JP2008241065A - Refrigerating device and oil returning method of refrigerating device - Google Patents

Refrigerating device and oil returning method of refrigerating device Download PDF

Info

Publication number
JP2008241065A
JP2008241065A JP2007078554A JP2007078554A JP2008241065A JP 2008241065 A JP2008241065 A JP 2008241065A JP 2007078554 A JP2007078554 A JP 2007078554A JP 2007078554 A JP2007078554 A JP 2007078554A JP 2008241065 A JP2008241065 A JP 2008241065A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
oil return
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078554A
Other languages
Japanese (ja)
Inventor
Yoshio Ueno
嘉夫 上野
Shuji Fujimoto
修二 藤本
Manabu Yoshimi
学 吉見
Atsushi Yoshimi
敦史 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007078554A priority Critical patent/JP2008241065A/en
Priority to PCT/JP2008/000684 priority patent/WO2008117530A1/en
Publication of JP2008241065A publication Critical patent/JP2008241065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently return a refrigerating machine oil accumulated from evaporators 34, 37 to a compressor 30, to the compressor 30 in a refrigerating device 10 using the weak phase-soluble refrigerating machine oil for lubrication in the compressor 30. <P>SOLUTION: In this refrigerating device using the weak phase-soluble refrigerating machine oil for lubrication in the compressor 30, a control means 50 is disposed to perform oil-returning control for controlling an operating state of a refrigerating cycle so that a temperature of the refrigerant at outlets of the evaporators 34, 37 reach an upper limit corresponding temperature corresponding to a time when the quantity of refrigerant dissolved in the refrigerating machine oil reaches an upper limit value under a pressure of the refrigerant at the outlets of the evaporators 34, 37 to return the refrigerating machine oil accumulated from the evaporators 34, 37 to the compressor 30, to the compressor 30 with the refrigerant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蒸発器から圧縮機に至るまでの間に溜まる冷凍機油を圧縮機に戻すための制御を行う冷凍装置、及び冷凍装置における油戻し方法に関するものである。   The present invention relates to a refrigeration apparatus that performs control for returning refrigeration oil accumulated between an evaporator and a compressor to the compressor, and an oil return method in the refrigeration apparatus.

従来より、冷凍機油を用いて圧縮機の潤滑を行う冷凍装置が知られている。この種の冷凍装置では、圧縮機から冷媒と共に吐出される冷凍機油が、液冷媒に溶け込んで冷媒回路を流通し蒸発器に流れ込む。蒸発器では、液冷媒が蒸発するが冷凍機油は蒸発しないので、冷凍機油は冷媒から分離される。そして、冷媒から分離された冷凍機油が、蒸発器や蒸発器と圧縮機との間に溜まってゆく。   Conventionally, a refrigeration apparatus that performs lubrication of a compressor using refrigeration oil is known. In this type of refrigeration apparatus, the refrigeration oil discharged together with the refrigerant from the compressor is dissolved in the liquid refrigerant, flows through the refrigerant circuit, and flows into the evaporator. In the evaporator, the liquid refrigerant evaporates but the refrigerating machine oil does not evaporate, so that the refrigerating machine oil is separated from the refrigerant. The refrigerating machine oil separated from the refrigerant accumulates between the evaporator and the evaporator and the compressor.

この種の冷凍装置では、蒸発器から圧縮機に至るまでの間に溜まる冷凍機油の量が多くなると、圧縮機内の冷凍機油が減少して潤滑不良が生じるおそれがある。そこで、従来より、蒸発器から圧縮機に至るまでの間に溜まる冷凍機油を圧縮機に戻すための制御を行う冷凍装置が知られている。この種の冷凍装置が特許文献1に開示されている。   In this type of refrigerating apparatus, if the amount of refrigerating machine oil accumulated between the evaporator and the compressor increases, the refrigerating machine oil in the compressor may decrease, resulting in poor lubrication. Therefore, conventionally, a refrigeration apparatus that performs control for returning refrigeration oil accumulated between the evaporator and the compressor to the compressor is known. This type of refrigeration apparatus is disclosed in Patent Document 1.

具体的に、特許文献1の冷凍装置は、圧縮機内の油量を検知して返油運転(油戻し運転)を行うように構成されている。この冷凍装置は、通常運転の際には蒸発器出口の冷媒過熱度が例えば10℃になるように制御される一方で、返油運転の際には蒸発器出口の冷媒過熱度が0℃になるように制御される。この返油運転では、冷媒の過熱度が低下することによって液冷媒の量が増加するので、冷凍機油に溶解する液冷媒の量が多くなって冷凍機油の動粘度が低下する。そして、動粘度が低下した冷凍機油が、冷媒によって押し流されて圧縮機(30)に戻ってゆく。
特開2002−257427号公報
Specifically, the refrigeration apparatus of Patent Document 1 is configured to detect the amount of oil in the compressor and perform an oil return operation (oil return operation). This refrigeration apparatus is controlled so that the refrigerant superheat degree at the evaporator outlet is, for example, 10 ° C. during normal operation, while the refrigerant superheat degree at the evaporator outlet is 0 ° C. during oil return operation. It is controlled to become. In this oil return operation, the amount of liquid refrigerant increases as the degree of superheat of the refrigerant decreases, so the amount of liquid refrigerant dissolved in the refrigeration oil increases and the kinematic viscosity of the refrigeration oil decreases. Then, the refrigerating machine oil having a reduced kinematic viscosity is washed away by the refrigerant and returns to the compressor (30).
JP 2002-257427 A

ところで、従来の冷凍装置の油戻し運転は、液冷媒が溶け込みやすい性質の相溶性の冷凍機油を用いる冷凍装置では効率的に冷凍機油を圧縮機へ戻すことができるが、液冷媒が溶け込みにくい性質の弱相溶性の冷凍機油を用いる冷凍装置では効率的に冷凍機油を圧縮機に戻すことができない。   By the way, the oil return operation of the conventional refrigeration apparatus can efficiently return the refrigeration oil to the compressor in the refrigeration apparatus using the compatible refrigeration oil having the property that the liquid refrigerant easily dissolves, but the property that the liquid refrigerant hardly dissolves. In the refrigeration apparatus using the weakly compatible refrigerating machine oil, the refrigerating machine oil cannot be efficiently returned to the compressor.

具体的に、弱相溶性の冷凍機油は、相溶性の冷凍機油と違って、単位量当たりの冷凍機油に溶解する液冷媒の量に上限がある。このため、蒸発器の出口における冷媒の過熱度(温度)が低下して液冷媒の量が多くなるに従って、冷凍機油に溶け込む液冷媒の量が増加して冷凍機油の動粘度が低下してゆくが、冷凍機油に溶ける液冷媒の量が上限値に達すると、冷媒の過熱度をさらに低下させても冷凍機油の動粘度が低下しなくなる。その一方で、冷媒の過熱度を低下してゆくと、ガス冷媒の量が減少してガス冷媒の流速が小さくなるので、冷凍機油に作用するせん断力が小さくなってゆく。   Specifically, unlike the compatible refrigerator oil, the weakly compatible refrigerator oil has an upper limit in the amount of liquid refrigerant dissolved in the refrigerator oil per unit amount. For this reason, as the degree of superheat (temperature) of the refrigerant at the outlet of the evaporator decreases and the amount of liquid refrigerant increases, the amount of liquid refrigerant that dissolves in the refrigerating machine oil increases and the kinematic viscosity of the refrigerating machine oil decreases. However, when the amount of the liquid refrigerant that dissolves in the refrigerating machine oil reaches the upper limit, the kinematic viscosity of the refrigerating machine oil does not decrease even if the superheat degree of the refrigerant is further reduced. On the other hand, as the degree of superheat of the refrigerant decreases, the amount of gas refrigerant decreases and the flow rate of the gas refrigerant decreases, so the shearing force acting on the refrigeration machine oil decreases.

従って、冷凍機油の動粘度を低下させることだけを考慮して冷媒の過熱度(温度)を調節する従来の油戻し方法では、蒸発器の出口における冷媒の過熱度(温度)が冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値よりも小さな値に調節されてしまうおそれがある。このような場合は、冷媒の過熱度が低下することによってガス冷媒の流速が低下しているので、冷凍機油に作用するせん断力が小さくなって冷凍機油が戻りにくい状態になる。   Therefore, in the conventional oil return method that adjusts the superheat degree (temperature) of the refrigerant only in consideration of lowering the kinematic viscosity of the refrigerating machine oil, the superheat degree (temperature) of the refrigerant at the outlet of the evaporator determines the dynamics of the refrigerating machine oil. There is a possibility that the value may be adjusted to a value smaller than the value of the superheat degree of the refrigerant at which the viscosity does not decrease. In such a case, since the flow rate of the gas refrigerant is reduced due to a decrease in the degree of superheat of the refrigerant, the shearing force acting on the refrigeration oil is reduced, and the refrigeration oil is difficult to return.

本発明は、かかる点に鑑みてなされたものであり、その目的は、圧縮機における潤滑に弱相溶性の冷凍機油を用いる冷凍装置において、蒸発器から圧縮機に至るまでの間に溜まる冷凍機油を効率的に圧縮機に戻すことができるようにすることにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a refrigerating machine oil that accumulates between an evaporator and a compressor in a refrigerating apparatus that uses a weakly compatible refrigerating machine oil for lubrication in a compressor. Is to be efficiently returned to the compressor.

第1の発明は、圧縮機(30)によって圧縮された冷媒を放熱器(34,37)で放熱させて蒸発器(34,37)で蒸発させる冷凍サイクルを行う冷媒回路(20)を備え、上記圧縮機(30)における潤滑に弱相溶性の冷凍機油を用いる冷凍装置(10)を対象とする。そして、この冷凍装置(10)は、上記蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を冷媒と共に該圧縮機(30)へ戻すために、上記蒸発器(34,37)の出口における冷媒の温度が該蒸発器(34,37)の出口での冷媒の圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの温度に対応する上限対応温度になるように冷凍サイクルの運転状態を制御する油戻し制御を行う制御手段(50)を備えている。   The first invention includes a refrigerant circuit (20) for performing a refrigeration cycle in which the refrigerant compressed by the compressor (30) is radiated by the radiator (34, 37) and evaporated by the evaporator (34, 37). The refrigeration apparatus (10) that uses weakly compatible refrigerating machine oil for lubrication in the compressor (30) is an object. The refrigeration apparatus (10) includes the evaporator in order to return the refrigeration oil accumulated between the evaporator (34, 37) and the compressor (30) to the compressor (30) together with the refrigerant. The temperature of the refrigerant at the outlet of (34, 37) reaches an upper limit corresponding temperature corresponding to the temperature at which the amount of refrigerant dissolved in the refrigeration oil reaches the upper limit at the refrigerant pressure at the outlet of the evaporator (34, 37). Control means (50) for performing oil return control for controlling the operating state of the refrigeration cycle is provided.

第1の発明では、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を冷媒と共に圧縮機(30)へ戻すための油戻し制御が行われる。油戻し制御では、蒸発器(34,37)の出口における冷媒の温度が上限対応温度になるように、冷凍サイクルの運転状態が制御される。上限対応温度は、蒸発器(34,37)の出口での冷媒の圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの温度、つまり冷媒の温度をさらに低下させても冷凍機油の動粘度が低下しなくなる温度に対応している。すなわち、この第1の発明の油戻し制御では、蒸発器(34,37)の出口における冷媒の温度が、蒸発器(34,37)の出口での冷媒の圧力において冷媒の温度をさらに低下させても冷凍機油の動粘度が低下しなくなる温度に対応する上限対応温度になるように、冷凍サイクルの運転状態が制御される。   In the first invention, oil return control is performed to return the refrigeration oil accumulated between the evaporator (34, 37) and the compressor (30) to the compressor (30) together with the refrigerant. In the oil return control, the operating state of the refrigeration cycle is controlled so that the temperature of the refrigerant at the outlet of the evaporator (34, 37) becomes the upper limit corresponding temperature. The upper limit temperature corresponds to the temperature at which the amount of refrigerant that dissolves in the refrigeration oil reaches the upper limit at the refrigerant pressure at the outlet of the evaporator (34, 37), that is, the operation of the refrigeration oil even if the refrigerant temperature is further reduced. It corresponds to the temperature at which the viscosity does not decrease. That is, in the oil return control of the first invention, the refrigerant temperature at the outlet of the evaporator (34, 37) further reduces the refrigerant temperature at the refrigerant pressure at the outlet of the evaporator (34, 37). However, the operating state of the refrigeration cycle is controlled so that the upper limit temperature corresponding to the temperature at which the kinematic viscosity of the refrigeration oil does not decrease.

