the oil cooler 20 and then branched into two. One of the high-pressure oil passes through the oil flow rate adjusting means (for the high stage) 52 and from the high stage side compression mechanism oil inlet 2a. It flows into the high-stage compression mechanism 2 and the other flows through the oil flow rate adjusting means (for low-stage) 53 and flows into the low-stage compression mechanism 1 from the low-stage compression mechanism oil inlet 1a. In each compression mechanism, the oil merges with the refrigerant and flows out from the discharge port of each compression mechanism.

次に、油流量調整手段(高段用)52の制御方法を説明する。温度検出手段102により検出された圧縮機吐出口7の温度を制御器200に入力し、制御器200にて、検出された吐出温度とあらかじめ設定された許容温度範囲と比較する。検知された吐出温度が許容温度範囲より高い場合は、冷却能力不足であり油流量を増大させる。検知された吐出温度が許容温度範囲より低い場合は、冷却能力過剰であり油流量を減少させる。また、検出された吐出温度が許容温度範囲内である場合は、現状の油流量を維持する。
以上に説明した油流量調整手段52(高段)の制御方法についてまとめると実施の形態1で示した表1と同様である。
Next, a control method of the oil flow rate adjusting means (for high stage) 52 will be described. The temperature of the compressor discharge port 7 detected by the temperature detection means 102 is input to the controller 200, and the controller 200 compares the detected discharge temperature with a preset allowable temperature range. If the detected discharge temperature is higher than the allowable temperature range, the cooling capacity is insufficient and the oil flow rate is increased. If the detected discharge temperature is lower than the allowable temperature range, the cooling capacity is excessive and the oil flow rate is decreased. Further, when the detected discharge temperature is within the allowable temperature range, the current oil flow rate is maintained.
The control method of the oil flow rate adjusting means 52 (high stage) described above is summarized as in Table 1 shown in the first embodiment.

次に、油流量調整手段(低段用)53の制御方法を説明する。温度検出手段101により検出された中間点9の温度を制御器200に入力し、制御器200にて、検出された吐出温度とあらかじめ設定された許容温度範囲と比較する。検知された吐出温度が許容温度範囲より高い場合は、冷却能力不足であり油流量を増大させる。検知された吐出温度が許容温度範囲より低い場合は、冷却能力過剰であり油流量を減少させる。また、検出された吐出温度が許容温度範囲内である場合は、油流量は現状を維持する。   Next, a control method of the oil flow rate adjusting means (for the low stage) 53 will be described. The temperature of the intermediate point 9 detected by the temperature detecting means 101 is input to the controller 200, and the controller 200 compares the detected discharge temperature with a preset allowable temperature range. If the detected discharge temperature is higher than the allowable temperature range, the cooling capacity is insufficient and the oil flow rate is increased. If the detected discharge temperature is lower than the allowable temperature range, the cooling capacity is excessive and the oil flow rate is decreased. Further, when the detected discharge temperature is within the allowable temperature range, the oil flow rate is maintained as it is.

以上に説明した油流量調整手段52(高段)の制御方法も実施の形態1で示した表1と同様である。
一般的な運転状態においては、圧縮機吐出口7の温度が中間点9より高くなるので、油流量調整手段(低段用)53の制御を、圧縮機吐出口7の温度によって行なってもよい。この場合、中間点9への温度検知手段101の取付けが不要になる。
The control method of the oil flow rate adjusting means 52 (high stage) described above is the same as that in Table 1 shown in the first embodiment.
In a general operation state, the temperature of the compressor discharge port 7 is higher than the intermediate point 9, so the oil flow rate adjusting means (for the low stage) 53 may be controlled by the temperature of the compressor discharge port 7. . In this case, it is not necessary to attach the temperature detecting means 101 to the intermediate point 9.

以上のように、圧縮機を多段圧縮機としても、運転状態の変化に応じて、適正な油流量に制御できるので、成績係数の向上させることができる。
なお、本実施例は、二段圧縮機構を用いた冷凍装置の例を示したが、三段以上の圧縮機構を用いた冷凍装置において本発明を実施してもよい。
As described above, even if the compressor is a multistage compressor, the coefficient of performance can be improved because it can be controlled to an appropriate oil flow rate in accordance with a change in the operating state.
In addition, although the present Example showed the example of the freezing apparatus using the two-stage compression mechanism, you may implement this invention in the freezing apparatus using the compression mechanism of three or more steps.

実施の形態3
図4は本発明に係る実施の形態3を示す油冷式電動機冷却ジャケットを有する単段圧縮機を用いた冷凍装置の構成図である。
図4において冷凍装置は、単段圧縮機10、単段圧縮機10の圧縮機吐出口7、油分離器8の入口8a、油分離器8、冷媒ガス出口8b、凝縮器3、冷却器用膨張手段4、冷却器5、単段圧縮機10の吸込口6が冷媒配管を介して順次環状に連結されて冷凍サイクルが構成されている。
Embodiment 3
FIG. 4 is a configuration diagram of a refrigeration apparatus using a single-stage compressor having an oil-cooled electric motor cooling jacket according to Embodiment 3 of the present invention.
4, the refrigeration apparatus includes a single-stage compressor 10, a compressor discharge port 7 of the single-stage compressor 10, an inlet 8a of an oil separator 8, an oil separator 8, a refrigerant gas outlet 8b, a condenser 3, and an expansion for a cooler. The refrigeration cycle is configured by the means 4, the cooler 5, and the suction port 6 of the single-stage compressor 10 being sequentially connected in an annular manner through the refrigerant pipe.

一方、油分離器8の 油分離器油出口8cには、第1油冷却器20に接続され、第1油冷却器20の出口は単段圧縮機10に設けられた油冷却式電動機冷却ジャケット41を介して固定絞り91に接続し、固定絞り91を介して単段圧縮機油注入口10aに接続されている。以上の構成によって油注入回路が構成されている。
また、冷却塔900に貯えられた冷却水等をポンプ901で凝縮器3と第1油冷却器を循環させて凝縮器3と第1油冷却器を冷却している。
On the other hand, an oil separator oil outlet 8 c of the oil separator 8 is connected to the first oil cooler 20, and the outlet of the first oil cooler 20 is an oil-cooled electric motor cooling jacket provided in the single-stage compressor 10. The fixed throttle 91 is connected to the single stage compressor oil inlet 10 a via the fixed throttle 91. The oil injection circuit is configured by the above configuration.
In addition, the condenser 3 and the first oil cooler are cooled by circulating the cooling water or the like stored in the cooling tower 900 with the pump 901 through the condenser 3 and the first oil cooler.

次に、動作について説明する。油分離器8で高圧冷媒ガスと高圧油に分離される。
油分離器8で分離された高圧油は、第1油冷却器20に流入する。流入した高圧油は油冷却器20内で冷却水等により冷却された後、油冷却式電動機冷却ジャケット41に流入する。高圧油は、油冷却式電動機冷却ジャケット41内で電動機を冷却し、固定絞り91を経て、単段圧縮機10に流入する。
なお、冷媒の動作については、実施例1での冷媒の動作と同一であるので省略する。
Next, the operation will be described. The oil separator 8 separates high-pressure refrigerant gas and high-pressure oil.
The high pressure oil separated by the oil separator 8 flows into the first oil cooler 20. The high-pressure oil that has flowed in is cooled by cooling water or the like in the oil cooler 20 and then flows into the oil-cooled electric motor cooling jacket 41. The high-pressure oil cools the electric motor in the oil-cooled electric motor cooling jacket 41 and flows into the single-stage compressor 10 through the fixed throttle 91.
Note that the operation of the refrigerant is the same as the operation of the refrigerant in the first embodiment, and is therefore omitted.

