JP2013024538A - Refrigeration unit - Google Patents

Refrigeration unit Download PDF

Info

Publication number
JP2013024538A
JP2013024538A JP2011162756A JP2011162756A JP2013024538A JP 2013024538 A JP2013024538 A JP 2013024538A JP 2011162756 A JP2011162756 A JP 2011162756A JP 2011162756 A JP2011162756 A JP 2011162756A JP 2013024538 A JP2013024538 A JP 2013024538A
Authority
JP
Japan
Prior art keywords
oil return
oil
temperature
compressor
return path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011162756A
Other languages
Japanese (ja)
Inventor
Kazumasa Ota
和昌 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011162756A priority Critical patent/JP2013024538A/en
Publication of JP2013024538A publication Critical patent/JP2013024538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration unit which can return an appropriate amount of refrigerating machine oil to a compression in view of the viscosity of refrigerating machine oil which varies depending on a temperature and can enhance reliability.SOLUTION: A refrigeration unit has a compressor, a condenser which condenses a refrigerant compressed by the compressor, an oil separator which separates fluid discharged from the compressor into a refrigerant and refrigerating machine oil and constitutes a refrigeration cycle by the compressor and condenser and a decompression mechanism that decompresses a refrigerant condensed by the condenser, and an evaporator that evaporates the refrigerant decompressed by the decompression mechanism. Furthermore, the refrigeration unit has an oil return route for returning the refrigerating machine oil separated by the oil separator to the compressor, and the oil return route is provided with an oil return route temperature sensor which detects a temperature of fluid flowing through the oil return route and an oil return amount adjustment mechanism which adjusts an amount of oil to be returned from the oil separator to the compressor, and the oil return amount adjustment mechanism adjusts an oil return amount depending on a temperature detected by the oil return route temperature sensor.

Description

本発明は冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus.

冷凍装置において圧縮機の潤滑作用は冷凍機油が使用されており、圧縮機での圧縮工程においては冷媒だけでなく冷凍機油も高圧側に吐出されるため油上がりが生じる。   In the refrigeration apparatus, refrigeration oil is used for the lubricating action of the compressor. In the compression process in the compressor, not only the refrigerant but also the refrigeration oil is discharged to the high pressure side, resulting in an oil rise.

特許文献1に示す冷凍装置では油分離器で分離した高温の冷凍機油が圧縮機の吸入部に戻す。冷媒の戻し回路には電磁弁と絞り機構を有している。   In the refrigeration apparatus shown in Patent Document 1, the high-temperature refrigeration oil separated by the oil separator is returned to the suction portion of the compressor. The refrigerant return circuit has an electromagnetic valve and a throttle mechanism.

また特許文献2においては冷凍能力の低下を抑えるべく、油分離器で分離した高温の冷凍機油を油戻し経路内に設けた絞り機構を通し圧縮機の中間圧室と圧縮機の吸入部に戻す回路を有している。   Further, in Patent Document 2, in order to suppress a decrease in refrigerating capacity, high-temperature refrigerating machine oil separated by an oil separator is returned to an intermediate pressure chamber of a compressor and a suction portion of the compressor through a throttle mechanism provided in an oil return path. It has a circuit.

国際公開第03/083380号International Publication No. 03/083380 特開2010−71614号公報JP 2010-71614 A

ところで、上記従来の技術では、冷凍機油の油戻し量を運転状態に応じて調整することに関しては考慮されていない。また、冷凍機油の温度が変化すると粘度が変化するのに伴って油戻し量も変化するものであるが、冷凍機油の温度変化が油戻し量に与える影響に関しても考慮されていない。   By the way, in the said conventional technique, it is not considered about adjusting the oil return amount of refrigeration oil according to an operating state. Further, when the temperature of the refrigerating machine oil changes, the oil return amount also changes as the viscosity changes. However, the influence of the temperature change of the refrigerating machine oil on the oil return amount is not considered.

そこで、本発明は、温度によって変化する冷凍機油の粘度を考慮して適切な量の冷凍機油を圧縮機に戻すことができ、信頼性を向上させることができる冷凍装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a refrigerating apparatus that can return an appropriate amount of refrigerating machine oil to the compressor in consideration of the viscosity of the refrigerating machine oil that varies depending on temperature, and can improve reliability. To do.

