WO2015076331A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2015076331A1
WO2015076331A1 PCT/JP2014/080759 JP2014080759W WO2015076331A1 WO 2015076331 A1 WO2015076331 A1 WO 2015076331A1 JP 2014080759 W JP2014080759 W JP 2014080759W WO 2015076331 A1 WO2015076331 A1 WO 2015076331A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
valve
opening degree
oil return
compressor
Prior art date
Application number
PCT/JP2014/080759
Other languages
French (fr)
Japanese (ja)
Inventor
山本 昌由
喜記 山野井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2015076331A1 publication Critical patent/WO2015076331A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a cooling-only air conditioner used in a computer room, for example.
  • air conditioners used in, for example, computer rooms are known. Since this type of air conditioner performs cooling operation throughout the year, the air conditioner includes a cooling-only refrigerant circuit in which a compressor, a condenser, an expansion mechanism, and an evaporator are connected in this order (for example, Patent Document 1). In this type of refrigerant circuit, when the temperature of the outside air is low (for example, in winter), the capacity of the condenser may become excessive.
  • This bypass circuit is a circuit that has an electric valve capable of controlling the opening degree, and sends the refrigerant discharged from the compressor to the evaporator, bypassing the condenser.
  • This bypass circuit is a circuit that has an electric valve capable of controlling the opening degree, and sends the refrigerant discharged from the compressor to the evaporator, bypassing the condenser.
  • An object of the present invention is to effectively return the refrigeration oil accumulated in the condenser to the compressor in an air conditioner dedicated to cooling.
  • the air conditioner according to the present invention is an air conditioner dedicated to a refrigerant including a main refrigerant circuit, a bypass circuit, a fan, and a control unit.
  • the main refrigerant circuit includes a compressor, a condenser, a first valve capable of opening degree control, and an evaporator.
  • the bypass circuit has a second valve capable of opening control.
  • the bypass circuit is connected to the main refrigerant circuit so that the refrigerant discharged from the compressor bypasses the condenser and the first valve.
  • the fan creates an air flow to the condenser.
  • the control unit controls the compressor, the first valve, the second valve, and the fan.
  • the control unit performs a normal operation and an oil return operation of the condenser.
  • the condensation pressure is adjusted by adjusting at least one of the opening degree of the first valve, the opening degree of the second valve, and the air volume of the fan.
  • the oil return operation of the condenser when a predetermined condition is satisfied, at least one of control for increasing the opening degree of the first valve and control for reducing the opening degree of the second valve is performed.
  • the refrigerator oil in the condenser is returned to the compressor together with the refrigerant.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention. It is a control block diagram in the air conditioner according to the embodiment. It is a flowchart which shows the control example 1 of the air conditioner which concerns on the said embodiment. It is a flowchart which shows the control example 2 of the air conditioner which concerns on the said embodiment. It is a schematic block diagram of the air conditioner which concerns on the modification of the said embodiment.
  • (A) to (C) are graphs for explaining fluctuations in the differential pressure across the condenser in the oil return operation of the condenser.
  • the air conditioner 1 which concerns on this embodiment is an air conditioner only for a refrigerant
  • the air conditioner 1 includes a refrigerant circuit 10 and cools the room by performing a vapor compression refrigeration cycle operation.
  • the object of cooling is a computer room such as a server room, for example, the air conditioner 1 continuously performs a cooling operation for adjusting the room to a predetermined temperature range throughout the year.
  • An air conditioner 1 includes a heat source unit (outdoor unit) 2 installed outdoors, a utilization unit (indoor unit) 3 installed indoors, and a refrigerant communication tube 4 that connects these units. And 5.
  • the refrigerant circuit 10 includes a main refrigerant circuit 11 and a bypass circuit 12.
  • the main refrigerant circuit 11 includes a compressor 24, a condenser 25, a first valve 21 capable of controlling the opening degree, and an evaporator 26.
  • the main refrigerant circuit 11 is provided in the heat source unit 2 and forms a part of the main refrigerant circuit 11, and the heat source side main refrigerant circuit 11 a that forms a part of the main refrigerant circuit 11 and the use side that forms a part of the main refrigerant circuit 11 in the use unit 3.
  • Main refrigerant circuit 11b In this embodiment, the condenser 25 and the first valve 21 are provided in the heat source side main refrigerant circuit 11a, and the compressor 24 and the evaporator 26 are provided in the use side main refrigerant circuit 11b.
  • the compressor 24 may be provided in the heat source side main refrigerant circuit 11a.
  • the bypass circuit 12 has a second valve 22 capable of opening control.
  • the bypass circuit 12 is connected to the main refrigerant circuit 11 (more specifically, the heat source side main refrigerant circuit 11a) so as to bypass the refrigerant discharged from the compressor 24 through the condenser 25 and the first valve 21.
  • one end of the bypass circuit 12 is connected to, for example, a refrigerant pipe connecting the discharge side of the compressor 24 and the condenser 25, and the other end of the bypass circuit 12 is connected to, for example, the first valve 21. It is connected to a refrigerant pipe connecting the evaporator 26. More specifically, as shown in FIG.
  • one end of the bypass circuit 12 is connected to a refrigerant pipe connecting the refrigerant communication pipe 4 and the condenser 25 in the heat source side main refrigerant circuit 11a.
  • the other end is connected to a refrigerant pipe connecting the first valve 21 and the refrigerant communication pipe 5 in the heat source side main refrigerant circuit 11a.
  • the compressor 24 has a function of sucking low-pressure refrigerant, compressing it, and discharging it as high-pressure refrigerant.
  • the compressor 24 is driven by a compressor motor 24M.
  • the compressor motor 24M is driven by receiving electric power via an inverter device.
  • the compressor 24 is a compressor whose operating capacity can be changed by changing the frequency (that is, the rotation speed) of the compressor motor 24M.
  • the suction side of the compressor 24 is connected to the outlet of the evaporator 26, and the discharge side of the compressor 24 is connected to the inlet of the condenser 25 via the refrigerant communication pipe 4.
  • the condenser 25 for example, a cross fin type heat exchanger constituted by a heat transfer tube and a large number of fins can be used, but is not limited thereto.
  • the condenser 25 has a function of condensing the high-pressure refrigerant using outdoor air as a heat source.
  • the outlet of the condenser 25 is connected to the utilization unit 3 (more specifically, the third valve 23) via the first valve 21, the refrigerant regulator 30, the supercooling heat exchanger 31, and the refrigerant communication pipe 5. Yes.
  • the inlet of the condenser 25 is connected to the utilization unit 3 (more specifically, the discharge side of the compressor 24) via the refrigerant communication pipe 4.
  • a cross fin type heat exchanger constituted by a heat transfer tube and a large number of fins can be used, but is not limited thereto.
  • the evaporator 26 has a function of evaporating the low-pressure refrigerant and cools indoor air.
  • the inlet of the evaporator 26 is connected to the third valve 23.
  • the outlet of the evaporator 26 is connected to the suction side of the compressor 24.
  • the first valve 21 is an electric valve (expansion valve) capable of opening control, but is not limited thereto.
  • the first valve 21 is mainly used when performing control (high pressure control) for maintaining the condensation pressure (high pressure) in a predetermined range.
  • the second valve 22 is an electric valve (expansion valve) capable of opening degree control, but is not limited thereto.
  • the second valve 22 is mainly used when performing the above-described high pressure control.
  • the main refrigerant circuit 11 has a third valve 23 capable of opening degree control.
  • the third valve 23 is an electronic expansion valve capable of opening degree control, but is not limited thereto.
  • the third valve 23 is mainly used when the refrigerant cooled in the condenser 25 of the heat source unit 2 is decompressed.
  • the third valve 23 is provided in the use side main refrigerant circuit 11 b and is connected to the heat source side main refrigerant circuit 11 a via the refrigerant communication pipe 5.
  • the main refrigerant circuit 11 includes a refrigerant regulator (receiver) 30, a supercooling heat exchanger 31, and an oil separator 32.
  • the refrigerant regulator 30 is provided on the downstream side of the condenser 25, and is configured by a container that absorbs fluctuations in the refrigerant amount in the evaporator 26 due to load fluctuations.
  • the supercooling heat exchanger 31 further cools the refrigerant liquefied in the condenser 25, and cools it below its saturation temperature.
  • the oil separator 32 is for separating a part of the refrigerating machine oil from the refrigerant discharged from the compressor 24.
  • a part of the refrigerating machine oil discharged together with the refrigerant from the compressor 24 is separated from the refrigerant in the oil separator 32 and returned to the suction side of the compressor 24 through the oil return circuit 13 provided with the capillary tube 33.
  • the third valve 23 and the oil separator 32 are provided in the use side main refrigerant circuit 11b, and the refrigerant regulator 30 and the supercooling heat exchanger 31 are provided in the heat source side main refrigerant circuit 11a.
  • the refrigerant regulator 30 and the supercooling heat exchanger 31 are provided in the heat source side main refrigerant circuit 11a.
  • the heat source unit 2 includes a heat source side fan 28 that forms an air flow to the condenser 25.
  • the heat source side fan 28 sucks outdoor air from the suction port into the heat source unit 2, exchanges heat with the refrigerant in the condenser 25 accommodated in the heat source unit 2, and then blows it out as outdoor air from the air outlet.
  • the air flow is formed.
  • the heat source side fan 28 is driven by a fan motor 28M.
  • the fan motor 28M is driven by receiving electric power via an inverter device.
  • the heat source side fan 28 can change the air volume by changing the frequency (that is, the rotation speed) of the fan motor 28M.
  • the usage unit 3 includes a usage-side fan 29 that forms an air flow to the evaporator 26.
  • the usage-side fan 29 sucks room air into the usage unit 3 from the suction port, exchanges heat with the refrigerant in the evaporator 26 accommodated in the usage unit 3, and then blows it out into the room as supply air from the blow-out port.
  • the air flow is formed.
  • the use side fan 29 is driven by a fan motor 29M.
  • the air conditioner 1 is provided with various sensors.
  • the heat source unit 2 is provided with an outdoor temperature sensor 41 that detects the temperature of outdoor air.
  • the utilization unit 3 is provided with a suction pressure sensor 42 for detecting the suction pressure of the compressor 24, a discharge pressure sensor 43 for detecting the discharge pressure of the compressor 24, and the like.
  • the air conditioner 1 includes a control unit 27 that controls the operation of the air conditioner 1.
  • the control unit 27 may be provided in the heat source unit 2, may be provided in the utilization unit 3, or may be provided in both of them.
  • the control unit 27 includes, for example, a microcomputer and a memory.
  • FIG. 2 is a control block diagram of the air conditioner 1 according to the present embodiment.
  • the control unit 27 can capture signals corresponding to state quantities (pressure value, temperature, etc.) detected by various sensors such as the sensors 41, 42, and 43. And the control part 27 controls operation
  • the control unit 27 performs a normal operation and an oil return operation of the condenser.
  • the air conditioner 1 may further perform an oil return operation of the gas pipe.
  • the normal operation and the oil return operation will be specifically described.
  • Normal operation In normal operation, the temperature of the indoor air that is the object of cooling is adjusted to a predetermined range, and the condensation pressure (high pressure) is adjusted to a predetermined range in order to maintain the reliability of the compressor 24. Specifically, in the normal operation, the control unit 27 determines that the condensing pressure is within a predetermined target high pressure range based on the high pressure in the refrigerant circuit 10 (for example, the discharge pressure of the compressor 24 detected by the discharge pressure sensor 43). The refrigerant circuit 10 is controlled to enter.
  • the refrigerant circuit 10 performs the following refrigeration cycle operation.
  • the low-pressure refrigerant is sucked into the compressor 24 of the usage unit 3 and compressed to become a high-pressure refrigerant.
  • the high-pressure refrigerant discharged from the compressor 24 is sent to the heat source unit 2 via the refrigerant communication pipe 4, and is cooled by exchanging heat with outdoor air supplied by the heat source side fan 28 in the condenser 25.
  • the high-pressure refrigerant cooled in the condenser 25 is sent to the utilization unit 3 via the first valve 21 and the refrigerant communication pipe 5.
  • the opening degree of the first valve 21 provided in the main refrigerant circuit 11 and the opening degree of the second valve 22 provided in the bypass circuit 12 are controlled as follows, for example.
  • the control unit 27 performs control to increase the opening degree of the first valve 21, reduce the opening degree of the second valve 22, or increase the air volume of the heat source side fan 28.
  • the opening degree of the first valve 21 is set to a fully open state
  • the opening degree of the second valve 22 is set to a fully closed state, for example. Not limited to this.
  • the control unit 27 performs control to reduce the opening degree of the first valve 21, increase the opening degree of the second valve 22, or reduce the air volume of the heat source side fan 28.
  • the opening degree of the first valve 21 can be reduced while the opening degree of the second valve 22 can be fully opened, but is not limited thereto. .
  • the high-pressure refrigerant sent to the usage unit 3 is reduced in pressure by the third valve 23 to become a low-pressure gas-liquid two-phase refrigerant and sent to the evaporator 26, and is supplied by the usage-side fan 29 in the evaporator 26. Heat is exchanged with air. As a result, the refrigerant evaporates into a low-pressure gas refrigerant. The low-pressure gas refrigerant heated in the evaporator 26 is again sucked into the compressor 24.
  • the oil return operation of the gas pipe for returning the refrigeration oil accumulated in the gas pipe to the compressor 24 and the refrigeration oil accumulated in the condenser 25 are returned to the compressor 24.
  • the oil return operation of the condenser is performed.
  • the operation capacity of the compressor 24 is increased and the flow rate of the refrigerant flowing through the refrigerant circuit 10 is increased. Thereby, a part or all of the refrigerating machine oil accumulated in the gas pipe can be returned to the compressor 24.
  • the control for increasing the opening degree of the first valve 21 and the second valve 22 At least one of the controls for reducing the opening is performed to increase the flow rate of the refrigerant flowing through the condenser 25.
  • the refrigerating machine oil can be returned to the compressor 24 together with the liquid refrigerant in the condenser 25.
  • the oil return operation of the gas pipe and the oil return operation of the condenser may be performed at different times or may be performed continuously. Specifically, a mode in which only the condenser oil return operation is performed independently as in Control Example 1 described later, and the oil in the condenser is immediately after the oil return operation of the gas pipe is performed as in Control Example 2 described later.
  • working can be illustrated, it is not restricted to these forms.
  • the air conditioner 1 continuously performs a cooling operation for adjusting a room to a predetermined temperature range throughout the year. Therefore, the operation of the compressor 24 is easy to be stabilized and it is easy to maintain a certain state. That is, since it is easy to maintain the state where the rotation speed of the compressor 24 is low, the refrigerating machine oil tends to accumulate particularly in the gas pipe and the condenser 25.
  • FIG. 3 is a flowchart showing a control example 1 of the air conditioner 1 according to the present embodiment. As shown in FIG. 3, in step 1, the control unit 27 controls the refrigerant circuit 10 so that a normal operation for adjusting the indoor air temperature to a predetermined temperature range is performed.
  • step S2 the control unit 27 determines whether or not a start condition for the oil return operation of the condenser is satisfied. If the start condition is not satisfied, the process returns to the process of step S1 and the normal operation is continued. If the start condition is satisfied, the process proceeds to the process of step S3 to change from the normal operation to the condenser. Switch to the oil return operation.
  • the conditions for starting the oil return operation of the condenser are conditions determined in advance in the air conditioner 1. Examples of the start condition include the following conditions (A), (B), (C), and (D), but are not limited to these, and other conditions may be employed.
  • the start condition for the oil return operation of the condenser may be, for example, one of the conditions (A), (B), (C), (D), and the conditions (A), (B) , (C), (D) may be combined.
  • (A) The amount of oil sump is equal to or greater than a predetermined reference amount
  • the opening degree of the first valve 21 is equal to or less than a predetermined reference opening degree (C)
  • the operating capacity of the compressor 24 is predetermined. The state of being below a predetermined reference value continues for a predetermined time (D)
  • the outdoor temperature is below a predetermined reference temperature
  • the reference amount of condition (A), the reference opening of condition (B), the reference value of condition (C), and the reference temperature of condition (D) are stored in the memory of the control unit 27. These criteria may be changeable by the user as needed.
  • the amount of oil pool is, for example, the amount of refrigerating machine oil contained in the refrigerant discharged from the compressor 24 and the refrigerant separated in the oil separator 32 and supplied to the compressor 24 through the oil return circuit 13. It can be obtained by integrating the returned oil return amount.
  • step S2 the control unit 27 determines whether or not the accumulated oil sum is equal to or greater than a reference value. When the oil sum is less than the reference value, the process returns to step S1 to continue normal operation. When the oil sum is equal to or greater than the reference value, the process proceeds to step S3 and the normal operation starts. Switch to condenser oil return operation.
  • step S2 the control unit 27 determines whether or not the opening degree of the first valve 21 is equal to or less than the reference opening degree. When the opening degree of the first valve 21 exceeds the reference opening degree, the process returns to step S1 to continue normal operation. When the opening degree of the first valve 21 is equal to or less than the reference opening degree, step S3 is performed. The process is switched to the normal operation and the condenser oil return operation. In addition, this condition (B) is good also as the state where the opening degree of the 1st valve 21 is below a predetermined reference opening degree continuing for the predetermined time. Thereby, the judgment precision of the necessity for oil return operation can be raised more.
  • step S2 the control unit 27 determines that the operating capacity of the compressor 24, specifically, the frequency (that is, the rotation speed) of the compressor motor 24M is equal to or less than a predetermined reference value. It is determined whether or not this state continues for a predetermined time. If the start condition is not satisfied, the process returns to the process of step S1 and the normal operation is continued. If the start condition is satisfied, the process proceeds to the process of step S3 and the condenser is changed from the normal operation to the condenser. Switch to the oil return operation.
  • step S2 the control unit 27 determines whether or not the outdoor temperature detected by the temperature sensor 41 is equal to or lower than a predetermined reference temperature. If the outdoor temperature exceeds a predetermined reference temperature, the process returns to step S1 to continue normal operation. If the outdoor temperature is equal to or lower than the predetermined reference temperature, the process of step S3 is performed. And switch from normal operation to condenser oil return operation. In addition, this condition (D) is good also as the state where the outdoor temperature is below a predetermined reference temperature for a predetermined time. Thereby, the judgment precision of the necessity for oil return operation can be raised more.
  • step S3 the control unit 27 performs the oil return operation of the condenser. Specifically, the control unit 27 returns the refrigeration oil in the condenser 25 to the compressor 24 together with the refrigerant, for example, the first valve 21 so that the opening degree of the first valve 21 is larger than that during normal operation.
  • the opening degree of the first valve 21 is not particularly limited as long as it is larger than that in the normal operation, but it is preferable that the first valve 21 is fully opened, for example.
  • FIG. 6A is a graph for explaining the fluctuation of the differential pressure across the condenser 25 in the oil return operation of the condenser.
  • step S3 as shown in FIG. 6A, when the opening of the first valve 21 is made larger than that during normal operation (for example, when the opening of the first valve 21 is fully opened), condensation occurs.
  • the amount of refrigerant flowing into the condenser 25 increases, and the refrigerant in the condenser 25 is pushed by the refrigerant that has flowed in, so the pressure HP near the inlet of the condenser 25 temporarily (instantaneously) increases.
