JP2007255864A - Two-stage compression type refrigerating device - Google Patents

Two-stage compression type refrigerating device Download PDF

Info

Publication number
JP2007255864A
JP2007255864A JP2006084558A JP2006084558A JP2007255864A JP 2007255864 A JP2007255864 A JP 2007255864A JP 2006084558 A JP2006084558 A JP 2006084558A JP 2006084558 A JP2006084558 A JP 2006084558A JP 2007255864 A JP2007255864 A JP 2007255864A
Authority
JP
Japan
Prior art keywords
stage
refrigerant
superheat
expansion valve
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006084558A
Other languages
Japanese (ja)
Inventor
Terubumi Shinkai
光史 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006084558A priority Critical patent/JP2007255864A/en
Publication of JP2007255864A publication Critical patent/JP2007255864A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent excessive lowering of a high stage-side discharged gas temperature (or degree of superheat), contributing to restriction on operating conditions and conditions of used refrigerant in a two-stage compression type refrigerating device. <P>SOLUTION: This two-stage compression type refrigerating device comprising a two-stage compressor 1 and an intermediate cooler 4 in a refrigerant circuit, and cooling a high stage-side sucked gas of the two-stage compressor 1 by the refrigerant of intermediate pressure from the intermediate cooler 4, comprises a branch pipe 8 connecting a condenser 3 and the intermediate cooler 4, an electronic expansion valve 9 disposed on the branch pipe 8, and a controller 20 controlling the electronic expansion valve on the basis of the degree of superheat of a high stage-side discharged gas of the two-stage compressor 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数段の圧縮行程を有する二段圧縮式冷凍装置に関し、特にその高段側吐出ガスの過熱度の制御に関するものである。   The present invention relates to a two-stage compression refrigeration apparatus having a plurality of stages of compression, and more particularly to control of the degree of superheat of the high-stage discharge gas.

二段圧縮機、凝縮器、受液器、中間冷却器、蒸発器、これらを連結する冷媒配管、および各冷媒配管内を流れる冷媒の流量を制御するためのキャピラリーチューブ、液インジェクションバルブ、膨張弁等を装備した二段圧縮式冷凍装置では、凝縮器で液化された冷媒の一部を分岐し、その分岐した冷媒を中間圧力まで減圧した後、蒸発器へ搬送される主液冷媒と中間冷却器にて熱交換することによって過冷却によるエコノマイザー効果を得ている。   Two-stage compressor, condenser, receiver, intermediate cooler, evaporator, refrigerant pipe connecting them, capillary tube for controlling the flow rate of refrigerant flowing in each refrigerant pipe, liquid injection valve, expansion valve In the two-stage compression refrigeration system equipped with the above, after branching a part of the refrigerant liquefied by the condenser and reducing the branched refrigerant to an intermediate pressure, the main liquid refrigerant and intermediate cooling conveyed to the evaporator The economizer effect by supercooling is obtained by exchanging heat in the vessel.

さらに、主冷媒と中間冷却器にて熱交換した分岐液冷媒を、高段側吸入ガスと合流させることによってこれを冷却し、高段側吐出ガス温度の異常上昇を防止する二段圧縮式冷凍装置が提案されている(例えば、特許文献1参照)。   Furthermore, the two-stage compression type refrigeration which cools the branched liquid refrigerant heat-exchanged with the main refrigerant and the intercooler by combining with the high-stage intake gas and prevents an abnormal increase in the high-stage discharge gas temperature. An apparatus has been proposed (see, for example, Patent Document 1).

特開平9−210480号公報(第3頁、図1)Japanese Patent Laid-Open No. 9-210480 (page 3, FIG. 1)

上記特許文献1においては、中間冷却器入口の分岐管にキャピラリーチューブと液インジェクションバルブの並列回路を装備し、中間冷却器で必要な液冷媒流量と低段側吐出ガスを高段側吸入ガスとして適正な過熱度とするために必要な液冷媒流量の最低流量をキャピラリーチューブによって確保するとともに、冷凍装置の運転条件の変動によって高段側吐出ガスの温度(または過熱度)が過度に上昇した場合は、液インジェクションバルブを作動させ、その開度を制御することによって高段側吐出ガスの温度または過熱度が許容値内になるように冷媒流量を制御するものである。また、キャピラリーチューブおよび液インジェクションバルブの上流側には電磁弁が装備され、冷凍装置の運転中は常時開放されている。   In the above-mentioned Patent Document 1, a parallel circuit of a capillary tube and a liquid injection valve is provided in the branch pipe at the inlet of the intermediate cooler, and the liquid refrigerant flow rate required for the intermediate cooler and the low stage discharge gas are used as the high stage intake gas. When the minimum flow rate of the liquid refrigerant required to achieve an appropriate degree of superheat is secured by the capillary tube, and the temperature (or degree of superheat) of the high-stage discharge gas rises excessively due to fluctuations in the operating conditions of the refrigeration system Is to control the flow rate of the refrigerant so that the temperature or superheat degree of the high-stage side discharge gas is within an allowable value by operating the liquid injection valve and controlling its opening degree. In addition, an electromagnetic valve is provided upstream of the capillary tube and the liquid injection valve, and is always open during operation of the refrigeration apparatus.