本発明は、圧縮機と、圧縮機で圧縮された冷媒を凝縮させる凝縮器と、圧縮機から吐出された流体を冷媒及び冷凍機油に分離する油分離器とを有し、圧縮機及び凝縮器と、凝縮器で凝縮した冷媒を減圧する減圧機構と、減圧機構で減圧された冷媒を蒸発させる蒸発器とで冷凍サイクルを構成する冷凍装置であって、油分離器で分離された冷凍機油を圧縮機へ戻す油戻し経路を有し、油戻し経路には、該油戻し経路を流れる流体の温度を検知する油戻し経路温度センサと、油分離器から圧縮機へ戻す油の油戻し量を調整する油戻し量調整機構とが設けられ、油戻し量調整機構は、油戻し経路温度センサで検知された温度に応じて油戻し量を調整する。   The present invention includes a compressor, a condenser that condenses the refrigerant compressed by the compressor, and an oil separator that separates the fluid discharged from the compressor into refrigerant and refrigeration oil. The compressor and the condenser A refrigerating apparatus comprising a decompression mechanism for decompressing the refrigerant condensed by the condenser and an evaporator for evaporating the refrigerant decompressed by the decompression mechanism, wherein the refrigerating machine oil separated by the oil separator is An oil return path is provided for returning to the compressor. The oil return path includes an oil return path temperature sensor for detecting the temperature of the fluid flowing through the oil return path, and an oil return amount of the oil returned from the oil separator to the compressor. An oil return amount adjusting mechanism to be adjusted is provided, and the oil return amount adjusting mechanism adjusts the oil return amount according to the temperature detected by the oil return path temperature sensor.

本発明によれば、油戻し経路に設けられた油戻し経路温度センサの検知温度に応じて油戻し量を調整するため、温度によって変化する冷凍機油の粘度を考慮して適切な量の冷凍機油を圧縮機に戻すことができ、冷凍装置の信頼性を向上させることができる。   According to the present invention, in order to adjust the oil return amount according to the temperature detected by the oil return path temperature sensor provided in the oil return path, an appropriate amount of refrigerating machine oil is taken into account in consideration of the viscosity of the refrigerating machine oil that varies with temperature. Can be returned to the compressor, and the reliability of the refrigeration apparatus can be improved.

一実施例のサイクル構成を示す。The cycle structure of one Example is shown. 圧縮機運転時における油戻し用電磁弁制御のフローチャート。The flowchart of the solenoid valve control for oil return at the time of compressor operation.

以下、本発明に係る冷凍装置の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of a refrigeration apparatus according to the present invention will be described with reference to the drawings.

図1は冷凍サイクル部の構成を示す系統図である。   FIG. 1 is a system diagram showing the configuration of the refrigeration cycle unit.

図1において、IIはサイクル部品で構成する機械室であり、IIIは送風部品で構成する凝縮部である。冷凍装置はIIとIIIが分かれた空冷セパレートタイプと、IIとIIIを一体構造とした空冷一体構造Iがあり、IVは低圧機器である。これらは配管接続部21、22にて接続され冷凍サイクルを構成している。   In FIG. 1, II is a machine room constituted by cycle parts, and III is a condensing part constituted by blower parts. The refrigeration apparatus includes an air-cooled separate type in which II and III are separated, and an air-cooled integrated structure I in which II and III are integrated, and IV is a low-pressure device. These are connected by the pipe connection parts 21 and 22, and comprise the refrigerating cycle.

2A、2Bは圧縮機であり、具体的には、スクロール圧縮機である。圧縮機には、商用電源にて駆動する、定速方式あるいはインバータによる可変駆動式のものがある。3は油分離器であり、冷媒と冷凍機油を分離する。19は油戻し経路であり、分離された油は油分離器3に設けられた接続口より油戻し経路19を経由し、圧縮機2A、2Bの吸い込み側へ戻される。   Reference numerals 2A and 2B denote compressors, specifically, scroll compressors. Some compressors are driven by a commercial power source and are of constant speed or variable drive by inverter. 3 is an oil separator, which separates refrigerant and refrigerating machine oil. Reference numeral 19 denotes an oil return path, and the separated oil is returned to the suction side of the compressors 2A and 2B via the oil return path 19 from a connection port provided in the oil separator 3.