  • the differential pressure ⁇ P across the condenser 25 that is, the difference ⁇ P between the pressure HP near the inlet of the condenser 25 and the pressure LP near the outlet of the condenser 25 temporarily increases. Since the refrigerant flow is promoted in the condenser 25 by such a differential pressure ⁇ P, the refrigerating machine oil accumulated in the condenser 25 is pushed out of the condenser 25 together with the refrigerant.
  • step S3 the opening degree of the second valve 22 in the oil return operation may be maintained as shown in FIG. 6A, and the opening degree of the second valve 22 in the normal operation may be maintained. ) May be changed so as to be smaller than the opening of the second valve 22 during normal operation.
  • the opening of the first valve 21 is reduced in the normal operation of step S1, while the second valve 22 The opening is fully open.
  • the opening degree of the first valve 21 is, for example, fully open while the opening degree of the second valve 22 is maintained, for example, in a fully open state. Is done.
  • the fluctuation range of the pressure in the condenser 25 is increased, The pressure fluctuation of the entire refrigerant circuit 10 can be suppressed.
  • the opening degree of the first valve 21 is changed to be larger than the opening degree of the first valve 21 in the normal operation step S1.
  • the opening degree of the second valve 22 is changed to be smaller than the opening degree of the second valve 22 during the normal operation in step S1 (for example, when the opening degree of the second valve 22 is fully closed).
  • the control for increasing the opening degree of the first valve 21 and the control for decreasing the opening degree of the second valve 22 may be slightly different in time, but preferably Should be done at the same time.
  • step S3 the opening degree of the second valve 22 is made smaller than that in the normal operation, while the opening degree of the first valve 21 is maintained in the normal operation state. May be.
  • the opening degree of the second valve 22 is not particularly limited as long as it is smaller than that in the normal operation.
  • the second valve 22 is fully closed, and the first valve 21 is opened. The degree is not at least fully closed.
  • step S3 when the opening degree of the second valve 22 is made smaller than that during normal operation (for example, when the opening degree of the second valve 22 is fully closed), Since the refrigerant in the condenser 25 is pushed temporarily (instantaneously), the pressure HP near the inlet of the condenser 25 temporarily (instantaneously) increases. As a result, the differential pressure ⁇ P across the condenser 25, that is, the difference ⁇ P between the pressure HP near the inlet of the condenser 25 and the pressure LP near the outlet of the condenser 25 temporarily increases. Since the refrigerant flow is promoted in the condenser 25 by such a differential pressure ⁇ P, the refrigerating machine oil accumulated in the condenser 25 is pushed out of the condenser 25 together with the refrigerant.
  • the air volume of the heat source side fan 28 in the oil return operation may be maintained so that the air volume of the heat source side fan 28 during the normal operation may be maintained, and may be changed to be smaller than the air volume of the heat source side fan 28 during the normal operation. Also good. That is, in the oil return operation of the condenser, the frequency (rotation speed) of the fan motor 28M may be changed to be smaller than the frequency (rotation speed) during normal operation.
  • the condensation pressure can be increased, so that the air volume in the normal operation is maintained. In comparison with this, a larger fluctuation of the condensation pressure can be caused. Thereby, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively.
  • step S3 the timing for reducing the air volume of the heat source side fan 28 may be before the opening degree of the first valve 21 or after the opening degree of the first valve 21 is increased. However, when the opening degree of the first valve 21 is increased, a larger fluctuation of the condensation pressure can be caused.
  • step S ⁇ b> 3 the timing for reducing the air volume of the heat source side fan 28 may be before the opening of the second valve 22 is reduced, or when the opening of the second valve 22 is reduced. However, when the opening degree of the second valve 22 is decreased, a larger fluctuation of the condensation pressure can be caused.
  • step S4 the control unit 27 determines whether or not an end condition for the oil return operation of the condenser is satisfied. If the end condition is not satisfied, the process returns to step S3 and the oil return operation is continued. If the end condition is satisfied, the process returns to step S1 and the normal operation from the oil return operation is resumed. Switch to operation.
  • the end condition of the oil return operation of the condenser is a condition predetermined in the air conditioner 1.
  • Examples of the end condition include a condition that the elapsed time from the start of the oil return operation in step S3 reaches a predetermined time, but is not limited to this, and other conditions can also be adopted.
  • FIG. 4 is a flowchart showing a control example 2 of the air conditioner 1 according to the present embodiment.
  • This control example 2 is different from the control example 1 in that not only the condenser oil return operation but also the gas pipe oil return operation is performed.
  • step S11 is the same as step S1 in the control example 1.
  • the control unit 27 determines whether a start condition for the oil return operation of the gas pipe is satisfied. If the start condition is not satisfied, the process returns to step S11 to continue the normal operation. If the start condition is satisfied, the process proceeds to step S13 and the normal operation is changed to the gas pipe. Switch to the oil return operation.
  • the start condition of the oil return operation of the gas pipe in step S12 is a condition determined in advance in the air conditioner 1.
  • Examples of conditions for starting the oil return operation of the gas pipe include the conditions (A), (B), (C), and (D) in Control Example 1, but are not limited to these, and other conditions are adopted. You can also
  • the start condition of the oil return operation of the gas pipe may be one of the conditions (A), (B), (C), (D), and the conditions (A), (B), A condition combining a plurality of (C) and (D) may be used.
  • step S13 the control unit 27 performs the oil return operation of the gas pipe.
  • the control unit 27 performs control to increase the operating capacity of the compressor 24 compared to that during normal operation in order to return the refrigeration oil in the gas pipe to the compressor 24.
  • the compressor motor 24M is driven so that the frequency (that is, the rotation speed) of the compressor motor 24M is larger than that in the normal operation.
  • the amount of refrigerant circulating in the refrigerant circuit 10 increases, so that part or all of the refrigerating machine oil adhering to the inner surface of the gas pipe is returned to the compressor 24.
  • step S14 the control part 27 determines whether the completion
  • the end condition of the oil return operation of the gas pipe is a condition determined in advance in the air conditioner 1.
  • Examples of the end condition include a condition that the elapsed time from the start of the oil return operation in step S13 reaches a predetermined time, but is not limited to this, and other conditions can also be adopted.
  • step S15 the control unit 27 performs the oil return operation of the condenser.
  • the operation capacity of the compressor 24 in the oil return operation of the condenser in step S15 may be changed from the operation capacity of the compressor 24 in the oil return operation of the gas pipe in step S13, but the compression in the oil return operation of the gas pipe The operating capacity of the machine 24 is preferably maintained.
  • Step S15 of Control Example 2 the oil return operation of the condenser is performed in the same manner as Step S3 of Control Example 1.
  • Step S16 of Control Example 2 is the same as Step S4 of Control Example 1, detailed description thereof is omitted.
  • the condensation pressure may fluctuate from the condensation pressure during the normal operation. Therefore, the oil return operation of the condenser is preferably completed in a short time. Therefore, when the condition that the elapsed time from the start of the oil return operation reaches a predetermined time is adopted as the end condition of the oil return operation of the condenser in step S16, the operation of the oil return operation of the condenser is adopted.
  • the time is preferably set shorter than the operation time of the oil return operation of the gas pipe.
  • the condensation pressure in normal operation, is adjusted to a predetermined value by adjusting at least one of the opening degree of the first valve 21, the opening degree of the second valve 22, and the air volume of the fan 28. Can be adjusted to range. Further, for example, when the temperature of the outside air is low, such as in winter, the capacity of the condenser may become excessive. In this case, in normal operation, for example, the opening degree of the first valve 21 may be reduced, The capacity of the condenser 25 is reduced by increasing the opening degree of the two valves 22 or by reducing the air volume of the fan 28, and the liquid refrigerant is stored in the condenser 25. Thereby, the condensation pressure can be adjusted to a predetermined range.
  • the refrigeration oil is accumulated in the condenser 25 in a state of being dissolved in the liquid refrigerant accumulated in the condenser 25.
  • the differential pressure across the condenser 25 the difference between the pressure near the inlet of the condenser 25 and the pressure near the outlet of the condenser 25
  • the refrigerant and the refrigerating machine oil do not circulate and accumulate in the flow path.
  • control unit 27 controls the first valve 21 so that the opening degree of the first valve 21 is fully opened in the oil return operation of the condenser.
  • the control unit 27 controls the first valve 21 so that the opening degree of the first valve 21 is fully opened in the oil return operation of the condenser.
  • the control unit 27 performs an oil return operation of the gas pipe that increases the operating capacity of the compressor 24 and returns the refrigeration oil accumulated in the gas pipe of the main refrigerant circuit 11 to the compressor 24.
  • the refrigeration oil may adhere to the inner surface of the gas pipe and accumulate, but by performing an oil return operation of the gas pipe that increases the operating capacity of the compressor 24, The refrigerating machine oil accumulated in can be returned to the compressor 24.
  • control unit 27 performs the oil return operation of the condenser while maintaining the operation capacity of the compressor 24 after performing the oil return operation of the gas pipe.
  • the operation capacity of the compressor 24 raised in the oil return operation of the gas pipe is maintained, that is, the refrigerant circulation amount in the refrigerant circuit is increased, the oil return operation of the condenser is performed.
  • the amount of refrigerant flowing through the condenser 25 in the oil return operation of the vessel can be increased. Thereby, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively.
  • the opening degree control of the first valve 21 and the second valve 22 may be performed.
  • the condensation pressure can be increased. Therefore, in the configuration in which the opening degree control of at least one of the first valve 21 and the second valve 22 and the air volume control of the fan 28 are performed, a larger variation in the condensation pressure occurs than in the case where only the valve opening degree control is performed. Can be made. Thereby, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively.
  • the condenser 25 is a heat exchanger that exchanges heat between the refrigerant and the outdoor air. It may be a heat exchanger of the type. That is, as shown in FIG. 5, the water-cooled condenser 25 includes a refrigerant passage and a water passage. Circulating water (cooling water) that flows into the water passage through the water pipe 25a is configured to flow out into the water pipe 25b after exchanging heat with the refrigerant.
  • the control unit 27 may perform control to reduce the flow rate of the cooling water flowing into the condenser 25.
  • control which enlarges the opening degree of the 1st valve 21 was illustrated so that the opening degree of the 1st valve 21 might be in a fully open state in the oil return operation
  • movement of a condenser it is not restricted to this.
  • control may be performed to increase the opening degree of the first valve 21 so that the opening degree of the first valve 21 is smaller than the fully opened state.
  • the oil return operation of the condenser is performed in a state where the operation capacity of the compressor 24 is maintained, but the present invention is not limited to this.
  • the oil return operation of the condenser may be performed after the operation capacity of the compressor 24 is changed after the oil return operation of the gas pipe. Further, the oil return operation of the gas pipe may be performed after the oil return operation of the condenser.
  • the air conditioner 1 may include a plurality of refrigerant circuit systems. That is, the present invention can be applied to an air conditioner including a plurality of vapor compression refrigerant circuit systems each having a compressor, a condenser, an expansion mechanism, and an evaporator.
  • the refrigerant circuit 10 may be provided with a plurality of compressors.
  • the air conditioner 1 is a so-called remote condenser type in which the compressor 24 is provided in the use unit 3, but may be a type in which the compressor 24 is provided in the heat source unit 2.
  • the air conditioner of the present embodiment is a dedicated refrigerant air conditioner including a main refrigerant circuit, a bypass circuit, a fan, and a control unit.
  • the main refrigerant circuit includes a compressor, a condenser, a first valve capable of opening degree control, and an evaporator.
  • the bypass circuit has a second valve capable of opening control.
  • the bypass circuit is connected to the main refrigerant circuit so that the refrigerant discharged from the compressor bypasses the condenser and the first valve.
  • the fan creates an air flow to the condenser.
  • the control unit controls the compressor, the first valve, the second valve, and the fan.
  • the control unit performs a normal operation and an oil return operation of the condenser.
  • the condensation pressure is adjusted by adjusting at least one of the opening degree of the first valve, the opening degree of the second valve, and the air volume of the fan.
  • the oil return operation of the condenser when a predetermined condition is satisfied, at least one of control for increasing the opening degree of the first valve and control for reducing the opening degree of the second valve is performed.
  • the refrigerator oil in the condenser is returned to the compressor together with the refrigerant.
  • the condensation pressure in normal operation, at least one of the opening degree of the first valve, the opening degree of the second valve, and the air volume of the fan is adjusted to condense pressure (pressure on the high pressure side in the refrigerant circuit.
  • high pressure pressure pressure on the high pressure side in the refrigerant circuit.
  • the condensation pressure can be adjusted to a predetermined range.
  • the opening degree of the first valve is reduced or the second valve is opened.
  • the capacity of the condenser is reduced by increasing the opening of the valve or reducing the air volume of the fan, and liquid refrigerant is stored in the condenser.
  • the condensation pressure can be adjusted to a predetermined range (a range of a predetermined target high pressure).
  • the refrigerating machine oil is accumulated in the liquid refrigerant accumulated in the condenser. Even if the refrigeration oil accumulates in the condenser in this way, at least one of control for increasing the opening degree of the first valve and control for reducing the opening degree of the second valve if a predetermined condition is satisfied.
  • An oil return operation of the condenser is performed in which the refrigerating machine oil accumulated in the condenser is returned to the compressor together with the refrigerant.
  • the control unit controls the first valve so that the opening degree of the first valve is fully opened in the oil return operation of the condenser.
  • the control unit controls the first valve so that the opening degree of the first valve is fully opened in the oil return operation of the condenser.
  • the control unit preferably performs an oil return operation of the gas pipe that increases the operating capacity of the compressor and returns the refrigeration oil accumulated in the gas pipe of the main refrigerant circuit to the compressor.
  • refrigeration oil may adhere to the inner surface of the gas pipe and accumulate, but by performing an oil return operation of the gas pipe that increases the operating capacity of the compressor, The accumulated refrigeration oil can be returned to the compressor.
  • the control unit preferably performs the oil return operation of the condenser in a state where the operation capacity of the compressor is maintained after performing the oil return operation of the gas pipe.
  • the oil return operation of the condenser is performed in a state in which the operating capacity of the compressor raised in the oil return operation of the gas pipe is maintained, that is, in a state where the refrigerant circulation amount in the refrigerant circuit is increased.
  • the amount of refrigerant flowing through the condenser can be increased. Thereby, the refrigerating machine oil collected in the condenser can be pushed out of the condenser more effectively.
  • the predetermined condition includes, for example, a condition that an oil sump amount is equal to or more than a predetermined reference amount.
  • the amount of oil sump and the degree of refrigeration oil shortage in the compressor are related to each other. Therefore, the oil return operation of the condenser is more reliably performed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-mentioned condition regarding the oil sump amount as in this configuration. Can do.
  • the predetermined condition includes, for example, a condition that an opening degree of the first valve is equal to or less than a predetermined reference opening degree.
  • a predetermined reference opening degree When the opening degree of the first valve is equal to or less than a predetermined reference opening degree, the refrigerating machine oil tends to accumulate in the condenser. Further, when the opening degree of the first valve is equal to or less than a predetermined reference opening degree, the fluctuation range (the opening degree increase amount) of the first valve can be increased in the oil return operation of the condenser. .
  • the oil return operation of the condenser is more reliably performed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-described condition relating to the opening degree of the first valve as in this configuration.
  • the predetermined condition includes, for example, a condition that an outdoor temperature is equal to or lower than a predetermined reference temperature.
  • a predetermined reference temperature When the temperature of the outside air is low, the refrigerant is stored in the condenser during normal operation and the condensation pressure is adjusted to a predetermined range, so that the amount of oil pool increases. Therefore, the oil return operation of the condenser is more reliably executed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-described conditions relating to the outdoor air temperature as in this configuration. Can do.
  • the predetermined condition includes, for example, a condition that a state where the operation capacity of the compressor is equal to or less than a predetermined reference value continues for a predetermined time.
  • the motor of the compressor is operated at a low frequency (number of rotations)
  • the amount of refrigerant circulating through the refrigerant circuit is small, so that the refrigerating machine oil is difficult to be pushed out of the condenser and tends to accumulate in the condenser. Therefore, the oil return operation of the condenser is more reliably executed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-described conditions regarding the operation capacity of the compressor as in this configuration. can do.
  • the control unit may perform control to reduce the air volume of the fan in the oil return operation of the condenser.
  • the control unit may perform control to reduce the air volume of the fan in the oil return operation of the condenser.
  • the opening control of the first valve and the second valve not only the opening control of the first valve and the second valve but also the control for reducing the air volume of the fan is performed.
  • the condensation pressure can be increased by reducing the fan air volume. Therefore, in the configuration in which the opening degree control of at least one of the first valve and the second valve and the air volume control of the fan are performed, a larger fluctuation of the condensation pressure can be generated than in the case of performing only the opening degree control of the valve. it can. Thereby, the refrigerating machine oil collected in the condenser can be pushed out of the condenser more effectively.
  • the condenser may be a water-cooled heat exchanger, and the control unit may perform control to reduce a flow rate of water flowing into the condenser in an oil return operation of the condenser. .
  • the control unit may perform control to reduce a flow rate of water flowing into the condenser in an oil return operation of the condenser.
  • the control unit may perform control to reduce a flow rate of water flowing into the condenser in an oil return operation of the condenser.
  • the condensation pressure can be increased by reducing the flow rate of the water flowing into the condenser. Therefore, in the configuration in which the opening degree control of at least one of the first valve and the second valve and the flow rate control of water are performed, a larger fluctuation of the condensation pressure can be generated than in the case of performing only the opening degree control of the valve. it can. Thereby, the refrigerating machine oil collected in the condenser can be pushed out of the condenser more effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The air conditioner (1) is an air conditioner dedicated to cooling. A controller (27) of the air conditioner (1) performs: a normal operation wherein the condensing pressure is adjusted by adjusting at least one among the opening degree of a first valve (21), the opening degree of a second valve (22), and the airflow of a fan (28); and a condenser oil return operation wherein a refrigerating oil inside a condenser (25) is returned along with a refrigerant to a compressor (24) by performing at least one among control for increasing the opening degree of the first valve (21) and control for reducing the opening degree of the second valve (22), when a predetermined condition is met.