従来は、冷凍装置の電動機を冷媒や冷却水で冷却する場合は、電動機の外壁の電動機冷却ジャケットの冷却流路に冷却水を通水して、電動機発熱を除去する方法が一般的であったが、電動機冷却ジャケットの構造は図5に示すように、構造上冷却水配管の清掃が困難な場合が多く、冷却水の水質によっては電動機冷却ジャケットにスケール付着や腐食が生じる恐れがあった。特に開放型冷却塔によって、冷却水を冷却する場合は、冷却水が濃縮されるのでスケール付着や腐食が生じやすい。   Conventionally, when the motor of the refrigeration apparatus is cooled with refrigerant or cooling water, a method of removing the motor heat by passing cooling water through the cooling channel of the motor cooling jacket on the outer wall of the motor has been common. However, as shown in FIG. 5, the structure of the motor cooling jacket is often difficult to clean the cooling water piping due to the structure, and depending on the quality of the cooling water, there is a possibility that scale adhesion or corrosion may occur on the motor cooling jacket. In particular, when cooling water is cooled by an open cooling tower, the cooling water is concentrated, and scale adhesion and corrosion are likely to occur.

また、電動機冷却ジャケットにスケールが付着すると、伝熱効率が低下して電動機巻線温度が上昇するので、巻線サーモが動作して、圧縮機が停止する恐れがある。
また、電動機冷却ジャケットに腐食が発生すると、腐食により発生したピンホール等から冷却水が冷媒回路内に侵入することがあった。冷却水が冷媒回路に侵入すると、圧縮機、冷媒、冷凍機油の交換および冷媒回路の清掃が必要となるが、前記作業は費用、工数の面から大きな負担であった。
Further, when the scale adheres to the motor cooling jacket, the heat transfer efficiency decreases and the motor winding temperature rises, so that the winding thermostat operates and the compressor may stop.
In addition, when corrosion occurs in the motor cooling jacket, cooling water may enter the refrigerant circuit from pinholes or the like generated by the corrosion. When the cooling water enters the refrigerant circuit, it is necessary to replace the compressor, refrigerant, and refrigerating machine oil and to clean the refrigerant circuit. However, the above operation is a heavy burden in terms of cost and man-hours.

本実施の形態においては、圧縮機、油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、前記油分離器の油出口と前記圧縮機の油注入口の間に順次接続され、前記油分離器で分離された油を冷却する第1の油冷却器、前記圧縮機の電動機に設けられた電動機冷却ジャケットおよび前記圧縮機に注入される前記油の流量を一定に絞る固定絞りからなる油注入回路と、を備え、電動機冷却ジャケットを流れる流体が油であるため、電動機冷却ジャケットにスケール付着や腐食が発生せず、また、油冷却器は容易に清掃可能な構造なので、従来の電動機冷却ジャケットと比較するとスケール付着や腐食の可能性が非常に低くなっている。このため、冷却水が冷媒回路への侵入する可能性が、従来の冷却水によって電動機を冷却する方式と比べて非常に低くなり、冷媒回路へ冷却水が侵入した際に発生する圧縮機、冷媒、冷凍機油の交換にかかる費用、工数が殆ど生じなくすることができる。
また本実施の形態においては、電動機を冷却した油は、圧縮機構に注入されて再昇圧されるため、油ポンプの設置が不要である。
In the present embodiment, the compressor, the oil separator, the condenser, the expansion means for the cooler and the refrigeration cycle in which the cooler is sequentially connected in an annular manner, the oil outlet of the oil separator, and the oil inlet of the compressor A first oil cooler that is sequentially connected to cool the oil separated by the oil separator, an electric motor cooling jacket provided in the electric motor of the compressor, and a flow rate of the oil injected into the compressor An oil injection circuit consisting of a fixed throttle that squeezes the oil constant, and the fluid that flows through the motor cooling jacket is oil, so scale adhesion and corrosion do not occur in the motor cooling jacket, and the oil cooler is easily cleaned Because of the possible structure, the possibility of scale adhesion and corrosion is very low compared to conventional motor cooling jackets. For this reason, the possibility that the cooling water enters the refrigerant circuit is much lower than the conventional method of cooling the electric motor with the cooling water, and the compressor and the refrigerant generated when the cooling water enters the refrigerant circuit Costs and man-hours for replacing the refrigerating machine oil can be hardly generated.
In the present embodiment, the oil that has cooled the electric motor is injected into the compression mechanism and re-pressurized, so that it is not necessary to install an oil pump.

なお、図4においては、冷却水の冷却方法として冷却塔900を用いているが、井水を利用するなど他の方法で冷却水を冷却してもよい。
また、油冷却器の冷却手段は水に限らず空気などのその他手段を用いてもよい。
また、図6は、二段圧縮機に本発明を適用した例である。二段圧縮機においても、本発明は単段圧縮機に適用した場合と同様の効果が得られる。
また、図6の形態に中間冷却器を追加し、エコノマイザー回路を設けてもよい。
In FIG. 4, the cooling tower 900 is used as a cooling method for cooling water, but the cooling water may be cooled by other methods such as using well water.
The cooling means of the oil cooler is not limited to water, and other means such as air may be used.
FIG. 6 shows an example in which the present invention is applied to a two-stage compressor. Even in a two-stage compressor, the present invention can provide the same effects as when applied to a single-stage compressor.
Moreover, an intermediate cooler may be added to the configuration of FIG. 6 to provide an economizer circuit.

実施の形態4
図7は本発明に係る実施の形態4を示す油冷式電動機冷却ジャケットおよび第2油冷却器を有する単段圧縮機を用いた冷凍装置の構成図である。
本実施の形態は、実施の形態3の図4に示す冷凍装置において、油冷却式電動機冷却ジャケット41の出口と固定絞り91の間に、第2油冷却器21を設けたものである。その他構成は実施の形態5と同一である。
Embodiment 4
FIG. 7 is a configuration diagram of a refrigeration apparatus using a single-stage compressor having an oil-cooled electric motor cooling jacket and a second oil cooler according to a fourth embodiment of the present invention.
In this embodiment, the second oil cooler 21 is provided between the outlet of the oil-cooled electric motor cooling jacket 41 and the fixed throttle 91 in the refrigerating apparatus shown in FIG. 4 of the third embodiment. Other configurations are the same as those of the fifth embodiment.

次に、動作について説明する。油分離器8で高圧冷媒ガスと高圧油に分離される。
油分離器8で分離された高圧油は、第1油冷却器20に流入し、流入した高圧油は油冷却器20内で冷却水等により冷却された後、油冷却式電動機冷却ジャケット41に流入する。高圧油は、油冷却式電動機冷却ジャケット41内で電動機を冷却し、第2油冷却器21に流入する。油冷却式電動機冷却ジャケット41内で吸熱し温度が上昇した高圧油は、第2油冷却器21で冷却水等により冷却された後、固定絞り91を経て、単段圧縮機10に流入する。
冷媒の動作については、実施の形態1での冷媒の動作と同一であるので省略する。
Next, the operation will be described. The oil separator 8 separates high-pressure refrigerant gas and high-pressure oil.
The high-pressure oil separated by the oil separator 8 flows into the first oil cooler 20, and the inflowed high-pressure oil is cooled by cooling water or the like in the oil cooler 20, and then the oil-cooled electric motor cooling jacket 41. Inflow. The high-pressure oil cools the electric motor in the oil-cooled electric motor cooling jacket 41 and flows into the second oil cooler 21. The high-pressure oil that has absorbed heat in the oil-cooled electric motor cooling jacket 41 and has risen in temperature is cooled by cooling water or the like in the second oil cooler 21 and then flows into the single-stage compressor 10 through the fixed throttle 91.
Since the operation of the refrigerant is the same as the operation of the refrigerant in the first embodiment, a description thereof will be omitted.