上記従来の冷凍装置において、高段側吸入ガスを冷却する目的は、高段側吐出ガス温度の異常上昇を防止するためであるが、高段側吐出ガス温度が低く、液インジェクションバルブが閉じている場合であっても、分岐液冷媒がキャピラリーチューブを介して常に高段側吸入ガスを冷却することになる。   In the conventional refrigeration system, the purpose of cooling the high-stage intake gas is to prevent an abnormal increase in the high-stage discharge gas temperature, but the high-stage discharge gas temperature is low and the liquid injection valve is closed. Even in this case, the branched liquid refrigerant always cools the high-stage intake gas via the capillary tube.

例えば、上記冷凍装置における凝縮器が空気熱源式の場合、冬季など外気温度が低い運転条件では高圧圧力が低い運転となることがある。この場合、高段側吐出ガス温度(または過熱度)は比較的低い運転状態となる。   For example, when the condenser in the refrigeration apparatus is an air heat source type, the operation may be performed at a low high pressure under operating conditions where the outside air temperature is low, such as in winter. In this case, the high stage discharge gas temperature (or superheat degree) is in a relatively low operating state.

また、冷媒R404A等のように、吐出ガス温度が低くなる特性を持った冷媒を上記冷凍装置に使用する場合、上述の高圧圧力が低い運転状態においては、高段側吸入ガスの冷却は不要、あるいは微量であればよい場合がある。しかしながら、上記冷凍装置においては、高圧圧力と中間圧力の差圧によって分岐冷媒がキャピラリーチューブを常時流れるため、高段側吸入ガスが過度に冷却され、高段側吐出ガス温度(または過熱度)が過度に低下する場合がある。   In addition, when a refrigerant having a characteristic of lowering the discharge gas temperature, such as the refrigerant R404A, is used for the refrigeration apparatus, the cooling of the high-stage intake gas is unnecessary in the operation state where the high pressure is low. Alternatively, a trace amount may be sufficient. However, in the above refrigeration apparatus, the branched refrigerant always flows through the capillary tube due to the differential pressure between the high pressure and the intermediate pressure, so that the high-stage intake gas is excessively cooled and the high-stage discharge gas temperature (or superheat degree) is increased. May decrease excessively.

また、高段側吐出ガスに含まれる冷凍機油を分離・貯留するための油分離器を装備する冷凍装置においては、高段側吐出ガス温度(または過熱度)が必要以上に低下した場合、冷凍機油への冷媒溶解度が増加することによって、軸受に供給する給油粘度の低下や、圧力変動に伴う冷凍機油の消失等の不具合が発生することが懸念されるため、冷凍装置の運転条件や使用する冷媒条件の制約となっている。   In a refrigeration system equipped with an oil separator for separating and storing refrigeration oil contained in the high-stage discharge gas, if the high-stage discharge gas temperature (or superheat degree) drops more than necessary, Increased refrigerant solubility in machine oil may cause problems such as a decrease in the viscosity of oil supplied to the bearing and loss of refrigeration oil due to pressure fluctuations. This is a restriction on refrigerant conditions.

本発明は、二段圧縮式冷凍装置における運転条件や使用する冷媒条件の制約の一因となる、高段側吐出ガス温度(または過熱度)の過度の低下を防止することを目的としている。   An object of the present invention is to prevent an excessive decrease in high-stage-side discharge gas temperature (or superheat degree) that contributes to restrictions on operating conditions and refrigerant conditions to be used in a two-stage compression refrigeration system.

前記課題を解決するため、本発明に係る二段圧縮式冷凍装置は、冷媒回路に二段圧縮機と中間冷却器を備え、前記二段圧縮機の高段側吸入ガスを前記中間冷却器からの中間圧力冷媒で冷却するようにした二段圧縮式冷凍装置において、凝縮器と前記中間冷却器とを接続する分岐管と、前記分岐管に設けられた電子膨張弁と、前記二段圧縮機の高段側吐出ガスの過熱度に基づいて前記電子膨張弁を制御する制御手段と、を備える構成としたものである。   In order to solve the above problems, a two-stage compression refrigeration apparatus according to the present invention includes a two-stage compressor and an intermediate cooler in a refrigerant circuit, and the high-stage side intake gas of the two-stage compressor is supplied from the intermediate cooler. In the two-stage compression refrigeration system cooled by the intermediate pressure refrigerant, a branch pipe connecting a condenser and the intermediate cooler, an electronic expansion valve provided in the branch pipe, and the two-stage compressor And a control means for controlling the electronic expansion valve based on the degree of superheat of the higher-stage discharge gas.