第2の発明は、上記第1の発明において、上記蒸発器(34,37)の出口における冷媒の過熱度を調節するための過熱度調節手段(12,14,36)を備え、上記制御手段(50)は、上記油戻し制御において、上記蒸発器(34,37)の出口における冷媒の過熱度が該蒸発器(34,37)の出口における冷媒の温度が上記上限対応温度になるように定められる該過熱度の目標値になるように上記過熱度調節手段(12,14,36)を制御する。   According to a second aspect of the present invention, in the first aspect of the invention, the control means includes a superheat degree adjusting means (12, 14, 36) for adjusting the superheat degree of the refrigerant at the outlet of the evaporator (34, 37). (50), in the oil return control, the degree of superheat of the refrigerant at the outlet of the evaporator (34, 37) is such that the temperature of the refrigerant at the outlet of the evaporator (34, 37) becomes the upper limit corresponding temperature. The superheat degree adjusting means (12, 14, 36) is controlled so as to reach the target value of the superheat degree determined.

第2の発明では、蒸発器(34,37)の出口における冷媒の過熱度の目標値が、蒸発器(34,37)の出口における冷媒の温度が上記上限対応温度になるような値に定められている。制御手段(50)が蒸発器(34,37)の出口における冷媒の過熱度をこの目標値になるように過熱度調節手段(12,14,36)を制御すると、蒸発器(34,37)の出口における冷媒の温度が上記上限対応温度に調節される。   In the second aspect of the invention, the target value of the degree of superheat of the refrigerant at the outlet of the evaporator (34, 37) is set to a value such that the temperature of the refrigerant at the outlet of the evaporator (34, 37) becomes the above upper limit corresponding temperature. It has been. When the control means (50) controls the superheat degree adjusting means (12, 14, 36) so that the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) becomes this target value, the evaporator (34, 37) The temperature of the refrigerant at the outlet is adjusted to the upper limit temperature.

第3の発明は、上記第2の発明において、上記蒸発器(34,37)の冷媒流量を調節するための蒸発側膨張弁(36)が、上記過熱度調節手段(12,14,36)を構成しており、上記制御手段(50)は、上記油戻し制御において上記蒸発側膨張弁(36)の開度を制御する。   According to a third invention, in the second invention, the evaporation side expansion valve (36) for adjusting the refrigerant flow rate of the evaporator (34, 37) is provided with the superheat degree adjusting means (12, 14, 36). The control means (50) controls the opening of the evaporation side expansion valve (36) in the oil return control.

第3の発明では、制御手段(50)が、過熱度調節手段(12,14,36)としての蒸発側膨張弁(36)の開度を調節する。蒸発側膨張弁(36)の開度は、蒸発器(34,37)の出口における冷媒の過熱度が上記過熱度の目標値になるように調節される。   In 3rd invention, a control means (50) adjusts the opening degree of the evaporation side expansion valve (36) as a superheat degree adjustment means (12,14,36). The opening degree of the evaporation side expansion valve (36) is adjusted so that the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) becomes the target value of the superheat degree.

第4の発明は、上記第2又は第3の発明において、上記蒸発器(34,37)に空気を送るための蒸発側ファン(12,14)が、上記過熱度調節手段(12,14,36)を構成しており、上記制御手段(50)は、上記油戻し制御において上記蒸発側ファン(12,14)の送風量を制御する。   According to a fourth aspect of the present invention, in the second or third aspect, the evaporation side fan (12, 14) for sending air to the evaporator (34, 37) includes the superheat degree adjusting means (12, 14, 36), and the control means (50) controls the air flow rate of the evaporation side fans (12, 14) in the oil return control.

第4の発明では、制御手段(50)が、過熱度調節手段(12,14,36)としての蒸発側ファン(12,14)の送風量を調節する。蒸発側ファン(12,14)の送風量は、蒸発器(34,37)の出口における冷媒の過熱度が上記過熱度の目標値になるように調節される。   In 4th invention, a control means (50) adjusts the ventilation volume of the evaporation side fan (12,14) as a superheat degree adjustment means (12,14,36). The amount of air blown from the evaporation side fans (12, 14) is adjusted so that the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) becomes the target value of the superheat degree.

第5の発明は、上記第2乃至第4の何れか1つの発明において、上記冷媒回路(20)では、冷媒として二酸化炭素が用いられ、冷凍機油としてポリアルキレングリコールが用いられる一方、上記過熱度の目標値は、3℃以上5℃以下の範囲の値である。   In a fifth aspect of the present invention based on any one of the second to fourth aspects, the refrigerant circuit (20) uses carbon dioxide as the refrigerant and polyalkylene glycol as the refrigerating machine oil. The target value is a value in the range of 3 ° C. or more and 5 ° C. or less.

第5の発明では、冷媒として二酸化炭素が用いられ、圧縮機(30)における潤滑に冷凍機油としてポリアルキレングリコール(PAG)が用いられている。ポリアルキレングリコールは、二酸化炭素に対して相溶性が低い冷凍機油である。ここで、ポリアルキレングリコールに溶ける二酸化炭素冷媒の量が上限値に達するのは、圧力が1MPaの下では、図2に示すように、冷媒の温度が概ね−37℃の時である。この状態では、冷媒の過熱度が5℃になる。また、圧力が7MPaの下では、冷媒の温度が概ね30℃の時である。この状態では、冷媒の過熱度が3℃になる。この第5の発明では、冷媒として二酸化炭素を用いる場合の蒸発器(34,37)の出口での冷媒の圧力が、1MPaから7MPaの範囲になることを想定して、冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値に対応する目標値を3℃以上5℃以下の範囲の値にしている。   In the fifth invention, carbon dioxide is used as the refrigerant, and polyalkylene glycol (PAG) is used as the refrigerating machine oil for lubrication in the compressor (30). Polyalkylene glycol is a refrigerating machine oil with low compatibility with carbon dioxide. Here, the amount of carbon dioxide refrigerant dissolved in the polyalkylene glycol reaches the upper limit when the temperature of the refrigerant is approximately −37 ° C. as shown in FIG. 2 under a pressure of 1 MPa. In this state, the degree of superheat of the refrigerant is 5 ° C. Further, when the pressure is 7 MPa, the temperature of the refrigerant is approximately 30 ° C. In this state, the degree of superheat of the refrigerant is 3 ° C. In the fifth aspect of the invention, assuming that the refrigerant pressure at the outlet of the evaporator (34, 37) when carbon dioxide is used as the refrigerant is in the range of 1 MPa to 7 MPa, the kinematic viscosity of the refrigerating machine oil is The target value corresponding to the value of the superheat degree of the refrigerant that does not decrease is set to a value in the range of 3 ° C. or more and 5 ° C. or less.

第6の発明は、上記第1乃至第5の何れか1つの発明において、対象空間を温度調節するための通常運転と、上記蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を強制的に上記圧縮機(30)へ戻すための油戻し運転とが選択的に実行可能になっており、上記制御手段(50)は、上記油戻し運転において上記油戻し制御を行う。   According to a sixth invention, in any one of the first to fifth inventions, the normal operation for adjusting the temperature of the target space, and from the evaporator (34, 37) to the compressor (30). An oil return operation for forcibly returning the refrigeration oil accumulated therebetween to the compressor (30) is selectively executable, and the control means (50) is configured to perform the oil return operation in the oil return operation. Take control.

第6の発明では、冷凍装置が通常運転と油戻し運転とを選択的に実行可能に構成されている。そして、油戻し運転で油戻し制御が行われる。油戻し運転では、蒸発器(34,37)の出口における冷媒の温度が蒸発器(34,37)の出口での冷媒の圧力において冷凍機油の動粘度が低下しなくなる温度に対応する上限対応温度になるように、冷凍サイクルの運転状態が制御される。   In the sixth aspect of the invention, the refrigeration apparatus is configured to selectively execute normal operation and oil return operation. Then, oil return control is performed in the oil return operation. In oil return operation, the upper limit temperature corresponding to the temperature at which the refrigerant viscosity at the outlet of the evaporator (34,37) does not decrease the kinematic viscosity of the refrigerating machine oil at the refrigerant pressure at the outlet of the evaporator (34,37). Thus, the operating state of the refrigeration cycle is controlled.

第7の発明は、上記第6の発明において、上記制御手段(50)が、上記油戻し運転において、上記油戻し制御を行うと共に上記圧縮機(30)の運転容量を該油戻し運転の開始直前よりも増加させる。   In a seventh aspect based on the sixth aspect, the control means (50) performs the oil return control in the oil return operation and sets the operating capacity of the compressor (30) to start the oil return operation. Increase than before.

第7の発明では、油戻し運転において、油戻し制御が行われる共に、圧縮機(30)の運転容量が油戻し運転の開始直前よりも増加される。このため、油戻し運転の開始直前に比べて、冷媒回路(20)を流通する冷媒の量が増加して冷媒の流速が早くなるので、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油に作用するせん断力が大きくなる。   In the seventh aspect of the invention, oil return control is performed in the oil return operation, and the operating capacity of the compressor (30) is increased from immediately before the start of the oil return operation. For this reason, compared to immediately before the start of the oil return operation, the amount of refrigerant flowing through the refrigerant circuit (20) increases and the flow rate of the refrigerant increases, so that the evaporator (34, 37) changes to the compressor (30). The shearing force that acts on the refrigeration oil that accumulates in the meantime increases.

第8の発明は、上記第2乃至第4の何れか1つの発明において、上記蒸発器(34,37)の出口における冷媒の圧力を検出するための蒸発側圧力検出手段(52)を備え、上記制御手段(50)は、対象空間を温度調節するための通常運転において上記油戻し制御を行い、該通常運転中の油戻し制御では上記蒸発側圧力検出手段(52)の検出圧力を用いて上記目標値を設定する。   An eighth invention comprises the evaporation side pressure detection means (52) for detecting the pressure of the refrigerant at the outlet of the evaporator (34, 37) in any one of the second to fourth inventions, The control means (50) performs the oil return control in a normal operation for adjusting the temperature of the target space, and uses the detected pressure of the evaporation side pressure detection means (52) in the oil return control during the normal operation. Set the target value.

第8の発明では、対象空間を温度調節するための通常運転において油戻し制御が行われる。この通常運転中の油戻し制御では、蒸発器(34,37)の出口における冷媒の温度が上記上限対応温度になるように定められる過熱度の目標値が、通常運転中に蒸発側圧力検出手段(52)によって検出される蒸発器(34,37)の出口における冷媒の圧力に応じて設定される。   In the eighth invention, oil return control is performed in the normal operation for adjusting the temperature of the target space. In this oil return control during normal operation, the target value of the degree of superheat determined so that the temperature of the refrigerant at the outlet of the evaporator (34, 37) becomes the upper limit corresponding temperature is the evaporation side pressure detection means during normal operation. It is set according to the refrigerant pressure at the outlet of the evaporator (34, 37) detected by (52).