油戻し経路19には、該油戻し経路19を流れる流体の温度を検知する油戻し経路温度センサ31と、油分離器3から圧縮機吸い込み側へ戻す油の油戻し量を調整する油戻し量調整機構とが設けられ、油戻し量調整機構は、油戻し経路温度センサ31で検知された温度(油温度に相当する)に応じて油戻し量を調整する。具体的には、油戻し経路には、前記油戻し量調整機構として、油の戻し量を制御するための電磁弁16A、16Bやキャピラリチューブ17A、17Bが設けられている。即ち、油戻し経路は、二系統に分岐する油戻し流路によって構成されている。ただし、油戻し経路は、二系統より多く分岐する油戻し流路によって構成されるものであってもよく、油戻し経路を分岐させることなく一つの油戻し流路によって構成し、この油戻し流路に流量調整弁を設けて流量を調整するものであってもよい。   The oil return path 19 includes an oil return path temperature sensor 31 that detects the temperature of the fluid flowing through the oil return path 19 and an oil return amount that adjusts the amount of oil returned from the oil separator 3 to the compressor suction side. The oil return amount adjusting mechanism adjusts the oil return amount according to the temperature (corresponding to the oil temperature) detected by the oil return path temperature sensor 31. Specifically, the oil return path is provided with solenoid valves 16A and 16B and capillary tubes 17A and 17B for controlling the oil return amount as the oil return amount adjusting mechanism. That is, the oil return path is constituted by an oil return flow path that branches into two systems. However, the oil return path may be configured by an oil return path that branches more than two lines, and is configured by one oil return path without branching the oil return path. A flow rate adjusting valve may be provided in the path to adjust the flow rate.

また、凝縮器4の下流側に設けられている過冷却器6は前記凝縮器4と一体構造となっている。   Further, the supercooler 6 provided on the downstream side of the condenser 4 has an integral structure with the condenser 4.

圧縮機2A、2Bから吐出される冷媒ガスは、前記凝縮器4および送風機13により冷却、凝縮され凝縮した液冷媒は受液器5に蓄えられその後、液冷媒のみが過冷却器6に導かれる構成となっている。過冷却された液冷媒は、ドライヤ7、サイトグラス8を通過し、電磁弁9、膨張弁等の減圧機構10、蒸発器11からなる低圧機器IVで蒸発し、再びガス冷媒となって気液分離器1を通り前記圧縮機2A、2Bへ吸入される。   The refrigerant gas discharged from the compressors 2 </ b> A and 2 </ b> B is cooled, condensed and condensed by the condenser 4 and the blower 13, and the liquid refrigerant condensed and condensed is stored in the liquid receiver 5, and then only the liquid refrigerant is guided to the subcooler 6. It has a configuration. The supercooled liquid refrigerant passes through the dryer 7 and the sight glass 8, evaporates by the low pressure device IV including the electromagnetic valve 9, the decompression mechanism 10 such as the expansion valve, and the evaporator 11, and becomes a gas refrigerant again to become a gas liquid. It passes through the separator 1 and is sucked into the compressors 2A and 2B.

受液器5内または過冷却器6より下流側の液冷媒配管と圧縮機2A、2Bの中間圧力室とは液インジェクション配管20で接続されている。この液インジェクション配管20には、液インジェクション量を制御するための電子膨張弁あるいはキャピラリチューブといった減圧装置15が設けられている。なお、液インジェクション配管は、凝縮器と減圧機構との間から分岐されるものであってもよい。   The liquid refrigerant pipe in the liquid receiver 5 or downstream of the supercooler 6 and the intermediate pressure chambers of the compressors 2A and 2B are connected by a liquid injection pipe 20. The liquid injection pipe 20 is provided with a pressure reducing device 15 such as an electronic expansion valve or a capillary tube for controlling the amount of liquid injection. The liquid injection pipe may be branched from between the condenser and the pressure reducing mechanism.

電磁弁9、減圧機構10、蒸発器11が配置されている低圧機器IV内には、低圧機器IVの庫内温度が所定の温度以下になった時に作動する庫内温度サーモスタット25と、その庫内温度サーモスタット25の作動に応じて開閉する電磁弁9を有している。ここで電磁弁9は冷凍サイクルにおける減圧機構10の上流側に配置されている。   In the low pressure device IV in which the solenoid valve 9, the pressure reducing mechanism 10, and the evaporator 11 are arranged, an internal temperature thermostat 25 that operates when the internal temperature of the low pressure device IV becomes a predetermined temperature or less, and the storage It has a solenoid valve 9 that opens and closes according to the operation of the internal temperature thermostat 25. Here, the electromagnetic valve 9 is disposed upstream of the pressure reducing mechanism 10 in the refrigeration cycle.