上記のように構成した二段圧縮式冷凍装置では、中間冷却器の入口側に設けた電子膨張弁によって、主液冷媒の過冷却および高段側吐出ガスの過熱度を許容範囲内に調整するために必要な分岐液流量を制御することができる。この電子膨張弁の制御目標は高段側吐出ガスの過熱度であるが、分岐冷媒は中間冷却器を経由して高段側吸入ガスに合流するため、中間冷却器において主冷媒を過冷却し、エコノマイザー効果も得ることが可能である。 また、この電子膨張弁の制御目標は高段側吐出ガスの過熱度であるため、特にR404A等のように吐出ガス温度が低くなる特性を持った冷媒を使用した冷凍装置で、高段側吐出ガス温度(過熱度)が低く、高段側吸入ガスの冷却が不要な運転条件において、高段側吐出ガスの過熱度を検知することによって分岐液冷媒の高段側吸入ガスへの注入を遮断し、冷凍機油への冷媒溶解度の増加を抑制することができる。   In the two-stage compression refrigeration apparatus configured as described above, the electronic expansion valve provided on the inlet side of the intermediate cooler adjusts the subcooling of the main liquid refrigerant and the superheat degree of the high-stage discharge gas within an allowable range. Therefore, it is possible to control the flow rate of the branch liquid necessary for the purpose. The control target of this electronic expansion valve is the degree of superheat of the high-stage discharge gas, but the branch refrigerant merges with the high-stage intake gas via the intermediate cooler, so the main refrigerant is supercooled in the intermediate cooler. It is also possible to obtain an economizer effect. In addition, since the control target of this electronic expansion valve is the degree of superheat of the high-stage discharge gas, especially in a refrigeration system using a refrigerant having a characteristic that the discharge gas temperature is low, such as R404A, the high-stage discharge gas Under operating conditions where the gas temperature (superheat) is low and cooling of the high-stage intake gas is not required, the injection of branch liquid refrigerant into the high-stage intake gas is blocked by detecting the superheat of the high-stage discharge gas. In addition, an increase in the solubility of the refrigerant in the refrigerating machine oil can be suppressed.

実施の形態1.
以下、本発明の実施の形態1を図面に基づいて説明する。図1は実施の形態1における二段圧縮式冷凍装置の概略構成図であり、図2は実施の形態1を説明するためのモリエル線図である。また、図1に示す符号a〜gはこの冷媒回路におけるその箇所の冷媒の状態をあらわしており、図2に示すモリエル線図における符号に対応している。また、図1において、点線は信号線をあらわしている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of the two-stage compression refrigeration apparatus in the first embodiment, and FIG. 2 is a Mollier diagram for explaining the first embodiment. Moreover, the symbols a to g shown in FIG. 1 represent the state of the refrigerant at that location in the refrigerant circuit, and correspond to the symbols in the Mollier diagram shown in FIG. In FIG. 1, a dotted line represents a signal line.

図1において、この二段圧縮式冷凍装置は、高段側圧縮機1aと低段側圧縮機1bとからなる二段圧縮機1に、油分離器2、凝縮器3、中間冷却器4、膨張弁5、および蒸発器6を冷媒配管7にて接続した冷媒回路を備えている。さらに、この冷媒回路における凝縮器3と中間冷却器4とを接続する冷媒配管7に分岐管8を設け、この分岐管8には、電子膨張弁9が設けられている。そして、二段圧縮機1の高段側吐出ガスの圧力および温度を検出する圧力センサー21と温度センサー22が設けられ、これらのセンサー21、22により検出された高段側吐出ガスの圧力および温度に基づいて高段側吐出ガスの過熱度を演算し、その過熱度が許容範囲内になるように電子膨張弁9の開度を制御するコントローラー(第1の制御手段)20が設けられている。また、中間冷却器4と高段側圧縮機1aの入口(低段側圧縮機1bの出口)とは中間圧力冷媒導入管10にて接続されている。   In FIG. 1, this two-stage compression refrigeration apparatus includes an oil separator 2, a condenser 3, an intercooler 4, and a two-stage compressor 1 including a high-stage compressor 1 a and a low-stage compressor 1 b. The refrigerant circuit which connected the expansion valve 5 and the evaporator 6 with the refrigerant | coolant piping 7 is provided. Further, a branch pipe 8 is provided in the refrigerant pipe 7 connecting the condenser 3 and the intermediate cooler 4 in this refrigerant circuit, and an electronic expansion valve 9 is provided in the branch pipe 8. A pressure sensor 21 and a temperature sensor 22 for detecting the pressure and temperature of the high-stage discharge gas of the two-stage compressor 1 are provided, and the pressure and temperature of the high-stage discharge gas detected by these sensors 21 and 22 are provided. Is provided with a controller (first control means) 20 for calculating the degree of superheat of the high stage discharge gas and controlling the opening degree of the electronic expansion valve 9 so that the degree of superheat falls within an allowable range. . The intermediate cooler 4 and the inlet of the high stage compressor 1a (the outlet of the low stage compressor 1b) are connected by an intermediate pressure refrigerant introduction pipe 10.