実施の形態3では、電動機発熱分温度が高くなった油を圧縮機構内に注入するため、油による冷却能力が不足し、圧縮機の吐出温度が過熱する可能性があるが、本実施の形態では、電動機冷却ジャケットの出口に前記電動機冷却ジャケットから流出した前記油を冷却する第2油冷却器を備えたので、高圧油は電動機発熱を電動機ジャケットで吸熱するが、直後の第2油冷却器にて冷却水に放熱するので、冷却された油を用いて圧縮機構を冷却することができ、圧縮機吐出温度の過熱を防止することができる。   In the third embodiment, since the oil having a high electric motor heat generation temperature is injected into the compression mechanism, there is a possibility that the cooling capacity by the oil is insufficient and the discharge temperature of the compressor may be overheated. Then, since the second oil cooler for cooling the oil flowing out from the motor cooling jacket is provided at the outlet of the motor cooling jacket, the high pressure oil absorbs the heat generated by the motor by the motor jacket. Since the heat is radiated to the cooling water at, the compression mechanism can be cooled using the cooled oil, and overheating of the compressor discharge temperature can be prevented.

なお、図8は、二段圧縮機に本発明を適用した例である。二段圧縮機においても、本発明は単段圧縮機に適用した場合と同様の効果が得られる。
また、図8の形態に中間冷却器を追加し、エコノマイザー回路を設けてもよい。
FIG. 8 shows an example in which the present invention is applied to a two-stage compressor. Even in a two-stage compressor, the present invention can provide the same effects as when applied to a single-stage compressor.
Moreover, an intermediate cooler may be added to the configuration of FIG. 8 to provide an economizer circuit.

実施の形態5
図9は本発明に係る実施の形態5を示す油冷式電動機冷却ジャケットおよび油流量調整手段を有する単段圧縮機を用いた冷凍装置の構成図である。
本実施の形態は、実施の形態3の図4において、油流量調整手段を設けたものである。
Embodiment 5
FIG. 9 is a configuration diagram of a refrigeration apparatus using a single-stage compressor having an oil-cooled electric motor cooling jacket and oil flow rate adjusting means according to a fifth embodiment of the present invention.
In this embodiment, the oil flow rate adjusting means is provided in FIG. 4 of the third embodiment.

次に、油流量調整手段51の制御方法を説明する。
温度検出手段102により検出された吐出温度と温度検出手段102により検出された電動機冷却ジャケット出口油温度(以下、ジャケット出口温度と称す。)を制御器200に入力し、制御器200にて、検出された吐出温度とあらかじめ設定された許容吐出温度範囲、および検出されたジャケット出口温度とあらかじめ設定された許容ジャケット出口温度範囲を比較する。
Next, a control method of the oil flow rate adjusting means 51 will be described.
The discharge temperature detected by the temperature detecting means 102 and the motor cooling jacket outlet oil temperature (hereinafter referred to as jacket outlet temperature) detected by the temperature detecting means 102 are input to the controller 200 and detected by the controller 200. The detected discharge temperature is compared with a preset allowable discharge temperature range, and the detected jacket outlet temperature is compared with a preset allowable jacket outlet temperature range.

検知された吐出温度またはジャケット出口温度のいずれかが許容温度範囲より高い場合は、冷却不足であり油流量を増大させる。検知された吐出温度およびジャケット出口温度のいずれかが許容温度範囲より低い場合は、冷却過剰であり油流量を減少させる。また、検出された吐出温度およびジャケット出口温度が許容温度範囲内である場合は、油流量は現状を維持する。
以上に説明した油流量調整手段51の制御方法についてまとめたものを表2に示す。
When either the detected discharge temperature or jacket outlet temperature is higher than the allowable temperature range, the cooling is insufficient and the oil flow rate is increased. When either the detected discharge temperature or jacket outlet temperature is lower than the allowable temperature range, the cooling is excessive and the oil flow rate is reduced. When the detected discharge temperature and jacket outlet temperature are within the allowable temperature range, the oil flow rate is maintained as it is.
Table 2 summarizes the control method of the oil flow rate adjusting means 51 described above.

Figure 2007232230
Figure 2007232230

以上のように、圧縮機の電動機に電動機冷却ジャケットを備え、高段側油注入回路の第1の油冷却器と前記油流量調整手段の間に配管を介して前記電動機冷却ジャケットを接続し、前記電動機冷却ジャケットの出口の前記油の温度を検出するジャケット出口温度検出手段を備え、制御手段は、前記圧縮機吐出温度検出手段と前記ジャケット出口温度検出手段で検出された各々の温度に基づいて前記油流量調整手段を制御するので、従来方式と比べて油注入量が減少して電動機入力が減少し、成績係数を向上させることができ、また、電動機冷却ジャケットを冷却水で冷却する方式と比べて、本方式では、冷媒回路へ冷却水が侵入した際に発生する圧縮機、冷媒、冷凍機油の交換にかかる費用、工数が殆ど生じなくすることができる。   As described above, the motor of the compressor is provided with an electric motor cooling jacket, and the electric motor cooling jacket is connected via a pipe between the first oil cooler of the high stage side oil injection circuit and the oil flow rate adjusting means, Jacket outlet temperature detecting means for detecting the temperature of the oil at the outlet of the motor cooling jacket is provided, and the control means is based on the respective temperatures detected by the compressor discharge temperature detecting means and the jacket outlet temperature detecting means. Since the oil flow rate adjusting means is controlled, the oil injection amount is reduced compared to the conventional method, the motor input is reduced, the coefficient of performance can be improved, and the motor cooling jacket is cooled with cooling water; In comparison, in this method, the cost and man-hours required for replacement of the compressor, refrigerant, and refrigerating machine oil generated when cooling water enters the refrigerant circuit can be reduced.

なお、図10は、二段圧縮機に本発明を適用した例である。二段圧縮機においても、本発明は単段圧縮機に適用した場合と同様の効果が得られる。
また、図10の形態に中間冷却器を追加し、エコノマイザー回路を設けてもよい。
FIG. 10 shows an example in which the present invention is applied to a two-stage compressor. Even in a two-stage compressor, the present invention can provide the same effects as when applied to a single-stage compressor.
Further, an intermediate cooler may be added to the configuration of FIG. 10 to provide an economizer circuit.

また、図11は、本実施の形態に第2油冷却器21を追加したものである。実施の形態5と同様に、圧縮機吐出温度過熱を防止することができる。
また、図11の形態に中間冷却器を追加し、エコノマイザー回路を設けてもよい。二段圧縮機においても、本発明は単段圧縮機に適用した場合と同様の効果が得られる。
また、図12は、図11の形態に二段圧縮機を適用した例である。
また、図12の形態に中間冷却器を追加し、エコノマイザー回路を設けてもよい。
Moreover, FIG. 11 adds the 2nd oil cooler 21 to this Embodiment. Similar to the fifth embodiment, the compressor discharge temperature can be prevented from overheating.
Further, an intermediate cooler may be added to the configuration of FIG. 11 and an economizer circuit may be provided. Even in a two-stage compressor, the present invention can provide the same effects as when applied to a single-stage compressor.
FIG. 12 is an example in which a two-stage compressor is applied to the configuration of FIG.
Further, an intermediate cooler may be added to the configuration of FIG. 12 to provide an economizer circuit.