吸入圧力センサ33は、冷凍サイクルIの負荷(低圧機器IVにおける負荷)を検出するために設けられたものであり、圧縮機2A、2Bの吸入側の圧力を検出し、制御基板30に入力するように構成されている。   The suction pressure sensor 33 is provided to detect the load of the refrigeration cycle I (the load in the low-pressure apparatus IV), detects the pressure on the suction side of the compressors 2A and 2B, and inputs it to the control board 30. It is configured as follows.

図2にて油戻し経路と制御について説明する。   The oil return path and control will be described with reference to FIG.

図2は圧縮機運転時における油戻し用電磁弁の基本フローチャートを示す。油戻し経路は絞り機構を二系統としそれぞれの絞り機構は運転状態において使い分け冷凍機油の戻し過ぎを防止することで最適な運転状態とする。   FIG. 2 shows a basic flowchart of the oil return solenoid valve during compressor operation. The oil return path has two throttle mechanisms, and each throttle mechanism is properly used in the operating state to prevent the refrigerating machine oil from returning too much to the optimum operating state.

油戻し経路は、油戻し量の異なる二つの油戻し流路によって構成されている。具体的には、二つの絞り機構(具体的には、キャピラリチューブ17A、17B)は異なる抵抗値に設定されており、運転状態により油の戻し量を変更することができる。より具体的には、キャピラリチューブ17Aは、キャピラリチューブ17Bよりも抵抗値が大きく設定されている。圧縮機2A、2Bに同期し運転時には制御基板30より電磁弁16Aに信号を送って開とし、キャピラリチューブ17Aを通し圧縮機2A、2B内の油を安定して確保することが可能である。   The oil return path is composed of two oil return passages with different oil return amounts. Specifically, the two throttle mechanisms (specifically, the capillary tubes 17A and 17B) are set to different resistance values, and the oil return amount can be changed depending on the operating state. More specifically, the resistance value of the capillary tube 17A is set larger than that of the capillary tube 17B. During operation in synchronization with the compressors 2A and 2B, it is possible to send a signal from the control board 30 to the electromagnetic valve 16A to open it, and to stably secure the oil in the compressors 2A and 2B through the capillary tube 17A.

次に低圧機器IV側の庫内温度サーモスタット25により電磁弁9が閉となって冷凍機サイクルIが停止した場合は、再起動時に圧縮機2A、2Bの冷凍機油量が低下する可能性があるため、再起動時には制御基板30より信号を送り電磁弁16Bを開としキャピラリチューブ17Bを通し油量確保する。また電磁弁16Bには時間制限Aを設け油の戻し過ぎにより冷凍能力の低下を抑えることが可能である。   Next, when the solenoid valve 9 is closed by the internal temperature thermostat 25 on the low-pressure equipment IV side and the refrigerator cycle I is stopped, the amount of compressor oil in the compressors 2A and 2B may be reduced at the time of restart. Therefore, at the time of restart, a signal is sent from the control board 30 to open the electromagnetic valve 16B and secure the oil amount through the capillary tube 17B. In addition, the solenoid valve 16B can be provided with a time limit A to prevent the refrigerating capacity from being lowered due to excessive oil return.

図2は各種温度センサによる油戻し用電磁弁の基本フローチャートを示す。   FIG. 2 shows a basic flowchart of an oil return solenoid valve using various temperature sensors.

圧縮機2A、2Bの運転中は外気温度センサ32とまた油戻し経路温度センサ31の温度を制御基板30に送り「外気温度<B」かつ「油温度<C」の場合は電磁弁16Bを開とし時間制限Dの間欠運転を実施する。また「外気温度>B′」または「油温度>C′」となった場合は本制御を終了する。これにより低外気時または油の温度が低い場合は油の粘度が上昇し流れにくくなるため各温度センサで確認することは有効な手段である。従って、圧縮機2A、2Bに安定した油を供給することで信頼性低下を防止しさらに圧縮機の信頼性も確保することが可能である。   During operation of the compressors 2A and 2B, the temperatures of the outside air temperature sensor 32 and the oil return path temperature sensor 31 are sent to the control board 30. When “outside air temperature <B” and “oil temperature <C”, the solenoid valve 16B is opened. And intermittent operation with time limit D is performed. Further, when “outside air temperature> B ′” or “oil temperature> C ′”, this control is terminated. As a result, when the temperature is low or when the oil temperature is low, the viscosity of the oil rises and it is difficult for the oil to flow. Therefore, by supplying stable oil to the compressors 2A and 2B, it is possible to prevent a decrease in reliability and further ensure the reliability of the compressor.

