JP2012072919A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2012072919A
JP2012072919A JP2010215960A JP2010215960A JP2012072919A JP 2012072919 A JP2012072919 A JP 2012072919A JP 2010215960 A JP2010215960 A JP 2010215960A JP 2010215960 A JP2010215960 A JP 2010215960A JP 2012072919 A JP2012072919 A JP 2012072919A
Authority
JP
Japan
Prior art keywords
oil
compressor
refrigeration apparatus
cooler
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010215960A
Other languages
Japanese (ja)
Other versions
JP5309105B2 (en
Inventor
Yoshibumi Ichikawa
義文 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010215960A priority Critical patent/JP5309105B2/en
Publication of JP2012072919A publication Critical patent/JP2012072919A/en
Application granted granted Critical
Publication of JP5309105B2 publication Critical patent/JP5309105B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating device which detects the shortage of oil inexpensively when an amount of oil in an oil tank is reduced, and is provided with a highly reliable oil shortage detecting function which hardly causes malfunction due to a change of oil level.SOLUTION: The refrigerating device includes a compressor 1, an oil separator 2, an oil tank 8, and an oil cooler 9 for cooling an oil in the oil tank and supplying it to the compressor. A plurality of compressors are provided, and a discharge temperature sensors 11 is provided to each of the compressors. The oil cooler is provided with an oil inlet 12 on an upstream side for oil flow and a plurality of oil outlets 13 on a downstream side, and the oil outlets are provided on the upper portion of the oil cooler and are arranged in sequence from the upstream to the downstream side in the flow direction of oil and they are connected with any of the compressors, respectively. Discharge temperatures detected by the discharge temperature sensors of each of the compressors are compared to detect a decrease of oil amount in the oil tank.

Description

本発明は、圧縮機から吐出された圧縮冷媒ガスから油を分離して再び圧縮機の必要個所に給油する油サイクルを構成した冷凍装置に関し、特に複数台のスクリュー圧縮機を備えたスクリュー冷凍機に好適なものである。   The present invention relates to a refrigeration apparatus having an oil cycle in which oil is separated from compressed refrigerant gas discharged from a compressor and refueled to a necessary portion of the compressor, and in particular, a screw refrigerator having a plurality of screw compressors. It is suitable for.

例えば冷凍装置としてのスクリュー冷凍機においては油サイクルが構成されており、圧縮機から吐出された圧縮冷媒ガス中の油は油分離器により分離され、分離された油は油タンク及び油冷却器を経て再び前記圧縮機の必要個所に給油される。   For example, in a screw refrigerator as a refrigeration apparatus, an oil cycle is configured, and oil in compressed refrigerant gas discharged from the compressor is separated by an oil separator, and the separated oil is separated from an oil tank and an oil cooler. After that, the oil is again supplied to the necessary portions of the compressor.

従来の冷凍装置においては、油タンク等の油溜め部にフロート等を使用した油面センサを取り付け、油面の高さで油の有無を検知することにより、装置内の油保有量が不足していないかを検知しているものがある。   In a conventional refrigeration system, an oil level sensor using a float or the like is attached to an oil reservoir such as an oil tank, etc., and the presence or absence of oil is detected by the height of the oil level. There is something that detects whether or not.

図5及び図6は、それぞれ油タンクに油面センサを取付けた従来例を示すものである。
図5の例は、油面センサ16を直接油タンク8に取り付けたもので、フロート17を備えた油面センサ16は、油タンク8に接続口18及びフランジ部19を介して取り付けられている。この油面センサ16はフロート17により油タンク8内の油面高さを検出し、必要な油量がある場合には前記フロート17が浮いて、電気的接点がOFF状態になるように構成されている。油タンク8内の油が減少し油面が低下していくと、フロート17が下がり、最下部に到達すると前記電気的接点がONになるように構成されており、これを入力信号として制御盤内の制御に組込まれている。
5 and 6 each show a conventional example in which an oil level sensor is attached to an oil tank.
In the example of FIG. 5, the oil level sensor 16 is directly attached to the oil tank 8, and the oil level sensor 16 including the float 17 is attached to the oil tank 8 via the connection port 18 and the flange portion 19. . The oil level sensor 16 detects the oil level in the oil tank 8 by a float 17, and when there is a required amount of oil, the float 17 floats and the electrical contact is turned off. ing. When the oil in the oil tank 8 is reduced and the oil level is lowered, the float 17 is lowered, and when reaching the lowermost part, the electrical contact is turned on, and this is used as an input signal for the control panel. Built in control within.

図6に示す例は、油溜め部20を油タンク8の外部に設けると共に、この油溜め部20に油面センサ16を設置し、また前記油溜め部20と油タンク8とを液側配管21及びガス側配管22で接続して、油タンク8内と油溜め部20を均圧させるようにしているものである。前記油溜め部20の油面を前記油面センサ16により、図5に示した例と同様に検出することにより、油タンク8内の油面の高さを判断し、油の有無を検知するようにしている。
なお、この種従来技術としては特許文献1に記載のものなどがある。
In the example shown in FIG. 6, the oil reservoir 20 is provided outside the oil tank 8, the oil level sensor 16 is installed in the oil reservoir 20, and the oil reservoir 20 and the oil tank 8 are connected to the liquid side pipe. 21 and the gas side pipe 22 are connected to equalize the pressure in the oil tank 8 and the oil reservoir 20. The oil level of the oil reservoir 20 is detected by the oil level sensor 16 in the same manner as in the example shown in FIG. 5, thereby determining the oil level in the oil tank 8 and detecting the presence or absence of oil. I am doing so.
In addition, there exists a thing of patent document 1 etc. as this kind of prior art.

特開2001−124388号公報JP 2001-124388 A

前述したスクリュー冷凍機などの冷凍装置における油サイクルでは、一般に、給油圧力(吐出側圧力)と低圧側の圧力(吸入圧力または中間圧力)との差圧で圧縮機の軸受部など必要な個所に給油する差圧給油方式が採用されている。また、圧縮機は、単段のもの或いは二段圧縮機のものが複数台搭載され、油分離器、油タンク、シェルアンドチューブ式油冷却器などにより油サイクルが構成されているものが多い。   In the oil cycle in the refrigeration apparatus such as the screw refrigerator described above, generally, the difference between the oil supply pressure (discharge side pressure) and the low pressure side (suction pressure or intermediate pressure) causes the compressor bearing part to be required. A differential pressure lubrication system is used to lubricate. In addition, a plurality of compressors of a single stage or a two-stage compressor are mounted, and an oil cycle is often constituted by an oil separator, an oil tank, a shell and tube type oil cooler, and the like.