次に、上記のように構成された二段圧縮式冷凍装置の動作について、図1、図2を参照して説明する。
二段圧縮機1の高段側圧縮機1aから吐出された高圧高温の冷媒ガスbは、油分離器2に流入し、冷媒ガスと冷凍機油に分離される。分離された冷凍機油は油分離器2に貯溜され、二段圧縮機1の軸受給油等に供給される(なお、冷凍機油の給油経路については図示していない)。油分離器2で分離された冷媒ガスbは次に凝縮器3に流入し、凝縮器3にて不図示の凝縮側熱源と熱交換して冷却され、液冷媒cとなった後、分岐される。分岐された液冷媒のうち蒸発器6へ流入する主冷媒は、分岐管8に設けた電子膨張弁9にて中間圧力fまで減圧された他方の分岐冷媒と中間冷却器4にて熱交換し、過冷却液dとなる。過冷却された主冷媒dは、膨張弁5で低圧圧力eまで減圧された後、蒸発器6にて不図示の蒸発側熱源と熱交換して気化され、ガス冷媒aとなって、圧縮機1の低段側圧縮機1bに吸入される。
Next, the operation of the two-stage compression refrigeration apparatus configured as described above will be described with reference to FIGS.
The high-pressure and high-temperature refrigerant gas b discharged from the high-stage compressor 1a of the two-stage compressor 1 flows into the oil separator 2 and is separated into refrigerant gas and refrigerating machine oil. The separated refrigerating machine oil is stored in the oil separator 2 and supplied to the bearing oil supply or the like of the two-stage compressor 1 (note that the refrigerating machine oil supply path is not shown). The refrigerant gas b separated by the oil separator 2 then flows into the condenser 3, where it is cooled by exchanging heat with a condensing side heat source (not shown) to become a liquid refrigerant c, and then branched. The Of the branched liquid refrigerant, the main refrigerant flowing into the evaporator 6 exchanges heat with the other branch refrigerant, which is decompressed to the intermediate pressure f by the electronic expansion valve 9 provided in the branch pipe 8, with the intermediate cooler 4. Becomes the supercooled liquid d. The subcooled main refrigerant d is depressurized to a low pressure e by the expansion valve 5 and then vaporized by exchanging heat with an evaporation side heat source (not shown) in the evaporator 6 to become a gas refrigerant a. 1 is sucked into the low-stage compressor 1b.

ここで、中間冷却器4にて主冷媒を過冷却した他方の分岐冷媒は、中間圧力冷媒導入管10を通って高段側吸入ガス(低段側吐出ガス)とgにて合流し、これを冷却することによって高段側吐出ガス温度の異常上昇を防止する。   Here, the other branched refrigerant that has supercooled the main refrigerant in the intermediate cooler 4 passes through the intermediate pressure refrigerant introduction pipe 10 and merges with the high-stage intake gas (low-stage discharge gas) at g. Is used to prevent an abnormal rise in the high-stage discharge gas temperature.

上記において、圧力センサー21と温度センサー22は高段側吐出ガスの圧力と温度を検出し、これらのセンサー21、22によって検出された圧力と温度に基づいて、コントローラー20は高段側吐出ガスの過熱度12を演算し、高段側吐出ガスの過熱度12が許容範囲内になるように分岐管8に設けた電子膨張弁9の開度を制御する。   In the above, the pressure sensor 21 and the temperature sensor 22 detect the pressure and temperature of the high-stage side discharge gas, and the controller 20 determines the high-stage side discharge gas based on the pressure and temperature detected by these sensors 21 and 22. The degree of superheat 12 is calculated, and the opening degree of the electronic expansion valve 9 provided in the branch pipe 8 is controlled so that the degree of superheat 12 of the high stage side discharge gas is within the allowable range.

すなわち、この電子膨張弁9は、高段側吐出ガスの過熱度12が過度に上昇するような運転条件においては、分岐管8を流れる液冷媒fの流量を増加させる方向に制御することにより、前記特許文献1における液インジェクションバルブと同様に高段側吐出ガスの過熱度を低下させることができる。   That is, the electronic expansion valve 9 is controlled in a direction in which the flow rate of the liquid refrigerant f flowing through the branch pipe 8 is increased in an operation condition in which the superheat degree 12 of the high-stage side discharge gas is excessively increased. Similar to the liquid injection valve in Patent Document 1, it is possible to reduce the degree of superheat of the high-stage discharge gas.