電源投入後初めて圧縮機2A、2Bが運転する場合には制御基板30より信号を送り電磁弁16Bを開としキャピラリチューブ17Bを通し圧縮機2A、2Bに油を戻す。解除条件として圧縮機運転周波数と運転積算時間Fを設け条件を満たしたら電磁弁16Aへ切り替える。これにより初運転時においても圧縮機2A、2Bに安定した油を供給することができ、また油の流し過ぎによる能力低下を抑えることが可能である。   When the compressors 2A and 2B are operated for the first time after the power is turned on, a signal is sent from the control board 30 to open the electromagnetic valve 16B and return the oil to the compressors 2A and 2B through the capillary tube 17B. When the compressor operating frequency and the operation integration time F are provided as release conditions and the conditions are satisfied, the operation is switched to the solenoid valve 16A. As a result, stable oil can be supplied to the compressors 2A and 2B even during the initial operation, and a reduction in performance due to excessive oil flow can be suppressed.

油戻し経路に設けた電磁弁16Aと電磁弁16Bの基本ステップについて説明をする。各電磁弁は油戻し経路温度センサ31の温度を制御基板30に送り、運転条件により開閉制御される。即ち、各電磁弁の開閉状態を切り替えることにより、油戻し量は4段階に変更可能である。各段階では、電磁弁16A、電磁弁16Bが双方開の状態、電磁弁16Aが開で電磁弁16Bが閉の状態、電磁弁16Aが閉で電磁弁16Bが開の状態、電磁弁16A、電磁弁16Bが双方閉の状態を取る。   The basic steps of the electromagnetic valve 16A and the electromagnetic valve 16B provided in the oil return path will be described. Each solenoid valve sends the temperature of the oil return path temperature sensor 31 to the control board 30 and is controlled to be opened and closed according to operating conditions. That is, the oil return amount can be changed in four stages by switching the open / close state of each solenoid valve. In each stage, the solenoid valve 16A and the solenoid valve 16B are both open, the solenoid valve 16A is open and the solenoid valve 16B is closed, the solenoid valve 16A is closed and the solenoid valve 16B is open, the solenoid valve 16A and the solenoid The valve 16B is in a closed state.

通常は、電磁弁16A、電磁弁16Bが双方閉の状態以外の3段階で制御することにより油の戻し過ぎによる能力低下の防止し信頼性を確保することができる。これら各段階間の移行は、外気温度センサ32や油戻し経路温度センサ31の検知温度及び時間制限Gを条件として設け行う。   Normally, the solenoid valve 16A and the solenoid valve 16B are controlled in three stages other than the state where both are closed, thereby preventing a decrease in capacity due to excessive oil return and ensuring reliability. The transition between these stages is performed under the conditions of the detected temperature of the outside air temperature sensor 32 and the oil return path temperature sensor 31 and the time limit G.

一方、応急的に油を戻すことが必要な場合などの過渡的な場合(例えば、試運転時)においては、制御基板30を例えば手動で操作するなどして、電磁弁16Aと電磁弁16Bの両方を開とする。ただし、電磁弁16Aと電磁弁16Bの両方を開とする操作は、圧縮機2A、2Bの運転中に限り可能となっている。   On the other hand, in a transient case (for example, during a test operation) such as when it is necessary to return the oil as soon as possible, both the solenoid valve 16A and the solenoid valve 16B are operated by, for example, manually operating the control board 30. Is open. However, the operation of opening both the solenoid valve 16A and the solenoid valve 16B is possible only during the operation of the compressors 2A and 2B.

上記構成からなる冷凍装置によれば、油戻し経路に設けられた油戻し経路温度センサ31の検知温度に応じて油戻し量を調整するため、温度によって変化する冷凍機油の粘度を考慮して適切な量の冷凍機油を圧縮機に戻すことができ、信頼性を向上させることができる。   According to the refrigeration apparatus having the above configuration, the oil return amount is adjusted according to the temperature detected by the oil return path temperature sensor 31 provided in the oil return path. A sufficient amount of refrigerating machine oil can be returned to the compressor, and the reliability can be improved.