このような冷凍装置において、その試運転時や、除霜後の運転条件が切り替わった場合の過渡期など、運転条件が変化する状況においては、圧縮機から冷媒と共に多量の油が流出し、圧縮機や油タンク内の油量が減少する所謂油上がりが増加し易く、また冷凍装置内の油の保有量も減少する場合がある。このような場合、油タンク内の油量が減少し、このため圧縮機への給油量が不足することにより、最悪の場合には圧縮機ロータ部が過熱して固渋に至るといったケースに発展することがある。   In such a refrigeration system, in a situation where the operating conditions change, such as during a trial operation or when the operating conditions after defrosting are switched, a large amount of oil flows out of the compressor together with the refrigerant. In other words, the so-called oil rise in which the amount of oil in the oil tank decreases tends to increase, and the amount of oil held in the refrigeration apparatus may also decrease. In such a case, the amount of oil in the oil tank decreases, so that the amount of oil supplied to the compressor is insufficient, and in the worst case, the compressor rotor part overheats and leads to solid astringency. There are things to do.

そこで、従来は前述した図5、図6に示すように油タンク8や油溜め部20に油面センサ16を設けるようにしているが、油タンク8などに油面センサ16を取り付けるためには、機器の改造や油面センサでの検知を制御に組み込むなど制御の改造等が必要となり、改造項目が多く部品点数も増加する。   Therefore, conventionally, as shown in FIGS. 5 and 6, the oil level sensor 16 is provided in the oil tank 8 and the oil reservoir 20, but in order to attach the oil level sensor 16 to the oil tank 8 and the like, In addition, modification of the equipment and modification of the control, such as incorporating detection by the oil level sensor into the control, are required, and there are many modification items and the number of parts increases.

即ち、上記図5に示すものでは、油タンク8に油面センサ16を取り付けるための接続口18及びフランジ部19を追加設置する必要があり、電気的な改造も必要になる。また、図6に示したものでも油タンク8の改造、油タンク8と油溜め部20の接続配管21,22や電気的な改造も必要になる。従って、油面センサを取り付けるものでは部品点数が増加すると共に、そのための改造に多大な費用がかかるという課題がある。   That is, in the case shown in FIG. 5, it is necessary to additionally install the connection port 18 and the flange portion 19 for attaching the oil level sensor 16 to the oil tank 8, and electrical modification is also required. 6 also requires modification of the oil tank 8, connection pipes 21 and 22 between the oil tank 8 and the oil reservoir 20, and electrical modification. Accordingly, there is a problem in that the number of parts is increased in the case where the oil level sensor is attached, and the cost for remodeling is increased.

また、上記従来技術のものでは油面の変動による誤作動も発生し易く、圧縮機の信頼性確保の面からも課題があった。
これらの課題のため、油面センサによる保護装置を取り付けている例は少ないのが実状である。
In addition, the above-described prior art is liable to malfunction due to oil level fluctuations, and there is a problem in terms of ensuring the reliability of the compressor.
Because of these problems, there are few examples in which a protection device using an oil level sensor is attached.

本発明の目的は、油タンク内の油保有量が減少し油不足となった場合、油不足であることの検知を安価に実現でき、しかも油面変動による検知の誤動作も発生し難い信頼性の高い油不足検知機能を備えた冷凍装置を得ることにある。   The object of the present invention is to realize a low-cost detection of an oil shortage when the amount of oil held in the oil tank decreases and the oil becomes insufficient. It is to obtain a refrigeration apparatus having a high oil shortage detection function.

上記目的を達成するために、本発明は、圧縮機と、該圧縮機から吐出された冷媒から油を分離する油分離器と、前記分離された油を溜める油タンクと、該油タンクの油を冷却して前記圧縮機に供給する油冷却器とを備えた冷凍装置において、前記圧縮機は複数台設けられると共に、それぞれの圧縮機からの吐出ガスの温度を検出する吐出温度センサをそれぞれの圧縮機に設け、前記油冷却器は、該油冷却器内を流れる油の流れに対して上流側に油入口が設けられ、下流側に前記圧縮機台数以上の複数個の油出口が設けられ、これら複数個の油出口は油冷却器の上部に設けられると共に油の流れ方向上流側から下流側に順次配置され、各油出口を前記複数個の圧縮機の何れかにそれぞれ接続し、前記各圧縮機の前記吐出温度センサでそれぞれ検出された吐出温度を比較することにより前記油タンク内の油量の減少を検出することを特徴とする。   In order to achieve the above object, the present invention provides a compressor, an oil separator that separates oil from a refrigerant discharged from the compressor, an oil tank that stores the separated oil, and an oil in the oil tank. In the refrigeration apparatus comprising an oil cooler that cools and supplies the compressor to the compressor, a plurality of the compressors are provided, and a discharge temperature sensor that detects the temperature of the discharge gas from each compressor is provided. Provided in the compressor, the oil cooler is provided with an oil inlet on the upstream side with respect to the flow of oil flowing in the oil cooler, and provided with a plurality of oil outlets on the downstream side that are more than the number of compressors. The plurality of oil outlets are provided in the upper part of the oil cooler and sequentially arranged from the upstream side to the downstream side in the oil flow direction, and each oil outlet is connected to one of the plurality of compressors, Detected by the discharge temperature sensor of each compressor And detecting a decrease in the oil amount of the oil tank by comparing the discharge temperature that is.

本発明によれば、油タンク内の油保有量が減少し油不足となった場合、油不足であることの検知を安価に実現でき、しかも油面変動による検知の誤動作も発生し難い信頼性の高い油不足検知機能を備えた冷凍装置を得ることができる。   According to the present invention, when the amount of oil held in the oil tank decreases and the oil becomes insufficient, it is possible to realize the detection of the oil shortage at low cost, and it is also difficult to cause a detection malfunction due to oil level fluctuation. A refrigeration apparatus having a high oil shortage detection function can be obtained.