Description

空気調和機Air conditioner
 本発明は、例えば電算機室などにおいて用いられる冷房専用の空気調和機に関する。 The present invention relates to a cooling-only air conditioner used in a computer room, for example.
 従来、例えば電算機室などにおいて用いられる空気調和機が知られている。この種の空気調和機は、年間を通して冷房運転を行うので、圧縮機、凝縮器、膨張機構及び蒸発器がこの順に接続された冷房専用の冷媒回路を備えている(例えば特許文献1)。この種の冷媒回路において、外気の温度が低いとき(例えば冬季)には、凝縮器の能力が過剰になることがある。 Conventionally, air conditioners used in, for example, computer rooms are known. Since this type of air conditioner performs cooling operation throughout the year, the air conditioner includes a cooling-only refrigerant circuit in which a compressor, a condenser, an expansion mechanism, and an evaporator are connected in this order (for example, Patent Document 1). In this type of refrigerant circuit, when the temperature of the outside air is low (for example, in winter), the capacity of the condenser may become excessive.
 そこで、凝縮器の能力を調節するために、空気調和機において、バイパス回路をさらに設けることが考えられる。このバイパス回路は、開度制御が可能な電動弁を有し、圧縮機から吐出された冷媒を凝縮器をバイパスして蒸発器に送る回路である。そして、外気の温度が低いときに、電動弁の開度を大きくしたり、ファンの風量を小さくしたりすることにより、凝縮器に冷媒を溜めて凝縮器の能力を低くし、凝縮圧力(冷媒回路における高圧側の圧力)を所定の範囲に維持するという手段が考えられる。 Therefore, in order to adjust the capacity of the condenser, it is conceivable to further provide a bypass circuit in the air conditioner. This bypass circuit is a circuit that has an electric valve capable of controlling the opening degree, and sends the refrigerant discharged from the compressor to the evaporator, bypassing the condenser. When the temperature of the outside air is low, by increasing the opening of the motor-operated valve or decreasing the fan air volume, the refrigerant is stored in the condenser to reduce the capacity of the condenser, and the condensation pressure (refrigerant A means of maintaining the high pressure side pressure in the circuit in a predetermined range is conceivable.
 しかしながら、冷房専用の空気調和機において、冬季などのように外気の温度が低いときに上記のように凝縮器に冷媒を溜める運転を行うと、圧縮機の冷凍機油が凝縮器において冷媒に溶け込んで溜まる場合がある。 However, in an air conditioner dedicated to cooling, when the operation of storing the refrigerant in the condenser is performed as described above when the temperature of the outside air is low, such as in winter, the refrigerator oil of the compressor is dissolved in the refrigerant in the condenser. May accumulate.
特開2008-076001号公報JP 2008-076001 A
 本発明の目的は、冷房専用の空気調和機において、凝縮器内に溜まった冷凍機油を効果的に圧縮機に戻すことである。 An object of the present invention is to effectively return the refrigeration oil accumulated in the condenser to the compressor in an air conditioner dedicated to cooling.
 本発明の空気調和機は、主冷媒回路と、バイパス回路と、ファンと、制御部とを備える冷媒専用の空気調和機である。前記主冷媒回路は、圧縮機、凝縮器、開度制御が可能な第1弁及び蒸発器を有する。前記バイパス回路は、開度制御が可能な第2弁を有する。前記バイパス回路は、前記圧縮機から吐出された冷媒を前記凝縮器及び前記第1弁をバイパスするように前記主冷媒回路に接続されている。前記ファンは、前記凝縮器への空気の流れを形成する。前記制御部は、前記圧縮機、前記第1弁、前記第2弁及び前記ファンを制御する。前記制御部は、通常運転と、凝縮器の油戻し運転とを行う。前記通常運転では、前記第1弁の開度、前記第2弁の開度及び前記ファンの風量の少なくとも1つを調節して凝縮圧力を調節する。前記凝縮器の油戻し運転では、予め定められた条件が満たされると、前記第1弁の開度を大きくする制御及び前記第2弁の開度を小さくする制御の少なくとも一方の制御を行って前記凝縮器内の冷凍機油を冷媒とともに前記圧縮機に戻す。 The air conditioner according to the present invention is an air conditioner dedicated to a refrigerant including a main refrigerant circuit, a bypass circuit, a fan, and a control unit. The main refrigerant circuit includes a compressor, a condenser, a first valve capable of opening degree control, and an evaporator. The bypass circuit has a second valve capable of opening control. The bypass circuit is connected to the main refrigerant circuit so that the refrigerant discharged from the compressor bypasses the condenser and the first valve. The fan creates an air flow to the condenser. The control unit controls the compressor, the first valve, the second valve, and the fan. The control unit performs a normal operation and an oil return operation of the condenser. In the normal operation, the condensation pressure is adjusted by adjusting at least one of the opening degree of the first valve, the opening degree of the second valve, and the air volume of the fan. In the oil return operation of the condenser, when a predetermined condition is satisfied, at least one of control for increasing the opening degree of the first valve and control for reducing the opening degree of the second valve is performed. The refrigerator oil in the condenser is returned to the compressor together with the refrigerant.
本発明の一実施形態に係る空気調和機の概略構成図である。1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention. 前記実施形態に係る空気調和機における制御ブロック図である。It is a control block diagram in the air conditioner according to the embodiment. 前記実施形態に係る空気調和機の制御例1を示すフローチャートである。It is a flowchart which shows the control example 1 of the air conditioner which concerns on the said embodiment. 前記実施形態に係る空気調和機の制御例2を示すフローチャートである。It is a flowchart which shows the control example 2 of the air conditioner which concerns on the said embodiment. 前記実施形態の変形例に係る空気調和機の概略構成図である。It is a schematic block diagram of the air conditioner which concerns on the modification of the said embodiment. (A)~(C)は、凝縮器の油戻し運転における凝縮器の前後差圧の変動を説明するためのグラフである。(A) to (C) are graphs for explaining fluctuations in the differential pressure across the condenser in the oil return operation of the condenser.
 以下、本発明の一実施形態に係る空気調和機について図面を参照して説明する。 Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings.
 [空気調和機の構成]
 図1に示すように、本実施形態に係る空気調和機1は冷媒専用の空気調和機である。空気調和機1は、冷媒回路10を備え、蒸気圧縮式の冷凍サイクル運転を行うことによって室内の冷房を行う。冷房の対象が例えばサーバルームなどの電算機室である場合には、空気調和機1は、室内を所定の温度範囲に調節する冷房運転を、年間を通じて連続して行う。
[Configuration of air conditioner]
As shown in FIG. 1, the air conditioner 1 which concerns on this embodiment is an air conditioner only for a refrigerant | coolant. The air conditioner 1 includes a refrigerant circuit 10 and cools the room by performing a vapor compression refrigeration cycle operation. When the object of cooling is a computer room such as a server room, for example, the air conditioner 1 continuously performs a cooling operation for adjusting the room to a predetermined temperature range throughout the year.
 本実施形態に係る空気調和機1は、室外に設置される熱源ユニット(室外ユニット)2と、室内に設置される利用ユニット(室内ユニット)3と、これらのユニットを接続する冷媒連絡管4,5とを備えている。冷媒回路10は、主冷媒回路11と、バイパス回路12とを含む。 An air conditioner 1 according to this embodiment includes a heat source unit (outdoor unit) 2 installed outdoors, a utilization unit (indoor unit) 3 installed indoors, and a refrigerant communication tube 4 that connects these units. And 5. The refrigerant circuit 10 includes a main refrigerant circuit 11 and a bypass circuit 12.
 主冷媒回路11は、圧縮機24、凝縮器25、開度制御が可能な第1弁21及び蒸発器26を有する。主冷媒回路11は、熱源ユニット2に設けられて主冷媒回路11の一部を構成する熱源側主冷媒回路11aと、利用ユニット3に設けられて主冷媒回路11の一部を構成する利用側主冷媒回路11bとを含む。本実施形態では、凝縮器25及び第1弁21は、熱源側主冷媒回路11aに設けられており、圧縮機24及び蒸発器26は、利用側主冷媒回路11bに設けられているが、これに限られない。例えば、圧縮機24は、熱源側主冷媒回路11aに設けられていてもよい。 The main refrigerant circuit 11 includes a compressor 24, a condenser 25, a first valve 21 capable of controlling the opening degree, and an evaporator 26. The main refrigerant circuit 11 is provided in the heat source unit 2 and forms a part of the main refrigerant circuit 11, and the heat source side main refrigerant circuit 11 a that forms a part of the main refrigerant circuit 11 and the use side that forms a part of the main refrigerant circuit 11 in the use unit 3. Main refrigerant circuit 11b. In this embodiment, the condenser 25 and the first valve 21 are provided in the heat source side main refrigerant circuit 11a, and the compressor 24 and the evaporator 26 are provided in the use side main refrigerant circuit 11b. Not limited to. For example, the compressor 24 may be provided in the heat source side main refrigerant circuit 11a.
 バイパス回路12は、開度制御が可能な第2弁22を有する。バイパス回路12は、圧縮機24から吐出された冷媒を凝縮器25及び第1弁21をバイパスするように主冷媒回路11(より具体的には、熱源側主冷媒回路11a)に接続されている。具体的には、バイパス回路12の一端は、例えば、圧縮機24の吐出側と凝縮器25とをつなぐ冷媒配管に接続されており、バイパス回路12の他端は、例えば、第1弁21と蒸発器26とをつなぐ冷媒配管に接続されている。より具体的には、図1に示すように、バイパス回路12の一端は、熱源側主冷媒回路11aにおいて冷媒連絡管4と凝縮器25とをつなぐ冷媒配管に接続されており、バイパス回路12の他端は、熱源側主冷媒回路11aにおいて第1弁21と冷媒連絡管5とをつなぐ冷媒配管に接続されている。 The bypass circuit 12 has a second valve 22 capable of opening control. The bypass circuit 12 is connected to the main refrigerant circuit 11 (more specifically, the heat source side main refrigerant circuit 11a) so as to bypass the refrigerant discharged from the compressor 24 through the condenser 25 and the first valve 21. . Specifically, one end of the bypass circuit 12 is connected to, for example, a refrigerant pipe connecting the discharge side of the compressor 24 and the condenser 25, and the other end of the bypass circuit 12 is connected to, for example, the first valve 21. It is connected to a refrigerant pipe connecting the evaporator 26. More specifically, as shown in FIG. 1, one end of the bypass circuit 12 is connected to a refrigerant pipe connecting the refrigerant communication pipe 4 and the condenser 25 in the heat source side main refrigerant circuit 11a. The other end is connected to a refrigerant pipe connecting the first valve 21 and the refrigerant communication pipe 5 in the heat source side main refrigerant circuit 11a.
 圧縮機24は、低圧冷媒を吸入し、圧縮して高圧冷媒として吐出する機能を有する。圧縮機24は、圧縮機用モータ24Mによって駆動される。圧縮機用モータ24Mは、インバータ装置を介して電力の供給を受けて駆動される。圧縮機24は、圧縮機用モータ24Mの周波数(すなわち、回転数)を変えることによって、運転容量を変えることが可能な圧縮機である。圧縮機24の吸入側は、蒸発器26の出口に接続されており、圧縮機24の吐出側は、冷媒連絡管4を介して凝縮器25の入口に接続されている。 The compressor 24 has a function of sucking low-pressure refrigerant, compressing it, and discharging it as high-pressure refrigerant. The compressor 24 is driven by a compressor motor 24M. The compressor motor 24M is driven by receiving electric power via an inverter device. The compressor 24 is a compressor whose operating capacity can be changed by changing the frequency (that is, the rotation speed) of the compressor motor 24M. The suction side of the compressor 24 is connected to the outlet of the evaporator 26, and the discharge side of the compressor 24 is connected to the inlet of the condenser 25 via the refrigerant communication pipe 4.
 凝縮器25としては、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式の熱交換器を用いることができるが、これに限られない。凝縮器25は、室外空気を熱源として、高圧冷媒を凝縮する機能を有する。凝縮器25の出口は、第1弁21、冷媒調整器30、過冷却用熱交換器31及び冷媒連絡管5を介して利用ユニット3(より具体的には第3弁23)に接続されている。凝縮器25の入口は、冷媒連絡管4を介して利用ユニット3(より具体的には、圧縮機24の吐出側)に接続されている。 As the condenser 25, for example, a cross fin type heat exchanger constituted by a heat transfer tube and a large number of fins can be used, but is not limited thereto. The condenser 25 has a function of condensing the high-pressure refrigerant using outdoor air as a heat source. The outlet of the condenser 25 is connected to the utilization unit 3 (more specifically, the third valve 23) via the first valve 21, the refrigerant regulator 30, the supercooling heat exchanger 31, and the refrigerant communication pipe 5. Yes. The inlet of the condenser 25 is connected to the utilization unit 3 (more specifically, the discharge side of the compressor 24) via the refrigerant communication pipe 4.
 蒸発器26としては、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式の熱交換器を用いることができるが、これに限られない。蒸発器26は、低圧冷媒を蒸発させる機能を有し、室内空気を冷却する。蒸発器26の入口は、第3弁23に接続されている。蒸発器26の出口は、圧縮機24の吸入側に接続されている。 As the evaporator 26, for example, a cross fin type heat exchanger constituted by a heat transfer tube and a large number of fins can be used, but is not limited thereto. The evaporator 26 has a function of evaporating the low-pressure refrigerant and cools indoor air. The inlet of the evaporator 26 is connected to the third valve 23. The outlet of the evaporator 26 is connected to the suction side of the compressor 24.
 本実施形態では、第1弁21は、開度制御が可能な電動弁(膨張弁)であるが、これに限られない。第1弁21は、主として、凝縮圧力(高圧圧力)を所定の範囲に維持する制御(高圧制御)を行う際に使用される。第2弁22は、開度制御が可能な電動弁(膨張弁)であるが、これに限られない。第2弁22は、主として、上記の高圧制御を行う際に使用される。本実施形態では、主冷媒回路11は、開度制御が可能な第3弁23を有する。第3弁23は、開度制御が可能な電子膨張弁であるが、これに限られない。第3弁23は、主として、熱源ユニット2の凝縮器25において冷却された冷媒の減圧を行う際に使用される。第3弁23は、利用側主冷媒回路11bに設けられており、冷媒連絡管5を介して熱源側主冷媒回路11aに接続されている。 In the present embodiment, the first valve 21 is an electric valve (expansion valve) capable of opening control, but is not limited thereto. The first valve 21 is mainly used when performing control (high pressure control) for maintaining the condensation pressure (high pressure) in a predetermined range. The second valve 22 is an electric valve (expansion valve) capable of opening degree control, but is not limited thereto. The second valve 22 is mainly used when performing the above-described high pressure control. In the present embodiment, the main refrigerant circuit 11 has a third valve 23 capable of opening degree control. The third valve 23 is an electronic expansion valve capable of opening degree control, but is not limited thereto. The third valve 23 is mainly used when the refrigerant cooled in the condenser 25 of the heat source unit 2 is decompressed. The third valve 23 is provided in the use side main refrigerant circuit 11 b and is connected to the heat source side main refrigerant circuit 11 a via the refrigerant communication pipe 5.
 また、本実施形態では、主冷媒回路11は、冷媒調整器(レシーバ)30と、過冷却用熱交換器31と、油分離器32とを有する。冷媒調整器30は、凝縮器25の下流側に設けられ、負荷変動による蒸発器26内の冷媒量の変動を吸収する容器によって構成されている。過冷却用熱交換器31は、凝縮器25において液化した冷媒をさらに冷却し、その飽和温度以下に冷却する。油分離器32は、圧縮機24から吐出された冷媒から冷凍機油の一部を分離するためのものである。圧縮機24から冷媒とともに吐出された冷凍機油の一部は、油分離器32において冷媒と分離され、キャピラリーチューブ33が設けられた返油回路13を通じて圧縮機24の吸入側に戻される。本実施形態では、第3弁23及び油分離器32は、利用側主冷媒回路11bに設けられており、冷媒調整器30及び過冷却用熱交換器31は、熱源側主冷媒回路11aに設けられているが、これに限られない。 In the present embodiment, the main refrigerant circuit 11 includes a refrigerant regulator (receiver) 30, a supercooling heat exchanger 31, and an oil separator 32. The refrigerant regulator 30 is provided on the downstream side of the condenser 25, and is configured by a container that absorbs fluctuations in the refrigerant amount in the evaporator 26 due to load fluctuations. The supercooling heat exchanger 31 further cools the refrigerant liquefied in the condenser 25, and cools it below its saturation temperature. The oil separator 32 is for separating a part of the refrigerating machine oil from the refrigerant discharged from the compressor 24. A part of the refrigerating machine oil discharged together with the refrigerant from the compressor 24 is separated from the refrigerant in the oil separator 32 and returned to the suction side of the compressor 24 through the oil return circuit 13 provided with the capillary tube 33. In the present embodiment, the third valve 23 and the oil separator 32 are provided in the use side main refrigerant circuit 11b, and the refrigerant regulator 30 and the supercooling heat exchanger 31 are provided in the heat source side main refrigerant circuit 11a. However, it is not limited to this.