また、油戻し経路温度センサ31と外気温度センサ32をAND制御とすることで、外気温度センサ32により検知した外気温度が高いのに、油戻し経路19に設置した油戻し経路温度センサ31の温度が低い場合は、油戻し経路19の不具合(例えば、キャピラリチューブ17A、17Bの詰まりや電磁弁16A、16Bの故障等)を検出することもできる。従って、例えば、油不足によって圧縮機に影響が及ぶのを良好に防ぐことができる。   Further, by setting the oil return path temperature sensor 31 and the outside air temperature sensor 32 to AND control, the temperature of the oil return path temperature sensor 31 installed in the oil return path 19 is high although the outside air temperature detected by the outside air temperature sensor 32 is high. Is low, it is possible to detect a malfunction of the oil return path 19 (for example, clogging of the capillary tubes 17A and 17B, failure of the electromagnetic valves 16A and 16B, etc.). Therefore, for example, it is possible to satisfactorily prevent the compressor from being affected by oil shortage.

なお、本発明は上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。   In addition, this invention is not limited to the structure of the said embodiment, A various change is possible within the range which does not deviate from the meaning of invention.

例えば、上記実施形態においては、油戻し経路温度センサで検知される温度だけでなく、外気温度をも用いて油戻し量調整機構を制御するものであったが、これに限定されるものではなく、油戻し経路温度センサで検知される温度のみに基づいて油戻し量調整機構を制御するものであってもよい。   For example, in the above embodiment, the oil return amount adjustment mechanism is controlled using not only the temperature detected by the oil return path temperature sensor but also the outside air temperature, but the present invention is not limited to this. The oil return amount adjusting mechanism may be controlled based only on the temperature detected by the oil return path temperature sensor.

また、上記実施形態においては、冷凍装置は、冷凍サイクルの構成要素のうち圧縮機及び凝縮器を有し、減圧機構及び蒸発器を有する低圧機器は冷凍装置とは別に設けられる例について説明したが、冷凍装置が前記圧縮機及び凝縮器だけでなく、減圧機構及び蒸発器を有するものであってもよい。   In the above embodiment, the refrigeration apparatus has an example in which the compressor and the condenser are included in the components of the refrigeration cycle, and the low-pressure apparatus having the decompression mechanism and the evaporator is provided separately from the refrigeration apparatus. The refrigerating apparatus may have not only the compressor and the condenser but also a pressure reducing mechanism and an evaporator.

また、上記実施形態においては、冷凍機油は圧縮機の吸い込み部へ戻されるものであったが、圧縮機の中間部に戻されるものであってもよい。   Moreover, in the said embodiment, although refrigeration oil was returned to the suction part of a compressor, you may return to the intermediate part of a compressor.

1 気液分離器
2A、2B 圧縮機
3 油分離器
4 凝縮器
5 受液器
6 過冷却器
7 ドライヤ
8 サイトグラス
9、14、16A、16B 電磁弁
10 減圧機構
11 蒸発器
12 吸入ストレーナ
13 送風機
15 減圧装置
17A、17B キャピラリチューブ
18 起動バイパス配管
19 油戻し経路
20 液インジェクション配管
21、22 配管接続部
25 庫内温度サーモスタット
30 制御基板
31 油戻し経路温度センサ
32 外気温度センサ
33 吸入圧力センサ
DESCRIPTION OF SYMBOLS 1 Gas-liquid separator 2A, 2B Compressor 3 Oil separator 4 Condenser 5 Liquid receiver 6 Subcooler 7 Dryer 8 Sight glass 9, 14, 16A, 16B Solenoid valve 10 Decompression mechanism 11 Evaporator 12 Suction strainer 13 Blower 15 Pressure reducing devices 17A and 17B Capillary tube 18 Start bypass piping 19 Oil return path 20 Liquid injection pipes 21 and 22 Pipe connection section 25 Internal temperature thermostat 30 Control board 31 Oil return path temperature sensor 32 Outside air temperature sensor 33 Suction pressure sensor

Claims (5)