実施の形態6
図13は本発明に係る実施の形態6を示す油ガス分離器を有する冷凍装置の構成図である。本実施の形態は、実施の形態3の図6に示した冷凍装置に、油ガス分離器用固定絞りと油ガス分離器を追加したものである。
図13において冷凍装置は、低段側圧縮機構1、高段側圧縮機構2、圧縮機2の圧縮機吐出口7、油分離器8の入口8a、第一の油分離器である油分離器8、冷媒ガス出口8b、凝縮器3、冷却器用膨張手段4、冷却器5、低段側圧縮機構1の吸込口6が冷媒配管を介して順次環状に連結されて冷凍サイクルが構成されている。
Embodiment 6
FIG. 13 is a block diagram of a refrigeration apparatus having an oil / gas separator according to Embodiment 6 of the present invention. In the present embodiment, an oil / gas separator fixed throttle and an oil / gas separator are added to the refrigerating apparatus shown in FIG. 6 of the third embodiment.
In FIG. 13, the refrigeration apparatus includes a low-stage compression mechanism 1, a high-stage compression mechanism 2, a compressor discharge port 7 of the compressor 2, an inlet 8a of an oil separator 8, and an oil separator that is a first oil separator. 8, the refrigerant gas outlet 8b, the condenser 3, the expansion means 4 for the cooler, the cooler 5, and the suction port 6 of the low-stage compression mechanism 1 are sequentially connected in an annular manner through the refrigerant pipe to constitute a refrigeration cycle. .

一方、油分離器8の 油分離器油出口8cには、第1油冷却器20が接続され、第1油冷却器20の出口は油冷却式電動機冷却ジャケット41に接続されている。油冷却式電動機冷却ジャケット41の出口は二つに分岐しており、一方の配管は、固定絞り92を介して高段側圧縮機構油注入口2aに接続され高段側油注入回路を形成している。また、一方の配管は、は固定絞り94を介して第2の油分離器である油ガス分離器42に接続され、油ガス分離器の油出口42cが固定絞り93を介して、低段側圧縮機構油注入口1aに接続され低段側油注入回路を形成している。
また、油ガス分離器42の冷媒ガス出口42bは、電動機室40を介して、低段側圧縮機構1と高段側圧縮機構2の間の配管の中間点9に接続されて冷媒ガス注入回路を形成している。
On the other hand, the first oil cooler 20 is connected to the oil separator oil outlet 8 c of the oil separator 8, and the outlet of the first oil cooler 20 is connected to the oil-cooled electric motor cooling jacket 41. The outlet of the oil-cooled electric motor cooling jacket 41 is branched into two, and one pipe is connected to the high-stage compression mechanism oil injection port 2a through a fixed throttle 92 to form a high-stage oil injection circuit. ing. One pipe is connected to an oil gas separator 42 as a second oil separator via a fixed throttle 94, and an oil outlet 42c of the oil gas separator is connected to a low stage side via a fixed throttle 93. Connected to the compression mechanism oil injection port 1a, a low-stage oil injection circuit is formed.
Further, the refrigerant gas outlet 42b of the oil gas separator 42 is connected to the intermediate point 9 of the pipe between the low stage side compression mechanism 1 and the high stage side compression mechanism 2 via the electric motor chamber 40 and is connected to the refrigerant gas injection circuit. Is forming.

次に、動作について説明する。油分離器8で高圧冷媒ガスと高圧油に分離され、分離された高圧油は、第1油冷却器20に流入する。流入した高圧油は油冷却器20内で冷却水等により冷却された後、油冷却式電動機冷却ジャケット41に流入する。高圧油は、油冷却式電動機冷却ジャケット41内で電動機を冷却し、第2油冷却器21に流入する。油冷却式電動機冷却ジャケット41内で吸熱し温度が上昇した高圧油は、第2油冷却器21で冷却水等により冷却された後二つに分岐する。   Next, the operation will be described. The oil separator 8 separates the high-pressure refrigerant gas and the high-pressure oil, and the separated high-pressure oil flows into the first oil cooler 20. The high-pressure oil that has flowed in is cooled by cooling water or the like in the oil cooler 20 and then flows into the oil-cooled electric motor cooling jacket 41. The high-pressure oil cools the electric motor in the oil-cooled electric motor cooling jacket 41 and flows into the second oil cooler 21. The high-pressure oil that has absorbed heat in the oil-cooled electric motor cooling jacket 41 and has increased in temperature is cooled by the second oil cooler 21 with cooling water or the like and then branched into two.

油冷却式電動機冷却ジャケット41の出口で分岐した油の一方は、固定絞り94を経て油ガス分離器42に流入する。固定絞り94を通過する際、減圧され中間圧となる。中間圧に減圧される際、油に含まれていた冷媒がフラッシュし、二相流となって、油ガス分離器42に流入する。油ガス分離器42内で二相流体は油と冷媒ガスに分離され、冷媒ガスは、電動機室40に流入する。電動機室40で電動機巻線を冷却した冷媒ガスは、中間点9より高段側圧縮機構2に流入する。油ガス分離器42内で分離された油は、固定絞り(低段用)93を介して低段側圧縮機構1に流入する。   One of the oil branched at the outlet of the oil-cooled electric motor cooling jacket 41 flows into the oil gas separator 42 through the fixed throttle 94. When passing through the fixed throttle 94, the pressure is reduced to an intermediate pressure. When the pressure is reduced to the intermediate pressure, the refrigerant contained in the oil flashes and becomes a two-phase flow and flows into the oil gas separator 42. The two-phase fluid is separated into oil and refrigerant gas in the oil / gas separator 42, and the refrigerant gas flows into the electric motor chamber 40. The refrigerant gas that has cooled the motor winding in the motor chamber 40 flows into the higher stage compression mechanism 2 from the intermediate point 9. The oil separated in the oil / gas separator 42 flows into the low-stage compression mechanism 1 through a fixed throttle (for low-stage) 93.

油冷却式電動機冷却ジャケット41で分岐した油のもう一方は、固定絞り(高段用)92を経て高段側圧縮機構油注入口2aに流入する。
冷媒の動作については、実施の形態2での冷媒の動作と同一であるので省略する。
The other of the oil branched by the oil-cooled electric motor cooling jacket 41 flows into the high-stage compression mechanism oil inlet 2a through a fixed throttle (for high-stage) 92.
Since the operation of the refrigerant is the same as the operation of the refrigerant in the second embodiment, a description thereof will be omitted.

以上のように、低段側圧縮機、高段側圧縮機、第1の油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、前記第1の油分離器の油出口と前記高段側圧縮機の油注入口の間に順次接続され、前記第1の油分離器で分離された油を冷却する第1の油冷却器、前記低段側の圧縮機と前記高段側の圧縮機の電動機に設けられた電動機冷却ジャケットおよび前記高段側圧縮機に注入される前記油の流量を一定に絞る第1の固定絞りからなる高段側油注入回路と、前記高段側油注入回路の前記電動機冷却ジャケットの出口から分岐して前記低段側圧縮機の油注入口至る間に順次接続され、前記電動機冷却ジャケットからの前記油の流量を一定に絞る第2の固定絞り、この第2の固定絞りからの油を分離する第2の油分離器および前記第2の油分離器で分離され前記低段側圧縮機に注入される油の流量を一定に絞る第3の固定絞りからなる低段側油注入回路と、前記第2の油分離器で分離された冷媒のガスを前記電動機の室内を通過させて前記低段圧縮機と前記低高段側圧縮機圧の間の配管に注入させる冷媒ガス注入回路と、を備えたので、冷却能力が向上し、成績係数を向上させることができる。   As described above, a refrigeration cycle in which a low-stage compressor, a high-stage compressor, a first oil separator, a condenser, an expansion means for a cooler, and a cooler are sequentially connected in an annular manner, and the first oil A first oil cooler that is sequentially connected between an oil outlet of the separator and an oil inlet of the high-stage compressor, and that cools the oil separated by the first oil separator; High-stage oil injection comprising a compressor and a motor cooling jacket provided in the electric motor of the high-stage compressor, and a first fixed throttle that restricts the flow rate of the oil injected into the high-stage compressor constant. A circuit and a branch from the outlet of the motor cooling jacket of the high stage side oil injection circuit to the oil injection port of the low stage side compressor, and the oil flow rate from the motor cooling jacket is constant. A second fixed throttle that squeezes to a second fixed oil that separates oil from the second fixed throttle A low-stage oil injection circuit comprising a third fixed throttle for uniformly reducing a flow rate of oil separated by the separator and the second oil separator and injected into the low-stage compressor; and the second oil A refrigerant gas injection circuit for passing the refrigerant gas separated by the separator through the interior of the electric motor and injecting the refrigerant gas into a pipe between the low-stage compressor pressure and the low-high stage compressor pressure, The cooling capacity is improved and the coefficient of performance can be improved.