第9の発明は、圧縮機(30)によって圧縮された冷媒を放熱器(34,37)で放熱させて蒸発器(34,37)で蒸発させる冷凍サイクルを行う冷媒回路(20)を備え、上記圧縮機(30)における潤滑に弱相溶性の冷凍機油を用いる冷凍装置(10)において、上記蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を冷媒と共に該圧縮機(30)へ戻すための冷凍装置の油戻し方法を対象とする。そして、この油戻し方法は、上記蒸発器(34,37)の出口における冷媒の温度が該蒸発器(34,37)の出口での冷媒の圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの温度に対応する上限対応温度になるように冷凍サイクルの運転状態を制御する油戻し行程を備えている。   The ninth invention comprises a refrigerant circuit (20) for performing a refrigeration cycle in which the refrigerant compressed by the compressor (30) is radiated by the radiator (34, 37) and evaporated by the evaporator (34, 37), In the refrigeration apparatus (10) that uses weakly compatible refrigeration oil for lubrication in the compressor (30), the refrigeration oil accumulated between the evaporator (34, 37) and the compressor (30) is combined with the refrigerant. An oil return method for a refrigeration apparatus for returning to the compressor (30) is an object. In this oil return method, the refrigerant temperature at the outlet of the evaporator (34, 37) is such that the amount of refrigerant dissolved in the refrigeration oil at the refrigerant pressure at the outlet of the evaporator (34, 37) reaches the upper limit. An oil return process is provided for controlling the operating state of the refrigeration cycle so that the temperature reaches an upper limit temperature corresponding to the temperature when the temperature reaches.

第9の発明では、油戻し行程において、蒸発器(34,37)の出口における冷媒の状態が目標状態になるように冷凍サイクルの運転状態が制御される。上限対応温度は、蒸発器(34,37)の出口での冷媒の圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの温度、つまり冷媒の温度をさらに低下させても冷凍機油の動粘度が低下しなくなる温度に対応している。すなわち、この第9の発明の油戻し方法では、蒸発器(34,37)の出口における冷媒の温度が、蒸発器(34,37)の出口での冷媒の圧力において冷媒の温度をさらに低下させても冷凍機油の動粘度が低下しなくなる温度に対応する上限対応温度になるように、冷凍サイクルの運転状態が制御される。   In the ninth aspect of the invention, in the oil return stroke, the operating state of the refrigeration cycle is controlled so that the state of the refrigerant at the outlet of the evaporator (34, 37) becomes the target state. The upper limit temperature corresponds to the temperature at which the amount of refrigerant that dissolves in the refrigeration oil reaches the upper limit at the refrigerant pressure at the outlet of the evaporator (34, 37), that is, the operation of the refrigeration oil even if the refrigerant temperature is further reduced. It corresponds to the temperature at which the viscosity does not decrease. That is, in the oil return method according to the ninth aspect of the invention, the refrigerant temperature at the outlet of the evaporator (34, 37) further reduces the refrigerant temperature at the refrigerant pressure at the outlet of the evaporator (34, 37). However, the operating state of the refrigeration cycle is controlled so that the upper limit temperature corresponding to the temperature at which the kinematic viscosity of the refrigeration oil does not decrease.

本発明では、油戻し制御又は油戻し行程において、蒸発器(34,37)の出口における冷媒の温度が蒸発器(34,37)の出口での冷媒の圧力において冷凍機油の動粘度が低下しなくなる温度に対応する上限対応温度になるように、冷凍サイクルの運転状態が制御される。このため、従来の冷凍装置のように、蒸発器(34,37)の出口における冷媒の温度が冷凍機油の動粘度が低下しなくなる冷媒の温度の値よりも小さな値に調節されるおそれがなく、ガス冷媒の流速の低下により冷凍機油が圧縮機(30)に戻りにくい状態に陥ることがない。そして、油戻し制御又は油戻し行程において、冷凍機油の動粘度が最も小さくなる状態、又はこの状態に近い状態において、ガス冷媒の流速がある程度大きくなる。従って、動粘度が低下した状態の冷凍機油に十分なせん断力が作用するので、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を効率的に圧縮機(30)へ戻すことができる。   In the present invention, in the oil return control or the oil return process, the kinematic viscosity of the refrigerating machine oil decreases at the refrigerant temperature at the outlet of the evaporator (34, 37) and the refrigerant pressure at the outlet of the evaporator (34, 37). The operating state of the refrigeration cycle is controlled so that the upper limit corresponding temperature corresponding to the temperature that disappears is reached. Therefore, unlike the conventional refrigeration apparatus, there is no possibility that the refrigerant temperature at the outlet of the evaporator (34, 37) is adjusted to a value smaller than the refrigerant temperature value at which the kinematic viscosity of the refrigeration oil does not decrease. The refrigeration oil does not easily return to the compressor (30) due to a decrease in the flow rate of the gas refrigerant. In the oil return control or the oil return stroke, the flow rate of the gas refrigerant increases to some extent in the state where the kinematic viscosity of the refrigerating machine oil is the smallest or close to this state. Therefore, since sufficient shearing force acts on the refrigeration oil in a state in which the kinematic viscosity is lowered, the refrigeration oil accumulated between the evaporator (34, 37) and the compressor (30) is efficiently stored in the compressor ( 30).

また、上記第5の発明では、冷媒として二酸化炭素を用いる場合の蒸発器(34,37)の出口での冷媒の圧力が、1MPaから7MPaの範囲になることを想定して、冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値に対応する目標値を3℃以上5℃以下の範囲の値にしている。ここで、冷媒と冷凍機油をこの第5の発明の組合せにする場合には、蒸発器(34,37)の出口における冷媒の過熱度を0℃に調節する従来の油戻し運転では、蒸発器(34,37)の出口における冷媒の過熱度が、冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値よりも小さな値になる。そして、蒸発器(34,37)の出口における冷媒の過熱度が冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値になる状態に比べて、蒸発器(34,37)の出口におけるガス冷媒の流速が小さくなる。従って、従来の油戻し運転では、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を効率的に圧縮機(30)へ戻すことができない。これに対して、第5の発明では、冷凍機油の動粘度は従来の場合と同程度であるが、蒸発器(34,37)の出口における冷媒の過熱度が従来よりも大きい値に調節される分、蒸発器(34,37)の出口におけるガス冷媒の流速が大きくなる。従って、従来の油戻し運転の場合に比べて、より多くの冷凍機油を圧縮機(30)へ戻すことが可能になる。   In the fifth aspect of the invention, assuming that the refrigerant pressure at the outlet of the evaporator (34, 37) when carbon dioxide is used as the refrigerant is in the range of 1 MPa to 7 MPa, The target value corresponding to the value of the superheat degree of the refrigerant at which the viscosity does not decrease is set to a value in the range of 3 ° C. to 5 ° C. Here, when the refrigerant and the refrigerating machine oil are combined in the fifth invention, in the conventional oil return operation in which the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) is adjusted to 0 ° C., the evaporator The superheat degree of the refrigerant at the outlet of (34, 37) is smaller than the value of the superheat degree of the refrigerant at which the kinematic viscosity of the refrigerating machine oil does not decrease. The gas at the outlet of the evaporator (34, 37) is compared to a state where the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) becomes a value of the superheat degree of the refrigerant at which the kinematic viscosity of the refrigeration oil does not decrease. The flow rate of the refrigerant is reduced. Therefore, in the conventional oil return operation, the refrigerating machine oil accumulated between the evaporator (34, 37) and the compressor (30) cannot be efficiently returned to the compressor (30). On the other hand, in the fifth invention, the kinematic viscosity of the refrigerating machine oil is about the same as in the conventional case, but the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) is adjusted to a value larger than the conventional one. Accordingly, the flow rate of the gas refrigerant at the outlet of the evaporator (34, 37) increases. Therefore, more refrigeration oil can be returned to the compressor (30) than in the case of the conventional oil return operation.

また、上記第7の発明では、油戻し運転において圧縮機(30)の運転容量を油戻し運転の開始直前よりも増加させることで、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油に作用するせん断力が大きくなるようにしている。従って、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油がさらに圧縮機(30)に戻りやすくなるので、より多くの冷凍機油を圧縮機(30)に戻すことができる。   In the seventh aspect of the invention, the operating capacity of the compressor (30) in the oil return operation is increased from immediately before the start of the oil return operation, so that the evaporator (34, 37) reaches the compressor (30). The shearing force acting on the refrigerating machine oil that accumulates until is increased. Therefore, since the refrigerating machine oil accumulated between the evaporator (34, 37) and the compressor (30) is more easily returned to the compressor (30), more refrigerating machine oil is returned to the compressor (30). be able to.

また、上記第8の発明では、通常運転中の蒸発器(34,37)の出口における冷媒の圧力に応じて、該蒸発器(34,37)の出口における冷媒の過熱度の目標値が設定される。ここで、冷凍機油に溶解する液冷媒の量の上限値は、冷媒の温度と圧力に応じて変化する。従って、通常運転中の蒸発器(34,37)の出口における冷媒の圧力の変化によって、上記上限値は変化する。この第8の発明では、上記過熱度の目標値が、通常運転中の蒸発器(34,37)の出口における冷媒の圧力を反映して設定されるので、その時の蒸発器(34,37)の出口における冷媒の圧力における上限値に対応した値になる。従って、通常運転中に亘って、蒸発器(34,37)の出口における冷媒の温度を冷凍機油の動粘度が低下しなくなる温度、又はその温度に近い温度に調節することができるので、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油をさらに効率的に圧縮機(30)へ戻すことができる。   In the eighth aspect of the invention, the target value of the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) is set according to the pressure of the refrigerant at the outlet of the evaporator (34, 37) during normal operation. Is done. Here, the upper limit value of the amount of the liquid refrigerant dissolved in the refrigerating machine oil changes according to the temperature and pressure of the refrigerant. Therefore, the upper limit value changes depending on the change in refrigerant pressure at the outlet of the evaporator (34, 37) during normal operation. In the eighth aspect of the invention, the target value of the superheat degree is set reflecting the refrigerant pressure at the outlet of the evaporator (34, 37) during normal operation, so the evaporator (34, 37) at that time It becomes a value corresponding to the upper limit value of the refrigerant pressure at the outlet. Accordingly, during normal operation, the temperature of the refrigerant at the outlet of the evaporator (34, 37) can be adjusted to a temperature at which the kinematic viscosity of the refrigerating machine oil does not decrease or close to that temperature. Refrigerating machine oil accumulated between (34, 37) and the compressor (30) can be returned to the compressor (30) more efficiently.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、本発明に係る冷凍装置(10)によって構成された空調機(10)である。本実施形態の空調機(10)は、図1に示すように、室外ユニット(11)と室内ユニット(13)とを備えている。なお、室内ユニット(13)は複数台であってもよい。   This embodiment is an air conditioner (10) configured by a refrigeration apparatus (10) according to the present invention. The air conditioner (10) of this embodiment is provided with the outdoor unit (11) and the indoor unit (13), as shown in FIG. A plurality of indoor units (13) may be provided.

この空調機(10)は、冷媒が充填された冷媒回路(20)を備えている。冷媒には二酸化炭素冷媒が用いられている。冷媒回路(20)は、室外ユニット(11)に収容される室外回路(21)と、室内ユニット(13)に収容される室内回路(22)とを備えている。室外回路(21)と室内回路(22)とは、液側連絡配管(23)及びガス側連絡配管(24)によって接続されている。   The air conditioner (10) includes a refrigerant circuit (20) filled with a refrigerant. Carbon dioxide refrigerant is used as the refrigerant. The refrigerant circuit (20) includes an outdoor circuit (21) accommodated in the outdoor unit (11) and an indoor circuit (22) accommodated in the indoor unit (13). The outdoor circuit (21) and the indoor circuit (22) are connected by a liquid side communication pipe (23) and a gas side communication pipe (24).