 熱源ユニット2は、凝縮器25への空気の流れを形成する熱源側ファン28を備える。熱源側ファン28は、熱源ユニット2内に吸入口から室外空気を吸入して、熱源ユニット2内に収容された凝縮器25において冷媒と熱交換させた後に、吹出口から排出空気として室外に吹き出すという空気の流れを形成する。この熱源側ファン28は、ファン用モータ28Mによって駆動される。本実施形態において、ファン用モータ28Mは、インバータ装置を介して電力の供給を受けて駆動される。熱源側ファン28は、ファン用モータ28Mの周波数(すなわち、回転数)を変えることによって風量を変えることが可能である。 The heat source unit 2 includes a heat source side fan 28 that forms an air flow to the condenser 25. The heat source side fan 28 sucks outdoor air from the suction port into the heat source unit 2, exchanges heat with the refrigerant in the condenser 25 accommodated in the heat source unit 2, and then blows it out as outdoor air from the air outlet. The air flow is formed. The heat source side fan 28 is driven by a fan motor 28M. In the present embodiment, the fan motor 28M is driven by receiving electric power via an inverter device. The heat source side fan 28 can change the air volume by changing the frequency (that is, the rotation speed) of the fan motor 28M.
 利用ユニット3は、蒸発器26への空気の流れを形成する利用側ファン29を備える。利用側ファン29は、利用ユニット3内に吸入口から室内空気を吸入して、利用ユニット3内に収容された蒸発器26において冷媒と熱交換させた後に、吹出口から供給空気として室内に吹き出すという空気の流れを形成する。この利用側ファン29は、ファン用モータ29Mによって駆動される。 The usage unit 3 includes a usage-side fan 29 that forms an air flow to the evaporator 26. The usage-side fan 29 sucks room air into the usage unit 3 from the suction port, exchanges heat with the refrigerant in the evaporator 26 accommodated in the usage unit 3, and then blows it out into the room as supply air from the blow-out port. The air flow is formed. The use side fan 29 is driven by a fan motor 29M.
 空気調和機1には、各種のセンサが設けられている。例えば、熱源ユニット2には、室外空気の温度を検知する室外温度センサ41などが設けられている。また、利用ユニット3には、圧縮機24の吸入圧力を検出する吸入圧力センサ42、圧縮機24の吐出圧力を検出する吐出圧力センサ43などが設けられている。 The air conditioner 1 is provided with various sensors. For example, the heat source unit 2 is provided with an outdoor temperature sensor 41 that detects the temperature of outdoor air. Further, the utilization unit 3 is provided with a suction pressure sensor 42 for detecting the suction pressure of the compressor 24, a discharge pressure sensor 43 for detecting the discharge pressure of the compressor 24, and the like.
 空気調和機1は、空気調和機1の運転を制御する制御部27を備える。制御部27は、熱源ユニット2に設けられていてもよく、利用ユニット3に設けられていてもよく、また、これらの両方に設けられていてもよい。制御部27は、例えばマイクロコンピュータ、メモリなどを有している。 The air conditioner 1 includes a control unit 27 that controls the operation of the air conditioner 1. The control unit 27 may be provided in the heat source unit 2, may be provided in the utilization unit 3, or may be provided in both of them. The control unit 27 includes, for example, a microcomputer and a memory.
 図2は、本実施形態に係る空気調和機1における制御ブロック図である。制御部27は、センサ41,42,43などの各種センサが検知した状態量(圧力値、温度など)に対応する信号を取り込むことができるようになっている。そして、制御部27は、これらの信号に基づいて、圧縮機24、第1弁21、第2弁22、第3弁23、熱源側ファン28、利用側ファン29などの動作を制御する。 FIG. 2 is a control block diagram of the air conditioner 1 according to the present embodiment. The control unit 27 can capture signals corresponding to state quantities (pressure value, temperature, etc.) detected by various sensors such as the sensors 41, 42, and 43. And the control part 27 controls operation | movement of the compressor 24, the 1st valve 21, the 2nd valve 22, the 3rd valve 23, the heat-source side fan 28, the utilization side fan 29, etc. based on these signals.
 [空気調和機の動作]
 本実施形態に係る空気調和機1では、制御部27は、通常運転と、凝縮器の油戻し運転とを行う。また、空気調和機1は、ガス管の油戻し運転をさらに行ってもよい。以下では、通常運転及び油戻し運転について具体的に説明する。
[Air conditioner operation]
In the air conditioner 1 according to the present embodiment, the control unit 27 performs a normal operation and an oil return operation of the condenser. The air conditioner 1 may further perform an oil return operation of the gas pipe. Hereinafter, the normal operation and the oil return operation will be specifically described.
 (通常運転)
 通常運転では、冷房の対象である室内空気の温度が所定の範囲に調節されるとともに、圧縮機24の信頼性を維持するために凝縮圧力(高圧圧力)が所定の範囲に調節される。具体的に、通常運転では、制御部27は、冷媒回路10における高圧圧力(例えば吐出圧力センサ43により検出される圧縮機24の吐出圧力)に基づいて、凝縮圧力が所定の目標高圧圧力の範囲に入るように、冷媒回路10を制御する。
(Normal operation)
In normal operation, the temperature of the indoor air that is the object of cooling is adjusted to a predetermined range, and the condensation pressure (high pressure) is adjusted to a predetermined range in order to maintain the reliability of the compressor 24. Specifically, in the normal operation, the control unit 27 determines that the condensing pressure is within a predetermined target high pressure range based on the high pressure in the refrigerant circuit 10 (for example, the discharge pressure of the compressor 24 detected by the discharge pressure sensor 43). The refrigerant circuit 10 is controlled to enter.
 通常運転において、圧縮機24、熱源側ファン28、利用側ファン29などが起動されると、冷媒回路10においては、以下のような冷凍サイクル運転が行われる。まず、低圧冷媒は、利用ユニット3の圧縮機24に吸入されて圧縮され、高圧冷媒となる。圧縮機24から吐出された高圧冷媒は、冷媒連絡管4を経由して熱源ユニット2に送られ、凝縮器25において、熱源側ファン28によって供給される室外空気と熱交換して冷却される。そして、凝縮器25において冷却された高圧冷媒は、第1弁21及び冷媒連絡管5を経由して利用ユニット3に送られる。このとき、主冷媒回路11に設けられた第1弁21の開度及びバイパス回路12に設けられた第2弁22の開度は、例えば次のように制御される。 In normal operation, when the compressor 24, the heat source side fan 28, the use side fan 29, etc. are started, the refrigerant circuit 10 performs the following refrigeration cycle operation. First, the low-pressure refrigerant is sucked into the compressor 24 of the usage unit 3 and compressed to become a high-pressure refrigerant. The high-pressure refrigerant discharged from the compressor 24 is sent to the heat source unit 2 via the refrigerant communication pipe 4, and is cooled by exchanging heat with outdoor air supplied by the heat source side fan 28 in the condenser 25. Then, the high-pressure refrigerant cooled in the condenser 25 is sent to the utilization unit 3 via the first valve 21 and the refrigerant communication pipe 5. At this time, the opening degree of the first valve 21 provided in the main refrigerant circuit 11 and the opening degree of the second valve 22 provided in the bypass circuit 12 are controlled as follows, for example.
 外気の温度が比較的高いときに通常運転を行う場合には、冷房運転の負荷が大きいので、凝縮器25の能力を大きくする必要がある。この場合、制御部27は、例えば、第1弁21の開度を大きくしたり、第2弁22の開度を小さくしたり、熱源側ファン28の風量を多くしたりする制御を行う。具体的に、冷房運転の負荷が大きいときには、第1弁21の開度が例えば全開状態とされる一方で、第2弁22の開度が例えば全閉状態とされるという制御を例示できるが、これに限られない。 When performing normal operation when the temperature of the outside air is relatively high, the load of the cooling operation is large, so the capacity of the condenser 25 needs to be increased. In this case, for example, the control unit 27 performs control to increase the opening degree of the first valve 21, reduce the opening degree of the second valve 22, or increase the air volume of the heat source side fan 28. Specifically, when the cooling operation load is large, for example, the opening degree of the first valve 21 is set to a fully open state, while the opening degree of the second valve 22 is set to a fully closed state, for example. Not limited to this.
 また、例えば冬場などのように外気の温度が低いときに通常運転を行う場合には、冷房運転の負荷が小さいので、室内空気を所定の温度範囲に維持しながら凝縮圧力を所定範囲に維持するために、凝縮器25の能力を小さくする必要がある。この場合、制御部27は、例えば、第1弁21の開度を小さくしたり、第2弁22の開度を大きくしたり、熱源側ファン28の風量を減少させたりする制御を行う。具体的に、冷房運転の負荷が小さいときには、第1弁21の開度が小さくされる一方で、第2弁22の開度が全開状態とされるという制御をできるが、これに限られない。 Further, when the normal operation is performed when the temperature of the outside air is low, such as in winter, the cooling operation load is small, so that the condensation pressure is maintained within a predetermined range while maintaining the indoor air within a predetermined temperature range. Therefore, it is necessary to reduce the capacity of the condenser 25. In this case, for example, the control unit 27 performs control to reduce the opening degree of the first valve 21, increase the opening degree of the second valve 22, or reduce the air volume of the heat source side fan 28. Specifically, when the cooling operation load is small, the opening degree of the first valve 21 can be reduced while the opening degree of the second valve 22 can be fully opened, but is not limited thereto. .
 利用ユニット3に送られた高圧冷媒は、第3弁23によって減圧されて低圧の気液二相状態の冷媒となって蒸発器26に送られ、蒸発器26において、利用側ファン29によって供給される空気と熱交換して加熱される。これにより、冷媒は蒸発して低圧のガス冷媒となる。蒸発器26において加熱された低圧のガス冷媒は、再び、圧縮機24に吸入される。 The high-pressure refrigerant sent to the usage unit 3 is reduced in pressure by the third valve 23 to become a low-pressure gas-liquid two-phase refrigerant and sent to the evaporator 26, and is supplied by the usage-side fan 29 in the evaporator 26. Heat is exchanged with air. As a result, the refrigerant evaporates into a low-pressure gas refrigerant. The low-pressure gas refrigerant heated in the evaporator 26 is again sucked into the compressor 24.
 (油戻し運転)
 次に、油戻し運転について説明する。通常運転を行うと、ガス冷媒が流れている冷媒回路10のガス管においては、圧縮機24の冷凍機油がガス管の内面に付着して溜まることがある。また、外気の温度が低いときの通常運転において凝縮器25内に液冷媒を溜めると、冷凍機油が液冷媒に溶け込んだ状態で凝縮器25内に溜まることがある。
(Oil return operation)
Next, the oil return operation will be described. When the normal operation is performed, in the gas pipe of the refrigerant circuit 10 through which the gas refrigerant flows, the refrigeration oil of the compressor 24 may adhere to the inner surface of the gas pipe and accumulate. Further, if the liquid refrigerant is accumulated in the condenser 25 in the normal operation when the temperature of the outside air is low, the refrigerating machine oil may be accumulated in the condenser 25 in a state of being dissolved in the liquid refrigerant.
 そこで、本実施形態に係る空気調和機1では、ガス管内に溜まった冷凍機油を圧縮機24に戻すガス管の油戻し運転と、凝縮器25内に溜まった冷凍機油を圧縮機24に戻すための凝縮器の油戻し運転とが行われる。ガス管の油戻し運転では、ガス管の内面に付着している冷凍機油を圧縮機24に戻すために、圧縮機24の運転容量を増加させて冷媒回路10を流れる冷媒の流量を増加させる。これにより、ガス管内に溜まった冷凍機油の一部又は全部を圧縮機24に戻すことができる。また、凝縮器の油戻し運転では、凝縮器25内において液冷媒に溶け込んだ状態の冷凍機油を圧縮機24に戻すために、第1弁21の開度を大きくする制御及び第2弁22の開度を小さくする制御の少なくとも一方の制御を行って凝縮器25を流れる冷媒の流量を増加させる。これにより、凝縮器25内の液冷媒とともに冷凍機油を圧縮機24に戻すことができる。 Therefore, in the air conditioner 1 according to the present embodiment, the oil return operation of the gas pipe for returning the refrigeration oil accumulated in the gas pipe to the compressor 24 and the refrigeration oil accumulated in the condenser 25 are returned to the compressor 24. The oil return operation of the condenser is performed. In the oil return operation of the gas pipe, in order to return the refrigeration oil adhering to the inner surface of the gas pipe to the compressor 24, the operation capacity of the compressor 24 is increased and the flow rate of the refrigerant flowing through the refrigerant circuit 10 is increased. Thereby, a part or all of the refrigerating machine oil accumulated in the gas pipe can be returned to the compressor 24. In the oil return operation of the condenser, in order to return the refrigeration oil dissolved in the liquid refrigerant in the condenser 25 to the compressor 24, the control for increasing the opening degree of the first valve 21 and the second valve 22 At least one of the controls for reducing the opening is performed to increase the flow rate of the refrigerant flowing through the condenser 25. Thereby, the refrigerating machine oil can be returned to the compressor 24 together with the liquid refrigerant in the condenser 25.
 ガス管の油戻し運転と凝縮器の油戻し運転とは、互いに別々の時期に行われてもよく、また、連続して行われてもよい。具体的に、後述する制御例1のように凝縮器の油戻し運転だけを独立して行う形態、後述する制御例2のようにガス管の油戻し運転を行った直後に、凝縮器の油戻し運転を行う形態などを例示できるが、これらの形態に限られない。 The oil return operation of the gas pipe and the oil return operation of the condenser may be performed at different times or may be performed continuously. Specifically, a mode in which only the condenser oil return operation is performed independently as in Control Example 1 described later, and the oil in the condenser is immediately after the oil return operation of the gas pipe is performed as in Control Example 2 described later. Although the form etc. which perform a return driving | running | working can be illustrated, it is not restricted to these forms.
 本実施形態に係る空気調和機1は、室内を所定の温度範囲に調節する冷房運転を、年間を通じて連続して行う。したがって、圧縮機24の動作が安定しやすく、一定の状態を維持しやすい。すなわち、圧縮機24の回転数が低い状態を維持しやすいので、冷凍機油がガス管や凝縮器25に特に溜まりやすい傾向にある。 The air conditioner 1 according to the present embodiment continuously performs a cooling operation for adjusting a room to a predetermined temperature range throughout the year. Therefore, the operation of the compressor 24 is easy to be stabilized and it is easy to maintain a certain state. That is, since it is easy to maintain the state where the rotation speed of the compressor 24 is low, the refrigerating machine oil tends to accumulate particularly in the gas pipe and the condenser 25.
 (制御例1)
 図3は、本実施形態に係る空気調和機1の制御例1を示すフローチャートである。図3に示すように、ステップ1において、制御部27は、室内の気温を所定の温度範囲に調節する通常運転が行われるように冷媒回路10を制御する。
(Control example 1)
FIG. 3 is a flowchart showing a control example 1 of the air conditioner 1 according to the present embodiment. As shown in FIG. 3, in step 1, the control unit 27 controls the refrigerant circuit 10 so that a normal operation for adjusting the indoor air temperature to a predetermined temperature range is performed.
 ステップS2において、制御部27は、凝縮器の油戻し運転の開始条件が成立しているか否かを判定する。そして、開始条件が成立していない場合には、ステップS1の処理に戻って通常運転を継続し、開始条件が成立している場合には、ステップS3の処理に移行して通常運転から凝縮器の油戻し運転に切り換える。 In step S2, the control unit 27 determines whether or not a start condition for the oil return operation of the condenser is satisfied. If the start condition is not satisfied, the process returns to the process of step S1 and the normal operation is continued. If the start condition is satisfied, the process proceeds to the process of step S3 to change from the normal operation to the condenser. Switch to the oil return operation.
 凝縮器の油戻し運転の開始条件は、空気調和機1において予め定められている条件である。開始条件としては、例えば次のような条件(A),(B),(C),(D)が挙げられるが、これらに限られず、他の条件を採用することもできる。凝縮器の油戻し運転の開始条件は、例えば、条件(A),(B),(C),(D)のうちの1つであってもよく、また、条件(A),(B),(C),(D)のうちの複数を組み合わせたものであってもよい。
(A)油溜まり量が予め定められた基準量以上となること
(B)第1弁21の開度が予め定められた基準開度以下であること
(C)圧縮機24の運転容量が予め定められた基準値以下である状態が予め定められた時間継続すること
(D)室外の気温が予め定められた基準温度以下であること
The conditions for starting the oil return operation of the condenser are conditions determined in advance in the air conditioner 1. Examples of the start condition include the following conditions (A), (B), (C), and (D), but are not limited to these, and other conditions may be employed. The start condition for the oil return operation of the condenser may be, for example, one of the conditions (A), (B), (C), (D), and the conditions (A), (B) , (C), (D) may be combined.
(A) The amount of oil sump is equal to or greater than a predetermined reference amount (B) The opening degree of the first valve 21 is equal to or less than a predetermined reference opening degree (C) The operating capacity of the compressor 24 is predetermined. The state of being below a predetermined reference value continues for a predetermined time (D) The outdoor temperature is below a predetermined reference temperature