圧縮機と、前記圧縮機で圧縮された冷媒を凝縮させる凝縮器と、前記圧縮機から吐出された流体を冷媒及び冷凍機油に分離する油分離器とを有し、
前記圧縮機及び前記凝縮器と、前記凝縮器で凝縮した冷媒を減圧する減圧機構と、前記減圧機構で減圧された冷媒を蒸発させる蒸発器とで冷凍サイクルを構成する冷凍装置であって、
前記油分離器で分離された冷凍機油を前記圧縮機へ戻す油戻し経路を有し、
前記油戻し経路には、該油戻し経路を流れる流体の温度を検知する油戻し経路温度センサと、前記油分離器から前記圧縮機へ戻す油の油戻し量を調整する油戻し量調整機構とが設けられ、
前記油戻し量調整機構は、前記油戻し経路温度センサで検知された温度に応じて油戻し量を調整することを特徴とする冷凍装置。
A compressor, a condenser that condenses the refrigerant compressed by the compressor, and an oil separator that separates the fluid discharged from the compressor into refrigerant and refrigeration oil,
A refrigerating apparatus comprising a refrigerating cycle by the compressor and the condenser, a depressurizing mechanism for depressurizing the refrigerant condensed in the condenser, and an evaporator for evaporating the refrigerant depressurized by the depressurizing mechanism,
An oil return path for returning the refrigeration oil separated by the oil separator to the compressor;
The oil return path includes an oil return path temperature sensor that detects the temperature of the fluid flowing through the oil return path, and an oil return amount adjustment mechanism that adjusts the amount of oil returned from the oil separator to the compressor. Is provided,
The refrigeration apparatus, wherein the oil return amount adjusting mechanism adjusts an oil return amount according to a temperature detected by the oil return path temperature sensor.
前記油戻し量調整機構は、前記油戻し経路温度センサで検知される温度が所定の流体温度以下の場合には該所定の流体温度よりも高い場合に比べて油戻し量を増すように制御されることを特徴とする請求項1に記載の冷凍装置。   The oil return amount adjusting mechanism is controlled to increase the oil return amount when the temperature detected by the oil return path temperature sensor is equal to or lower than a predetermined fluid temperature, compared to when the temperature is higher than the predetermined fluid temperature. The refrigeration apparatus according to claim 1. 外気温度を検知する外気温度センサを備え、
前記油戻し量調整機構は、前記油戻し経路温度センサで検知される温度が所定の流体温度以下であり、且つ、外気温度が所定の外気温度以下の場合には、前記油戻し経路温度センサで検知される温度が所定の温度よりも高い場合、又は、外気温度が所定の外気温度よりも高い場合に比べて油戻し量を増すように制御されることを特徴とする請求項1に記載の冷凍装置。
It has an outside temperature sensor that detects the outside temperature,
When the temperature detected by the oil return path temperature sensor is equal to or lower than a predetermined fluid temperature and the outside air temperature is equal to or lower than a predetermined outside air temperature, the oil return amount adjustment mechanism uses the oil return path temperature sensor. 2. The control according to claim 1, wherein the oil return amount is controlled to be increased when the detected temperature is higher than a predetermined temperature or when the outside air temperature is higher than the predetermined outside air temperature. Refrigeration equipment.
前記油戻し経路は、油戻し量の異なる二つの油戻し流路によって構成され、
前記油戻し量調整機構は、各油戻し流路にそれぞれ配置される電磁弁によって構成され、
前記各電磁弁の開閉状態を切り替えることにより、油戻し量を4段階に変更可能であることを特徴とする請求項1に記載の冷凍装置。
The oil return path is constituted by two oil return passages with different oil return amounts,
The oil return amount adjusting mechanism is configured by a solenoid valve disposed in each oil return channel,
The refrigeration apparatus according to claim 1, wherein the oil return amount can be changed in four stages by switching the open / close state of each electromagnetic valve.
前記凝縮器と前記減圧機構との間の冷媒を前記圧縮機の中間圧力部に導入する液インジェクション経路を有することを特徴とする請求項1に記載の冷凍装置。   The refrigeration apparatus according to claim 1, further comprising a liquid injection path for introducing a refrigerant between the condenser and the pressure reducing mechanism into an intermediate pressure portion of the compressor.
JP2011162756A 2011-07-26 2011-07-26 Refrigeration unit Pending JP2013024538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162756A JP2013024538A (en) 2011-07-26 2011-07-26 Refrigeration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162756A JP2013024538A (en) 2011-07-26 2011-07-26 Refrigeration unit

Publications (1)

Publication Number Publication Date
JP2013024538A true JP2013024538A (en) 2013-02-04

Family

ID=47783093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162756A Pending JP2013024538A (en) 2011-07-26 2011-07-26 Refrigeration unit