《室外回路の構成》
室外回路(21)には、圧縮機(30)、四路切換弁(33)、熱源側熱交換器である室外熱交換器(34)、及び膨張弁(36)が設けられている。室外回路(21)の一端には、液側連絡配管(23)が接続される液側閉鎖弁(25)が設けられている。室外回路(21)の他端には、ガス側連絡配管(24)が接続されるガス側閉鎖弁(26)が設けられている。
《Outdoor circuit configuration》
The outdoor circuit (21) is provided with a compressor (30), a four-way switching valve (33), an outdoor heat exchanger (34) that is a heat source side heat exchanger, and an expansion valve (36). At one end of the outdoor circuit (21), a liquid side shut-off valve (25) to which the liquid side communication pipe (23) is connected is provided. The other end of the outdoor circuit (21) is provided with a gas side shut-off valve (26) to which the gas side communication pipe (24) is connected.

圧縮機(30)は、容量可変の高圧ドーム型の圧縮機として構成されている。圧縮機(30)は、インバータの出力周波数を変化させて電動機の回転速度を変更することによって運転容量を複数段階に変更することができる。圧縮機(30)のケーシング内の底部には、摺動部の潤滑に用いる冷凍機油が溜まっている。冷凍機油には、ポリアルキレングリコールが用いられている。ポリアルキレングリコールは、二酸化炭素冷媒が溶けにくい性質の弱相溶性の冷凍機油である。   The compressor (30) is configured as a variable-pressure high-pressure dome type compressor. The compressor (30) can change the operating capacity in a plurality of stages by changing the output frequency of the inverter and changing the rotational speed of the electric motor. Refrigerating machine oil used for lubricating the sliding portion is collected at the bottom of the casing of the compressor (30). Polyalkylene glycol is used for refrigerating machine oil. Polyalkylene glycol is a weakly compatible refrigerating machine oil that is difficult to dissolve carbon dioxide refrigerant.

圧縮機(30)の吐出側は、吐出管(42)を介して四路切換弁(33)の第1ポート(P1)に接続されている。圧縮機(30)の吸入側は、吸入管(41)を介して四路切換弁(33)の第3ポート(P3)に接続されている。   The discharge side of the compressor (30) is connected to the first port (P1) of the four-way switching valve (33) via the discharge pipe (42). The suction side of the compressor (30) is connected to the third port (P3) of the four-way switching valve (33) via the suction pipe (41).

室外熱交換器(34)は、クロスフィン式のフィン・アンド・チューブ型熱交換器として構成されている。この室外熱交換器(34)の近傍には、室外ファン(12)が設けられている。この室外熱交換器(34)では、室外ファン(12)によって送られる室外空気と流通する冷媒との間で熱交換が行われる。室外熱交換器(34)の一端は、四路切換弁(33)の第4ポート(P4)に接続されている。室外熱交換器(34)の他端は、液配管(43)を介して液側閉鎖弁(25)に接続されている。液配管(43)には、電子膨張弁で構成された開度可変の膨張弁(36)が設けられている。また、四路切換弁(33)の第2ポート(P2)はガス側閉鎖弁(26)に接続されている。   The outdoor heat exchanger (34) is configured as a cross fin type fin-and-tube heat exchanger. An outdoor fan (12) is provided in the vicinity of the outdoor heat exchanger (34). In the outdoor heat exchanger (34), heat is exchanged between the outdoor air sent by the outdoor fan (12) and the circulating refrigerant. One end of the outdoor heat exchanger (34) is connected to the fourth port (P4) of the four-way switching valve (33). The other end of the outdoor heat exchanger (34) is connected to the liquid side shut-off valve (25) via the liquid pipe (43). The liquid pipe (43) is provided with a variable opening expansion valve (36) constituted by an electronic expansion valve. The second port (P2) of the four-way switching valve (33) is connected to the gas side shut-off valve (26).

四路切換弁(33)は、第1ポート(P1)と第2ポート(P2)が互いに連通して第3ポート(P3)と第4ポート(P4)が互いに連通する第1状態(図1に実線で示す状態)と、第1ポート(P1)と第4ポート(P4)が互いに連通して第2ポート(P2)と第3ポート(P3)が互いに連通する第2状態(図1に破線で示す状態)とが切り換え可能となっている。   The four-way selector valve (33) is in a first state in which the first port (P1) and the second port (P2) communicate with each other and the third port (P3) and the fourth port (P4) communicate with each other (FIG. 1). And a second state (FIG. 1) in which the first port (P1) and the fourth port (P4) communicate with each other and the second port (P2) and the third port (P3) communicate with each other. The state indicated by a broken line) can be switched.

室外回路(21)には、圧縮機(30)の一端側と他端側に温度センサ(45)及び圧力センサ(46)が1組ずつ設けられている。具体的に、吸入管(41)には、一対の吸入温度センサ(45a)及び吸入圧力センサ(46a)が設けられている。吐出管(42)には、一対の吐出温度センサ(45b)及び吐出圧力センサ(46b)が設けられている。また、室外熱交換器(34)の液側には室外液温度センサ(45e)が設けられ、室外熱交換器(34)のガス側には室外ガス温度センサ(45f)が設けられている。また、室外ファン(12)の近傍には、外気温度センサ(18)が設けられている。   The outdoor circuit (21) is provided with one set of temperature sensor (45) and pressure sensor (46) on one end side and the other end side of the compressor (30). Specifically, the suction pipe (41) is provided with a pair of suction temperature sensors (45a) and a suction pressure sensor (46a). The discharge pipe (42) is provided with a pair of discharge temperature sensors (45b) and a discharge pressure sensor (46b). An outdoor liquid temperature sensor (45e) is provided on the liquid side of the outdoor heat exchanger (34), and an outdoor gas temperature sensor (45f) is provided on the gas side of the outdoor heat exchanger (34). In addition, an outdoor temperature sensor (18) is provided in the vicinity of the outdoor fan (12).

《室内回路の構成》
室内回路(22)には、利用側熱交換器である室内熱交換器(37)が設けられている。室内熱交換器(37)は、クロスフィン式のフィン・アンド・チューブ型熱交換器として構成されている。この室内熱交換器(37)の近傍には、室内ファン(14)が設けられている。この室内熱交換器(37)では、室内ファン(14)によって送られる室内空気と流通する冷媒との間で熱交換が行われる。
《Indoor circuit configuration》
The indoor circuit (22) is provided with an indoor heat exchanger (37) which is a use side heat exchanger. The indoor heat exchanger (37) is configured as a cross-fin type fin-and-tube heat exchanger. An indoor fan (14) is provided in the vicinity of the indoor heat exchanger (37). In the indoor heat exchanger (37), heat is exchanged between the indoor air sent by the indoor fan (14) and the circulating refrigerant.

室内回路(22)には、室内熱交換器(37)の一端側と他端側に温度センサ(45)がそれぞれ設けられている。具体的に、室内回路(22)の液側端と室内熱交換器(37)との間には、室内液温度センサ(45c)が設けられている。室内熱交換器(37)と室内回路(22)のガス側端との間には、室内ガス温度センサ(45d)が設けられている。また、室内ファン(14)の近傍には、室内温度センサ(19)が設けられている。   The indoor circuit (22) is provided with temperature sensors (45) on one end side and the other end side of the indoor heat exchanger (37), respectively. Specifically, an indoor liquid temperature sensor (45c) is provided between the liquid side end of the indoor circuit (22) and the indoor heat exchanger (37). An indoor gas temperature sensor (45d) is provided between the indoor heat exchanger (37) and the gas side end of the indoor circuit (22). An indoor temperature sensor (19) is provided in the vicinity of the indoor fan (14).

《制御部》
この冷凍装置(10)は、通常運転と油戻し運転とを選択的に実行可能になっている。通常運転は、対象空間である室内空間の温度調節を行うための運転である。通常運転としては、暖房運転と冷房運転とが実行可能になっている。油戻し運転は、通常運転時に蒸発器となる熱交換器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を強制的に圧縮機(30)へ戻すための運転である。
<Control part>
The refrigeration apparatus (10) can selectively execute a normal operation and an oil return operation. The normal operation is an operation for adjusting the temperature of the indoor space that is the target space. As normal operation, heating operation and cooling operation can be performed. The oil return operation is an operation to forcibly return the refrigeration oil accumulated between the heat exchanger (34, 37), which is an evaporator, during normal operation to the compressor (30) and return it to the compressor (30). is there.

この冷凍装置(10)には、通常運転及び油戻し運転を制御するための制御部(50)が設けられている。制御部(50)は、制御手段を構成しており、運転容量制御部(47)と膨張弁制御部(48)と油戻し制御部(51)とを備えている。   The refrigeration apparatus (10) is provided with a control unit (50) for controlling normal operation and oil return operation. The control unit (50) constitutes a control means, and includes an operation capacity control unit (47), an expansion valve control unit (48), and an oil return control unit (51).

運転容量制御部(47)は、圧縮機(30)の運転容量を制御するように構成されている。具体的に、運転容量制御部(47)には、暖房運転中における圧縮機(30)の吐出冷媒の圧力の目標値である高圧目標値の初期値と、冷房運転中における圧縮機(30)の吸入冷媒の圧力の目標値である低圧目標値の初期値とが設定されている。運転容量制御部(47)は、暖房運転中には吐出圧力センサ(46b)の検出値が高圧目標値となるように、冷房運転中には吸入圧力センサ(46a)の検出値が低圧目標値となるように圧縮機(30)の運転容量を制御する。   The operating capacity control unit (47) is configured to control the operating capacity of the compressor (30). Specifically, the operating capacity control unit (47) includes an initial value of a high pressure target value, which is a target value of the refrigerant pressure discharged from the compressor (30) during the heating operation, and the compressor (30) during the cooling operation. The initial value of the low pressure target value, which is the target value of the pressure of the suction refrigerant, is set. The operating capacity control unit (47) is configured such that the detected value of the suction pressure sensor (46a) becomes the low pressure target value during the cooling operation so that the detected value of the discharge pressure sensor (46b) becomes the high pressure target value during the heating operation. The operating capacity of the compressor (30) is controlled so that

膨張弁制御部(48)は、過熱度調節手段を構成する膨張弁(36)の開度を制御するように構成されている。具体的に、膨張弁制御部(48)には、暖房運転中の目標過熱度の初期値(例えば10℃)と、冷房運転中の目標過熱度の初期値(例えば10℃)とがそれぞれ設定されている。膨張弁制御部(48)は、暖房運転中には室外熱交換器(34)から流出した冷媒の過熱度が目標過熱度になるように、冷房運転中には室内熱交換器(37)から流出した冷媒の過熱度が目標過熱度になるように、膨張弁(36)の開度を調節する。   The expansion valve control unit (48) is configured to control the opening degree of the expansion valve (36) constituting the superheat degree adjusting means. Specifically, an initial value (for example, 10 ° C.) of a target superheat degree during heating operation and an initial value (for example, 10 ° C.) of a target superheat degree during cooling operation are set in the expansion valve control unit (48). Has been. The expansion valve control unit (48) is configured to start from the indoor heat exchanger (37) during the cooling operation so that the superheat degree of the refrigerant flowing out of the outdoor heat exchanger (34) becomes the target superheat degree during the heating operation. The opening degree of the expansion valve (36) is adjusted so that the superheat degree of the refrigerant that has flowed out becomes the target superheat degree.

なお、膨張弁制御部(48)は、冷房運転時には、室内液温度センサ(45c)の検出値と室内ガス温度センサ(45d)の検出値との差の絶対値を、室内熱交換器(37)から流出した冷媒の過熱度として検出する。暖房運転時には、室外液温度センサ(45e)の検出値と室外ガス温度センサ(45f)の検出値との差の絶対値を、室外熱交換器(37)から流出した冷媒の過熱度として検出する。   During the cooling operation, the expansion valve control unit (48) determines the absolute value of the difference between the detected value of the indoor liquid temperature sensor (45c) and the detected value of the indoor gas temperature sensor (45d) as the indoor heat exchanger (37 ) Is detected as the degree of superheat of the refrigerant that has flowed out. During heating operation, the absolute value of the difference between the detected value of the outdoor liquid temperature sensor (45e) and the detected value of the outdoor gas temperature sensor (45f) is detected as the degree of superheat of the refrigerant flowing out of the outdoor heat exchanger (37). .