本発明の冷凍装置の実施例1を示す冷凍サイクル系統図。The refrigeration cycle system | strain diagram which shows Example 1 of the freezing apparatus of this invention. 図1に示す油冷却器の構造を示す平面図。The top view which shows the structure of the oil cooler shown in FIG. 図2に示す油冷却器の縦断面図で、油冷却器内の油の流れを説明する図。It is a longitudinal cross-sectional view of the oil cooler shown in FIG. 2, and the figure explaining the flow of the oil in an oil cooler. 図1に示す油タンク内の油保有量が減少した際の時間の経過に対する圧縮機吐出温度の変化を説明する線図。The diagram explaining the change of the compressor discharge temperature with progress of time when the oil holding amount in the oil tank shown in FIG. 1 reduces. 従来の冷凍装置における油不足検知手段の一例を説明する図で、油タンクに油面センサを取り付けている例を、油タンクを一部断面で示す正面図。It is a figure explaining an example of the oil shortage detection means in the conventional freezing apparatus, and the front view which shows an oil tank in a partial cross section in the example which attached the oil level sensor to the oil tank. 従来の冷凍装置における油不足検知手段の他の例を説明する図で、油タンクの外部に油面センサを備えた油溜め部を設けている例を示す概略構成図。It is a figure explaining the other example of the oil shortage detection means in the conventional freezing apparatus, and is a schematic block diagram which shows the example which has provided the oil sump part provided with the oil level sensor outside the oil tank.

以下、本発明の具体的実施例を図面に基づき説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は本発明の冷凍装置の実施例1を示す冷凍サイクル系統図で、本実施例では二段スクリュー圧縮機を備えた水冷式のスクリュー冷凍機としたもので説明する。また、圧縮機から吐出された圧縮冷媒ガスから油を分離して再び圧縮機の必要個所に給油する油サイクルを構成しているものである。   FIG. 1 is a refrigeration cycle diagram showing Embodiment 1 of the refrigeration apparatus of the present invention. In this embodiment, a water-cooled screw refrigerator equipped with a two-stage screw compressor will be described. Moreover, the oil cycle which comprises separating the oil from the compressed refrigerant gas discharged from the compressor and refueling the necessary portion of the compressor is constituted.

図において、1(1a,1b,1c)は圧縮機で、本実施例では二段スクリュー圧縮機で構成され、この二段スクリュー圧縮機が3台並列に接続されている。また、実線矢印は冷媒の流れを示し、また破線矢印は油(冷凍機油)の流れを示している。前記圧縮機1の低段側及び高段側で冷媒は圧縮されて高温高圧の冷媒ガスとなり、圧縮機1を潤滑した油と共に吐出されて、油分離器2に入る。ここで、冷媒ガスから油を分離した後、前記冷媒ガスは凝縮器3に流入し、凝縮器3に供給される冷却水により冷却されて凝縮し、液冷媒となる。その後冷媒は、過冷却器4で更に液温を下げられる。前記過冷却器4の下流側からは液冷媒の一部が分岐して過冷却器用膨張弁5で減圧膨張され、前記過冷却器4で主流の液冷媒を冷却後、前記圧縮機1の中間段(低段側と高段側の間)に流入する。本実施例では過冷却器4は圧縮機1の数と同じく3個設けられ、各過冷却器4で主流の冷媒を冷却後の冷媒はそれぞれに対応する圧縮機1に注入されるように構成されている。   In the figure, reference numeral 1 (1a, 1b, 1c) denotes a compressor, which is a two-stage screw compressor in this embodiment, and three such two-stage screw compressors are connected in parallel. Moreover, the solid line arrow shows the flow of the refrigerant, and the broken line arrow shows the flow of oil (refrigerating machine oil). The refrigerant is compressed on the low-stage side and the high-stage side of the compressor 1 to become a high-temperature and high-pressure refrigerant gas, and is discharged together with the oil that has lubricated the compressor 1, and enters the oil separator 2. Here, after separating the oil from the refrigerant gas, the refrigerant gas flows into the condenser 3, is cooled by the cooling water supplied to the condenser 3, is condensed, and becomes a liquid refrigerant. Thereafter, the temperature of the refrigerant is further lowered by the supercooler 4. A part of the liquid refrigerant branches from the downstream side of the supercooler 4 and is decompressed and expanded by the expansion valve 5 for the supercooler. After the main liquid refrigerant is cooled by the supercooler 4, It flows into the stage (between the lower stage side and the higher stage side). In this embodiment, three subcoolers 4 are provided in the same number as the compressors 1, and the refrigerant after cooling the mainstream refrigerant in each of the subcoolers 4 is injected into the corresponding compressor 1. Has been.

前記過冷却器4から出た主流の液冷媒は主膨張弁6の作用により低圧の湿りガスとなって蒸発器7に流入し、この蒸発器7内を流れる被冷却流体30を冷却して蒸発し、前記圧縮機1へ吸入される。   The main-stream liquid refrigerant discharged from the subcooler 4 flows into the evaporator 7 as a low-pressure wet gas by the action of the main expansion valve 6, and cools and evaporates the cooled fluid 30 flowing in the evaporator 7. Then, it is sucked into the compressor 1.

一方、前記油分離器2で冷媒ガスから分離された冷凍機油は、油分離器2から油タンク8に流入し、油タンク8に溜まった油は、油冷却器9に入って冷却水により冷却される。この冷却された油は油ストレーナ10を通過して油中の異物を除去された後、圧縮機の吐出側圧力(給油圧力)と低圧側圧力(各軸受部の圧力など一般には中間圧力となっている)との差圧を利用して、前記各圧縮機1の各軸受部など給油が必要な個所に給油される。なお、前記各軸受部などへの給油のため、圧縮機1には二段圧縮機の低段側と高段側にそれぞれ給油口が設けられており、前記油ストレーナ10からの油はこの給油口へ給油される。   On the other hand, the refrigerating machine oil separated from the refrigerant gas by the oil separator 2 flows into the oil tank 8 from the oil separator 2, and the oil accumulated in the oil tank 8 enters the oil cooler 9 and is cooled by the cooling water. Is done. The cooled oil passes through the oil strainer 10 to remove foreign matter in the oil, and then becomes a discharge side pressure (oil supply pressure) and a low pressure side pressure (generally an intermediate pressure such as a pressure of each bearing portion) of the compressor. The pressure difference between the compressor 1 and the bearing portion of the compressor 1 is used to supply oil. In order to supply oil to the bearings, etc., the compressor 1 is provided with oil supply ports on the low-stage side and the high-stage side of the two-stage compressor, and the oil from the oil strainer 10 is supplied with this oil supply. Refueled to the mouth.