一方、高段側吐出ガスの高圧圧力が低い圧力での運転等のように、高段側吐出ガスの過熱度12が低下するような運転条件においては、前記特許文献1ではキャピラリーチューブを介して運転中は常に高段側吸入ガスが冷却されるため、油分離器2内に貯溜している冷凍機油への冷媒の溶解度が上昇する結果となるが、本実施の形態1では分岐管8に電子膨張弁9を備えているため、高段側吸入ガスの冷却が不要な運転条件では、中間冷却器4からの中間圧力冷媒(分岐冷媒)を高段側吸入ガスへ注入するのを遮断することができる。   On the other hand, under the operating conditions in which the superheat degree 12 of the high-stage side discharge gas decreases, such as the operation at a high pressure of the high-stage side discharge gas at a low pressure, in Patent Document 1, the above-described Patent Document 1 Since the high-stage intake gas is always cooled during operation, the solubility of the refrigerant in the refrigerating machine oil stored in the oil separator 2 is increased. In the first embodiment, the branch pipe 8 is Since the electronic expansion valve 9 is provided, under operating conditions that do not require cooling of the high-stage intake gas, the injection of intermediate-pressure refrigerant (branch refrigerant) from the intermediate cooler 4 into the high-stage intake gas is blocked. be able to.

以上のように、本実施の形態1によれば、高段側吐出ガスの過熱度の過度な低下と冷凍機油への冷媒溶解度の増加を抑制することができるため、高段側吐出ガスの高圧圧力がより低い圧力での運転が可能となる。そのため特に、冷媒R404A等のように、吐出ガス温度が低くなる特性を持った冷媒を上記冷凍装置に使用する場合に有効となる。   As described above, according to the first embodiment, it is possible to suppress an excessive decrease in the superheat degree of the high stage discharge gas and an increase in the solubility of the refrigerant in the refrigeration oil. Operation at a lower pressure is possible. Therefore, this is particularly effective when a refrigerant having a characteristic of lowering the discharge gas temperature, such as the refrigerant R404A, is used in the refrigeration apparatus.

実施の形態2
次に本発明の実施の形態2を図3、図4に基づいて説明する。図3は実施の形態2における二段圧縮式冷凍装置の概略構成図で、図4は実施の形態2を説明するためのモリエル線図である。また、図3のa〜gの符号は、この冷媒回路におけるその箇所の冷媒の状態をあらわしており、図4のモリエル線図における符号に対応している。
Embodiment 2
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a schematic configuration diagram of the two-stage compression refrigeration apparatus in the second embodiment, and FIG. 4 is a Mollier diagram for explaining the second embodiment. Also, the reference numerals a to g in FIG. 3 represent the state of the refrigerant at that point in the refrigerant circuit, and correspond to the reference numerals in the Mollier diagram of FIG.

本実施の形態2は、実施の形態1における膨張弁5に代えて、電子膨張弁13を設けたものである。さらに、二段圧縮機1の低段側圧縮機1aに吸入される低段側吸入ガスの圧力および温度を検出する圧力センサー24と温度センサー25を設け、これらのセンサー24、25によって検出された低段側吸入ガスの圧力および温度に基づいて低段側吸入ガスの過熱度を演算し、その過熱度が適正な過熱度になるように電子膨張弁13の開度を制御するコントローラー(第2の制御手段)23が設けられている。その他の構成は実施の形態1と同様であるので、同一の構成要素には同一符号を用いるものとする。なお、コントローラー(第2の制御手段)23と前記コントローラー(第1の制御手段)20とは1つの制御手段として構成することもできる。また、本実施の形態2は、実施の形態1の構成を含んでいるが、それを含まない単独の構成としてもよい。   In the second embodiment, an electronic expansion valve 13 is provided instead of the expansion valve 5 in the first embodiment. Furthermore, a pressure sensor 24 and a temperature sensor 25 for detecting the pressure and temperature of the low-stage intake gas sucked into the low-stage compressor 1a of the two-stage compressor 1 are provided, and these sensors 24 and 25 detect the pressure and temperature. A controller that calculates the degree of superheat of the low-stage intake gas based on the pressure and temperature of the low-stage intake gas, and controls the opening degree of the electronic expansion valve 13 so that the superheat degree becomes an appropriate superheat degree (second Control means) 23 is provided. Since other configurations are the same as those of the first embodiment, the same reference numerals are used for the same components. The controller (second control means) 23 and the controller (first control means) 20 may be configured as one control means. Further, the second embodiment includes the configuration of the first embodiment, but may be a single configuration that does not include the configuration.