冷房運転では、膨張弁制御部(48)は、この差の絶対値が目標過熱度よりも大きい場合には膨張弁(36)の開度を拡大し、この差の絶対値が目標過熱度よりも小さい場合には膨張弁(36)の開度を縮小する。一方、暖房運転では、膨張弁制御部(48)は、この差の絶対値が目標過熱度よりも大きい場合には膨張弁(36)の開度を拡大し、この差の絶対値が目標過熱度よりも小さい場合には膨張弁(36)の開度を縮小する。   In the cooling operation, the expansion valve control unit (48) expands the opening of the expansion valve (36) when the absolute value of the difference is larger than the target superheat degree, and the absolute value of the difference is larger than the target superheat degree. Is smaller, the opening of the expansion valve (36) is reduced. On the other hand, in the heating operation, the expansion valve control unit (48) expands the opening of the expansion valve (36) when the absolute value of the difference is larger than the target superheat degree, and the absolute value of the difference becomes the target overheat. If it is smaller than the degree, the opening of the expansion valve (36) is reduced.

また、膨張弁制御部(48)には、油戻し運転中の蒸発器となる熱交換器(34,37)の出口における冷媒の過熱度の目標値として油戻し用目標値(4℃)が設定されている。膨張弁制御部(48)は、油戻し運転中は、蒸発器となる熱交換器(34,37)の出口における冷媒の過熱度が油戻し用目標値になるように膨張弁(36)の開度を調節する。なお、暖房運転中に油戻し運転に移行する場合には室外熱交換器(34)がそのまま蒸発器となり、冷房運転中に油戻し運転に移行する場合には室内熱交換器(37)がそのまま蒸発器となる。   The expansion valve control unit (48) has a target value for oil return (4 ° C.) as a target value for the degree of superheat of the refrigerant at the outlet of the heat exchanger (34, 37) serving as an evaporator during the oil return operation. Is set. During the oil return operation, the expansion valve control unit (48) controls the expansion valve (36) so that the superheat degree of the refrigerant at the outlet of the heat exchanger (34, 37) serving as an evaporator becomes the oil return target value. Adjust the opening. The outdoor heat exchanger (34) becomes an evaporator as it is when the oil return operation is performed during the heating operation, and the indoor heat exchanger (37) remains as it is when the oil return operation is performed during the cooling operation. It becomes an evaporator.

ここで、油戻し用目標値(4℃)は、蒸発器(34,37)の出口における冷媒の過熱度がこの油戻し用目標値に調節されると、蒸発器(34,37)の出口における冷媒の温度が蒸発器(34,37)の出口での冷媒の圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの温度に対応する上限対応温度になるように定められている。   Here, the target value for oil return (4 ° C.) is obtained when the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) is adjusted to the target value for oil return. The refrigerant temperature is determined to be an upper limit temperature corresponding to the temperature at which the amount of refrigerant dissolved in the refrigerating machine oil reaches the upper limit at the refrigerant pressure at the outlet of the evaporator (34, 37).

具体的に、冷媒に二酸化炭素を用いる冷凍装置では、冷凍サイクルの低圧圧力、つまり蒸発器(34,37)の出口での冷媒の圧力が1MPaから7MPaの範囲になる。そして、圧力が例えば1MPaの下では、図2に示すように、冷媒の温度が概ね−37℃の時に、ポリアルキレングリコールに溶ける二酸化炭素冷媒の量が上限値に達する。上限値に達する時の二酸化炭素冷媒の濃度は60%になる。この状態における冷媒の過熱度は5℃になる。従って、冷媒の過熱度が4℃になるのは、冷媒の温度が概ね−38℃になる時である。つまり、蒸発器(34,37)の出口での冷媒の圧力が1MPaになる状態で、蒸発器(34,37)の出口における冷媒の過熱度が4℃に調節されると、冷媒の温度が概ね−38℃になる。圧力が1MPaでは、この−38℃が、冷凍機油に溶ける冷媒の量が上限値に達するときの温度(−37℃)に対応する上限対応温度になる。   Specifically, in the refrigeration apparatus using carbon dioxide as the refrigerant, the low pressure of the refrigeration cycle, that is, the pressure of the refrigerant at the outlet of the evaporator (34, 37) is in the range of 1 MPa to 7 MPa. Under a pressure of 1 MPa, for example, as shown in FIG. 2, when the temperature of the refrigerant is approximately −37 ° C., the amount of carbon dioxide refrigerant dissolved in the polyalkylene glycol reaches the upper limit. The concentration of the carbon dioxide refrigerant when reaching the upper limit is 60%. The superheat degree of the refrigerant in this state is 5 ° C. Therefore, the degree of superheating of the refrigerant becomes 4 ° C. when the temperature of the refrigerant becomes approximately −38 ° C. That is, when the refrigerant superheat degree at the outlet of the evaporator (34, 37) is adjusted to 4 ° C. with the refrigerant pressure at the outlet of the evaporator (34, 37) being 1 MPa, the temperature of the refrigerant is increased. It will be approximately -38 ° C. When the pressure is 1 MPa, this −38 ° C. becomes the upper limit temperature corresponding to the temperature (−37 ° C.) when the amount of the refrigerant dissolved in the refrigerating machine oil reaches the upper limit.

また、圧力が例えば7MPaの下では、冷媒の温度が概ね30℃の時に、ポリアルキレングリコールに溶ける二酸化炭素冷媒の量が上限値に達する。この状態における冷媒の過熱度は3℃になる。冷媒の過熱度が4℃になるのは、冷媒の温度が概ね31℃になる時である。つまり、蒸発器(34,37)の出口での冷媒の圧力が7MPaになる状態で、蒸発器(34,37)の出口における冷媒の過熱度が4℃に調節されると、冷媒の温度が概ね31℃になる。圧力が7MPaでは、この31℃が、冷凍機油に溶ける冷媒の量が上限値に達するときの温度(30℃)に対応する上限対応温度になる。   In addition, when the pressure is, for example, 7 MPa, when the refrigerant temperature is approximately 30 ° C., the amount of carbon dioxide refrigerant dissolved in the polyalkylene glycol reaches the upper limit. The superheat degree of the refrigerant in this state is 3 ° C. The degree of superheat of the refrigerant becomes 4 ° C. when the temperature of the refrigerant becomes approximately 31 ° C. That is, when the refrigerant superheat degree at the outlet of the evaporator (34, 37) is adjusted to 4 ° C. in a state where the refrigerant pressure at the outlet of the evaporator (34, 37) is 7 MPa, the temperature of the refrigerant is It will be about 31 ° C. When the pressure is 7 MPa, this 31 ° C. becomes the upper limit temperature corresponding to the temperature (30 ° C.) when the amount of the refrigerant dissolved in the refrigerating machine oil reaches the upper limit.

なお、蒸発器(34,37)の出口での冷媒の圧力が1MPaから7MPaの範囲において1MPa、7MPa以外の値になる場合も、同様に、蒸発器(34,37)の出口での冷媒の圧力における、図2における二酸化炭素冷媒の濃度60%のライン上の点から、冷凍機油に溶ける冷媒の量が上限値に達するときの温度が定まる。そして、蒸発器(34,37)の出口における冷媒の過熱度が4℃になる温度が、その温度に対応する上限対応温度として定まる。   Similarly, when the pressure of the refrigerant at the outlet of the evaporator (34, 37) becomes a value other than 1 MPa and 7 MPa in the range of 1 MPa to 7 MPa, the refrigerant at the outlet of the evaporator (34, 37) is also the same. The temperature at which the amount of refrigerant dissolved in the refrigerating machine oil reaches the upper limit is determined from the point on the line where the concentration of carbon dioxide refrigerant in FIG. The temperature at which the degree of superheat of the refrigerant at the outlet of the evaporator (34, 37) reaches 4 ° C. is determined as the upper limit temperature corresponding to that temperature.

油戻し制御部(51)は、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を冷媒と共に該圧縮機(30)へ戻すための油戻し制御を実行可能に構成されている。この実施形態の油戻し制御部(51)は、油戻し運転において油戻し制御を行う。   The oil return control unit (51) can execute oil return control for returning the refrigeration oil accumulated between the evaporator (34, 37) and the compressor (30) to the compressor (30) together with the refrigerant. It is configured. The oil return control unit (51) of this embodiment performs oil return control in the oil return operation.

具体的に、油戻し制御部(51)は、例えば前回の油戻し運転からの運転積算時間が所定の時間に達すると油戻し運転の実行を判断するように構成されている。そして、油戻し制御部(51)は、油戻し運転の実行を判断すると油戻し制御として、膨張弁制御部(48)に目標過熱度を油戻し用目標値に変更するように指令を出すように構成されている。   Specifically, the oil return control unit (51) is configured to determine the execution of the oil return operation when, for example, the accumulated operation time from the previous oil return operation reaches a predetermined time. When the oil return control unit (51) determines the execution of the oil return operation, the oil return control unit (51) instructs the expansion valve control unit (48) to change the target superheat degree to the oil return target value as the oil return control. It is configured.

また、油戻し制御部(51)は、油戻し運転において、油戻し制御と共に、圧縮機(30)の運転容量が油戻し運転の直前よりも増大するように、運転容量制御部(47)に低圧目標値又は高圧目標値を変更するように指令を出すように構成されている。油戻し制御部(51)は、冷房運転中に油戻し運転に移行する場合には、低圧目標値を初期値よりも小さな値に変更するように運転容量制御部(47)に指令を出す。暖房運転中に油戻し運転に移行する場合には、高圧目標値を初期値よりも大きな値に変更するように運転容量制御部(47)に指令を出す。   In addition, the oil return control unit (51) controls the operation capacity control unit (47) so that the operation capacity of the compressor (30) increases during the oil return operation as well as immediately before the oil return operation. A command is issued to change the low pressure target value or the high pressure target value. When shifting to the oil return operation during the cooling operation, the oil return control unit (51) issues a command to the operation capacity control unit (47) to change the low pressure target value to a value smaller than the initial value. When shifting to the oil return operation during the heating operation, the operation capacity control unit (47) is instructed to change the high pressure target value to a value larger than the initial value.

−空調機の動作−
本実施形態の空調機(10)の運転動作について説明する。この空調機(10)では、四路切換弁(33)によって冷房運転と暖房運転とが切り換えが行われる。
-Air conditioner operation-
The operation of the air conditioner (10) of this embodiment will be described. In the air conditioner (10), the cooling operation and the heating operation are switched by the four-way switching valve (33).

<暖房運転>
暖房運転では、四路切換弁(33)が第1状態に設定される。そして、この状態で圧縮機(30)を運転すると、冷媒回路(20)では室外熱交換器(34)が蒸発器となって室内熱交換器(37)が放熱器となる蒸気圧縮冷凍サイクルが行われる。
<Heating operation>
In the heating operation, the four-way switching valve (33) is set to the first state. When the compressor (30) is operated in this state, a vapor compression refrigeration cycle in which the outdoor heat exchanger (34) serves as an evaporator and the indoor heat exchanger (37) serves as a radiator in the refrigerant circuit (20). Done.

具体的に、圧縮機(30)から吐出された二酸化炭素の臨界圧力よりも高圧の冷媒は、室内熱交換器(37)で室内空気と熱交換する。この熱交換では、冷媒が室内空気に放熱して冷却される。室内熱交換器(37)で冷却された冷媒は、膨張弁(36)を通過する際に減圧され、その後に室外熱交換器(34)で室外空気と熱交換して蒸発する。室外熱交換器(34)で蒸発した冷媒は、圧縮機(30)へ吸入されて圧縮される。   Specifically, the refrigerant having a pressure higher than the critical pressure of carbon dioxide discharged from the compressor (30) exchanges heat with indoor air in the indoor heat exchanger (37). In this heat exchange, the refrigerant dissipates heat to the room air and is cooled. The refrigerant cooled by the indoor heat exchanger (37) is depressurized when passing through the expansion valve (36), and thereafter evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (34). The refrigerant evaporated in the outdoor heat exchanger (34) is sucked into the compressor (30) and compressed.