前記油分離器2から前記圧縮機1の軸受部までの給油系統における圧力の関係は、
油分離器2>油冷却器8>圧縮機1の各軸受部
となっており、この各部分の差圧によって、圧縮機1から吐出され油分離器2で分離された冷凍機油は、圧縮機1の各軸受部に給油される。なお、前記圧縮機1が二段スクリュー圧縮機である場合には、前記各軸受部は通常中間圧力となっているが、前記圧縮機1として単段スクリュー圧縮機を使用した場合には、前記軸受部は吸入圧力となっている。従って、前記油冷却器8からの油は油冷却器内の給油圧力(吐出側圧力)と前記中間圧力または吸入圧力との差圧で軸受部などに給油されることになる。
The relationship of the pressure in the oil supply system from the oil separator 2 to the bearing portion of the compressor 1 is
Refrigerating machine oil discharged from the compressor 1 and separated by the oil separator 2 by the differential pressure of each part is oil compressor 2> oil cooler 8> compressor 1 bearing. Oil is supplied to each bearing portion 1. In addition, when the compressor 1 is a two-stage screw compressor, the bearings are normally at an intermediate pressure. However, when a single-stage screw compressor is used as the compressor 1, The bearing is at the suction pressure. Accordingly, the oil from the oil cooler 8 is supplied to the bearing portion or the like by a differential pressure between the oil supply pressure (discharge side pressure) in the oil cooler and the intermediate pressure or the suction pressure.

なお、前記各圧縮機1の吐出側の吐出配管には吐出冷媒ガスの温度を検出するための吐出温度センサ11が設けられており、冷凍装置の運転中は各圧縮機1の吐出温度を常時検知するようにしている。   Note that a discharge temperature sensor 11 for detecting the temperature of the discharged refrigerant gas is provided in the discharge pipe on the discharge side of each compressor 1, and the discharge temperature of each compressor 1 is constantly set during operation of the refrigeration apparatus. I try to detect it.

図2及び図3により図1に示す油冷却器9の構造を説明する。図2は油冷却器9の平面図であり、図3は油冷却器の縦断面図である。
これらの図に示すように、本実施例において油冷却器9は、水冷式で横型のシェルアンドチューブ式油冷却器が用いられている。また、この油冷却器9には、該油冷却器内を流れる油の流れに対して上流側に油入口12が設けられ、下流側には図1に示す前記圧縮機1の台数以上の複数個(この例では3個)の油出口13(13a,13b,13c)が設けられている。これら複数個の油出口13は油冷却器9の上部に設けられると共に、油の流れ方向上流側から下流側に順次配置され、各油出口13を前記複数個の圧縮機1のいずれかにそれぞれ接続している。即ち、最も上流側の油出口13aは圧縮機1aに、中央の油出口13bは圧縮機1bに、最も下流側の油出口13cは圧縮機1cにそれぞれ接続されている。
The structure of the oil cooler 9 shown in FIG. 1 will be described with reference to FIGS. FIG. 2 is a plan view of the oil cooler 9, and FIG. 3 is a longitudinal sectional view of the oil cooler.
As shown in these drawings, in this embodiment, the oil cooler 9 is a water-cooled and horizontal shell-and-tube oil cooler. Further, the oil cooler 9 is provided with an oil inlet 12 on the upstream side with respect to the flow of oil flowing in the oil cooler, and on the downstream side, a plurality of oil coolers more than the number of the compressors 1 shown in FIG. (Three in this example) oil outlets 13 (13a, 13b, 13c) are provided. The plurality of oil outlets 13 are provided in the upper part of the oil cooler 9 and are sequentially arranged from the upstream side to the downstream side in the oil flow direction, and each oil outlet 13 is connected to one of the plurality of compressors 1. Connected. That is, the most upstream oil outlet 13a is connected to the compressor 1a, the central oil outlet 13b is connected to the compressor 1b, and the most downstream oil outlet 13c is connected to the compressor 1c.

また、油冷却器9はシェルアンドチューブ式となっており、その内部構造は図3に示すように、シェル内の長手方向に複数本の冷却管15が配設されて、冷却水が冷却水入口から入り、冷却水出口から排出されるように構成されている。また、シェル内には複数枚のバッフル14がシェルの長手方向に上下交互に配置され、油入口12から入った油がシェル内を上下に蛇行しながら油出口13の方に向かって流れるように構成されている。前記冷却水が冷却管15を流れる際に、前記油入口12から入りバッフル14により蛇行しながら流れる油と熱交換することで、油は約40〜60℃の温度まで冷却される。最も下流側に配置されたバッフル14Aはシェル内の上側に設けられ、このバッフル14Aよりも更に下流側の油冷却器9上部に前記複数個の油出口13が設けられている。   Further, the oil cooler 9 is of a shell and tube type, and the internal structure thereof has a plurality of cooling pipes 15 arranged in the longitudinal direction in the shell as shown in FIG. It is configured to enter from the inlet and to discharge from the cooling water outlet. Also, a plurality of baffles 14 are alternately arranged in the longitudinal direction of the shell in the shell so that the oil entered from the oil inlet 12 flows toward the oil outlet 13 while meandering up and down in the shell. It is configured. When the cooling water flows through the cooling pipe 15, the oil is cooled to a temperature of about 40 to 60 ° C. by exchanging heat with the oil flowing through the oil inlet 12 while meandering by the baffle 14. The baffle 14A arranged on the most downstream side is provided on the upper side in the shell, and the plurality of oil outlets 13 are provided on the oil cooler 9 on the further downstream side than the baffle 14A.

図1に示す冷凍装置の油タンク8内の油保有量が、油面を形成できない程減少した場合、油が油タンク8から油冷却器9へ流れる際に冷媒ガスも一緒に巻き込んでしまう。油タンク8内の油保有量が十分な場合、油冷却器9内は油で満たされている。しかし、油タンク8内の油保有量が減少して、油冷却器9内に冷媒ガスが混入した場合、冷媒ガスは油冷却器9内ではあまり液化されず、ガスのまま油冷却器9内を下流側に流れて油出口13から排出され、給油配管を通って圧縮機1へと供給される。   When the amount of oil retained in the oil tank 8 of the refrigeration apparatus shown in FIG. 1 is reduced to such an extent that the oil level cannot be formed, the refrigerant gas is also involved when the oil flows from the oil tank 8 to the oil cooler 9. When the oil holding amount in the oil tank 8 is sufficient, the oil cooler 9 is filled with oil. However, when the amount of oil held in the oil tank 8 decreases and refrigerant gas is mixed into the oil cooler 9, the refrigerant gas is not liquefied so much in the oil cooler 9, and remains in the oil cooler 9 as a gas. To the downstream side, discharged from the oil outlet 13, and supplied to the compressor 1 through the oil supply pipe.