 条件(A)の基準量、条件(B)の基準開度、条件(C)の基準値、条件(D)の基準温度は、制御部27のメモリに記憶されている。これらの基準は、ユーザが必要に応じて設定変更可能であってもよい。 The reference amount of condition (A), the reference opening of condition (B), the reference value of condition (C), and the reference temperature of condition (D) are stored in the memory of the control unit 27. These criteria may be changeable by the user as needed.
 条件(A)において、油溜まり量は、例えば、圧縮機24から吐出された冷媒に含まれる冷凍機油の吐出量と、油分離器32において冷媒と分離されて返油回路13を通じて圧縮機24に戻された返油量とをそれぞれ積算することによって得ることができる。 In the condition (A), the amount of oil pool is, for example, the amount of refrigerating machine oil contained in the refrigerant discharged from the compressor 24 and the refrigerant separated in the oil separator 32 and supplied to the compressor 24 through the oil return circuit 13. It can be obtained by integrating the returned oil return amount.
 条件(A)が採用される場合、ステップS2において、制御部27は、積算された油溜まり量が基準値以上となったか否かを判定する。油溜まり量が基準値未満である場合には、ステップS1の処理に戻って通常運転を継続し、油溜まり量が基準値以上である場合には、ステップS3の処理に移行して通常運転から凝縮器の油戻し運転に切り換える。 When the condition (A) is adopted, in step S2, the control unit 27 determines whether or not the accumulated oil sum is equal to or greater than a reference value. When the oil sum is less than the reference value, the process returns to step S1 to continue normal operation. When the oil sum is equal to or greater than the reference value, the process proceeds to step S3 and the normal operation starts. Switch to condenser oil return operation.
 条件(B)が採用される場合、ステップS2において、制御部27は、第1弁21の開度が基準開度以下であるか否かを判定する。第1弁21の開度が基準開度を超える場合には、ステップS1の処理に戻って通常運転を継続し、第1弁21の開度が基準開度以下である場合には、ステップS3の処理に移行して通常運転から凝縮器の油戻し運転に切り換える。なお、この条件(B)は、第1弁21の開度が予め定められた基準開度以下である状態が予め定められた時間継続していることとしてもよい。これにより、油戻し運転の必要性の判断精度をより高めることができる。 When the condition (B) is adopted, in step S2, the control unit 27 determines whether or not the opening degree of the first valve 21 is equal to or less than the reference opening degree. When the opening degree of the first valve 21 exceeds the reference opening degree, the process returns to step S1 to continue normal operation. When the opening degree of the first valve 21 is equal to or less than the reference opening degree, step S3 is performed. The process is switched to the normal operation and the condenser oil return operation. In addition, this condition (B) is good also as the state where the opening degree of the 1st valve 21 is below a predetermined reference opening degree continuing for the predetermined time. Thereby, the judgment precision of the necessity for oil return operation can be raised more.
 条件(C)が採用される場合、ステップS2において、制御部27は、圧縮機24の運転容量、具体的には圧縮機用モータ24Mの周波数(すなわち回転数)が予め定められた基準値以下である状態が予め定められた時間継続しているか否かを判定する。この開始条件が成立していない場合には、ステップS1の処理に戻って通常運転を継続し、この開始条件が成立している場合には、ステップS3の処理に移行して通常運転から凝縮器の油戻し運転に切り換える。 When the condition (C) is employed, in step S2, the control unit 27 determines that the operating capacity of the compressor 24, specifically, the frequency (that is, the rotation speed) of the compressor motor 24M is equal to or less than a predetermined reference value. It is determined whether or not this state continues for a predetermined time. If the start condition is not satisfied, the process returns to the process of step S1 and the normal operation is continued. If the start condition is satisfied, the process proceeds to the process of step S3 and the condenser is changed from the normal operation to the condenser. Switch to the oil return operation.
 条件(D)が採用される場合、ステップS2において、制御部27は、温度センサ41によって検知される室外の気温が予め定められた基準温度以下であるか否かを判定する。室外の気温が予め定められた基準温度を超える場合には、ステップS1の処理に戻って通常運転を継続し、室外の気温が予め定められた基準温度以下である場合には、ステップS3の処理に移行して通常運転から凝縮器の油戻し運転に切り換える。なお、この条件(D)は、室外の気温が予め定められた基準温度以下である状態が予め定められた時間継続していることとしてもよい。これにより、油戻し運転の必要性の判断精度をより高めることができる。 When the condition (D) is adopted, in step S2, the control unit 27 determines whether or not the outdoor temperature detected by the temperature sensor 41 is equal to or lower than a predetermined reference temperature. If the outdoor temperature exceeds a predetermined reference temperature, the process returns to step S1 to continue normal operation. If the outdoor temperature is equal to or lower than the predetermined reference temperature, the process of step S3 is performed. And switch from normal operation to condenser oil return operation. In addition, this condition (D) is good also as the state where the outdoor temperature is below a predetermined reference temperature for a predetermined time. Thereby, the judgment precision of the necessity for oil return operation can be raised more.
 ステップS3において、制御部27は、凝縮器の油戻し運転を行う。具体的に、制御部27は、凝縮器25内の冷凍機油を冷媒とともに圧縮機24に戻すために、例えば、通常運転時よりも第1弁21の開度が大きくなるように第1弁21を制御する。油戻し運転において、第1弁21の開度は、通常運転時よりも大きければよく、特に限定されるものではないが、例えば全開状態とされるのが好ましい。 In step S3, the control unit 27 performs the oil return operation of the condenser. Specifically, the control unit 27 returns the refrigeration oil in the condenser 25 to the compressor 24 together with the refrigerant, for example, the first valve 21 so that the opening degree of the first valve 21 is larger than that during normal operation. To control. In the oil return operation, the opening degree of the first valve 21 is not particularly limited as long as it is larger than that in the normal operation, but it is preferable that the first valve 21 is fully opened, for example.
 図6(A)は、凝縮器の油戻し運転における凝縮器25の前後差圧の変動を説明するためのグラフである。ステップS3において、図6(A)に示すように、第1弁21の開度が通常運転時よりも大きくされると(例えば第1弁21の開度が全開状態とされると)、凝縮器25内に流入する冷媒量が増加し、流入した冷媒によって凝縮器25内の冷媒が押されるので、凝縮器25の入口付近の圧力HPが一時的に(瞬間的に)大きくなる。これにより、凝縮器25の前後差圧ΔP、すなわち凝縮器25の入口付近の圧力HPと凝縮器25の出口付近の圧力LPの差ΔPが一時的に大きくなる。このような前後差圧ΔPによって凝縮器25において冷媒の流れが促進されるので、凝縮器25に溜まっていた冷凍機油は、冷媒とともに凝縮器25外に押し出される。 FIG. 6A is a graph for explaining the fluctuation of the differential pressure across the condenser 25 in the oil return operation of the condenser. In step S3, as shown in FIG. 6A, when the opening of the first valve 21 is made larger than that during normal operation (for example, when the opening of the first valve 21 is fully opened), condensation occurs. The amount of refrigerant flowing into the condenser 25 increases, and the refrigerant in the condenser 25 is pushed by the refrigerant that has flowed in, so the pressure HP near the inlet of the condenser 25 temporarily (instantaneously) increases. As a result, the differential pressure ΔP across the condenser 25, that is, the difference ΔP between the pressure HP near the inlet of the condenser 25 and the pressure LP near the outlet of the condenser 25 temporarily increases. Since the refrigerant flow is promoted in the condenser 25 by such a differential pressure ΔP, the refrigerating machine oil accumulated in the condenser 25 is pushed out of the condenser 25 together with the refrigerant.
 また、ステップS3において、油戻し運転における第2弁22の開度は、図6(A)に示すように通常運転時における第2弁22の開度が維持されてもよく、図6(B)に示すように通常運転時における第2弁22の開度よりも小さくなるように変更されてもよい。 Further, in step S3, the opening degree of the second valve 22 in the oil return operation may be maintained as shown in FIG. 6A, and the opening degree of the second valve 22 in the normal operation may be maintained. ) May be changed so as to be smaller than the opening of the second valve 22 during normal operation.
 具体的に、例えば冬場などのように外気の温度が低くて冷房運転の負荷が小さいときには、ステップS1の通常運転において、第1弁21の開度が小さくされる一方で、第2弁22の開度が全開状態とされている。そして、図6(A)に示す制御例では、ステップS3の油戻し運転において、第2弁22の開度が例えば全開状態のまま維持されつつ、第1弁21の開度が例えば全開状態とされる。このように第1弁21の開度が全開状態とされるときに第2弁22の開度が全開状態のまま維持される場合には、凝縮器25における圧力の変動幅を大きくしつつ、冷媒回路10全体の圧力変動を抑制することができる。 Specifically, when the temperature of the outside air is low and the cooling operation load is small, such as in winter, the opening of the first valve 21 is reduced in the normal operation of step S1, while the second valve 22 The opening is fully open. In the control example shown in FIG. 6A, in the oil return operation in step S3, the opening degree of the first valve 21 is, for example, fully open while the opening degree of the second valve 22 is maintained, for example, in a fully open state. Is done. Thus, when the opening degree of the second valve 22 is maintained in the fully opened state when the opening degree of the first valve 21 is in the fully opened state, the fluctuation range of the pressure in the condenser 25 is increased, The pressure fluctuation of the entire refrigerant circuit 10 can be suppressed.
 また、図6(B)に示す制御例のように、ステップS3の油戻し運転において、第1弁21の開度がステップS1の通常運転時における第1弁21の開度よりも大きく変更されるとともに、第2弁22の開度がステップS1の通常運転時における第2弁22の開度よりも小さく変更される場合(例えば第2弁22の開度が全閉状態とされる場合)には、図6(A)に示す制御例のように第2弁22において通常運転時の開度が維持される場合に比べて、第1弁21及び第2弁の開度制御の前後でより大きな凝縮圧力の変動を生じさせることができるので、凝縮器25内に溜まっている冷凍機油をより効果的に凝縮器25外に押し出すことができる。なお、図6(B)に示す制御例では、第1弁21の開度を大きくする制御と第2弁22の開度を小さくする制御が、時間的に多少前後してもよいが、好ましくは同時に行われるのがよい。 Further, as in the control example shown in FIG. 6B, in the oil return operation in step S3, the opening degree of the first valve 21 is changed to be larger than the opening degree of the first valve 21 in the normal operation step S1. And when the opening degree of the second valve 22 is changed to be smaller than the opening degree of the second valve 22 during the normal operation in step S1 (for example, when the opening degree of the second valve 22 is fully closed). As compared with the case where the opening degree during normal operation is maintained in the second valve 22 as in the control example shown in FIG. 6 (A), before and after the opening degree control of the first valve 21 and the second valve. Since a larger fluctuation of the condensation pressure can be caused, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively. In the control example shown in FIG. 6B, the control for increasing the opening degree of the first valve 21 and the control for decreasing the opening degree of the second valve 22 may be slightly different in time, but preferably Should be done at the same time.
 また、ステップS3においては、図6(C)に示すように、通常運転時よりも第2弁22の開度が小さくされる一方で、第1弁21の開度が通常運転時のまま維持されてもよい。この場合、油戻し運転において、第2弁22の開度は、通常運転時よりも小さければよく、特に限定されるものではないが、例えば全閉状態とされ、また、第1弁21の開度は、少なくとも全閉状態ではない。 In step S3, as shown in FIG. 6C, the opening degree of the second valve 22 is made smaller than that in the normal operation, while the opening degree of the first valve 21 is maintained in the normal operation state. May be. In this case, in the oil return operation, the opening degree of the second valve 22 is not particularly limited as long as it is smaller than that in the normal operation. For example, the second valve 22 is fully closed, and the first valve 21 is opened. The degree is not at least fully closed.
 ステップS3において、図6(C)に示すように、第2弁22の開度が通常運転時よりも小さくされると(例えば第2弁22の開度が全閉状態とされると)、一時的に(瞬間的に)凝縮器25内の冷媒が押されるので、凝縮器25の入口付近の圧力HPが一時的に(瞬間的に)大きくなる。これにより、凝縮器25の前後差圧ΔP、すなわち凝縮器25の入口付近の圧力HPと凝縮器25の出口付近の圧力LPの差ΔPが一時的に大きくなる。このような前後差圧ΔPによって凝縮器25において冷媒の流れが促進されるので、凝縮器25に溜まっていた冷凍機油は、冷媒とともに凝縮器25外に押し出される。 In step S3, as shown in FIG. 6C, when the opening degree of the second valve 22 is made smaller than that during normal operation (for example, when the opening degree of the second valve 22 is fully closed), Since the refrigerant in the condenser 25 is pushed temporarily (instantaneously), the pressure HP near the inlet of the condenser 25 temporarily (instantaneously) increases. As a result, the differential pressure ΔP across the condenser 25, that is, the difference ΔP between the pressure HP near the inlet of the condenser 25 and the pressure LP near the outlet of the condenser 25 temporarily increases. Since the refrigerant flow is promoted in the condenser 25 by such a differential pressure ΔP, the refrigerating machine oil accumulated in the condenser 25 is pushed out of the condenser 25 together with the refrigerant.
 また、油戻し運転における熱源側ファン28の風量は、通常運転時における熱源側ファン28の風量が維持されてもよく、通常運転時における熱源側ファン28の風量よりも小さくなるように変更されてもよい。すなわち、凝縮器の油戻し運転において、ファンモータ28Mの周波数(回転数)が、通常運転時における周波数(回転数)よりも小さくなるように変更されてもよい。油戻し運転における熱源側ファン28の風量が通常運転時における熱源側ファン28の風量よりも小さく変更される場合には、凝縮圧力を上げることができるので、通常運転時の風量が維持される場合に比べて、より大きな凝縮圧力の変動を生じさせることができる。これにより、凝縮器25内に溜まっている冷凍機油をさらに効果的に凝縮器25外に押し出すことができる。 Further, the air volume of the heat source side fan 28 in the oil return operation may be maintained so that the air volume of the heat source side fan 28 during the normal operation may be maintained, and may be changed to be smaller than the air volume of the heat source side fan 28 during the normal operation. Also good. That is, in the oil return operation of the condenser, the frequency (rotation speed) of the fan motor 28M may be changed to be smaller than the frequency (rotation speed) during normal operation. When the air volume of the heat source side fan 28 in the oil return operation is changed to be smaller than the air volume of the heat source side fan 28 in the normal operation, the condensation pressure can be increased, so that the air volume in the normal operation is maintained. In comparison with this, a larger fluctuation of the condensation pressure can be caused. Thereby, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively.
 ステップS3において、熱源側ファン28の風量を小さくするタイミングは、第1弁21の開度を大きくするときよりも前であってもよく、第1弁21の開度を大きくするときよりも後であってもよいが、第1弁21の開度を大きくするときと同時である場合には、より大きな凝縮圧力の変動を生じさせることができる。同様に、ステップS3において、熱源側ファン28の風量を小さくするタイミングは、第2弁22の開度を小さくするときよりも前であってもよく、第2弁22の開度を小さくするときよりも後であってもよいが、第2弁22の開度を小さくするときと同時である場合には、より大きな凝縮圧力の変動を生じさせることができる。 In step S3, the timing for reducing the air volume of the heat source side fan 28 may be before the opening degree of the first valve 21 or after the opening degree of the first valve 21 is increased. However, when the opening degree of the first valve 21 is increased, a larger fluctuation of the condensation pressure can be caused. Similarly, in step S <b> 3, the timing for reducing the air volume of the heat source side fan 28 may be before the opening of the second valve 22 is reduced, or when the opening of the second valve 22 is reduced. However, when the opening degree of the second valve 22 is decreased, a larger fluctuation of the condensation pressure can be caused.
 次に、ステップS4において、制御部27は、凝縮器の油戻し運転の終了条件が成立しているか否かを判定する。そして、終了条件が成立していない場合には、ステップS3の処理に戻って油戻し運転を継続し、終了条件が成立している場合には、ステップS1の処理に戻って油戻し運転から通常運転に切り換える。 Next, in step S4, the control unit 27 determines whether or not an end condition for the oil return operation of the condenser is satisfied. If the end condition is not satisfied, the process returns to step S3 and the oil return operation is continued. If the end condition is satisfied, the process returns to step S1 and the normal operation from the oil return operation is resumed. Switch to operation.