<冷房運転>
冷房運転では、四路切換弁(33)が第2状態に設定される。そして、この状態で圧縮機(30)を運転すると、冷媒回路(20)では室外熱交換器(34)が放熱器となって室内熱交換器(37)が蒸発器(34,37)となる蒸気圧縮冷凍サイクルが行われる。
<Cooling operation>
In the cooling operation, the four-way switching valve (33) is set to the second state. When the compressor (30) is operated in this state, in the refrigerant circuit (20), the outdoor heat exchanger (34) becomes a radiator and the indoor heat exchanger (37) becomes an evaporator (34, 37). A vapor compression refrigeration cycle is performed.

具体的に、圧縮機(30)から吐出された二酸化炭素の臨界圧力よりも高圧の冷媒は、室外熱交換器(34)で室外空気と熱交換する。この熱交換では、冷媒が室外空気に放熱して冷却される。室外熱交換器(34)で冷却された冷媒は、膨張弁(36)を通過する際に減圧され、その後に室内熱交換器(37)で室内空気と熱交換して蒸発する。室内熱交換器(37)で蒸発した冷媒は、圧縮機(30)へ吸入されて圧縮される。   Specifically, the refrigerant having a pressure higher than the critical pressure of carbon dioxide discharged from the compressor (30) exchanges heat with outdoor air in the outdoor heat exchanger (34). In this heat exchange, the refrigerant dissipates heat to the outdoor air and is cooled. The refrigerant cooled in the outdoor heat exchanger (34) is depressurized when passing through the expansion valve (36), and then evaporates by exchanging heat with indoor air in the indoor heat exchanger (37). The refrigerant evaporated in the indoor heat exchanger (37) is sucked into the compressor (30) and compressed.

−制御部の動作−
制御部(50)の動作のうち油戻し運転中の動作について説明する。なお、以下では冷房運転中に油戻し運転に移行した場合の油戻し運転について説明する。
-Control unit operation-
Of the operations of the control unit (50), the operation during the oil return operation will be described. Hereinafter, the oil return operation in the case of shifting to the oil return operation during the cooling operation will be described.

油戻し制御部(51)が例えば前回の油戻し運転からの運転積算時間が所定の時間に達して油戻し運転の実行を判断すると、容量増大行程が行われる。容量増大行程では、油戻し制御部(51)が、運転容量制御部(47)に低圧目標値を低下させるように指令を出す。運転容量制御部(47)は、油戻し制御部(51)から指令を受けると、低圧目標値を初期値よりも小さな値に変更する。低圧目標値が変更されると、圧縮機(30)の運転容量が増加される。   When the oil return control unit (51) determines, for example, that the accumulated operation time from the previous oil return operation has reached a predetermined time and the execution of the oil return operation is performed, a capacity increasing process is performed. In the capacity increasing process, the oil return control unit (51) instructs the operation capacity control unit (47) to decrease the low pressure target value. When receiving the command from the oil return control unit (51), the operating capacity control unit (47) changes the low pressure target value to a value smaller than the initial value. When the low pressure target value is changed, the operating capacity of the compressor (30) is increased.

また、油戻し運転では、容量増大行程と同時に、油戻し行程が行われる。油戻し行程では、油戻し制御部(51)が、膨張弁制御部(48)に目標過熱度を油戻し用目標値(4℃)に変更するように指令を出す。膨張弁制御部(48)は、油戻し制御部(51)から指令を受けると、目標過熱度を油戻し用目標値(4℃)に変更する。目標過熱度が油戻し用目標値に変更されると、室内熱交換器(37)の出口における冷媒の過熱度が油戻し用目標値になるように膨張弁(36)の開度が調節される。室内熱交換器(37)の出口における冷媒の過熱度が油戻し用目標値に調節されると、室内熱交換器(37)の出口における冷媒の温度が上記上限対応温度になる。   In the oil return operation, the oil return process is performed simultaneously with the capacity increasing process. In the oil return stroke, the oil return control unit (51) instructs the expansion valve control unit (48) to change the target superheat degree to the oil return target value (4 ° C.). When receiving the command from the oil return control unit (51), the expansion valve control unit (48) changes the target superheat degree to the oil return target value (4 ° C.). When the target superheat degree is changed to the oil return target value, the opening degree of the expansion valve (36) is adjusted so that the superheat degree of the refrigerant at the outlet of the indoor heat exchanger (37) becomes the oil return target value. The When the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (37) is adjusted to the oil return target value, the temperature of the refrigerant at the outlet of the indoor heat exchanger (37) becomes the above-mentioned upper limit temperature.

この上限対応温度は、冷凍機油に溶ける冷媒の量が上限値に達するときの温度、つまり冷媒の温度をさらに低下させても冷凍機油の動粘度が低下しなくなる温度に対応する温度である。このため、油戻し運転では、室内熱交換器(37)の出口における冷媒の温度が、冷凍機油の動粘度が最小値に達する温度又はその温度に近い温度になる。   This upper limit corresponding temperature is a temperature corresponding to a temperature at which the amount of the refrigerant dissolved in the refrigerating machine oil reaches the upper limit value, that is, a temperature at which the kinematic viscosity of the refrigerating machine oil does not decrease even if the refrigerant temperature is further reduced. For this reason, in the oil return operation, the temperature of the refrigerant at the outlet of the indoor heat exchanger (37) becomes a temperature at which the kinematic viscosity of the refrigerating machine oil reaches or reaches a minimum value.

なお、油戻し運転は、所定の時間に亘って行われる。油戻し運転が終了すると、制御部(50)は冷房運転を再開させる。   The oil return operation is performed for a predetermined time. When the oil return operation is completed, the control unit (50) restarts the cooling operation.

−実施形態の効果−
本実施形態では、油戻し運転において、蒸発器(34,37)の出口における冷媒の温度が蒸発器(34,37)の出口での冷媒の圧力において冷凍機油の動粘度が低下しなくなる温度に対応する上限対応温度になるように、蒸発器(34,37)の出口における冷媒の過熱度が調節される。このため、従来の冷凍装置のように、蒸発器(34,37)の出口における冷媒の過熱度が冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値よりも小さな値に調節されるおそれがなく、ガス冷媒の流速の低下により冷凍機油が圧縮機(30)に戻りにくい状態に陥ることがない。そして、油戻し運転において、冷凍機油の動粘度が最も小さくなる状態、又はこの状態に近い状態において、ガス冷媒の流速がある程度大きくなる。従って、動粘度が低下した状態の冷凍機油に十分なせん断力が作用するので、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を効率的に圧縮機(30)へ戻すことができる。
-Effect of the embodiment-
In the present embodiment, in the oil return operation, the temperature of the refrigerant at the outlet of the evaporator (34, 37) becomes a temperature at which the kinematic viscosity of the refrigerating machine oil does not decrease due to the pressure of the refrigerant at the outlet of the evaporator (34, 37). The degree of superheat of the refrigerant at the outlet of the evaporator (34, 37) is adjusted so that the corresponding upper limit temperature is reached. For this reason, like the conventional refrigeration apparatus, the refrigerant superheat degree at the outlet of the evaporator (34, 37) may be adjusted to a value smaller than the refrigerant superheat value at which the kinematic viscosity of the refrigerating machine oil does not decrease. Therefore, the refrigeration oil does not easily return to the compressor (30) due to a decrease in the flow rate of the gas refrigerant. In the oil return operation, the flow rate of the gas refrigerant is increased to some extent in a state where the kinematic viscosity of the refrigerating machine oil is the smallest or close to this state. Therefore, since sufficient shearing force acts on the refrigeration oil in a state in which the kinematic viscosity is lowered, the refrigeration oil accumulated between the evaporator (34, 37) and the compressor (30) is efficiently stored in the compressor ( 30).

また、本実施形態では、冷媒として二酸化炭素を用いる場合の蒸発器(34,37)の出口での冷媒の圧力が、1MPaから7MPaの範囲になることを想定して、冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値に対応する目標値を3℃以上5℃以下の範囲の値にしている。ここで、冷媒と冷凍機油を本実施形態の組合せにする場合には、蒸発器(34,37)の出口における冷媒の過熱度を0℃に調節する従来の油戻し運転では、蒸発器(34,37)の出口における冷媒の過熱度が、冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値よりも小さな値になる。そして、蒸発器(34,37)の出口における冷媒の過熱度が冷凍機油の動粘度が低下しなくなる冷媒の過熱度の値になる状態に比べて、蒸発器(34,37)の出口におけるガス冷媒の流速が小さくなる。従って、従来の油戻し運転では、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を効率的に圧縮機(30)へ戻すことができない。これに対して、本実施形態では、冷凍機油の動粘度は従来の場合と同程度であるが、蒸発器(34,37)の出口における冷媒の過熱度が従来よりも大きい値に調節される分、蒸発器(34,37)の出口におけるガス冷媒の流速が大きくなる。従って、従来の油戻し運転の場合に比べて、より多くの冷凍機油を圧縮機(30)へ戻すことが可能になる。   In this embodiment, assuming that the pressure of the refrigerant at the outlet of the evaporator (34, 37) when carbon dioxide is used as the refrigerant is in the range of 1 MPa to 7 MPa, the kinematic viscosity of the refrigerating machine oil is The target value corresponding to the value of the superheat degree of the refrigerant that does not decrease is set to a value in the range of 3 ° C. or more and 5 ° C. or less. Here, when the refrigerant and the refrigerating machine oil are combined in the present embodiment, in the conventional oil return operation in which the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) is adjusted to 0 ° C., the evaporator (34 37), the refrigerant superheat degree at the outlet becomes smaller than the refrigerant superheat value at which the kinematic viscosity of the refrigerating machine oil does not decrease. The gas at the outlet of the evaporator (34, 37) is compared to a state where the superheat degree of the refrigerant at the outlet of the evaporator (34, 37) becomes a value of the superheat degree of the refrigerant at which the kinematic viscosity of the refrigeration oil does not decrease. The flow rate of the refrigerant is reduced. Therefore, in the conventional oil return operation, the refrigerating machine oil accumulated between the evaporator (34, 37) and the compressor (30) cannot be efficiently returned to the compressor (30). On the other hand, in this embodiment, the kinematic viscosity of the refrigeration oil is about the same as in the conventional case, but the degree of superheat of the refrigerant at the outlet of the evaporator (34, 37) is adjusted to a value larger than the conventional one. Therefore, the flow rate of the gas refrigerant at the outlet of the evaporator (34, 37) increases. Therefore, more refrigeration oil can be returned to the compressor (30) than in the case of the conventional oil return operation.

また、本実施形態では、油戻し運転において圧縮機(30)の運転容量を油戻し運転の開始直前よりも増加させることで、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油に作用するせん断力が大きくなるようにしている。従って、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油がさらに圧縮機(30)に戻りやすくなるので、より多くの冷凍機油を圧縮機(30)に戻すことができる。   Moreover, in this embodiment, by increasing the operating capacity of the compressor (30) in the oil return operation from immediately before the start of the oil return operation, the operation from the evaporator (34, 37) to the compressor (30) is performed. The shearing force acting on the refrigerating machine oil accumulated in between is increased. Therefore, since the refrigerating machine oil accumulated between the evaporator (34, 37) and the compressor (30) is more easily returned to the compressor (30), more refrigerating machine oil is returned to the compressor (30). be able to.