油冷却器9内で、出口側に最も近いバッフル(最も下流側のバッフル)14Aを通過した油は、油入口12から油出口13に向かう流れにより慣性が働き、更に奥(最も下流側の油出口13c側)まで流れようとする。一方、冷媒ガスは泡状になっているため前記バッフル14Aを通過した直後に上方に浮かび上がろうとする。本実施例では、油冷却器9の上部に複数個の油出口13を、軸方向(油の流れ方向)に上流側から下流側に順次配置しているので、油入口12に最も近い(最も上流側の)油出口13aから流れ出る油にはガス冷媒が多く含まれ、最も奥(最も下流側)の油出口13c側ほど油に含まれるガス冷媒の量は少なくなる。このため、最も上流側の前記油出口13aと接続されている圧縮機1aには多量の冷媒ガスが混入し、必要な給油量が確保されないため、この圧縮機1aの吐出温度は徐々に上昇していく。   In the oil cooler 9, the oil that has passed through the baffle (the most downstream baffle) 14 </ b> A closest to the outlet side has inertia due to the flow from the oil inlet 12 to the oil outlet 13, and further (the most downstream oil). It tries to flow to the outlet 13c side). On the other hand, since the refrigerant gas is in the form of bubbles, the refrigerant gas tends to float upward immediately after passing through the baffle 14A. In this embodiment, a plurality of oil outlets 13 are arranged in the upper part of the oil cooler 9 in order from the upstream side to the downstream side in the axial direction (oil flow direction). The oil flowing out from the oil outlet 13a (upstream side) contains a large amount of gas refrigerant, and the amount of gas refrigerant contained in the oil decreases as the oil outlet 13c side farthest (most downstream). For this reason, since a large amount of refrigerant gas is mixed in the compressor 1a connected to the oil outlet 13a on the most upstream side and a necessary oil supply amount is not ensured, the discharge temperature of the compressor 1a gradually increases. To go.

図4は図1に示す油タンク8内の油保有量が減少した際の時間の経過に対する圧縮機吐出温度の変化を説明する線図である。図4において、点線は給油量不足となった圧縮機の吐出温度の変化を示し、実線は給油量が十分確保されている正常運転中の圧縮機の吐出温度変化を示している。   FIG. 4 is a diagram for explaining changes in the compressor discharge temperature with the passage of time when the amount of oil retained in the oil tank 8 shown in FIG. 1 decreases. In FIG. 4, the dotted line shows the change in the discharge temperature of the compressor in which the oil supply amount is insufficient, and the solid line shows the change in the discharge temperature of the compressor during normal operation in which the oil supply amount is sufficiently secured.

即ち、油タンク8の油保有量が減少し、油冷却器9に流入するガス冷媒の量が増加していくと、上流側の油出口13aから流れ出る油にはガス冷媒が多く含まれ、これに接続されている圧縮機1aには必要な給油量が確保されず、圧縮機1aの吐出温度は図4の点線で示すように上昇していく。下流側の油出口13b,13cから流れ出る油にはガス冷媒がほとんど含まれないから、これらの油出口13b,13cと接続されている圧縮機1b,1cには必要な給油量が確保され、それらの圧縮機の吐出温度は図4の実線で示すように上昇しない(或いは油タンク8の油量が更に減少した場合、油量減少と共に吐出温度が上昇することもあるがその上昇速度は緩やかになる)。このため、給油量が不足している圧縮機1aと、必要量給油されている圧縮機1b,1cとではそれらの吐出温度に違いが生じ、この吐出温度の差異ΔTを求めることにより、油タンク8の油保有量が減少し、油不足による給油不良が発生していることを判断することができる。   That is, when the amount of oil retained in the oil tank 8 decreases and the amount of gas refrigerant flowing into the oil cooler 9 increases, the oil flowing out from the upstream oil outlet 13a contains a lot of gas refrigerant. The required amount of oil supply is not secured in the compressor 1a connected to the compressor 1a, and the discharge temperature of the compressor 1a rises as shown by the dotted line in FIG. Since the oil flowing out from the downstream oil outlets 13b and 13c contains almost no gas refrigerant, the compressors 1b and 1c connected to these oil outlets 13b and 13c have the required amount of oil supply, The discharge temperature of the compressor does not increase as shown by the solid line in FIG. 4 (or if the oil amount in the oil tank 8 further decreases, the discharge temperature may increase as the oil amount decreases, but the rate of increase is moderate. Become). For this reason, a difference occurs in the discharge temperature between the compressor 1a in which the amount of oil supply is insufficient and the compressors 1b and 1c in which the required amount of oil is supplied, and an oil tank is obtained by obtaining the difference ΔT in the discharge temperature. It is possible to determine that the oil holding amount of No. 8 has decreased and that an oil supply failure has occurred due to an oil shortage.

即ち、油タンク8内の油保有量が十分であれば、全ての圧縮機1a,1b,1cに油冷却器9から必要な油量が供給されるので、何れの圧縮機の吐出温度も、図4に実線で示すようになり、ほぼ近似した吐出温度で運転される。しかし、上述したように吐出温度に温度差ΔTが生じた場合には、油タンク8内の油保有量が十分な量確保されていないと判断できるので、この温度差ΔTに予め許容値(一定の判定値)を決めておき、ΔTが前記許容値を超えたまま設定時間tを経過した場合に、油タンク8内の油保有量が減少したと判断して、警報を発したり、或いは冷凍装置を緊急停止させるような保護制御を行う。   That is, if the oil holding amount in the oil tank 8 is sufficient, the required oil amount is supplied from the oil cooler 9 to all the compressors 1a, 1b, 1c, so the discharge temperature of any compressor is As shown by the solid line in FIG. 4, the operation is performed at a substantially approximate discharge temperature. However, as described above, when the temperature difference ΔT occurs in the discharge temperature, it can be determined that a sufficient amount of oil is not secured in the oil tank 8, so an allowable value (a constant value) is set in advance for this temperature difference ΔT. When the set time t has passed with ΔT exceeding the allowable value, it is determined that the amount of oil retained in the oil tank 8 has decreased, and an alarm is issued or refrigeration is performed. Protective control is performed to stop the device in an emergency.

例えば、通常運転時の吐出温度が80℃の場合、一台の圧縮機1aの吐出温度が100℃となり、他の圧縮機1b,1cの吐出温度が80℃のままであれば、温度差ΔTは20℃に達する。温度差ΔTの許容値を20℃とした場合、この許容値を超えてから予め決めた設定時間t(例えば10秒〜1分程度)を経過した場合に、油量不足として冷凍装置を制御する制御盤のモニタなどに油量不足の警報を発したり、前記制御盤から冷凍装置を停止させるような制御を行うようにすると良い。   For example, if the discharge temperature during normal operation is 80 ° C., the discharge temperature of one compressor 1a is 100 ° C., and if the discharge temperatures of the other compressors 1b and 1c remain 80 ° C., the temperature difference ΔT Reaches 20 ° C. When the allowable value of the temperature difference ΔT is set to 20 ° C., the refrigeration apparatus is controlled as a shortage of oil when a predetermined set time t (for example, about 10 seconds to 1 minute) elapses after the allowable value is exceeded. It is preferable to perform a control such that an oil shortage alarm is issued on the monitor of the control panel or the refrigeration apparatus is stopped from the control panel.