 凝縮器の油戻し運転の終了条件は、空気調和機1において予め定められている条件である。終了条件としては、例えばステップS3の油戻し運転開始からの経過時間が予め定められた時間に達することという条件が挙げられるが、これに限られず、他の条件を採用することもできる。 The end condition of the oil return operation of the condenser is a condition predetermined in the air conditioner 1. Examples of the end condition include a condition that the elapsed time from the start of the oil return operation in step S3 reaches a predetermined time, but is not limited to this, and other conditions can also be adopted.
 (制御例2)
 図4は、本実施形態に係る空気調和機1の制御例2を示すフローチャートである。この制御例2は、凝縮器の油戻し運転だけでなく、ガス管の油戻し運転も行う点で、制御例1と異なっている。
(Control example 2)
FIG. 4 is a flowchart showing a control example 2 of the air conditioner 1 according to the present embodiment. This control example 2 is different from the control example 1 in that not only the condenser oil return operation but also the gas pipe oil return operation is performed.
 図4に示す制御例2において、ステップS11は、制御例1のステップS1同様である。ステップS12において、制御部27は、ガス管の油戻し運転の開始条件が成立しているか否かを判定する。そして、開始条件が成立していない場合には、ステップS11の処理に戻って通常運転を継続し、開始条件が成立している場合には、ステップS13の処理に移行して通常運転からガス管の油戻し運転に切り換える。 In the control example 2 shown in FIG. 4, step S11 is the same as step S1 in the control example 1. In step S <b> 12, the control unit 27 determines whether a start condition for the oil return operation of the gas pipe is satisfied. If the start condition is not satisfied, the process returns to step S11 to continue the normal operation. If the start condition is satisfied, the process proceeds to step S13 and the normal operation is changed to the gas pipe. Switch to the oil return operation.
 ステップS12におけるガス管の油戻し運転の開始条件は、空気調和機1において予め定められている条件である。ガス管の油戻し運転の開始条件としては、例えば制御例1における条件(A),(B),(C),(D)などが挙げられるが、これらに限られず、他の条件を採用することもできる。ガス管の油戻し運転の開始条件は、条件(A),(B),(C),(D)のうちの1つの条件であってもよく、また、条件(A),(B),(C),(D)のうちの複数を組み合わせた条件であってもよい。 The start condition of the oil return operation of the gas pipe in step S12 is a condition determined in advance in the air conditioner 1. Examples of conditions for starting the oil return operation of the gas pipe include the conditions (A), (B), (C), and (D) in Control Example 1, but are not limited to these, and other conditions are adopted. You can also The start condition of the oil return operation of the gas pipe may be one of the conditions (A), (B), (C), (D), and the conditions (A), (B), A condition combining a plurality of (C) and (D) may be used.
 ステップS13において、制御部27は、ガス管の油戻し運転を行う。ガス管の油戻し運転では、制御部27は、ガス管内の冷凍機油を圧縮機24に戻すために、圧縮機24の運転容量を通常運転時よりも増加させる制御を行う。具体的には、圧縮機用モータ24Mの周波数(すなわち回転数)が通常運転よりも大きくなるように圧縮機用モータ24Mが駆動される。これにより、冷媒回路10を循環する冷媒量が増加するので、ガス管の内面に付着した冷凍機油の一部又は全部が圧縮機24に戻される。 In step S13, the control unit 27 performs the oil return operation of the gas pipe. In the oil return operation of the gas pipe, the control unit 27 performs control to increase the operating capacity of the compressor 24 compared to that during normal operation in order to return the refrigeration oil in the gas pipe to the compressor 24. Specifically, the compressor motor 24M is driven so that the frequency (that is, the rotation speed) of the compressor motor 24M is larger than that in the normal operation. As a result, the amount of refrigerant circulating in the refrigerant circuit 10 increases, so that part or all of the refrigerating machine oil adhering to the inner surface of the gas pipe is returned to the compressor 24.
 そして、ステップS14において、制御部27は、ガス管の油戻し運転の終了条件が成立しているか否かを判定する。そして、終了条件が成立していない場合には、ステップS13の処理に戻ってガス管の油戻し運転を継続し、終了条件が成立している場合には、ステップS15の処理に移行してガス管の油戻し運転から凝縮器の油戻し運転に切り換える。 And in step S14, the control part 27 determines whether the completion | finish conditions of the oil return operation | movement of a gas pipe are satisfied. If the end condition is not satisfied, the process returns to the process of step S13 and the oil return operation of the gas pipe is continued. If the end condition is satisfied, the process proceeds to step S15 and the gas is returned. Switch from the oil return operation of the pipe to the oil return operation of the condenser.
 ガス管の油戻し運転の終了条件は、空気調和機1において予め定められている条件である。終了条件としては、例えばステップS13の油戻し運転開始からの経過時間が予め定められた時間に達することという条件が挙げられるが、これに限られず、他の条件を採用することもできる。 The end condition of the oil return operation of the gas pipe is a condition determined in advance in the air conditioner 1. Examples of the end condition include a condition that the elapsed time from the start of the oil return operation in step S13 reaches a predetermined time, but is not limited to this, and other conditions can also be adopted.
 ステップS15において、制御部27は、凝縮器の油戻し運転を行う。ステップS15の凝縮器の油戻し運転における圧縮機24の運転容量は、ステップS13のガス管の油戻し運転における圧縮機24の運転容量から変更してもよいが、ガス管の油戻し運転における圧縮機24の運転容量が維持されるのが好ましい。制御例2のステップS15において、凝縮器の油戻し運転は、制御例1のステップS3と同様に行われる。 In step S15, the control unit 27 performs the oil return operation of the condenser. The operation capacity of the compressor 24 in the oil return operation of the condenser in step S15 may be changed from the operation capacity of the compressor 24 in the oil return operation of the gas pipe in step S13, but the compression in the oil return operation of the gas pipe The operating capacity of the machine 24 is preferably maintained. In Step S15 of Control Example 2, the oil return operation of the condenser is performed in the same manner as Step S3 of Control Example 1.
 制御例2のステップS16は、制御例1のステップS4と同様であるので、詳細な説明は省略する。なお、凝縮器の油戻し運転中には、凝縮圧力が通常運転時の凝縮圧力から変動することがあるので、凝縮器の油戻し運転は短時間で終了するのが好ましい。したがって、ステップS16において、凝縮器の油戻し運転の終了条件として、油戻し運転開始からの経過時間が予め定められた時間に達することという条件が採用される場合、凝縮器の油戻し運転の運転時間は、ガス管の油戻し運転の運転時間よりも短く設定されるのが好ましい。 Since Step S16 of Control Example 2 is the same as Step S4 of Control Example 1, detailed description thereof is omitted. During the oil return operation of the condenser, the condensation pressure may fluctuate from the condensation pressure during the normal operation. Therefore, the oil return operation of the condenser is preferably completed in a short time. Therefore, when the condition that the elapsed time from the start of the oil return operation reaches a predetermined time is adopted as the end condition of the oil return operation of the condenser in step S16, the operation of the oil return operation of the condenser is adopted. The time is preferably set shorter than the operation time of the oil return operation of the gas pipe.
 [実施形態のまとめ]
 本実施形態では、通常運転において、第1弁21の開度、第2弁22の開度及びファン28の風量の少なくとも1つを調節して凝縮圧力を調節することにより、凝縮圧力を所定の範囲に調節することができる。また、例えば冬季などのように外気の温度が低いときには凝縮器の能力が過剰になることがあるが、この場合には、通常運転において、例えば第1弁21の開度を小さくしたり、第2弁22の開度を大きくしたり、ファン28の風量の少なくしたりすることによって凝縮器25の能力を小さくして凝縮器25に液冷媒を溜める。これにより、凝縮圧力を所定の範囲に調節することができる。
[Summary of Embodiment]
In the present embodiment, in normal operation, the condensation pressure is adjusted to a predetermined value by adjusting at least one of the opening degree of the first valve 21, the opening degree of the second valve 22, and the air volume of the fan 28. Can be adjusted to range. Further, for example, when the temperature of the outside air is low, such as in winter, the capacity of the condenser may become excessive. In this case, in normal operation, for example, the opening degree of the first valve 21 may be reduced, The capacity of the condenser 25 is reduced by increasing the opening degree of the two valves 22 or by reducing the air volume of the fan 28, and the liquid refrigerant is stored in the condenser 25. Thereby, the condensation pressure can be adjusted to a predetermined range.
 そして、外気の温度が低いときの通常運転によって凝縮器25に液冷媒が溜まると、冷凍機油は、凝縮器25内に溜まった液冷媒の中に溶け込んだ状態で凝縮器25内に溜まる。具体的に、例えば凝縮器25の前後差圧(凝縮器25の入口付近の圧力と凝縮器25の出口付近の圧力の差)が小さい場合には、凝縮器25内の一部の流路では冷媒及び冷凍機油が循環せず、流路内に溜まり込む場合がある。このように冷凍機油が凝縮器25内に溜まり込んだとしても、予め定められた条件が満たされると、第1弁21の開度を通常運転時の開度よりも大きくする制御及び第2弁22の開度を通常運転時の開度よりも小さくする制御の少なくとも一方の制御を行って凝縮器25内に溜まった冷凍機油を冷媒とともに圧縮機24に戻す凝縮器の油戻し運転が行われる。このような凝縮器の油戻し運転を行うことにより、凝縮器25の前後差圧の確保や凝縮圧力の変動を生じさせることができる。これにより、凝縮器25において冷媒の流れを促進させることができるので、凝縮器25内に溜まる冷凍機油を冷媒とともに凝縮器25外に押し出し、効果的に圧縮機24に戻すことができる。 Then, when the liquid refrigerant is accumulated in the condenser 25 by the normal operation when the temperature of the outside air is low, the refrigeration oil is accumulated in the condenser 25 in a state of being dissolved in the liquid refrigerant accumulated in the condenser 25. Specifically, for example, when the differential pressure across the condenser 25 (the difference between the pressure near the inlet of the condenser 25 and the pressure near the outlet of the condenser 25) is small, In some cases, the refrigerant and the refrigerating machine oil do not circulate and accumulate in the flow path. Even if the refrigeration oil accumulates in the condenser 25 in this way, when the predetermined condition is satisfied, the control and the second valve for making the opening degree of the first valve 21 larger than the opening degree during the normal operation. An oil return operation of the condenser is performed in which at least one of the control of making the opening degree of 22 smaller than the opening degree during the normal operation is performed, and the refrigeration oil accumulated in the condenser 25 is returned to the compressor 24 together with the refrigerant. . By performing such an oil return operation of the condenser, it is possible to ensure the differential pressure across the condenser 25 and to change the condensation pressure. Thereby, since the flow of a refrigerant | coolant can be accelerated | stimulated in the condenser 25, the refrigerating machine oil which accumulates in the condenser 25 can be pushed out of the condenser 25 with a refrigerant | coolant, and can be effectively returned to the compressor 24. FIG.
 また、本実施形態では、制御部27は、凝縮器の油戻し運転において、第1弁21の開度が全開状態となるように第1弁21を制御するのが好ましい。この構成では、第1弁21の開度が全開状態となるように第1弁21を制御することにより、第1弁21の開度制御の前後において大きな凝縮圧力の変動を生じさせることができる。これにより、凝縮器25内に溜まっている冷凍機油をより効果的に凝縮器25外に押し出すことができる。 In the present embodiment, it is preferable that the control unit 27 controls the first valve 21 so that the opening degree of the first valve 21 is fully opened in the oil return operation of the condenser. In this configuration, by controlling the first valve 21 so that the opening degree of the first valve 21 is fully opened, a large fluctuation in the condensation pressure can be caused before and after the opening degree control of the first valve 21. . Thereby, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively.
 また、本実施形態では、制御部27は、圧縮機24の運転容量を増加させて主冷媒回路11のガス管内に溜まった冷凍機油を圧縮機24に戻すガス管の油戻し運転を行うのが好ましい。ガス冷媒が流れているガス管においては、冷凍機油がガス管の内面に付着して溜まることがあるが、圧縮機24の運転容量を増加させるガス管の油戻し運転を行うことによって、ガス管内に溜まった冷凍機油を圧縮機24に戻すことができる。 In the present embodiment, the control unit 27 performs an oil return operation of the gas pipe that increases the operating capacity of the compressor 24 and returns the refrigeration oil accumulated in the gas pipe of the main refrigerant circuit 11 to the compressor 24. preferable. In the gas pipe through which the gas refrigerant flows, the refrigeration oil may adhere to the inner surface of the gas pipe and accumulate, but by performing an oil return operation of the gas pipe that increases the operating capacity of the compressor 24, The refrigerating machine oil accumulated in can be returned to the compressor 24.
 また、本実施形態では、制御部27は、ガス管の油戻し運転を行った後、圧縮機24の運転容量を維持した状態で、凝縮器の油戻し運転を行うのが好ましい。この構成では、ガス管の油戻し運転において上げられた圧縮機24の運転容量を維持した状態、すなわち冷媒回路における冷媒循環量が高められた状態で凝縮器の油戻し運転が行われるので、凝縮器の油戻し運転において凝縮器25に流れる冷媒量を多くすることができる。これにより、凝縮器25内に溜まっている冷凍機油をさらに効果的に凝縮器25外に押し出すことができる。 Further, in the present embodiment, it is preferable that the control unit 27 performs the oil return operation of the condenser while maintaining the operation capacity of the compressor 24 after performing the oil return operation of the gas pipe. In this configuration, since the operation capacity of the compressor 24 raised in the oil return operation of the gas pipe is maintained, that is, the refrigerant circulation amount in the refrigerant circuit is increased, the oil return operation of the condenser is performed. The amount of refrigerant flowing through the condenser 25 in the oil return operation of the vessel can be increased. Thereby, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively.
 また、凝縮器の油戻し運転において、第1弁21や第2弁22の開度制御だけでなく、ファン28の風量を減らす制御も行ってもよい。ファン28の風量を減らすことによって凝縮圧力を上げることができる。したがって、第1弁21及び第2弁22の少なくとも一方の開度制御及びファン28の風量制御を行う構成では、弁の開度制御だけを行う場合に比べて、より大きな凝縮圧力の変動を生じさせることができる。これにより、凝縮器25内に溜まっている冷凍機油をさらに効果的に凝縮器25外に押し出すことができる。 Further, in the oil return operation of the condenser, not only the opening degree control of the first valve 21 and the second valve 22 but also the control for reducing the air volume of the fan 28 may be performed. By reducing the air volume of the fan 28, the condensation pressure can be increased. Therefore, in the configuration in which the opening degree control of at least one of the first valve 21 and the second valve 22 and the air volume control of the fan 28 are performed, a larger variation in the condensation pressure occurs than in the case where only the valve opening degree control is performed. Can be made. Thereby, the refrigerating machine oil accumulated in the condenser 25 can be pushed out of the condenser 25 more effectively.
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment, A various change, improvement, etc. are possible in the range which does not deviate from the meaning.
 例えば、前記実施形態では、凝縮器25が冷媒と室外空気との間で熱交換される熱交換器である場合を例示したが、これに限られず、例えば図5に示す変形例のように水冷式の熱交換器であってもよい。すなわち、図5に示すように、水冷式の凝縮器25は、冷媒の通路と、水の通路とを備える。水配管25aを通じて水の通路に流入した循環水(冷却水)は、冷媒と熱交換した後、水配管25bに流出するように構成されている。そして、制御例1や制御例2における凝縮器の油戻し運転において、制御部27は、凝縮器25に流入する冷却水の流量を減らす制御を行ってもよい。 For example, in the above-described embodiment, the case where the condenser 25 is a heat exchanger that exchanges heat between the refrigerant and the outdoor air is exemplified. It may be a heat exchanger of the type. That is, as shown in FIG. 5, the water-cooled condenser 25 includes a refrigerant passage and a water passage. Circulating water (cooling water) that flows into the water passage through the water pipe 25a is configured to flow out into the water pipe 25b after exchanging heat with the refrigerant. In the oil return operation of the condenser in the control example 1 and the control example 2, the control unit 27 may perform control to reduce the flow rate of the cooling water flowing into the condenser 25.
 また、前記実施形態では、凝縮器の油戻し運転において、第1弁21の開度が全開状態となるように第1弁21の開度を大きくする制御を例示したが、これに限られない。凝縮器の油戻し運転では、第1弁21の開度が全開状態よりも小さい開度となるように第1弁21の開度を大きくする制御を行ってもよい。 Moreover, in the said embodiment, although control which enlarges the opening degree of the 1st valve 21 was illustrated so that the opening degree of the 1st valve 21 might be in a fully open state in the oil return operation | movement of a condenser, it is not restricted to this. . In the oil return operation of the condenser, control may be performed to increase the opening degree of the first valve 21 so that the opening degree of the first valve 21 is smaller than the fully opened state.