本実施の形態2の二段圧縮式冷凍装置では、上記実施の形態1と同様の作用効果を奏するほか、さらに蒸発器6に流入する主液冷媒(過冷却液冷媒d)の流量は、蒸発器6の入口側に設けた電子膨張弁13によって、通常は低段側吸入ガスとして適正な過熱度(一般的には5℃〜15℃程度)に制御されるが、高段側吐出ガスの過熱度が過度に低下した場合は、コントローラー23が電子膨張弁13を閉方向へ動作させることにより、低段側吸入ガスの過熱度を強制的に図4のモリエル線図において、a→a’に増加させ、高段側吸入ガス(低段側吐出ガス)の温度をg→g’に上げ、また高段側吐出ガスの温度をb→b’に上げることとするものである。したがって、高段側吐出ガスの過熱度の低下を抑制することができる。   In the two-stage compression refrigeration apparatus of the second embodiment, the same effect as that of the first embodiment is obtained, and the flow rate of the main liquid refrigerant (supercooled liquid refrigerant d) flowing into the evaporator 6 is evaporated. An electronic expansion valve 13 provided on the inlet side of the vessel 6 is normally controlled to an appropriate degree of superheat (generally about 5 ° C. to 15 ° C.) as a low-stage intake gas. When the superheat degree is excessively lowered, the controller 23 operates the electronic expansion valve 13 in the closing direction to forcibly set the superheat degree of the low-stage intake gas in the Mollier diagram of FIG. The temperature of the high stage side suction gas (low stage side discharge gas) is increased from g → g ′, and the temperature of the high stage side discharge gas is increased from b → b ′. Therefore, it is possible to suppress a decrease in the degree of superheat of the high-stage discharge gas.

本実施の形態2によっても、実施の形態1と同様に、高段側吐出ガス過熱度の過度な低下と冷凍機油への冷媒溶解度増加を抑制することができるため、高段側吐出ガスの高圧圧力がより低い圧力での運転が可能となる。また特に、冷媒R404A等のように、吐出ガス温度が低くなる特性を持った冷媒を上記冷凍装置に使用する場合に有効となる。   Also in the second embodiment, as in the first embodiment, an excessive decrease in the superheat degree of the high stage side discharge gas and an increase in the solubility of the refrigerant in the refrigeration oil can be suppressed. Operation at a lower pressure is possible. In particular, this is effective when a refrigerant having a characteristic of lowering the discharge gas temperature, such as the refrigerant R404A, is used in the refrigeration apparatus.

本発明の実施の形態1における二段圧縮式冷凍装置の概略構成図である。1 is a schematic configuration diagram of a two-stage compression refrigeration apparatus in Embodiment 1 of the present invention. 本発明の実施の形態1におけるモリエル線図である。It is a Mollier diagram in Embodiment 1 of the present invention. 本発明の実施の形態2における二段圧縮式冷凍装置の概略構成図である。It is a schematic block diagram of the two-stage compression refrigerating apparatus in Embodiment 2 of this invention. 本発明の実施の形態2におけるモリエル線図である。It is a Mollier diagram in Embodiment 2 of the present invention.

符号の説明Explanation of symbols

1 二段圧縮機、1a 高段側圧縮機、1b 低段側圧縮機、2 油分離器、3 凝縮器、4 中間冷却器、5 膨張弁、6 蒸発器、7 冷媒配管、8 分岐管、9 電子膨張弁、10 中間圧力冷媒導入管、12 高段側吐出ガスの過熱度、13 電子膨張弁、20 コントローラー(第1の制御手段)、21 高段側吐出ガスの圧力センサー、22 高段側吐出ガスの温度センサー、23 コントローラー(第2の制御手段)、24 低段側吸入ガスの圧力センサー、25 低段側吸入ガスの温度センサー。
1 Two-stage compressor, 1a High-stage compressor, 1b Low-stage compressor, 2 Oil separator, 3 Condenser, 4 Intermediate cooler, 5 Expansion valve, 6 Evaporator, 7 Refrigerant pipe, 8 Branch pipe, 9 electronic expansion valve, 10 intermediate pressure refrigerant introduction pipe, 12 superheat degree of high-stage discharge gas, 13 electronic expansion valve, 20 controller (first control means), 21 high-stage discharge gas pressure sensor, 22 high stage Side discharge gas temperature sensor, 23 controller (second control means), 24 low stage suction gas pressure sensor, 25 low stage suction gas temperature sensor.