本実施の形態では、低段側圧縮機構1へ注入する油は、中間圧まで減圧されており油中冷媒濃度が低下している。低段側圧縮機構1に注入する油の油中冷媒濃度が低下すると、油が低圧まで減圧された際に発生するフラッシュガスが少なくなり、フラッシュガスが低段側圧縮機構1に吸い込まれることによる冷却器からの吸込み冷媒量の低下が縮減し、吸込み冷媒量がフラッシュガスの縮減分だけ増大するので、冷却能力が向上し、成績係数を向上させることができる。   In the present embodiment, the oil injected into the low-stage compression mechanism 1 is decompressed to an intermediate pressure, and the refrigerant concentration in oil is reduced. When the refrigerant concentration in the oil injected into the low-stage compression mechanism 1 decreases, the flash gas generated when the oil is depressurized to a low pressure decreases, and the flash gas is sucked into the low-stage compression mechanism 1. Since the decrease in the amount of refrigerant sucked from the cooler is reduced and the amount of refrigerant sucked is increased by the amount of reduction of the flash gas, the cooling capacity can be improved and the coefficient of performance can be improved.

また、電動機冷却ジャケット41からの冷却に加えて、冷媒ガスによって電動機巻線を直接冷却するので、電動機冷却ジャケット41のみから冷却する場合より、電動機巻線を効率的に冷却することが可能となり、電動機巻線、および電動機回転子をコンパクトなものにすることができる。
従って、電動機巻線がコンパクトになると、銅線使用量が縮減し、電動機価格の削減が可能となる。
Further, in addition to cooling from the motor cooling jacket 41, the motor winding is directly cooled by the refrigerant gas, so that it is possible to cool the motor winding more efficiently than when cooling only from the motor cooling jacket 41, The motor winding and the motor rotor can be made compact.
Therefore, when the motor winding becomes compact, the amount of copper wire used is reduced, and the motor price can be reduced.

また、電動機回転子がよりコンパクトになり電動機回転子の直径が縮小すると、電動機回転子に作用する遠心力の低下し、電動機許容最高回転数の向上という効果が得られる。圧縮機構の許容回転数は、電動機許容回転数によって規定されることが多いが、このような場合、電動機許容回転数が向上すると、圧縮機構の許容回転数が向上する。
また、インバータ等による周波数制御装置を用いて、圧縮機構の回転数を制御する場合、圧縮機構の許容回転数が向上すると、同じ圧縮機構を用いても、回転数が向上した分だけ圧縮機吸込体積が向上して冷却能力を向上させることができる。
Further, when the motor rotor becomes more compact and the diameter of the motor rotor is reduced, the centrifugal force acting on the motor rotor is reduced, and the effect of improving the maximum allowable motor speed is obtained. The allowable rotation speed of the compression mechanism is often defined by the allowable rotation speed of the electric motor. In such a case, if the allowable rotation speed of the electric motor is improved, the allowable rotation speed of the compression mechanism is improved.
In addition, when controlling the rotational speed of the compression mechanism using a frequency control device such as an inverter, if the allowable rotational speed of the compression mechanism is improved, even if the same compression mechanism is used, the compressor is sucked by the increased rotational speed. The volume can be improved and the cooling capacity can be improved.

なお、本実施の形態は、二段圧縮機構を用いた冷凍装置の例を示したが、三段以上の圧縮機構を用いた冷凍装置において本発明を実施してもよい。
また、図14は、図13の冷凍装置において、固定絞り(高段用)92、固定絞り(低段用)93、固定絞り(油ガス分離器用)94の代わりに油流量調整手段(高段用)52、油流量調整手段(低段用)53、油流量調整手段(油ガス分離器用)54を用い、高段側圧縮機構2の圧縮機吐出口7の冷媒温度を検知する温度検知手段102、低段側圧縮機構1の吐出口である中間点9の冷媒温度を検知する温度検知手段101、電動機冷却ジャケット41の出口の油の温度を検出するジャケット出口温度検出手段120の検出温度に各々基づいて油流量調整手段(高段用)52、油流量調整手段(低段用)53、油流量調整手段(油ガス分離器用)54を各々制御器200により制御する。
In addition, although this Embodiment showed the example of the freezing apparatus using a two-stage compression mechanism, you may implement this invention in the freezing apparatus using the compression mechanism of three or more steps.
FIG. 14 shows an oil flow rate adjusting means (high stage) instead of a fixed throttle (for high stage) 92, a fixed throttle (for low stage) 93, and a fixed throttle (for oil gas separator) 94 in the refrigeration apparatus of FIG. 52), oil flow rate adjusting means (for low stage) 53, oil flow rate adjusting means (for oil gas separator) 54, and temperature detecting means for detecting the refrigerant temperature at the compressor discharge port 7 of the high stage side compression mechanism 2. 102, the temperature detection means 101 for detecting the refrigerant temperature at the intermediate point 9 which is the discharge port of the low-stage compression mechanism 1, and the detected temperature of the jacket outlet temperature detection means 120 for detecting the temperature of the oil at the outlet of the motor cooling jacket 41. Based on each, the controller 200 controls the oil flow rate adjusting means (for high stage) 52, the oil flow rate adjusting means (for low stage) 53, and the oil flow rate adjusting means (for oil gas separator) 54, respectively.

図14の場合、上記の実施の形態7の効果に加えて、適正な油注入量にて運転できることによる成績係数を向上させることができる。
また、図14は、図13の冷凍装置において、固定絞り(高段用)92、固定絞り(低段用)93、固定絞り(油ガス分離器用)94の代わりに油流量調整手段(高段用)52、油流量調整手段(低段用)53、油流量調整手段(油ガス分離器用)54を用いたものであるが、いずれか1または2の油流量調整手段を固定絞りに変更してもよい。すなわち、固定絞り(高段用)92、固定絞り(低段用)93、固定絞り(油ガス分離器用)94のうち少なくとも1つを油調整手段に代えてもよい。
In the case of FIG. 14, in addition to the effects of the seventh embodiment, the coefficient of performance due to being able to operate with an appropriate oil injection amount can be improved.
FIG. 14 shows an oil flow rate adjusting means (high stage) instead of a fixed throttle (for high stage) 92, a fixed throttle (for low stage) 93, and a fixed throttle (for oil gas separator) 94 in the refrigeration apparatus of FIG. 52), oil flow rate adjusting means (for low stage) 53, oil flow rate adjusting means (for oil gas separator) 54, but either one or 2 of oil flow rate adjusting means is changed to a fixed throttle. May be. That is, at least one of the fixed throttle (for high stage) 92, the fixed throttle (for low stage) 93, and the fixed throttle (for oil gas separator) 94 may be replaced with the oil adjusting means.