Country Status (1)

Country Link
JP (1) JP2013024538A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076331A1 (en) * 2013-11-22 2015-05-28 ダイキン工業株式会社 Air conditioner
JP2016044883A (en) * 2014-08-22 2016-04-04 株式会社Nttファシリティーズ Steam compression type refrigeration cycle
JP2016118317A (en) * 2014-12-19 2016-06-30 三菱重工業株式会社 Unit for compressor, compressor, and refrigeration circuit
JP2016173202A (en) * 2015-03-17 2016-09-29 ヤンマー株式会社 Heat pump
CN109404272A (en) * 2018-12-04 2019-03-01 长虹华意压缩机股份有限公司 Equipment for testing oil discharge capacity of compressor and oil circulation performance of refrigerating system
JPWO2020241622A1 (en) * 2019-05-31 2021-12-09 ダイキン工業株式会社 Refrigeration equipment
WO2022003933A1 (en) * 2020-07-03 2022-01-06 三菱電機株式会社 Cold heat source unit and refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674579A (en) * 1992-08-26 1994-03-15 Daikin Ind Ltd Refrigerating apparatus
JP2007139276A (en) * 2005-11-16 2007-06-07 Sanden Corp Cooling system
JP2010071614A (en) * 2008-09-22 2010-04-02 Hitachi Appliances Inc Refrigerating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674579A (en) * 1992-08-26 1994-03-15 Daikin Ind Ltd Refrigerating apparatus
JP2007139276A (en) * 2005-11-16 2007-06-07 Sanden Corp Cooling system
JP2010071614A (en) * 2008-09-22 2010-04-02 Hitachi Appliances Inc Refrigerating device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076331A1 (en) * 2013-11-22 2015-05-28 ダイキン工業株式会社 Air conditioner
JP2015102256A (en) * 2013-11-22 2015-06-04 ダイキン工業株式会社 Air conditioner
JP2016044883A (en) * 2014-08-22 2016-04-04 株式会社Nttファシリティーズ Steam compression type refrigeration cycle
JP2016118317A (en) * 2014-12-19 2016-06-30 三菱重工業株式会社 Unit for compressor, compressor, and refrigeration circuit
JP2016173202A (en) * 2015-03-17 2016-09-29 ヤンマー株式会社 Heat pump
KR20170117494A (en) * 2015-03-17 2017-10-23 얀마 가부시키가이샤 Heat pump
KR101992039B1 (en) 2015-03-17 2019-06-21 얀마 가부시키가이샤 Heat pump
CN109404272A (en) * 2018-12-04 2019-03-01 长虹华意压缩机股份有限公司 Equipment for testing oil discharge capacity of compressor and oil circulation performance of refrigerating system
JPWO2020241622A1 (en) * 2019-05-31 2021-12-09 ダイキン工業株式会社 Refrigeration equipment
JP7174299B2 (en) 2019-05-31 2022-11-17 ダイキン工業株式会社 refrigeration equipment
WO2022003933A1 (en) * 2020-07-03 2022-01-06 三菱電機株式会社 Cold heat source unit and refrigeration cycle device
JPWO2022003933A1 (en) * 2020-07-03 2022-01-06

Similar Documents

Publication Publication Date Title
JP2013024538A (en) Refrigeration unit
WO2013073064A1 (en) Refrigeration unit
JP6301101B2 (en) Two-stage compression cycle
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2011117626A (en) Air conditioner
JP2013257121A (en) Refrigerating device
JP2009192164A (en) Refrigerating apparatus
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP6318107B2 (en) heat pump
JP5473213B2 (en) Air conditioner
JP2007255864A (en) Two-stage compression type refrigerating device
WO2007118293A3 (en) Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
JP2011007351A (en) Refrigerating device
JP4082435B2 (en) Refrigeration equipment
JP2010002173A (en) Refrigerator
WO2015001613A1 (en) Refrigeration cycle device
US20180363961A1 (en) Air conditioner
JP2016205729A (en) Refrigeration cycle device
JP4274250B2 (en) Refrigeration equipment
JP2013108649A (en) Refrigeration device
CN110168295B (en) Flow path switching device, refrigeration cycle circuit and refrigerator
KR102017405B1 (en) Heat pump
KR100876285B1 (en) Gas heat pump system
JP2016128734A (en) Refrigeration device
KR100748982B1 (en) Air conditioner and Control method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527