Claims (5)

冷媒回路に二段圧縮機と中間冷却器を備え、前記二段圧縮機の高段側吸入ガスを前記中間冷却器からの中間圧力冷媒で冷却するようにした二段圧縮式冷凍装置において、
凝縮器と前記中間冷却器とを接続する分岐管と、
前記分岐管に設けられた電子膨張弁と、
前記二段圧縮機の高段側吐出ガスの過熱度に基づいて前記電子膨張弁を制御する制御手段と、
を備えることを特徴とする二段圧縮式冷凍装置。
In the two-stage compression refrigeration apparatus comprising a two-stage compressor and an intermediate cooler in the refrigerant circuit, and cooling the high-stage intake gas of the two-stage compressor with the intermediate pressure refrigerant from the intermediate cooler,
A branch pipe connecting the condenser and the intercooler;
An electronic expansion valve provided in the branch pipe;
Control means for controlling the electronic expansion valve based on the degree of superheat of the high-stage discharge gas of the two-stage compressor;
A two-stage compression refrigeration apparatus comprising:
前記制御手段は、前記二段圧縮機の高段側吐出ガスの圧力および温度を検出する圧力センサーおよび温度センサーを備え、これらのセンサーにより検出された前記高段側吐出ガスの圧力および温度に基づいて前記高段側吐出ガスの過熱度を演算する構成となっていることを特徴とする請求項1記載の二段圧縮式冷凍装置。   The control means includes a pressure sensor and a temperature sensor for detecting the pressure and temperature of the high-stage discharge gas of the two-stage compressor, and is based on the pressure and temperature of the high-stage discharge gas detected by these sensors. The two-stage compression refrigeration apparatus according to claim 1, wherein the second stage compression refrigeration apparatus is configured to calculate a degree of superheat of the high-stage discharge gas. 冷媒回路に二段圧縮機と中間冷却器を備え、前記二段圧縮機の高段側吸入ガスを前記中間冷却器からの中間圧力冷媒で冷却するようにした二段圧縮式冷凍装置において、
蒸発器の入口側に設けられた電子膨張弁と、
前記二段圧縮機の低段側吸入ガスの過熱度に基づいて前記電子膨張弁を制御する第2の制御手段と、
を備えることを特徴とする二段圧縮式冷凍装置。
In the two-stage compression refrigeration apparatus comprising a two-stage compressor and an intermediate cooler in the refrigerant circuit, and cooling the high-stage intake gas of the two-stage compressor with the intermediate pressure refrigerant from the intermediate cooler,
An electronic expansion valve provided on the inlet side of the evaporator;
Second control means for controlling the electronic expansion valve based on the degree of superheat of the low-stage intake gas of the two-stage compressor;
A two-stage compression refrigeration apparatus comprising:
凝縮器と前記中間冷却器とを接続する分岐管と、前記分岐管に設けられた電子膨張弁と、前記二段圧縮機の高段側吐出ガスの過熱度に基づいて前記電子膨張弁を制御する第1の制御手段と、をさらに備えることを特徴とする請求項3記載の二段圧縮式冷凍装置。   A branch pipe connecting the condenser and the intercooler, an electronic expansion valve provided in the branch pipe, and controlling the electronic expansion valve based on the degree of superheat of the high-stage discharge gas of the two-stage compressor The two-stage compression refrigeration apparatus according to claim 3, further comprising a first control means. 前記第2の制御手段は、前記二段圧縮機の低段側吸入ガスの圧力および温度を検出する圧力センサーおよび温度センサーを備え、これらのセンサーにより検出された前記低段側吸入ガスの圧力および温度に基づいて前記低段側吸入ガスの過熱度を演算する構成となっていることを特徴とする請求項3または4記載の二段圧縮式冷凍装置。
The second control means includes a pressure sensor and a temperature sensor for detecting the pressure and temperature of the low-stage intake gas of the two-stage compressor, and the pressure and temperature of the low-stage intake gas detected by these sensors 5. The two-stage compression refrigeration apparatus according to claim 3, wherein a superheat degree of the low-stage intake gas is calculated based on a temperature.
JP2006084558A 2006-03-27 2006-03-27 Two-stage compression type refrigerating device Withdrawn JP2007255864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084558A JP2007255864A (en) 2006-03-27 2006-03-27 Two-stage compression type refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084558A JP2007255864A (en) 2006-03-27 2006-03-27 Two-stage compression type refrigerating device

Publications (1)

Publication Number Publication Date
JP2007255864A true JP2007255864A (en) 2007-10-04

Family

ID=38630282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084558A Withdrawn JP2007255864A (en) 2006-03-27 2006-03-27 Two-stage compression type refrigerating device

Country Status (1)