−実施形態の変形例−
実施形態の変形例について説明する。この変形例では、油戻し制御部(51)が、通常運転において油戻し制御を行うようの構成されている。
-Modification of the embodiment-
A modification of the embodiment will be described. In this modification, the oil return control unit (51) is configured to perform oil return control in normal operation.

具体的に、制御部(50)には、図3に示すように、蒸発側圧力検出手段である蒸発側圧力検出部(52)が設けられている。蒸発側圧力検出部(52)は、通常運転中に蒸発器となる熱交換器(34,37)の出口における冷媒の圧力を検出するように構成されている。蒸発側圧力検出部(52)は、吸入圧力センサ(46a)の計測値と同じ値を蒸発器(34,37)の出口における冷媒の圧力として検出する。   Specifically, as shown in FIG. 3, the controller (50) is provided with an evaporation side pressure detector (52) which is an evaporation side pressure detector. The evaporation side pressure detection unit (52) is configured to detect the pressure of the refrigerant at the outlet of the heat exchanger (34, 37) serving as an evaporator during normal operation. The evaporation side pressure detector (52) detects the same value as the measured value of the suction pressure sensor (46a) as the refrigerant pressure at the outlet of the evaporator (34, 37).

油戻し制御部(51)は、通常運転中に蒸発側圧力検出部(52)の検出圧力を用いて油戻し用設定値を変更するように構成されている。油戻し制御部(51)は、例えば所定の時間間隔で蒸発側圧力検出部(52)から検出圧力の情報を受け取る。そして、油戻し制御部(51)は、蒸発側圧力検出部(52)から検出圧力の情報を受け取ると、その検出圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの冷媒の過熱度の値を、油戻し用設定値に設定する。例えば、検出圧力が1MPaである場合には油戻し用設定値は5℃に設定され、検出圧力が7MPaである場合には油戻し用設定値は3℃に設定される。   The oil return control unit (51) is configured to change the set value for oil return using the detection pressure of the evaporation side pressure detection unit (52) during normal operation. The oil return control unit (51) receives information on the detected pressure from the evaporation side pressure detection unit (52), for example, at predetermined time intervals. When the oil return control unit (51) receives the detected pressure information from the evaporation side pressure detection unit (52), the degree of superheat of the refrigerant when the amount of refrigerant that dissolves in the refrigeration oil at the detected pressure reaches the upper limit value. Is set to the set value for oil return. For example, when the detected pressure is 1 MPa, the set value for oil return is set to 5 ° C., and when the detected pressure is 7 MPa, the set value for oil return is set to 3 ° C.

この変形例では、通常運転中の蒸発器(34,37)の出口における冷媒の圧力に応じて、該蒸発器(34,37)の出口における冷媒の過熱度の目標値が設定される。ここで、冷凍機油に溶解する液冷媒の量の上限値は、冷媒の温度と圧力に応じて変化する。従って、通常運転中の蒸発器(34,37)の出口における冷媒の圧力の変化によって、上記上限値は変化する。この変形例では、上記目標値が、通常運転中の蒸発器(34,37)の出口における冷媒の圧力を反映して設定されるので、その時の蒸発器(34,37)の出口における冷媒の圧力における上限値になる。従って、通常運転中に亘って、蒸発器(34,37)の出口における冷媒の温度を冷凍機油の動粘度が低下しなくなる温度に調節することができるので、蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油をさらに効率的に圧縮機(30)へ戻すことができる。   In this modification, the target value of the degree of superheat of the refrigerant at the outlet of the evaporator (34, 37) is set according to the pressure of the refrigerant at the outlet of the evaporator (34, 37) during normal operation. Here, the upper limit value of the amount of the liquid refrigerant dissolved in the refrigerating machine oil changes according to the temperature and pressure of the refrigerant. Therefore, the upper limit value changes depending on the change in refrigerant pressure at the outlet of the evaporator (34, 37) during normal operation. In this modification, the target value is set to reflect the refrigerant pressure at the outlet of the evaporator (34, 37) during normal operation, so that the refrigerant at the outlet of the evaporator (34, 37) at that time is set. It becomes the upper limit in pressure. Therefore, the refrigerant temperature at the outlet of the evaporator (34, 37) can be adjusted to a temperature at which the kinematic viscosity of the refrigerating machine oil does not decrease during normal operation. The refrigerating machine oil accumulated up to the machine (30) can be returned to the compressor (30) more efficiently.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

上記実施形態について、冷凍装置(10)が空調機以外の冷凍装置(例えば冷蔵用や冷凍用の冷凍装置)であってもよい。   In the above embodiment, the refrigeration apparatus (10) may be a refrigeration apparatus other than the air conditioner (for example, a refrigeration apparatus for refrigeration or freezing).

また、上記実施形態について、油戻し用目標値が3℃以上5℃以下の範囲の4℃以外の値(例えば5℃)であってもよい。   Moreover, about the said embodiment, values (for example, 5 degreeC) other than 4 degreeC in the range whose oil return target value is 3 degreeC or more and 5 degrees C or less may be sufficient.

また、上記実施形態について、冷媒と弱相溶性の冷凍機油との組合せが上記実施形態とは異なる組合せであってもよい。   Moreover, about the said embodiment, the combination with a refrigerant | coolant and weak compatibility refrigerating machine oil different from the said embodiment may be sufficient.

また、上記実施形態について、蒸発器となる方の熱交換器(34,37)に空気を送るファン(12,14)が、過熱度調節手段を構成してもよい。具体的に、暖房運転に係る油戻し制御では室外ファン(12)が過熱度調節手段を構成し、冷房運転に係る油戻し制御では室内ファン(14)が過熱度調節手段を構成する。この場合、過熱度調節手段を構成するファン(12,14)は風量可変に構成され、制御部(50)には該ファン(12,14)の送風量を制御する風量制御部(53)が設けられる。風量制御部(53)は、油戻し制御において、蒸発器となる熱交換器(34,37)の出口における冷媒の過熱度が油戻し用目標値になるように、過熱度調節手段を構成するファン(12,14)を制御する。風量制御部(53)は、蒸発器(34,37)の出口における冷媒の過熱度が油戻し用目標値よりも大きい場合にはファン(12,14)の送風量を減少させ、蒸発器(34,37)の出口における冷媒の過熱度が油戻し用目標値よりも小さい場合にはファン(12,14)の送風量を増加させる。なお、過熱度調節手段が、膨張弁(36)とファン(12,14)との両方によって構成されていてもよい。   Moreover, about the said embodiment, the fan (12, 14) which sends air to the heat exchanger (34, 37) used as an evaporator may comprise a superheat degree adjustment means. Specifically, in the oil return control related to the heating operation, the outdoor fan (12) constitutes a superheat degree adjusting means, and in the oil return control related to the cooling operation, the indoor fan (14) constitutes a superheat degree adjusting means. In this case, the fans (12, 14) constituting the superheat degree adjusting means are configured to have a variable air volume, and the air volume controller (53) for controlling the air flow of the fans (12, 14) is provided in the controller (50). Provided. In the oil return control, the air volume control unit (53) configures the superheat degree adjusting means so that the superheat degree of the refrigerant at the outlet of the heat exchanger (34, 37) serving as an evaporator becomes the oil return target value. Control the fans (12, 14). When the refrigerant superheat degree at the outlet of the evaporator (34, 37) is larger than the target value for oil return, the air volume control unit (53) decreases the air flow of the fan (12, 14), and the evaporator ( If the degree of superheat of the refrigerant at the outlet of (34, 37) is smaller than the target value for oil return, the air flow rate of the fan (12, 14) is increased. The superheat degree adjusting means may be constituted by both the expansion valve (36) and the fans (12, 14).

また、上記実施形態について、圧縮機(30)内の冷凍機油の量を推測可能に冷凍装置(10)を構成して、推測した圧縮機(30)内の冷凍機油の量が所定値を下回る場合に油戻し運転を行うようにしてもよい。   Moreover, about the said embodiment, it comprises the refrigeration apparatus (10) so that the quantity of the refrigerating machine oil in a compressor (30) can be estimated, and the quantity of the refrigerating machine oil in the estimated compressor (30) is less than predetermined value. In some cases, an oil return operation may be performed.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、蒸発器から圧縮機に至るまでの間に溜まる冷凍機油を圧縮機に戻すための制御を行う冷凍装置、及び冷凍装置における油戻し方法について有用である。   As described above, the present invention is useful for a refrigeration apparatus that performs control for returning refrigeration oil accumulated between the evaporator and the compressor to the compressor, and an oil return method in the refrigeration apparatus.

図1は、本発明の実施形態に係る冷凍装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a refrigeration apparatus according to an embodiment of the present invention. 図2は、本発明の実施形態に係る冷凍装置に用いる冷媒と冷凍機油の組合せにおける、温度や圧力に対する冷凍機油の動粘度と冷凍機油に溶解する冷媒の濃度との関係を表す図表である。FIG. 2 is a chart showing the relationship between the kinematic viscosity of the refrigeration oil and the concentration of the refrigerant dissolved in the refrigeration oil with respect to temperature and pressure in the combination of the refrigerant and the refrigeration oil used in the refrigeration apparatus according to the embodiment of the present invention. 図3は、本発明の実施形態の変形例に係る冷凍装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a refrigeration apparatus according to a modification of the embodiment of the present invention.

符号の説明Explanation of symbols

10 空調機(冷凍装置)
12 室外ファン(過熱度調節手段、蒸発側ファン)
14 室内ファン(過熱度調節手段、蒸発側ファン)
20 冷媒回路
30 圧縮機
34 室外熱交換器(蒸発器、放熱器)
36 膨張弁(過熱度調節手段、蒸発側調節弁)
37 室内熱交換器(蒸発器、放熱器)
50 制御部(制御手段)
52 蒸発側圧力検出部(蒸発側圧力検出手段)
10 Air conditioner (refrigeration equipment)
12 Outdoor fan (superheat degree adjustment means, evaporation side fan)
14 Indoor fan (superheater, evaporative fan)
20 Refrigerant circuit
30 Compressor
34 Outdoor heat exchanger (evaporator, radiator)
36 Expansion valve (superheat degree control means, evaporation side control valve)
37 Indoor heat exchanger (evaporator, radiator)
50 Control unit (control means)
52 Evaporation side pressure detector (evaporation side pressure detection means)

Claims (9)