この場合、固定絞り(高段用)92を油流量調整手段(高段用)52に代えたときは、高段側圧縮機構2の圧縮機吐出口7の冷媒温度を検知する温度検知手段102、固定絞り(低段用)93を流量調整手段(低段用)53に代えたときは、低段側圧縮機構1の吐出口である中間点9の冷媒温度を検知する温度検知手段101、固定絞り(油ガス分離器用)94の代わりに油流量調整手段(油ガス分離器用)54に代えたときは、電動機冷却ジャケット41の出口の油の温度を検出するジャケット出口温度検出手段120の検出温度に各々基づいて油流量調整手段(高段用)52、油流量調整手段(低段用)53、油流量調整手段(油ガス分離器用)54を各々制御器200により制御する。   In this case, when the fixed throttle (for the high stage) 92 is replaced with the oil flow rate adjusting means (for the high stage) 52, the temperature detection means 102 for detecting the refrigerant temperature at the compressor discharge port 7 of the high stage side compression mechanism 2. When the fixed throttle (for the low stage) 93 is replaced with the flow rate adjusting means (for the low stage) 53, the temperature detecting means 101 that detects the refrigerant temperature at the intermediate point 9 that is the discharge port of the low stage side compression mechanism 1, When the oil flow rate adjusting means (for oil and gas separator) 54 is replaced with the fixed throttle (for oil and gas separator) 94, detection by the jacket outlet temperature detecting means 120 for detecting the temperature of the oil at the outlet of the motor cooling jacket 41 is detected. The controller 200 controls the oil flow rate adjusting means (for high stage) 52, the oil flow rate adjusting means (for low stage) 53, and the oil flow rate adjusting means (for oil gas separator) 54 based on each temperature.

実施の形態7
図15は本発明に係る実施の形態7を示す油ガス分離器と第2油冷却器を有する冷凍装置の構成図である。本実施の形態は、実施の形態6の図13に示した冷凍装置に、第2油冷却器21を追加した冷凍装置の構成図である。
以下に図15と図13の油回路の異なる点を示す。
Embodiment 7
FIG. 15 is a configuration diagram of a refrigeration apparatus having an oil / gas separator and a second oil cooler according to Embodiment 7 of the present invention. The present embodiment is a configuration diagram of a refrigeration apparatus in which a second oil cooler 21 is added to the refrigeration apparatus shown in FIG. 13 of the sixth embodiment.
The differences between the oil circuits of FIG. 15 and FIG. 13 are shown below.

第1油冷却器20の出口は油冷却式電動機冷却ジャケット41を介して、第2油冷却器21に接続されている。第2油冷却器21の出口は二つに分岐しており、一方は固定絞り94を介して油ガス分離器42に接続している。油ガス分離器の冷媒ガス出口42bは、電動機室40を介して、中間点9に接続されている。油ガス分離器の油出口42cは、固定絞り93を介して、低段側圧縮機構油注入口1aに接続されている。
第2油冷却器21の出口で分岐したもう一方の配管は固定絞り92を介して高段側圧縮機構油注入口2aに接続されている。
The outlet of the first oil cooler 20 is connected to the second oil cooler 21 via an oil-cooled electric motor cooling jacket 41. The outlet of the second oil cooler 21 is branched into two, one of which is connected to the oil gas separator 42 via a fixed throttle 94. The refrigerant gas outlet 42 b of the oil / gas separator is connected to the intermediate point 9 via the electric motor chamber 40. The oil outlet 42 c of the oil / gas separator is connected to the low-stage compression mechanism oil inlet 1 a via a fixed throttle 93.
The other pipe branched at the outlet of the second oil cooler 21 is connected to the high-stage compression mechanism oil inlet 2a via a fixed throttle 92.

次に、動作について説明する。油冷却式電動機冷却ジャケット41に流入した高圧油は、油冷却式電動機冷却ジャケット41内で電動機を冷却し、第2油冷却器21に流入する。油冷却式電動機冷却ジャケット41内で吸熱し温度が上昇した高圧油は、第2油冷却器21で冷却水等により冷却された後二つに分岐する。第2油冷却器21の出口で分岐した油の一方は、固定絞り94を経て油ガス分離器42に流入する。第2油冷却器21の出口で分岐した油のもう一方は、固定絞り(高段用)92を経て高段側圧縮機構油注入口2aに流入する。
冷媒の動作については、実施の形態2での冷媒の動作と同一であるので省略する。
Next, the operation will be described. The high-pressure oil that has flowed into the oil-cooled electric motor cooling jacket 41 cools the electric motor within the oil-cooled electric motor cooling jacket 41 and flows into the second oil cooler 21. The high-pressure oil that has absorbed heat in the oil-cooled electric motor cooling jacket 41 and has increased in temperature is cooled by the second oil cooler 21 with cooling water or the like and then branched into two. One of the oil branched at the outlet of the second oil cooler 21 flows into the oil gas separator 42 through the fixed throttle 94. The other of the oil branched off at the outlet of the second oil cooler 21 flows into the high stage side compression mechanism oil injection port 2a through a fixed throttle (for high stage) 92.
Since the operation of the refrigerant is the same as the operation of the refrigerant in the second embodiment, a description thereof will be omitted.

以上のように、電動機冷却ジャケットの出口に電動機冷却ジャケットから流出した前記油を冷却する第2油冷却器を備えたので、冷却能力がさらに向上し、成績係数をさらに向上させることができる。
なお、本実施の形態は、二段圧縮機構を用いた冷凍装置の例を示したが、三段以上の圧縮機構を用いた冷凍装置において本発明を実施してもよい。
また、図16は、図15の冷凍装置において、固定絞り(高段用)92、固定絞り(低段用)93、固定絞り(油ガス分離器用)94の代わりに油流量調整手段(高段用)52、油流量調整手段(低段用)53、油流量調整手段(油ガス分離器用)54を用いたものである。
As described above, since the second oil cooler that cools the oil flowing out from the motor cooling jacket is provided at the outlet of the motor cooling jacket, the cooling capacity can be further improved and the coefficient of performance can be further improved.
In addition, although this Embodiment showed the example of the freezing apparatus using a two-stage compression mechanism, you may implement this invention in the freezing apparatus using the compression mechanism of three or more steps.
FIG. 16 shows an oil flow rate adjusting means (high stage) instead of a fixed throttle (for high stage) 92, a fixed throttle (for low stage) 93, and a fixed throttle (for oil gas separator) 94 in the refrigeration apparatus of FIG. ) 52, oil flow rate adjusting means (for low stage) 53, and oil flow rate adjusting means (for oil gas separator) 54.

図16の場合、上記の実施の形態7の効果に加えて、適正な油注入量にて運転できることにより成績係数を向上させることができる。
また、図16は、図15の冷凍装置において、固定絞り(高段用)92、固定絞り(低段用)93、固定絞り(油ガス分離器用)94の代わりに油流量調整手段(高段用)52、油流量調整手段(低段用)53、油流量調整手段(油ガス分離器用)54を用いたものであるが、いずれか1または2の油流量調整手段を固定絞りに変更してもよい。
In the case of FIG. 16, in addition to the effects of the seventh embodiment, the coefficient of performance can be improved by being able to operate with an appropriate oil injection amount.
FIG. 16 shows an oil flow rate adjusting means (high stage) instead of a fixed throttle (for high stage) 92, a fixed throttle (for low stage) 93, and a fixed throttle (for oil gas separator) 94 in the refrigeration apparatus of FIG. 52), oil flow rate adjusting means (for low stage) 53, oil flow rate adjusting means (for oil gas separator) 54, but either one or 2 of oil flow rate adjusting means is changed to a fixed throttle. May be.