それぞれの圧縮機1の吐出側に設けられた前記吐出温度センサ11は冷凍装置には標準的に装備されているものであり、この吐出温度センサ11を用いて各圧縮機1の吐出温度を検出することにより、新たな吐出温度センサを追加設置することなく、本実施例を実施することが可能となる。また、冷凍装置に備えられている制御盤などの制御装置を使用し、前記各吐出温度センサ11からの検出値から前記圧縮機1間の吐出温度の温度差ΔTを求めたり、時間の経過を監視できるように構成すると良い。更に、前記温度差ΔTの許容値や前記設定時間tの設定も前記制御装置からできるようにすると良い。このように本実施例は冷凍装置に備えられている制御盤などの制御装置を油不足検知手段として流用することが可能である。   The discharge temperature sensor 11 provided on the discharge side of each compressor 1 is standardly provided in the refrigeration apparatus, and the discharge temperature of each compressor 1 is detected using the discharge temperature sensor 11. By doing so, it is possible to implement this embodiment without additionally installing a new discharge temperature sensor. Further, by using a control device such as a control panel provided in the refrigeration apparatus, the temperature difference ΔT of the discharge temperature between the compressors 1 is obtained from the detection value from each discharge temperature sensor 11, or the passage of time is measured. It should be configured to allow monitoring. Furthermore, it is preferable that the allowable value of the temperature difference ΔT and the setting time t can be set from the control device. As described above, in this embodiment, a control device such as a control panel provided in the refrigeration apparatus can be used as the oil shortage detection means.

これによって、図5及び図6に示した従来例のような、油面センサなどの新たな部品を組み込むための油タンクの改造、油面センサでの検知を制御に組み込むなどの制御の改造、油面センサのための電気的な改造などを行うことなく、本実施例を実現することができ、安価に油量不足に対する冷凍装置の保護制御が可能になる。   As a result, as in the conventional example shown in FIG. 5 and FIG. 6, modification of the oil tank for incorporating new parts such as the oil level sensor, modification of control such as incorporating detection by the oil level sensor in the control, This embodiment can be realized without performing electrical modification for the oil level sensor, and the protection control of the refrigeration apparatus against the shortage of oil becomes possible at low cost.

例えば、油量不足を検知し、警告として外部に発報させることにより、冷凍装置を緊急停止させる以前に、運転管理者による運転状況の改善が可能となり、圧縮機のロータ固渋による故障や突発的なシステムダウンを未然に防止することができる。   For example, by detecting an oil shortage and issuing a warning to the outside, the operation status can be improved by the operation manager before the refrigeration system is stopped urgently. System failure can be prevented in advance.

なお、上述した実施例では、水冷式のシェルアンドチューブ式の油冷却器とした場合について説明したが、水冷式に限られるものではなく、冷媒により油を冷却する冷媒冷却式としても良い。   In the above-described embodiment, the case of the water-cooled shell and tube type oil cooler has been described. However, the invention is not limited to the water-cooled type, and a refrigerant cooling type that cools oil with a refrigerant may be used.

また、前記圧縮機も二段スクリュー圧縮機を用いた例について説明したが、単段のスクリュー圧縮機でも同様に実施できる。圧縮機が二段スクリュー圧縮機の場合には、油冷却器からの油は、油冷却器内の給油圧力と前記圧縮機の中間圧力との差圧により、圧縮機の軸受部など必要個所に給油される。また、前記圧縮機が単段スクリュー圧縮機の場合には、前記油冷却器からの油は、油冷却器内の給油圧力と前記圧縮機の吸入圧力との差圧により、圧縮機の軸受部など必要個所に給油される。
更に、前記圧縮機はスクリュー圧縮機に限られず、ターボ圧縮機やスクロール圧縮機など他の方式の圧縮機であっても適用可能である。
Moreover, although the said compressor demonstrated the example which used the two-stage screw compressor, it can implement similarly also with a single stage screw compressor. When the compressor is a two-stage screw compressor, the oil from the oil cooler is moved to the required locations such as the bearings of the compressor due to the differential pressure between the oil supply pressure in the oil cooler and the intermediate pressure of the compressor. Refueled. Further, when the compressor is a single-stage screw compressor, the oil from the oil cooler is caused by a differential pressure between the oil supply pressure in the oil cooler and the suction pressure of the compressor. Oil is supplied where necessary.
Furthermore, the compressor is not limited to a screw compressor, and can be applied to other types of compressors such as a turbo compressor and a scroll compressor.

また、前記油冷却器9に設けられている複数個の油出口13は油冷却器9の最上部に設けることが好ましいが、最上部には限られず最上部から若干低い部分に設けても良く、最上流の油出口13aが油冷却器の上部に設けられていれば、下流側の油出口13b,13cは最上流の油出口13aよりも下方に設けられていても良い。   The plurality of oil outlets 13 provided in the oil cooler 9 are preferably provided at the uppermost part of the oil cooler 9, but are not limited to the uppermost part and may be provided at a part slightly lower than the uppermost part. If the most upstream oil outlet 13a is provided in the upper part of the oil cooler, the downstream oil outlets 13b and 13c may be provided below the most upstream oil outlet 13a.