圧縮機(30)によって圧縮された冷媒を放熱器(34,37)で放熱させて蒸発器(34,37)で蒸発させる冷凍サイクルを行う冷媒回路(20)を備え、
上記圧縮機(30)における潤滑に弱相溶性の冷凍機油を用いる冷凍装置であって、
上記蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を冷媒と共に該圧縮機(30)へ戻すために、上記蒸発器(34,37)の出口における冷媒の温度が該蒸発器(34,37)の出口での冷媒の圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの温度に対応する上限対応温度になるように冷凍サイクルの運転状態を制御する油戻し制御を行う制御手段(50)を備えていることを特徴とする冷凍装置。
A refrigerant circuit (20) that performs a refrigeration cycle in which the refrigerant compressed by the compressor (30) is radiated by the radiator (34, 37) and evaporated by the evaporator (34, 37);
A refrigerating apparatus that uses weakly compatible refrigerating machine oil for lubrication in the compressor (30),
In order to return the refrigeration oil accumulated between the evaporator (34, 37) and the compressor (30) to the compressor (30) together with the refrigerant, the refrigerant at the outlet of the evaporator (34, 37) Controls the operating state of the refrigeration cycle so that the temperature reaches the upper limit temperature corresponding to the temperature at which the amount of refrigerant dissolved in the refrigeration oil reaches the upper limit at the refrigerant pressure at the outlet of the evaporator (34, 37) A refrigeration apparatus comprising control means (50) for performing oil return control.
請求項1において、
上記蒸発器(34,37)の出口における冷媒の過熱度を調節するための過熱度調節手段(12,14,36)を備え、
上記制御手段(50)は、上記油戻し制御において、上記蒸発器(34,37)の出口における冷媒の過熱度が該蒸発器(34,37)の出口における冷媒の温度が上記上限対応温度になるように定められる該過熱度の目標値になるように上記過熱度調節手段(12,14,36)を制御することを特徴とする冷凍装置。
In claim 1,
A superheat degree adjusting means (12, 14, 36) for adjusting the superheat degree of the refrigerant at the outlet of the evaporator (34, 37);
In the oil return control, the control means (50) is configured so that the degree of superheat of the refrigerant at the outlet of the evaporator (34, 37) is equal to the temperature of the refrigerant at the outlet of the evaporator (34, 37). A refrigeration apparatus, wherein the superheat degree adjusting means (12, 14, 36) is controlled to achieve a target value of the superheat degree determined to be.
請求項2において、
上記蒸発器(34,37)の冷媒流量を調節するための蒸発側膨張弁(36)が、上記過熱度調節手段(12,14,36)を構成しており、
上記制御手段(50)は、上記油戻し制御において上記蒸発側膨張弁(36)の開度を制御することを特徴とする冷凍装置。
In claim 2,
The evaporation side expansion valve (36) for adjusting the refrigerant flow rate of the evaporator (34, 37) constitutes the superheat degree adjusting means (12, 14, 36),
The said control means (50) controls the opening degree of the said evaporation side expansion valve (36) in the said oil return control, The freezing apparatus characterized by the above-mentioned.
請求項2又は3において、
上記蒸発器(34,37)に空気を送るための蒸発側ファン(12,14)が、上記過熱度調節手段(12,14,36)を構成しており、
上記制御手段(50)は、上記油戻し制御において上記蒸発側ファン(12,14)の送風量を制御することを特徴とする冷凍装置。
In claim 2 or 3,
The evaporation side fan (12, 14) for sending air to the evaporator (34, 37) constitutes the superheat degree adjusting means (12, 14, 36),
The said control means (50) controls the ventilation volume of the said evaporation side fan (12,14) in the said oil return control, The freezing apparatus characterized by the above-mentioned.
請求項2乃至4の何れか1つにおいて、
上記冷媒回路(20)では、冷媒として二酸化炭素が用いられ、冷凍機油としてポリアルキレングリコールが用いられる一方、
上記過熱度の目標値は、3℃以上5℃以下の範囲の値であることを特徴とする冷凍装置。
In any one of Claims 2 thru | or 4,
In the refrigerant circuit (20), carbon dioxide is used as the refrigerant, and polyalkylene glycol is used as the refrigerating machine oil.
The refrigerating apparatus according to claim 1, wherein the target value of the superheat degree is a value in a range of 3 ° C to 5 ° C.
請求項1乃至5の何れか1つにおいて、
対象空間を温度調節するための通常運転と、上記蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を強制的に上記圧縮機(30)へ戻すための油戻し運転とが選択的に実行可能になっており、
上記制御手段(50)は、上記油戻し運転において上記油戻し制御を行うことを特徴とする冷凍装置。
In any one of claims 1 to 5,
Oil for forcibly returning the refrigeration oil accumulated between the normal operation to adjust the temperature of the target space and the evaporator (34, 37) to the compressor (30) to the compressor (30) The return operation can be executed selectively,
The refrigeration apparatus, wherein the control means (50) performs the oil return control in the oil return operation.
請求項6において、
上記制御手段(50)は、上記油戻し運転において、上記油戻し制御を行うと共に上記圧縮機(30)の運転容量を該油戻し運転の開始直前よりも増加させることを特徴とする冷凍装置。
In claim 6,
In the oil return operation, the control means (50) performs the oil return control and increases the operating capacity of the compressor (30) from immediately before the start of the oil return operation.
請求項2乃至4の何れか1つにおいて、
上記蒸発器(34,37)の出口における冷媒の圧力を検出するための蒸発側圧力検出手段(52)を備え、
上記制御手段(50)は、対象空間を温度調節するための通常運転において上記油戻し制御を行い、該通常運転中の油戻し制御では上記蒸発側圧力検出手段(52)の検出圧力を用いて上記過熱度の目標値を設定することを特徴とする冷凍装置。
In any one of Claims 2 thru | or 4,
Evaporation side pressure detection means (52) for detecting the pressure of the refrigerant at the outlet of the evaporator (34, 37),
The control means (50) performs the oil return control in a normal operation for adjusting the temperature of the target space, and uses the detected pressure of the evaporation side pressure detection means (52) in the oil return control during the normal operation. A refrigeration apparatus characterized by setting a target value of the superheat degree.
圧縮機(30)によって圧縮された冷媒を放熱器(34,37)で放熱させて蒸発器(34,37)で蒸発させる冷凍サイクルを行う冷媒回路(20)を備え、上記圧縮機(30)における潤滑に弱相溶性の冷凍機油を用いる冷凍装置(10)において、上記蒸発器(34,37)から圧縮機(30)に至るまでの間に溜まる冷凍機油を冷媒と共に該圧縮機(30)へ戻すための冷凍装置の油戻し方法であって、
上記蒸発器(34,37)の出口における冷媒の温度が該蒸発器(34,37)の出口での冷媒の圧力において冷凍機油に溶ける冷媒の量が上限値に達するときの温度に対応する上限対応温度になるように冷凍サイクルの運転状態を制御する油戻し行程を備えていることを特徴とする冷凍装置の油戻し方法。
The compressor (30) includes a refrigerant circuit (20) for performing a refrigeration cycle in which the refrigerant compressed by the compressor (30) is radiated by the radiator (34, 37) and evaporated by the evaporator (34, 37). In the refrigerating apparatus (10) using the weakly compatible refrigerating machine oil for lubrication in the refrigerating machine, the refrigerating machine oil accumulated between the evaporator (34, 37) and the compressor (30) is combined with the refrigerant in the compressor (30). An oil return method for a refrigeration apparatus for returning to
The upper limit of the refrigerant temperature at the outlet of the evaporator (34, 37) corresponding to the temperature at which the amount of refrigerant dissolved in the refrigerating machine oil reaches the upper limit at the refrigerant pressure at the outlet of the evaporator (34, 37) An oil return method for a refrigeration apparatus, comprising an oil return process for controlling an operating state of a refrigeration cycle so as to achieve a corresponding temperature.
JP2007078554A 2007-03-26 2007-03-26 Refrigerating device and oil returning method of refrigerating device Pending JP2008241065A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007078554A JP2008241065A (en) 2007-03-26 2007-03-26 Refrigerating device and oil returning method of refrigerating device
PCT/JP2008/000684 WO2008117530A1 (en) 2007-03-26 2008-03-21 Refrigeration device and oil return method for refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078554A JP2008241065A (en) 2007-03-26 2007-03-26 Refrigerating device and oil returning method of refrigerating device

Publications (1)

Publication Number Publication Date
JP2008241065A true JP2008241065A (en) 2008-10-09

Family

ID=39788272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078554A Pending JP2008241065A (en) 2007-03-26 2007-03-26 Refrigerating device and oil returning method of refrigerating device

Country Status (2)

Country Link
JP (1) JP2008241065A (en)
WO (1) WO2008117530A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236712A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Refrigerating device
JP2012103210A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature control device and constant temperature and humidity apparatus
WO2015076331A1 (en) * 2013-11-22 2015-05-28 ダイキン工業株式会社 Air conditioner
JP2015218959A (en) * 2014-05-19 2015-12-07 リンナイ株式会社 Heat pump heating device
CN108351131A (en) * 2015-09-24 2018-07-31 开利公司 Control the system and method that the oil stream in refrigeration system is moved
WO2019142269A1 (en) * 2018-01-17 2019-07-25 東芝キヤリア株式会社 Method for controlling air conditioning apparatus, and air conditioning apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624295B2 (en) * 2009-09-17 2014-11-12 株式会社東芝 refrigerator
EP2690380A1 (en) * 2012-07-26 2014-01-29 Electrolux Home Products Corporation N.V. Apparatus including a heat pump and method to operate an apparatus including the heat pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611954A (en) * 1984-06-14 1986-01-07 三菱電機株式会社 Capacity control type refrigeration cycle device
JPH10259960A (en) * 1997-01-20 1998-09-29 Mitsubishi Electric Corp Refrigerant circulation apparatus
JPH11125481A (en) * 1997-08-19 1999-05-11 Mitsubishi Electric Corp Refrigerating air conditioner
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2002257427A (en) * 2001-02-28 2002-09-11 Mitsubishi Electric Corp Refrigerating air conditioner and its operating method
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003279175A (en) * 2002-03-22 2003-10-02 Mitsubishi Electric Corp Refrigerating air conditioning system
JP2005214515A (en) * 2004-01-29 2005-08-11 Mitsubishi Heavy Ind Ltd Refrigeration cycle device, compressor of refrigeration cycle device, and lubricant returning operation control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611954A (en) * 1984-06-14 1986-01-07 三菱電機株式会社 Capacity control type refrigeration cycle device
JPH10259960A (en) * 1997-01-20 1998-09-29 Mitsubishi Electric Corp Refrigerant circulation apparatus
JPH11125481A (en) * 1997-08-19 1999-05-11 Mitsubishi Electric Corp Refrigerating air conditioner
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2002257427A (en) * 2001-02-28 2002-09-11 Mitsubishi Electric Corp Refrigerating air conditioner and its operating method
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003279175A (en) * 2002-03-22 2003-10-02 Mitsubishi Electric Corp Refrigerating air conditioning system
JP2005214515A (en) * 2004-01-29 2005-08-11 Mitsubishi Heavy Ind Ltd Refrigeration cycle device, compressor of refrigeration cycle device, and lubricant returning operation control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236712A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Refrigerating device
JP2012103210A (en) * 2010-11-12 2012-05-31 Espec Corp Temperature control device and constant temperature and humidity apparatus
WO2015076331A1 (en) * 2013-11-22 2015-05-28 ダイキン工業株式会社 Air conditioner
JP2015102256A (en) * 2013-11-22 2015-06-04 ダイキン工業株式会社 Air conditioner
JP2015218959A (en) * 2014-05-19 2015-12-07 リンナイ株式会社 Heat pump heating device
CN108351131A (en) * 2015-09-24 2018-07-31 开利公司 Control the system and method that the oil stream in refrigeration system is moved
US20180283753A1 (en) * 2015-09-24 2018-10-04 Carrier Corporation System and method of controlling an oil flow within a refrigeration system
WO2019142269A1 (en) * 2018-01-17 2019-07-25 東芝キヤリア株式会社 Method for controlling air conditioning apparatus, and air conditioning apparatus
JPWO2019142269A1 (en) * 2018-01-17 2020-11-26 東芝キヤリア株式会社 Control method of air conditioner and air conditioner

Also Published As

Publication number Publication date
WO2008117530A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP6935720B2 (en) Refrigeration equipment
JP5125124B2 (en) Refrigeration equipment
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP2008180421A (en) Air conditioner
JP5908183B1 (en) Air conditioner
JP5418622B2 (en) Refrigeration equipment
JP2005249384A (en) Refrigerating cycle device
JP2007218532A (en) Air conditioner
JP2008215678A (en) Operation control method of air-conditioning system and air conditioning system
JP6080939B2 (en) Air conditioner
JP6007965B2 (en) Air conditioner
JP5506433B2 (en) Multi-type air conditioner
JP2008039233A (en) Refrigerating device
JP2006242392A (en) Flow controller and air conditioner
JP6758506B2 (en) Air conditioner
JP6155824B2 (en) Air conditioner
JP2009243847A (en) Multiple air conditioner
JP2008145044A (en) Air conditioner
JP5672290B2 (en) Air conditioner
JP2006258331A (en) Refrigerating apparatus
JP2011242097A (en) Refrigerating apparatus
JP2008232564A (en) Refrigerating device and control method for refrigerating device
JP2009052882A (en) Air conditioning system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106