この発明の実施の形態1における油流量調整手段を有する油冷式単段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled single stage compressor which has the oil flow volume adjustment means in Embodiment 1 of this invention. この発明の実施の形態1における電磁弁による油流量調整手段を有する冷凍装置の構成図である。It is a block diagram of the freezing apparatus which has an oil flow volume adjustment means by the solenoid valve in Embodiment 1 of this invention. この発明の実施の形態2における油流量調整手段を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has the oil flow volume adjustment means in Embodiment 2 of this invention. この発明の実施の形態3における油冷式電動機冷却ジャケットを有する油冷式単段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled single stage compressor which has the oil-cooled electric motor cooling jacket in Embodiment 3 of this invention. 水冷電動機ジャケットの構造図である。It is a structural diagram of a water-cooled electric motor jacket. この発明の実施の形態3における油冷式電動機冷却ジャケットを有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has an oil-cooled electric motor cooling jacket in Embodiment 3 of this invention. この発明の実施の形態4における油冷式電動機冷却ジャケットを有する油冷式単段圧縮機を用いた第2油冷却器を有する冷凍装置の構成図である。It is a block diagram of the freezing apparatus which has a 2nd oil cooler using the oil-cooled single stage compressor which has an oil-cooled electric motor cooling jacket in Embodiment 4 of this invention. この発明の実施の形態4における第2油冷却器を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has a 2nd oil cooler in Embodiment 4 of this invention. この発明の実施の形態5における油冷式電動機冷却ジャケットと油流量調整手段を有する油冷式単段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooling type single stage compressor which has the oil-cooling type motor cooling jacket and oil flow rate adjustment means in Embodiment 5 of this invention. この発明の実施の形態5における油冷式電動機冷却ジャケットと油流量調整手段を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has the oil-cooled electric motor cooling jacket and oil flow rate adjustment means in Embodiment 5 of this invention. この発明の実施の形態5における第2油冷却器を有する油冷式単段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled single stage compressor which has a 2nd oil cooler in Embodiment 5 of this invention. この発明の実施の形態5における第2油冷却器を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has a 2nd oil cooler in Embodiment 5 of this invention. この発明の実施の形態6における油ガス分離器を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has the oil gas separator in Embodiment 6 of this invention. この発明の実施の形態6における油ガス分離器と油流量調整手段を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has the oil gas separator and oil flow rate adjustment means in Embodiment 6 of this invention. この発明の実施の形態7における油ガス分離器と第2油冷却器を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has the oil gas separator and 2nd oil cooler in Embodiment 7 of this invention. この発明の実施の形態7における油ガス分離器、第2油冷却器と油流量調整手段を有する油冷式二段圧縮機を用いた冷凍装置の構成図である。It is a block diagram of the freezing apparatus using the oil-cooled two-stage compressor which has an oil-gas separator, the 2nd oil cooler, and an oil flow rate adjustment means in Embodiment 7 of this invention.

符号の説明Explanation of symbols

1 低段側圧縮機構、1a 低段圧縮機構油注入口、2 高段側圧縮機構、2a 高段側圧縮機構油注入口、3 凝縮器、4 冷却器用膨張手段、5 冷却器、7 圧縮機吐出口、8 油分離器、8c 油分離器油出口、9 中間点、10 単段圧縮機、10a 圧縮機油注入口、20 油冷却器、40 電動機室、41 油冷却式電動機冷却ジャケット、42 油ガス分離器、51、52 油流量調整手段、91〜94 固定絞り、101、102 温度検知手段、200 制御器。
DESCRIPTION OF SYMBOLS 1 Low stage side compression mechanism, 1a Low stage compression mechanism oil inlet, 2 High stage side compression mechanism, 2a High stage side compression mechanism oil inlet, 3 Condenser, 4 Expansion means for cooler, 5 Cooler, 7 Compressor Discharge port, 8 oil separator, 8c oil separator oil outlet, 9 midpoint, 10 single stage compressor, 10a compressor oil inlet, 20 oil cooler, 40 motor room, 41 oil cooled motor cooling jacket, 42 oil Gas separator, 51, 52 Oil flow rate adjustment means, 91-94 Fixed throttle, 101, 102 Temperature detection means, 200 Controller.

Claims (8)

圧縮機、油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、
前記油分離器の油出口と前記圧縮機の油注入口の間に順次接続され、前記油分離器で分離された油を冷却する第1の油冷却器および前記圧縮機に注入される前記油の流量を調整する油流量調整手段からなる油注入回路と、
前記圧縮機の吐出口の冷媒温度を検知する圧縮機吐出温度検知手段と、
この圧縮機吐出温度検知手段により検出された冷媒温度に基づいて前記油流量調整手段を制御する制御手段と、
を備えたことを特徴とする冷凍装置。
A refrigeration cycle in which a compressor, an oil separator, a condenser, an expansion means for a cooler, and a cooler are sequentially connected in an annular manner;
A first oil cooler that is sequentially connected between an oil outlet of the oil separator and an oil inlet of the compressor, and cools the oil separated by the oil separator, and the oil that is injected into the compressor An oil injection circuit comprising an oil flow rate adjusting means for adjusting the flow rate of
Compressor discharge temperature detection means for detecting the refrigerant temperature at the discharge port of the compressor;
Control means for controlling the oil flow rate adjusting means based on the refrigerant temperature detected by the compressor discharge temperature detecting means;
A refrigeration apparatus comprising:
前記圧縮機の電動機に電動機冷却ジャケットを備え、
前記油注入回路の第1の油冷却器と前記油流量調整手段の間に配管を介して前記電動機冷却ジャケットを接続したことを特徴とする請求項1記載の冷凍装置。
The motor of the compressor is provided with a motor cooling jacket,
2. The refrigeration apparatus according to claim 1, wherein the motor cooling jacket is connected between the first oil cooler of the oil injection circuit and the oil flow rate adjusting means via a pipe.
前記電動機冷却ジャケットの出口の前記油の温度を検出するジャケット出口温度検出手段を備え、
前記制御手段は、前記圧縮機吐出温度検出手段と前記ジャケット出口温度検出手段で検出された各々の温度に基づいて前記油流量調整手段を制御することを特徴とする請求項1または2記載の冷凍装置。
Jacket outlet temperature detecting means for detecting the temperature of the oil at the outlet of the motor cooling jacket;
The refrigeration according to claim 1 or 2, wherein the control means controls the oil flow rate adjusting means based on respective temperatures detected by the compressor discharge temperature detecting means and the jacket outlet temperature detecting means. apparatus.
圧縮機、油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、
前記油分離器の油出口と前記圧縮機の油注入口の間に順次接続され、前記油分離器で分離された油を冷却する第1の油冷却器、前記圧縮機の電動機に設けられた電動機冷却ジャケットおよび前記圧縮機に注入される前記油の流量を一定に絞る固定絞りからなる油注入回路と、
を備えたことを特徴とする冷凍装置。
A refrigeration cycle in which a compressor, an oil separator, a condenser, an expansion means for a cooler, and a cooler are sequentially connected in an annular manner;
A first oil cooler that is sequentially connected between an oil outlet of the oil separator and an oil inlet of the compressor and that cools the oil separated by the oil separator, and is provided in an electric motor of the compressor An oil injection circuit comprising an electric motor cooling jacket and a fixed throttle that uniformly throttles the flow rate of the oil injected into the compressor;
A refrigeration apparatus comprising:
前記圧縮機は、多段圧縮機であることを特徴とする請求項1〜4のいずれかに記載の冷凍装置。   The refrigeration apparatus according to claim 1, wherein the compressor is a multistage compressor. 低段側圧縮機構、高段側圧縮機構、第1の油分離器、凝縮器、冷却器用膨張手段および冷却器が順次環状に連結された冷凍サイクルと、
前記第1の油分離器の油出口と前記高段側圧縮機構の油注入口の間に順次接続され、前記第1の油分離器で分離された油を冷却する第1の油冷却器、前記低段側圧縮機構と前記高段側圧縮機構の電動機に設けられた電動機冷却ジャケットおよび前記高段側機構に注入される前記油の流量を一定に絞る第1の固定絞りからなる高段側油注入回路と、
前記高段側油注入回路の前記電動機冷却ジャケットの出口から分岐して前記低段側圧縮機構の油注入口至る間に順次接続され、前記電動機冷却ジャケットからの前記油の流量を一定に絞る第2の固定絞り、この第2の固定絞りからの油を分離する第2の油分離器および前記第2の油分離器で分離され前記低段側圧縮機構に注入される油の流量を一定に絞る第3の固定絞りからなる低段側油注入回路と、
前記第2の油分離器で分離された冷媒のガスを前記電動機の室内を通過させて前記低段圧縮機構と前記高段側圧縮機構の間の配管に注入させる冷媒ガス注入回路と、
を備えたことを特徴とする冷凍装置。
A refrigeration cycle in which a low-stage compression mechanism, a high-stage compression mechanism, a first oil separator, a condenser, an expansion means for a cooler, and a cooler are sequentially connected in an annular manner;
A first oil cooler that is sequentially connected between an oil outlet of the first oil separator and an oil inlet of the high-stage compression mechanism and that cools the oil separated by the first oil separator; A high-stage side comprising a motor cooling jacket provided in an electric motor of the low-stage side compression mechanism and the high-stage side compression mechanism, and a first fixed throttle that restricts the flow rate of the oil injected into the high-stage side mechanism to be constant. An oil injection circuit;
The oil is sequentially connected from the outlet of the motor cooling jacket of the high stage side oil injection circuit to the oil inlet of the low stage side compression mechanism, and the flow rate of the oil from the motor cooling jacket is reduced to a constant level. 2 fixed throttle, a second oil separator that separates oil from the second fixed throttle, and a flow rate of oil that is separated by the second oil separator and injected into the low-stage compression mechanism is constant. A low-stage oil injection circuit consisting of a third fixed throttle for throttle;
A refrigerant gas injection circuit that causes the gas of the refrigerant separated by the second oil separator to pass through the interior of the electric motor and inject it into a pipe between the low-stage compression mechanism and the high-stage compression mechanism;
A refrigeration apparatus comprising:
前記第1、第2、第3の固定絞りのうち少なくとも1つを油調整手段に代え、前記第1の固定絞りを代えたときは、前記高段側圧縮機構の吐出口の冷媒温度、前記第2の固定絞りを代えたときは、前記低段圧縮機構と前記高段側圧縮機構の間の冷媒温度、前記第2の固定絞りを代えたときは、前記電動機冷却ジャケットの出口の前記油の温度、に各々基づいて前記油調整手段を制御する制御手段を備えたことを特徴とする請求項6記載の冷凍装置。   When at least one of the first, second, and third fixed throttles is replaced with an oil adjusting means, and the first fixed throttle is replaced, the refrigerant temperature at the discharge port of the high-stage compression mechanism, When the second fixed throttle is changed, the refrigerant temperature between the low-stage compression mechanism and the high-stage compression mechanism, and when the second fixed throttle is changed, the oil at the outlet of the motor cooling jacket is changed. 7. The refrigeration apparatus according to claim 6, further comprising control means for controlling the oil adjusting means based on the temperature of the oil. 前記電動機冷却ジャケットの出口に前記電動機冷却ジャケットから流出した前記油を冷却する第2油冷却器を備えたことを特徴とする請求項2〜7のいずれかに記載の冷凍装置。
The refrigeration apparatus according to any one of claims 2 to 7, further comprising a second oil cooler that cools the oil flowing out of the motor cooling jacket at an outlet of the motor cooling jacket.
JP2006050706A 2006-02-27 2006-02-27 Refrigerating device Withdrawn JP2007232230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050706A JP2007232230A (en) 2006-02-27 2006-02-27 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050706A JP2007232230A (en) 2006-02-27 2006-02-27 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2007232230A true JP2007232230A (en) 2007-09-13