Country Link
JP (1) JP2007255864A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799005A (en) * 2010-04-22 2010-08-11 无锡压缩机股份有限公司 Circulating oil path control system of middle or high pressure oil-injecting screw unit
EP2224191A2 (en) 2009-02-25 2010-09-01 LG Electronics Inc. Air conditioner and method of controlling the same
EP2479517A1 (en) * 2011-01-21 2012-07-25 LG Electronics, Inc. Air conditioner
US8289632B2 (en) 2009-10-27 2012-10-16 Sony Corporation Zoom lens and image pickup device
EP2706312A1 (en) * 2012-09-05 2014-03-12 Emerson Climate Technologies GmbH Method for operating a cooler and cooler
JP2017031887A (en) * 2015-07-31 2017-02-09 富士電機株式会社 Scroll compressor and heat cycle system
WO2018135826A1 (en) * 2017-01-19 2018-07-26 주식회사 신진에너텍 System for cooling and defrosting quick-freezing chamber, freezing chamber, and refrigerating chamber in three stages
CN110397758A (en) * 2018-04-24 2019-11-01 盾安汽车热管理科技有限公司 A kind of expansion valve and Gas-supplying enthalpy-increasing system
EP3730875A4 (en) * 2018-01-25 2021-03-03 Samsung Electronics Co., Ltd. Air conditioner and control method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459051B2 (en) 2009-02-25 2013-06-11 Lg Electronics Inc. Air conditioner and method of controlling the same
EP2224191A2 (en) 2009-02-25 2010-09-01 LG Electronics Inc. Air conditioner and method of controlling the same
EP2224191A3 (en) * 2009-02-25 2012-01-11 LG Electronics Inc. Air conditioner and method of controlling the same
US8289632B2 (en) 2009-10-27 2012-10-16 Sony Corporation Zoom lens and image pickup device
CN101799005A (en) * 2010-04-22 2010-08-11 无锡压缩机股份有限公司 Circulating oil path control system of middle or high pressure oil-injecting screw unit
CN101799005B (en) * 2010-04-22 2013-03-13 无锡压缩机股份有限公司 Circulating oil path control system of middle or high pressure oil-injecting screw unit
US9091464B2 (en) 2011-01-21 2015-07-28 Lg Electronics Inc. Air conditioner
EP2479517A1 (en) * 2011-01-21 2012-07-25 LG Electronics, Inc. Air conditioner
EP2706312A1 (en) * 2012-09-05 2014-03-12 Emerson Climate Technologies GmbH Method for operating a cooler and cooler
JP2017031887A (en) * 2015-07-31 2017-02-09 富士電機株式会社 Scroll compressor and heat cycle system
WO2018135826A1 (en) * 2017-01-19 2018-07-26 주식회사 신진에너텍 System for cooling and defrosting quick-freezing chamber, freezing chamber, and refrigerating chamber in three stages
CN110662932A (en) * 2017-01-19 2020-01-07 株式会社新进能量技术 3-stage cooling and defrost system using quick freezing chamber, freezing chamber and refrigerating chamber
CN110662932B (en) * 2017-01-19 2021-09-03 株式会社新进能量技术 3-stage cooling and defrost system using quick freezing chamber, freezing chamber and refrigerating chamber
EP3730875A4 (en) * 2018-01-25 2021-03-03 Samsung Electronics Co., Ltd. Air conditioner and control method therefor
CN110397758A (en) * 2018-04-24 2019-11-01 盾安汽车热管理科技有限公司 A kind of expansion valve and Gas-supplying enthalpy-increasing system
CN110397758B (en) * 2018-04-24 2022-03-08 盾安汽车热管理科技有限公司 Expansion valve and air-supplying enthalpy-increasing system

Similar Documents

Publication Publication Date Title
JP2007255864A (en) Two-stage compression type refrigerating device
JP5355016B2 (en) Refrigeration equipment and heat source machine
AU2005327828B2 (en) Control of a refrigeration circuit with an internal heat exchanger
JP6292480B2 (en) Refrigeration equipment
JP5264874B2 (en) Refrigeration equipment
JP2007139225A (en) Refrigerating device
JP2011052884A (en) Refrigerating air conditioner
JP6264688B2 (en) Refrigeration equipment
JP2010007975A (en) Economizer cycle refrigerating apparatus
JP2013257121A (en) Refrigerating device
JP6814974B2 (en) Refrigeration equipment
JP2015148407A (en) Refrigeration device
JP2015148406A (en) Refrigeration device
JP2016173202A (en) Heat pump
JP2013024538A (en) Refrigeration unit
JP2009186033A (en) Two-stage compression type refrigerating device
JP2014070783A (en) Refrigerator and added cooling medium volume adjusting device for refrigerator
JP2009293899A (en) Refrigerating device
JP2009228976A (en) Refrigerating cycle device
JP2016205729A (en) Refrigeration cycle device
JP5770157B2 (en) Refrigeration equipment
JP5200120B2 (en) Valve check method for refrigeration circuit
JP2009293887A (en) Refrigerating device
JP6335133B2 (en) heat pump
JP2011058650A (en) Ice heat storage type refrigerating device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602