 また、制御例2では、ガス管の油戻し運転を行った後、圧縮機24の運転容量を維持した状態で、凝縮器の油戻し運転を行っているが、これに限られない。ガス管の油戻し運転を行った後、圧縮機24の運転容量を変化させた後、凝縮器の油戻し運転を行ってもよい。また、凝縮器の油戻し運転を行った後にガス管の油戻し運転を行ってもよい。 Further, in the control example 2, after the oil return operation of the gas pipe is performed, the oil return operation of the condenser is performed in a state where the operation capacity of the compressor 24 is maintained, but the present invention is not limited to this. The oil return operation of the condenser may be performed after the operation capacity of the compressor 24 is changed after the oil return operation of the gas pipe. Further, the oil return operation of the gas pipe may be performed after the oil return operation of the condenser.
 また、空気調和機1は、複数の冷媒回路系統を備えていてもよい。すなわち、圧縮機、凝縮器、膨張機構及び蒸発器をそれぞれ有する複数の蒸気圧縮式の冷媒回路系統を含む空気調和機にも本発明を適用することができる。 Further, the air conditioner 1 may include a plurality of refrigerant circuit systems. That is, the present invention can be applied to an air conditioner including a plurality of vapor compression refrigerant circuit systems each having a compressor, a condenser, an expansion mechanism, and an evaporator.
 また、冷媒回路10には、複数の圧縮機が設けられていてもよい。また、空気調和機1においては、利用ユニット3に圧縮機24が設けられた、いわゆるリモートコンデンサタイプであったが、熱源ユニット2に圧縮機24が設けられたタイプであってもよい。 Further, the refrigerant circuit 10 may be provided with a plurality of compressors. The air conditioner 1 is a so-called remote condenser type in which the compressor 24 is provided in the use unit 3, but may be a type in which the compressor 24 is provided in the heat source unit 2.
 なお、上述した実施形態を概説すると次の通りである。 Note that the above-described embodiment is outlined as follows.
 本実施形態の空気調和機は、主冷媒回路と、バイパス回路と、ファンと、制御部とを備える冷媒専用の空気調和機である。前記主冷媒回路は、圧縮機、凝縮器、開度制御が可能な第1弁及び蒸発器を有する。前記バイパス回路は、開度制御が可能な第2弁を有する。前記バイパス回路は、前記圧縮機から吐出された冷媒を前記凝縮器及び前記第1弁をバイパスするように前記主冷媒回路に接続されている。前記ファンは、前記凝縮器への空気の流れを形成する。前記制御部は、前記圧縮機、前記第1弁、前記第2弁及び前記ファンを制御する。前記制御部は、通常運転と、凝縮器の油戻し運転とを行う。前記通常運転では、前記第1弁の開度、前記第2弁の開度及び前記ファンの風量の少なくとも1つを調節して凝縮圧力を調節する。前記凝縮器の油戻し運転では、予め定められた条件が満たされると、前記第1弁の開度を大きくする制御及び前記第2弁の開度を小さくする制御の少なくとも一方の制御を行って前記凝縮器内の冷凍機油を冷媒とともに前記圧縮機に戻す。 The air conditioner of the present embodiment is a dedicated refrigerant air conditioner including a main refrigerant circuit, a bypass circuit, a fan, and a control unit. The main refrigerant circuit includes a compressor, a condenser, a first valve capable of opening degree control, and an evaporator. The bypass circuit has a second valve capable of opening control. The bypass circuit is connected to the main refrigerant circuit so that the refrigerant discharged from the compressor bypasses the condenser and the first valve. The fan creates an air flow to the condenser. The control unit controls the compressor, the first valve, the second valve, and the fan. The control unit performs a normal operation and an oil return operation of the condenser. In the normal operation, the condensation pressure is adjusted by adjusting at least one of the opening degree of the first valve, the opening degree of the second valve, and the air volume of the fan. In the oil return operation of the condenser, when a predetermined condition is satisfied, at least one of control for increasing the opening degree of the first valve and control for reducing the opening degree of the second valve is performed. The refrigerator oil in the condenser is returned to the compressor together with the refrigerant.
 この構成では、通常運転において、第1弁の開度、第2弁の開度及びファンの風量の少なくとも1つを調節して凝縮圧力(冷媒回路における高圧側の圧力。以下、高圧圧力という場合がある。)を調節することにより、凝縮圧力を所定の範囲に調節することができる。また、例えば冬季などのように外気の温度が低いときには凝縮器の能力が過剰になることがあるが、この場合には、通常運転において、例えば第1弁の開度を小さくしたり、第2弁の開度を大きくしたり、ファンの風量を少なくしたりすることによって凝縮器の能力を小さくして凝縮器に液冷媒を溜める。これにより、凝縮圧力を所定の範囲(所定の目標高圧圧力の範囲)に調節することができる。 In this configuration, in normal operation, at least one of the opening degree of the first valve, the opening degree of the second valve, and the air volume of the fan is adjusted to condense pressure (pressure on the high pressure side in the refrigerant circuit. Hereinafter, referred to as high pressure pressure) The condensation pressure can be adjusted to a predetermined range. In addition, when the temperature of the outside air is low, such as in winter, the capacity of the condenser may become excessive. In this case, for example, in the normal operation, the opening degree of the first valve is reduced or the second valve is opened. The capacity of the condenser is reduced by increasing the opening of the valve or reducing the air volume of the fan, and liquid refrigerant is stored in the condenser. Thereby, the condensation pressure can be adjusted to a predetermined range (a range of a predetermined target high pressure).
 そして、外気の温度が低いときの通常運転によって凝縮器に液冷媒が溜まると、冷凍機油は、凝縮器内に溜まった液冷媒の中に溶け込んだ状態で凝縮器内に溜まる。このように冷凍機油が凝縮器内に溜まり込んだとしても、予め定められた条件が満たされると、第1弁の開度を大きくする制御及び第2弁の開度を小さくする制御の少なくとも一方の制御を行って凝縮器内に溜まった冷凍機油を冷媒とともに圧縮機に戻す凝縮器の油戻し運転が行われる。このような凝縮器の油戻し運転を行うことにより、凝縮器の前後差圧の確保(凝縮器の入口付近の圧力と凝縮器の出口付近の圧力の差の確保)や凝縮圧力の変動を生じさせることができる。これにより、凝縮器において冷媒の流れを促進させることができるので、凝縮器内に溜まる冷凍機油を冷媒とともに効果的に圧縮機に戻すことができる。 Then, when the liquid refrigerant is accumulated in the condenser by the normal operation when the temperature of the outside air is low, the refrigerating machine oil is accumulated in the liquid refrigerant accumulated in the condenser. Even if the refrigeration oil accumulates in the condenser in this way, at least one of control for increasing the opening degree of the first valve and control for reducing the opening degree of the second valve if a predetermined condition is satisfied. An oil return operation of the condenser is performed in which the refrigerating machine oil accumulated in the condenser is returned to the compressor together with the refrigerant. By performing the oil return operation of such a condenser, securing a differential pressure across the condenser (securing the difference between the pressure near the condenser inlet and the pressure near the condenser outlet) and fluctuations in the condensation pressure occur. Can be made. Thereby, since the flow of a refrigerant | coolant can be accelerated | stimulated in a condenser, the refrigeration oil which accumulates in a condenser can be effectively returned to a compressor with a refrigerant | coolant.
 前記空気調和機において、前記制御部は、前記凝縮器の油戻し運転において、前記第1弁の開度が全開状態となるように前記第1弁を制御するのが好ましい。この構成では、第1弁の開度が全開状態となるように第1弁を制御することにより、第1弁の開度制御の前後において大きな凝縮圧力の変動を生じさせることができる。これにより、凝縮器内に溜まっている冷凍機油をより効果的に凝縮器外に押し出すことができる。 In the air conditioner, it is preferable that the control unit controls the first valve so that the opening degree of the first valve is fully opened in the oil return operation of the condenser. In this configuration, by controlling the first valve so that the opening degree of the first valve is fully opened, a large fluctuation in the condensation pressure can be caused before and after the opening degree control of the first valve. Thereby, the refrigerating machine oil accumulated in the condenser can be pushed out of the condenser more effectively.
 前記空気調和機において、前記制御部は、前記圧縮機の運転容量を増加させて前記主冷媒回路のガス管内に溜まった冷凍機油を前記圧縮機に戻すガス管の油戻し運転を行うのが好ましい。ガス冷媒が流れているガス管においては、冷凍機油がガス管の内面に付着して溜まることがあるが、圧縮機の運転容量を増加させるガス管の油戻し運転を行うことによって、ガス管内に溜まった冷凍機油を圧縮機に戻すことができる。 In the air conditioner, the control unit preferably performs an oil return operation of the gas pipe that increases the operating capacity of the compressor and returns the refrigeration oil accumulated in the gas pipe of the main refrigerant circuit to the compressor. . In the gas pipe through which the gas refrigerant flows, refrigeration oil may adhere to the inner surface of the gas pipe and accumulate, but by performing an oil return operation of the gas pipe that increases the operating capacity of the compressor, The accumulated refrigeration oil can be returned to the compressor.
 前記空気調和機において、前記制御部は、前記ガス管の油戻し運転を行った後、前記圧縮機の運転容量を維持した状態で、前記凝縮器の油戻し運転を行うのが好ましい。この構成では、ガス管の油戻し運転において上げられた圧縮機の運転容量を維持した状態、すなわち冷媒回路における冷媒循環量が高められた状態で凝縮器の油戻し運転が行われるので、凝縮器の油戻し運転において凝縮器に流れる冷媒量を多くすることができる。これにより、凝縮器内に溜まっている冷凍機油をさらに効果的に凝縮器外に押し出すことができる。 In the air conditioner, the control unit preferably performs the oil return operation of the condenser in a state where the operation capacity of the compressor is maintained after performing the oil return operation of the gas pipe. In this configuration, the oil return operation of the condenser is performed in a state in which the operating capacity of the compressor raised in the oil return operation of the gas pipe is maintained, that is, in a state where the refrigerant circulation amount in the refrigerant circuit is increased. In the oil return operation, the amount of refrigerant flowing through the condenser can be increased. Thereby, the refrigerating machine oil collected in the condenser can be pushed out of the condenser more effectively.
 前記空気調和機において、前記予め定められた条件は、例えば、油溜まり量が予め定められた基準量以上となることを条件として含む。油溜まり量と圧縮機における冷凍機油の不足の程度とは、互いに関連している。したがって、この構成のように油溜まり量に関する上記条件に基づいて油戻し運転の要否判断を行うことによって、油戻しが必要とされるときに凝縮器の油戻し運転をより確実に実行することができる。 In the air conditioner, the predetermined condition includes, for example, a condition that an oil sump amount is equal to or more than a predetermined reference amount. The amount of oil sump and the degree of refrigeration oil shortage in the compressor are related to each other. Therefore, the oil return operation of the condenser is more reliably performed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-mentioned condition regarding the oil sump amount as in this configuration. Can do.
 前記空気調和機において、前記予め定められた条件は、例えば、前記第1弁の開度が予め定められた基準開度以下であることを条件として含む。第1弁の開度が予め定められた基準開度以下であるときには、凝縮器において冷凍機油が溜まりやすい。また、第1弁の開度が予め定められた基準開度以下であるときには、凝縮器の油戻し運転において第1弁の開度の変動幅(開度の増加量)を大きくすることができる。したがって、この構成のように第1弁の開度に関する上記条件に基づいて油戻し運転の要否判断を行うことによって、油戻しが必要とされるときに凝縮器の油戻し運転をより確実に実行することができ、しかも、第1弁の開度制御の前後において大きな凝縮圧力の変動を生じさせることができる。 In the air conditioner, the predetermined condition includes, for example, a condition that an opening degree of the first valve is equal to or less than a predetermined reference opening degree. When the opening degree of the first valve is equal to or less than a predetermined reference opening degree, the refrigerating machine oil tends to accumulate in the condenser. Further, when the opening degree of the first valve is equal to or less than a predetermined reference opening degree, the fluctuation range (the opening degree increase amount) of the first valve can be increased in the oil return operation of the condenser. . Therefore, the oil return operation of the condenser is more reliably performed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-described condition relating to the opening degree of the first valve as in this configuration. In addition, it is possible to cause a large fluctuation of the condensation pressure before and after the opening control of the first valve.
 前記空気調和機において、前記予め定められた条件は、例えば、室外の気温が予め定められた基準温度以下であることを条件として含む。外気の温度が低いときには通常運転において凝縮器に冷媒が溜められて凝縮圧力が所定の範囲に調節されているので、油溜まり量が多くなる。したがって、この構成のように室外の気温に関する上記条件に基づいて油戻し運転の要否判断を行うことによって、油戻しが必要とされるときに凝縮器の油戻し運転をより確実に実行することができる。 In the air conditioner, the predetermined condition includes, for example, a condition that an outdoor temperature is equal to or lower than a predetermined reference temperature. When the temperature of the outside air is low, the refrigerant is stored in the condenser during normal operation and the condensation pressure is adjusted to a predetermined range, so that the amount of oil pool increases. Therefore, the oil return operation of the condenser is more reliably executed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-described conditions relating to the outdoor air temperature as in this configuration. Can do.
 前記空気調和機において、前記予め定められた条件は、例えば、前記圧縮機の運転容量が予め定められた基準値以下である状態が予め定められた時間継続することを条件として含む。圧縮機のモータが低い周波数(回転数)で運転されているときには、冷媒回路を循環する冷媒量も少ないため、冷凍機油は凝縮器から押し出されにくく、凝縮器内に溜まりやすい傾向にある。したがって、この構成のように圧縮機の運転容量に関する上記条件に基づいて油戻し運転の要否判断を行うことによって、油戻しが必要とされるときに凝縮器の油戻し運転をより確実に実行することができる。 In the air conditioner, the predetermined condition includes, for example, a condition that a state where the operation capacity of the compressor is equal to or less than a predetermined reference value continues for a predetermined time. When the motor of the compressor is operated at a low frequency (number of rotations), the amount of refrigerant circulating through the refrigerant circuit is small, so that the refrigerating machine oil is difficult to be pushed out of the condenser and tends to accumulate in the condenser. Therefore, the oil return operation of the condenser is more reliably executed when the oil return is required by determining whether or not the oil return operation is necessary based on the above-described conditions regarding the operation capacity of the compressor as in this configuration. can do.
 前記空気調和機において、前記制御部は、前記凝縮器の油戻し運転において、前記ファンの風量を減らす制御を行ってもよい。この構成では、凝縮器の油戻し運転において、第1弁や第2弁の開度制御だけでなく、ファンの風量を減らす制御も行う。ファンの風量を減らすことによって凝縮圧力を上げることができる。したがって、第1弁及び第2弁の少なくとも一方の開度制御及びファンの風量制御を行う構成では、弁の開度制御だけを行う場合に比べて、より大きな凝縮圧力の変動を生じさせることができる。これにより、凝縮器内に溜まっている冷凍機油をさらに効果的に凝縮器外に押し出すことができる。 In the air conditioner, the control unit may perform control to reduce the air volume of the fan in the oil return operation of the condenser. In this configuration, in the oil return operation of the condenser, not only the opening control of the first valve and the second valve but also the control for reducing the air volume of the fan is performed. The condensation pressure can be increased by reducing the fan air volume. Therefore, in the configuration in which the opening degree control of at least one of the first valve and the second valve and the air volume control of the fan are performed, a larger fluctuation of the condensation pressure can be generated than in the case of performing only the opening degree control of the valve. it can. Thereby, the refrigerating machine oil collected in the condenser can be pushed out of the condenser more effectively.
 前記空気調和機において、前記凝縮器が水冷式の熱交換器であり、前記制御部は、前記凝縮器の油戻し運転において、前記凝縮器に流入する水の流量を減らす制御を行ってもよい。この構成では、凝縮器の油戻し運転において、第1弁や第2弁の開度制御だけでなく、凝縮器に流入する水の流量を減らす制御も行う。凝縮器に流入する水の流量を減らすことによって凝縮圧力を上げることができる。したがって、第1弁及び第2弁の少なくとも一方の開度制御及び水の流量制御を行う構成では、弁の開度制御だけを行う場合に比べて、より大きな凝縮圧力の変動を生じさせることができる。これにより、凝縮器内に溜まっている冷凍機油をさらに効果的に凝縮器外に押し出すことができる。
 