Family

ID=38553003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050706A Withdrawn JP2007232230A (en) 2006-02-27 2006-02-27 Refrigerating device

Country Status (1)

Country Link
JP (1) JP2007232230A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072919A (en) * 2010-09-27 2012-04-12 Hitachi Appliances Inc Refrigerating device
WO2012147145A1 (en) 2011-04-25 2012-11-01 株式会社日立製作所 Refrigerant compressor and refrigeration cycle apparatus using same
US8708036B2 (en) 2009-06-17 2014-04-29 Denso Corporation Heat exchanger for cooling high-temperature gas
JP2015163823A (en) * 2014-02-28 2015-09-10 ダイキン工業株式会社 Freezer unit
CN109357439A (en) * 2018-10-17 2019-02-19 宁波奥克斯电气股份有限公司 A kind of control method and air conditioner of compressor exhaust temperature
JP2021028549A (en) * 2019-08-09 2021-02-25 ダイキン工業株式会社 Heat source unit, and refrigeration device comprising the same
US11236648B2 (en) * 2018-11-20 2022-02-01 Emerson Climate Technologies, Inc. Climate-control system having oil cooling control system
CN114923273A (en) * 2022-05-06 2022-08-19 青岛海信日立空调系统有限公司 Air conditioning system and control method thereof
US11566624B2 (en) 2020-10-21 2023-01-31 Emerson Climate Technologies, Inc. Compressor having lubrication system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8708036B2 (en) 2009-06-17 2014-04-29 Denso Corporation Heat exchanger for cooling high-temperature gas
JP2012072919A (en) * 2010-09-27 2012-04-12 Hitachi Appliances Inc Refrigerating device
WO2012147145A1 (en) 2011-04-25 2012-11-01 株式会社日立製作所 Refrigerant compressor and refrigeration cycle apparatus using same
US9470230B2 (en) 2011-04-25 2016-10-18 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Refrigerant compressor and refrigeration cycle apparatus using the same
JP2015163823A (en) * 2014-02-28 2015-09-10 ダイキン工業株式会社 Freezer unit
CN109357439A (en) * 2018-10-17 2019-02-19 宁波奥克斯电气股份有限公司 A kind of control method and air conditioner of compressor exhaust temperature
US11236648B2 (en) * 2018-11-20 2022-02-01 Emerson Climate Technologies, Inc. Climate-control system having oil cooling control system
JP2021028549A (en) * 2019-08-09 2021-02-25 ダイキン工業株式会社 Heat source unit, and refrigeration device comprising the same
JP7460877B2 (en) 2019-08-09 2024-04-03 ダイキン工業株式会社 Heat source unit and refrigeration equipment equipped with it
US11566624B2 (en) 2020-10-21 2023-01-31 Emerson Climate Technologies, Inc. Compressor having lubrication system
CN114923273A (en) * 2022-05-06 2022-08-19 青岛海信日立空调系统有限公司 Air conditioning system and control method thereof
CN114923273B (en) * 2022-05-06 2023-11-07 青岛海信日立空调系统有限公司 Air conditioning system and control method thereof

Similar Documents

Publication Publication Date Title
JP2007232230A (en) Refrigerating device
JP4820180B2 (en) Refrigeration equipment
KR101220707B1 (en) Freezing device
KR101220583B1 (en) Freezing device
JP2006258397A (en) Refrigerator
KR101220741B1 (en) Freezing device
WO2016117037A1 (en) Refrigeration device
KR101220663B1 (en) Freezing device
KR101332478B1 (en) Freezing device
JP2010002173A (en) Refrigerator
KR101190317B1 (en) Freezing device
JP2013155972A (en) Refrigeration device
JP2014163624A (en) Turbo refrigerator
JP6091616B2 (en) Refrigeration cycle equipment
KR101268207B1 (en) Freezing device
JP2011137557A (en) Refrigerating apparatus
JP2013174374A (en) Chilling unit
JP2013204506A (en) Screw compressor
JP4738219B2 (en) Refrigeration equipment
JP6295121B2 (en) Turbo refrigerator
JP2010078257A (en) Refrigerating device
JP2014159950A (en) Freezer
JP2008096091A (en) Refrigerating cycle device
JP2009236430A (en) Compression type refrigerating machine and its capacity control method
JP6069179B2 (en) Turbo refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512