以上説明したように、本実施例によれば、複数個の油出口は油冷却器の上部に設けられると共に油の流れ方向上流側から下流側に順次配置され、各油出口を前記複数個の圧縮機のいずれかにそれぞれ接続し、各圧縮機に設けられた吐出温度センサにより、特定の圧縮機1aの吐出温度と他の圧縮機1bまたは1cの吐出温度を検出し、それらの吐出温度の温度差ΔTが許容値を超えた場合に油不足として検知するように構成しているので、以下の効果が得られる。
(1)冷凍装置の各圧縮機に標準的に装備されている吐出温度センサ11を用いて油タンク内に保有する油量の減少を検知できるので、最小限の費用で安価に油不足の検知が可能となる。また、油面センサを用いるものではないので、油面変動による検知の誤動作も発生し難い信頼性の高い油不足検知機能を備えた冷凍装置を得ることができる。
(2)吐出温度の異常上昇の原因としては、冷却水温が高い、冷却水量不足、熱交換器の汚れ、使用範囲を逸脱した運転等、種々の要因も考えられ、吐出温度の異常上昇のみを監視するだけでは最終的な原因調査に多くの時間を要する。これに対し、本実施例では複数台の圧縮機の吐出温度の温度差を検出することで、油不足であることを即座に検知することができる効果がある。
(3)油不足が検知された際には、それを外部に発報することにより、運転管理者による運転状況の改善を図ることが可能となり、圧縮機のロータ固渋による故障や突発的なシステムダウンを未然に防止することができる。
As described above, according to this embodiment, the plurality of oil outlets are provided in the upper part of the oil cooler and are sequentially arranged from the upstream side to the downstream side in the oil flow direction, and each oil outlet is connected to the plurality of oil outlets. Each of the compressors is connected to each other, and a discharge temperature sensor provided in each compressor detects a discharge temperature of a specific compressor 1a and a discharge temperature of another compressor 1b or 1c. Since the configuration is such that when the temperature difference ΔT exceeds the allowable value, it is detected that the oil is insufficient, the following effects can be obtained.
(1) Since it is possible to detect a decrease in the amount of oil held in the oil tank using the discharge temperature sensor 11 that is provided as standard in each compressor of the refrigeration system, it is possible to detect oil shortage at a low cost at a low cost. Is possible. Further, since the oil level sensor is not used, a refrigeration apparatus having a highly reliable oil shortage detection function that hardly causes a detection malfunction due to oil level fluctuation can be obtained.
(2) Possible causes of abnormal rise in discharge temperature include various factors such as high cooling water temperature, insufficient amount of cooling water, contamination of heat exchanger, operation outside the operating range, etc. Monitoring alone will require a lot of time to investigate the final cause. On the other hand, in the present embodiment, there is an effect that it is possible to immediately detect that the oil is insufficient by detecting the temperature difference between the discharge temperatures of the plurality of compressors.
(3) When an oil shortage is detected, it can be reported to the outside so that the operation status can be improved by the operation manager. System down can be prevented beforehand.

1(1a,1b,1c)…圧縮機
2…油分離器
3…凝縮器
4…過冷却器
5…過冷却器用膨張弁
6…主膨張弁
7…蒸発器
8…油タンク
9…油冷却器
10…油ストレーナ
11…吐出温度センサ
12…油入口、13(13a,13b,13c)…油出口
14…バッフル、15…冷却管
16…油面センサ、17…フロート
18…接続口、19…フランジ部
20…油溜め部
21…液側配管、22…ガス側配管。
1 (1a, 1b, 1c) ... compressor 2 ... oil separator 3 ... condenser 4 ... supercooler 5 ... supercooler expansion valve 6 ... main expansion valve 7 ... evaporator 8 ... oil tank 9 ... oil cooler DESCRIPTION OF SYMBOLS 10 ... Oil strainer 11 ... Discharge temperature sensor 12 ... Oil inlet, 13 (13a, 13b, 13c) ... Oil outlet 14 ... Baffle, 15 ... Cooling pipe 16 ... Oil level sensor, 17 ... Float 18 ... Connection port, 19 ... Flange 20: Oil reservoir 21 ... Liquid side piping, 22 ... Gas side piping.

Claims (8)

圧縮機と、該圧縮機から吐出された冷媒から油を分離する油分離器と、前記分離された油を溜める油タンクと、該油タンクの油を冷却して前記圧縮機に供給する油冷却器とを備えた冷凍装置において、
前記圧縮機は複数台設けられると共に、それぞれの圧縮機からの吐出ガスの温度を検出する吐出温度センサをそれぞれの圧縮機に設け、
前記油冷却器は、該油冷却器内を流れる油の流れに対して上流側に油入口が設けられ、下流側に前記圧縮機台数以上の複数個の油出口が設けられ、これら複数個の油出口は油冷却器の上部に設けられると共に油の流れ方向上流側から下流側に順次配置され、各油出口を前記複数個の圧縮機の何れかにそれぞれ接続し、
前記各圧縮機の前記吐出温度センサでそれぞれ検出された吐出温度を比較することにより前記油タンク内の油量の減少を検出することを特徴とする冷凍装置。
An oil separator for separating oil from refrigerant discharged from the compressor; an oil tank for storing the separated oil; and oil cooling for cooling the oil in the oil tank and supplying the oil to the compressor In a refrigeration apparatus comprising a container,
A plurality of the compressors are provided, and each compressor is provided with a discharge temperature sensor that detects the temperature of the discharge gas from each compressor.
The oil cooler is provided with an oil inlet on the upstream side with respect to the flow of oil flowing in the oil cooler, and a plurality of oil outlets more than the number of the compressors are provided on the downstream side. The oil outlet is provided at the upper part of the oil cooler and sequentially arranged from the upstream side to the downstream side in the oil flow direction, and each oil outlet is connected to one of the plurality of compressors,
A refrigeration apparatus that detects a decrease in the amount of oil in the oil tank by comparing the discharge temperatures detected by the discharge temperature sensors of the compressors.
請求項1に記載の冷凍装置において、前記各圧縮機の前記吐出温度センサでそれぞれ検出された吐出温度を比較し、その温度差が許容値以上となった時に油不足と判断して警報を発する油不足検知手段を備えていることを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein discharge temperatures respectively detected by the discharge temperature sensors of the compressors are compared, and when the temperature difference exceeds an allowable value, it is determined that oil is insufficient and an alarm is issued. A refrigeration apparatus comprising oil shortage detection means. 請求項2に記載の冷凍装置において、前記油不足検知手段は、各吐出温度センサで検出された前記温度差が許容値以上となった状態が一定時間以上継続した場合に油不足と判断することを特徴とする冷凍装置。   3. The refrigeration apparatus according to claim 2, wherein the oil shortage detecting means determines that the oil is insufficient when the temperature difference detected by each of the discharge temperature sensors has exceeded a permissible value for a predetermined time or longer. A refrigeration apparatus characterized by. 請求項1〜3の何れかに記載の冷凍装置において、前記吐出温度センサは各々の圧縮機の吐出配管に設けられ、前記油冷却器に設けられた最も上流側の油出口に接続された圧縮機の吐出温度が、他の圧縮機の吐出温度より所定値以上上昇した場合に、油不足と判断することを特徴とする冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 3, wherein the discharge temperature sensor is provided in a discharge pipe of each compressor and is connected to an oil outlet on the most upstream side provided in the oil cooler. A refrigeration apparatus characterized by determining that the oil is insufficient when the discharge temperature of the compressor rises by a predetermined value or more from the discharge temperature of another compressor. 請求項1〜4の何れかに記載の冷凍装置において、前記圧縮機は二段スクリュー圧縮機であり、前記油冷却器からの油は、油冷却器内の給油圧力と前記圧縮機の中間圧力との差圧により、圧縮機の軸受部など必要個所に給油されることを特徴とする冷凍装置。   5. The refrigeration apparatus according to claim 1, wherein the compressor is a two-stage screw compressor, and the oil from the oil cooler is supplied with an oil supply pressure in the oil cooler and an intermediate pressure of the compressor. The refrigerating machine is characterized in that oil is supplied to a required portion such as a bearing portion of a compressor by a differential pressure between the compressor and the compressor. 請求項1〜4の何れかに記載の冷凍装置において、前記圧縮機は単段スクリュー圧縮機であり、前記油冷却器からの油は、油冷却器内の給油圧力と前記圧縮機の吸入圧力との差圧により、圧縮機の軸受部など必要個所に給油されることを特徴とする冷凍装置。   5. The refrigeration apparatus according to claim 1, wherein the compressor is a single-stage screw compressor, and oil from the oil cooler is supplied with oil supply pressure in the oil cooler and suction pressure of the compressor. The refrigerating machine is characterized in that oil is supplied to a required portion such as a bearing portion of a compressor by a differential pressure between the compressor and the compressor. 請求項1〜6の何れかに記載の冷凍装置において、前記油冷却器は横型のシェルアンドチューブ式油冷却器であることを特徴とする冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 6, wherein the oil cooler is a horizontal shell-and-tube oil cooler. 請求項7に記載の冷凍装置において、前記シェルアンドチューブ式油冷却器は、そのシェル内に複数枚のバッフルがシェルの長手方向に上下交互に配置され、油入口から入った油がシェル内を上下に蛇行しながら油出口の方に向かって流れるように構成され、最も下流側に配置されたバッフルはシェル内の上側に設けられ、この最下流側のバッフルよりも更に下流側の油冷却器最上部に前記複数個の油出口が設けられていることを特徴とする冷凍装置。   8. The refrigeration apparatus according to claim 7, wherein the shell-and-tube oil cooler has a plurality of baffles arranged alternately in the longitudinal direction of the shell in the shell, and oil entered from the oil inlet passes through the shell. The baffle arranged to flow toward the oil outlet while meandering up and down, and the baffle arranged at the most downstream side is provided at the upper side in the shell, and the oil cooler further downstream than the baffle at the most downstream side The refrigeration apparatus characterized in that the plurality of oil outlets are provided at the top.
JP2010215960A 2010-09-27 2010-09-27 Refrigeration equipment Expired - Fee Related JP5309105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215960A JP5309105B2 (en) 2010-09-27 2010-09-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215960A JP5309105B2 (en) 2010-09-27 2010-09-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2012072919A true JP2012072919A (en) 2012-04-12
JP5309105B2 JP5309105B2 (en) 2013-10-09