In the air conditioner, the condenser may be a water-cooled heat exchanger, and the control unit may perform control to reduce a flow rate of water flowing into the condenser in an oil return operation of the condenser. . In this configuration, in the oil return operation of the condenser, not only the opening control of the first valve and the second valve but also the control for reducing the flow rate of the water flowing into the condenser is performed. The condensation pressure can be increased by reducing the flow rate of the water flowing into the condenser. Therefore, in the configuration in which the opening degree control of at least one of the first valve and the second valve and the flow rate control of water are performed, a larger fluctuation of the condensation pressure can be generated than in the case of performing only the opening degree control of the valve. it can. Thereby, the refrigerating machine oil collected in the condenser can be pushed out of the condenser more effectively.

Claims (10)

  1.  圧縮機、凝縮器、開度制御が可能な第1弁及び蒸発器を有する主冷媒回路と、
     開度制御が可能な第2弁を有し、前記圧縮機から吐出された冷媒を前記凝縮器及び前記第1弁をバイパスするように前記主冷媒回路に接続されたバイパス回路と、
     前記凝縮器への空気の流れを形成するファンと、
     前記圧縮機、前記第1弁、前記第2弁及び前記ファンを制御する制御部と、を備える冷房専用の空気調和機であって、
     前記制御部は、
     前記第1弁の開度、前記第2弁の開度及び前記ファンの風量の少なくとも1つを調節して凝縮圧力を調節する通常運転と、
     予め定められた条件が満たされると、前記第1弁の開度を大きくする制御及び前記第2弁の開度を小さくする制御の少なくとも一方の制御を行って前記凝縮器内の冷凍機油を冷媒とともに前記圧縮機に戻す凝縮器の油戻し運転と、を行う空気調和機。
    A main refrigerant circuit having a compressor, a condenser, a first valve capable of opening control, and an evaporator;
    A bypass circuit having a second valve capable of opening control, and connected to the main refrigerant circuit so as to bypass the refrigerant discharged from the compressor and the condenser and the first valve;
    A fan that forms a flow of air to the condenser;
    A control unit for controlling the compressor, the first valve, the second valve, and the fan, and an air conditioner dedicated to cooling,
    The controller is
    A normal operation of adjusting the condensation pressure by adjusting at least one of the opening degree of the first valve, the opening degree of the second valve and the air volume of the fan;
    When a predetermined condition is satisfied, at least one of the control for increasing the opening degree of the first valve and the control for reducing the opening degree of the second valve is performed, and the refrigerating machine oil in the condenser is refrigerated. And an air conditioner for performing an oil return operation of the condenser to be returned to the compressor.
  2.  前記制御部は、前記凝縮器の油戻し運転において、前記第1弁の開度が全開状態となるように前記第1弁を制御する、請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the control unit controls the first valve so that an opening degree of the first valve is fully opened in an oil return operation of the condenser.
  3.  前記制御部は、前記圧縮機の運転容量を増加させて前記主冷媒回路のガス管内に溜まった冷凍機油を前記圧縮機に戻すガス管の油戻し運転を行う、請求項1又は2に記載の空気調和機。 The said control part performs the oil return operation | movement of the gas pipe | tube which increases the operating capacity of the said compressor and returns the refrigeration oil collected in the gas pipe | tube of the said main refrigerant circuit to the said compressor. Air conditioner.
  4.  前記制御部は、前記ガス管の油戻し運転を行った後、前記圧縮機の運転容量を維持した状態で、前記凝縮器の油戻し運転を行う、請求項3に記載の空気調和機。 The air conditioner according to claim 3, wherein the control unit performs the oil return operation of the condenser in a state where the operation capacity of the compressor is maintained after performing the oil return operation of the gas pipe.
  5.  前記予め定められた条件は、油溜まり量が予め定められた基準量以上となることを条件として含む、請求項1~4の何れか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 4, wherein the predetermined condition includes a condition that an oil reservoir amount is equal to or greater than a predetermined reference amount.
  6.  前記予め定められた条件は、前記第1弁の開度が予め定められた基準開度以下であることを条件として含む、請求項1~5の何れか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 5, wherein the predetermined condition includes that the opening degree of the first valve is equal to or less than a predetermined reference opening degree.
  7.  前記予め定められた条件は、室外の気温が予め定められた基準温度以下であることを条件として含む、請求項1~6の何れか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 6, wherein the predetermined condition includes that an outdoor temperature is equal to or lower than a predetermined reference temperature.
  8.  前記予め定められた条件は、前記圧縮機の運転容量が予め定められた基準値以下である状態が予め定められた時間継続することを条件として含む、請求項1~7の何れか1項に記載の空気調和機。 The predetermined condition includes, as a condition, that a state in which the operating capacity of the compressor is equal to or less than a predetermined reference value continues for a predetermined time. The air conditioner described.
  9.  前記制御部は、前記凝縮器の油戻し運転において、前記ファンの風量を減らす制御を行う、請求項1~8の何れか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 8, wherein the control unit performs control to reduce an air volume of the fan in an oil return operation of the condenser.
  10.  前記凝縮器が水冷式の熱交換器であり、
     前記制御部は、前記凝縮器の油戻し運転において、前記凝縮器に流入する水の流量を減らす制御を行う、請求項1~8の何れか1項に記載の空気調和機。
    The condenser is a water-cooled heat exchanger;
    The air conditioner according to any one of claims 1 to 8, wherein the control unit performs control to reduce a flow rate of water flowing into the condenser in an oil return operation of the condenser.
PCT/JP2014/080759 2013-11-22 2014-11-20 Air conditioner WO2015076331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-241644 2013-11-22
JP2013241644A JP5796619B2 (en) 2013-11-22 2013-11-22 Air conditioner

Publications (1)

Publication Number Publication Date
WO2015076331A1 true WO2015076331A1 (en) 2015-05-28

Family

ID=53179591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080759 WO2015076331A1 (en) 2013-11-22 2014-11-20 Air conditioner

Country Status (2)

Country Link
JP (1) JP5796619B2 (en)
WO (1) WO2015076331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3998434A4 (en) * 2019-07-09 2022-07-13 NEC Corporation Cooling system, surge generation prevention device, surge generation prevention method, and surge generation prevention program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571159B2 (en) 2015-08-04 2020-02-25 Mitsubishi Electric Corporation Refrigeration apparatus and method for operating refrigeration apparatus
CN110131840B (en) * 2019-05-15 2021-05-14 宁波奥克斯电气股份有限公司 Oil return control method for variable frequency air conditioner and variable frequency air conditioner
CN115342571B (en) * 2022-06-30 2023-08-04 河北工程大学 Temperature-adjustable ice temperature storage heat preservation equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193981A (en) * 1992-12-22 1994-07-15 Hitachi Ltd Refrigerator
JP2000046419A (en) * 1998-07-27 2000-02-18 Daikin Ind Ltd Refrigerating apparatus
JP2008076001A (en) * 2006-09-22 2008-04-03 Daikin Ind Ltd Air conditioner
JP2008241065A (en) * 2007-03-26 2008-10-09 Daikin Ind Ltd Refrigerating device and oil returning method of refrigerating device
JP2013024538A (en) * 2011-07-26 2013-02-04 Hitachi Appliances Inc Refrigeration unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193981A (en) * 1992-12-22 1994-07-15 Hitachi Ltd Refrigerator
JP2000046419A (en) * 1998-07-27 2000-02-18 Daikin Ind Ltd Refrigerating apparatus
JP2008076001A (en) * 2006-09-22 2008-04-03 Daikin Ind Ltd Air conditioner
JP2008241065A (en) * 2007-03-26 2008-10-09 Daikin Ind Ltd Refrigerating device and oil returning method of refrigerating device
JP2013024538A (en) * 2011-07-26 2013-02-04 Hitachi Appliances Inc Refrigeration unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3998434A4 (en) * 2019-07-09 2022-07-13 NEC Corporation Cooling system, surge generation prevention device, surge generation prevention method, and surge generation prevention program

Also Published As

Publication number Publication date
JP2015102256A (en) 2015-06-04
JP5796619B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP3925545B2 (en) Refrigeration equipment
US9151522B2 (en) Air conditioner and control method thereof
JP4767199B2 (en) Air conditioning system operation control method and air conditioning system
JP4895883B2 (en) Air conditioner
EP2988074B1 (en) Air conditioner
JP2009109065A (en) Refrigeration system
US7908878B2 (en) Refrigerating apparatus
WO2015076331A1 (en) Air conditioner
KR20070082501A (en) Air-conditioning system and controlling method for the same
JP2009257756A (en) Heat pump apparatus, and outdoor unit for heat pump apparatus
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2006300369A (en) Air conditioner
US20210063042A1 (en) Air conditioner and control method thereof
JP2011007482A (en) Air conditioner
JP5517891B2 (en) Air conditioner
JP2009243880A (en) Heat pump device and outdoor unit of heat pump device
JP2009036508A (en) Supercooling system
JP2008082674A (en) Supercooling device
JP2016217559A (en) Air conditioner
KR20160096947A (en) An air conditioning system and a method for controlling the same
KR102494567B1 (en) A refrigerator and a control method the same
JP2008082676A (en) Supercooling device
JP2009024998A (en) Supercooling device
JP2008082677A (en) Supercooling device
JP2009024999A (en) Supercooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863970

Country of ref document: EP

Kind code of ref document: A1