Family

ID=46169283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215960A Expired - Fee Related JP5309105B2 (en) 2010-09-27 2010-09-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5309105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095103A (en) * 2014-11-17 2016-05-26 日立アプライアンス株式会社 Refrigerator
JP2019060542A (en) * 2017-09-27 2019-04-18 アイシン精機株式会社 Air conditioning device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170958U (en) * 1974-11-30 1976-06-04
JPH01210763A (en) * 1988-02-19 1989-08-24 Hitachi Ltd Oil feed device of multi-refrigerator
JPH04353359A (en) * 1991-05-31 1992-12-08 Hitachi Ltd Freezer device
JPH06300369A (en) * 1993-04-19 1994-10-28 Daikin Ind Ltd Oil returning device for refrigerator with liquid-filled cooler
JPH0961008A (en) * 1995-08-25 1997-03-07 Hitachi Ltd Screw-refrigeration unit
JP2007232230A (en) * 2006-02-27 2007-09-13 Mitsubishi Electric Corp Refrigerating device
JP2010196952A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170958U (en) * 1974-11-30 1976-06-04
JPH01210763A (en) * 1988-02-19 1989-08-24 Hitachi Ltd Oil feed device of multi-refrigerator
JPH04353359A (en) * 1991-05-31 1992-12-08 Hitachi Ltd Freezer device
JPH06300369A (en) * 1993-04-19 1994-10-28 Daikin Ind Ltd Oil returning device for refrigerator with liquid-filled cooler
JPH0961008A (en) * 1995-08-25 1997-03-07 Hitachi Ltd Screw-refrigeration unit
JP2007232230A (en) * 2006-02-27 2007-09-13 Mitsubishi Electric Corp Refrigerating device
JP2010196952A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095103A (en) * 2014-11-17 2016-05-26 日立アプライアンス株式会社 Refrigerator
JP2019060542A (en) * 2017-09-27 2019-04-18 アイシン精機株式会社 Air conditioning device
JP7007636B2 (en) 2017-09-27 2022-01-24 株式会社アイシン Air conditioner

Also Published As

Publication number Publication date
JP5309105B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US6981384B2 (en) Monitoring refrigerant charge
US7343750B2 (en) Diagnosing a loss of refrigerant charge in a refrigerant system
JP4926098B2 (en) Refrigeration equipment
CN104296421B (en) Air conditioner and oil return control method thereof
US10711784B2 (en) Air compressor with drain pipe arrangement
US9303909B2 (en) Apparatus for improving refrigeration capacity
CN103673398A (en) Compressor oil return system of and compressor oil return state detection method
JP2007127326A (en) Engine drive type heat pump comprising refrigerant filling circuit
JP6829664B2 (en) Compressed refrigerator
JP5333305B2 (en) Refrigeration cycle equipment
JP2007255864A (en) Two-stage compression type refrigerating device
JP5309105B2 (en) Refrigeration equipment
JP2012083010A (en) Refrigeration cycle device
JP7157589B2 (en) Control device, refrigerator, control method and abnormality detection method
JP2008057921A (en) Refrigerating device
CN211739554U (en) Multi-split air conditioning system and oil balancing device thereof
CN113310249A (en) Multi-split air conditioning system, oil balance device thereof and oil balance control method
US10598416B2 (en) Refrigeration circuit with oil separation
JP6427394B2 (en) Refrigeration system
CN110926073A (en) Device and method for monitoring working medium state in operation of compression refrigeration system
JP2016114351A (en) Freezer
JP5132232B2 (en) Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device
EP2732222B1 (en) Refrigeration circuit with oil compensation
JP2018119746A (en) Refrigeration device
JP2003028523A (en) Refrigerating equipment and oil tank integrated accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees