JP2000186863A - Freezing air conditioning apparatus using combustible refrigerant - Google Patents

Freezing air conditioning apparatus using combustible refrigerant

Info

Publication number
JP2000186863A
JP2000186863A JP10364257A JP36425798A JP2000186863A JP 2000186863 A JP2000186863 A JP 2000186863A JP 10364257 A JP10364257 A JP 10364257A JP 36425798 A JP36425798 A JP 36425798A JP 2000186863 A JP2000186863 A JP 2000186863A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pipe
refrigeration
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10364257A
Other languages
Japanese (ja)
Other versions
JP3485006B2 (en
Inventor
Yoshihiro Sumida
嘉裕 隅田
Satoru Hirakuni
悟 平國
Masahiro Nakayama
雅弘 中山
Hitoshi Maruyama
等 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP36425798A priority Critical patent/JP3485006B2/en
Publication of JP2000186863A publication Critical patent/JP2000186863A/en
Application granted granted Critical
Publication of JP3485006B2 publication Critical patent/JP3485006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle

Abstract

PROBLEM TO BE SOLVED: To improve energy efficiency of an instrument and reduce an influence upon a refrigerant being leaked in a freezing air conditioning apparatus using a combustible refrigerant having a very small bad influence to global environment. SOLUTION: In a refrigerations cycle where a compressor 1, a condenser 2, a first capillary tube 3, an evaporator 4 are coupled in order through a refrigerant piping communicating these members using a combustible refrigerant as a refrigerant, an oil separator 20 is provided on a piping extending between an outlet of the compressor 1 and the condenser 2. Further, an opening/closing valve is provided for interrupting a high pressure section and a low pressure section upon interruption of the compressor. Moreover, an odorant or a colorant is added to a lubricating oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、オゾン層破壊や
地球温暖化などの地球環境に悪影響を与えることの少な
い可燃性冷媒を用いた冷凍空調装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration and air-conditioning system using a flammable refrigerant which does not adversely affect the global environment such as depletion of the ozone layer and global warming.

【0002】[0002]

【従来の技術】現在、冷凍冷蔵庫や空調機などの冷凍空
調装置の冷媒には、フロン系の冷媒が用いられている。
フロン系冷媒のなかでもCFC系およびHCFC系冷媒
は、オゾン層を破壊するため、HFC系フロン冷媒への
移行が進められている。家庭用冷凍冷蔵庫では、HFC
系冷媒であるR134aが広く用いられている。
2. Description of the Related Art Freon-based refrigerants are currently used as refrigerants in refrigeration and air-conditioning systems such as refrigerators and refrigerators.
Among the CFC-based refrigerants, CFC-based and HCFC-based refrigerants are degrading the ozone layer, and are being switched to HFC-based CFC refrigerants. In home refrigerators, HFC
R134a, which is a system refrigerant, is widely used.

【0003】図7は家庭用冷蔵庫の冷媒回路構成を示す
図であり、図において1は圧縮機、2は凝縮器、3は絞
り装置である毛細管、4は蒸発器である。また毛細管3
と圧縮機1の吸入配管は半田付けされており、熱回収熱
交換器10を構成している。さらに蒸発器4の出口側配
管には、負荷変化時などに発生する余剰冷媒を溜めるヘ
ッダー11が設けられている。
FIG. 7 is a diagram showing a refrigerant circuit configuration of a home refrigerator. In the drawing, reference numeral 1 denotes a compressor, 2 denotes a condenser, 3 denotes a capillary tube as a throttle device, and 4 denotes an evaporator. Also capillary 3
And the suction pipe of the compressor 1 are soldered to form a heat recovery heat exchanger 10. Further, a header 11 for storing excess refrigerant generated at the time of load change or the like is provided in the outlet pipe of the evaporator 4.

【0004】次に、この従来のフロン系冷媒を用いた家
庭用冷凍冷蔵庫の動作について、図8に示した圧力ーエ
ンタルピー線図を用いて説明する。圧縮機1を出た高温
高圧の冷媒蒸気は(図中A点)、凝縮器2に流入し、外
気などで冷却され気液二相状態まで凝縮する(図中B
点)。凝縮器2を出た気液二相冷媒は、毛細管3に流入
し減圧され、低圧の気液二相冷媒となる。毛細管3は圧
縮機1の吸入配管と熱回収熱交換器10を構成している
ので、毛細管3を通る冷媒は、圧縮機1の吸入配管によ
って冷却される(図中C点)。この低圧の気液二相冷媒は
蒸発器4に流入し、冷蔵庫庫内を冷却して、低圧の飽和
蒸気状態となって蒸発器4を流出する(図中D点)。こ
の低圧の蒸気冷媒は、ヘッダー11を経て熱回収熱交換
器10に流入し、毛細管3を通る冷媒によって加熱さ
れ、低圧の過熱蒸気となって、再び圧縮機1に吸入され
る(図中E点)。
[0004] Next, the operation of the conventional home refrigerator using a CFC-based refrigerant will be described with reference to a pressure-enthalpy diagram shown in FIG. The high-temperature and high-pressure refrigerant vapor exiting the compressor 1 (point A in the figure) flows into the condenser 2 and is cooled by outside air and condensed to a gas-liquid two-phase state (B in the figure).
point). The gas-liquid two-phase refrigerant that has exited the condenser 2 flows into the capillary tube 3 and is decompressed, and becomes a low-pressure gas-liquid two-phase refrigerant. Since the capillary 3 forms the suction pipe of the compressor 1 and the heat recovery heat exchanger 10, the refrigerant passing through the capillary 3 is cooled by the suction pipe of the compressor 1 (point C in the figure). The low-pressure gas-liquid two-phase refrigerant flows into the evaporator 4 and cools the inside of the refrigerator, enters a low-pressure saturated vapor state, and flows out of the evaporator 4 (point D in the figure). The low-pressure vapor refrigerant flows into the heat recovery heat exchanger 10 via the header 11, is heated by the refrigerant passing through the capillary 3, becomes low-pressure superheated vapor, and is sucked into the compressor 1 again (E in the figure). point).

【0005】また圧縮機1には、潤滑油が封入されてお
り、この潤滑油は冷媒とともに冷凍サイクル内を循環し
ている。さらに、冷蔵庫が設置される周囲温度の変化等
によって発生する余剰冷媒は、ヘッダー11に溜まる。
[0005] Lubricating oil is sealed in the compressor 1, and the lubricating oil circulates in the refrigeration cycle together with the refrigerant. Further, surplus refrigerant generated due to a change in the ambient temperature where the refrigerator is installed or the like accumulates in the header 11.

【0006】しかしこのHFC系冷媒は、地球温暖化を
促進する物質であり、地球環境を悪化させない炭化水素
冷媒やアンモニアなどの自然冷媒を冷凍空調装置の冷媒
として用いることが検討されている。これら自然冷媒は
可燃性冷媒であり、これらを用いた冷凍冷蔵庫として
は、例えば特開平8ー178481号公報に示されたも
のがある。この冷凍冷蔵庫の冷媒としては、地球温暖化
に対する影響は非常に小さいが、可燃性を示すプロパン
やブタン等の炭化水素系冷媒が用いられている。またこ
の冷凍冷蔵庫の冷媒配管接続部の近傍には、可燃性冷媒
検知センサが設置されている。
However, this HFC-based refrigerant is a substance that promotes global warming, and the use of natural refrigerants such as hydrocarbon refrigerants and ammonia, which do not deteriorate the global environment, as refrigerants for refrigeration and air conditioning systems is being studied. These natural refrigerants are flammable refrigerants, and a refrigerator using such refrigerants is disclosed in, for example, Japanese Patent Application Laid-Open No. 8-178481. As a refrigerant for the refrigerator, a hydrocarbon-based refrigerant such as propane or butane, which has a very small effect on global warming, but is flammable is used. Further, a flammable refrigerant detection sensor is installed near the refrigerant pipe connection part of the refrigerator.

【0007】冷凍サイクルの配管接続部などから、可燃
性冷媒が漏洩した場合には、可燃性冷媒検知センサがこ
れを検知し、圧縮機1に停止信号を送信するように制御
されており、万一可燃性冷媒が漏洩しても爆発につなが
ることが無いように制御されている。
When the flammable refrigerant leaks from the piping connection of the refrigeration cycle or the like, the flammable refrigerant detection sensor detects this and transmits a stop signal to the compressor 1 so as to be controlled. It is controlled so that even if one flammable refrigerant leaks, it does not lead to an explosion.

【0008】[0008]

【発明が解決しようとする課題】上記のような従来の冷
凍空調装置では、地球温暖化を抑制するために地球温暖
化に対する影響の非常に小さい炭化水素系冷媒を冷凍空
調装置の冷媒として用いている。しかし地球温暖化を抑
制するためには、冷媒自身の地球温暖化だけではなく、
冷凍空調機器の電力使用による地球温暖化を抑制するこ
とも重要である。すなわち冷凍空調機器のエネルギー効
率を向上させることも重要な課題となる。
In the above-mentioned conventional refrigeration and air-conditioning apparatus, in order to suppress global warming, a hydrocarbon-based refrigerant having a very small effect on global warming is used as a refrigerant for the refrigeration and air-conditioning apparatus. I have. However, in order to control global warming, not only the global warming of the refrigerant itself,
It is also important to control global warming due to the use of electricity in refrigeration and air conditioning equipment. That is, improving the energy efficiency of the refrigeration and air conditioning equipment is also an important issue.

【0009】また炭化水素冷媒は潤滑油との相溶性が高
く、圧縮機内の潤滑油には多量の冷媒が溶解し粘度が低
下するため、圧縮機からの油流出量が増加し、冷凍サイ
クルの圧力損失が増大したり、熱交換器の伝熱性能が低
下したりして、冷凍サイクルの効率が低下する場合があ
る。
Further, the hydrocarbon refrigerant has high compatibility with the lubricating oil, and a large amount of the refrigerant dissolves in the lubricating oil in the compressor to lower the viscosity. The efficiency of the refrigeration cycle may decrease due to an increase in pressure loss or a decrease in the heat transfer performance of the heat exchanger.

【0010】さらに可燃性冷媒使用時には、冷凍空調装
置に充填される冷媒量を削減したり、機器からの冷媒漏
洩を抑制したり、あるいは万一の冷媒漏洩が生じた際に
は、早期に漏洩個所を発見し、修理することが重要であ
る。
Furthermore, when a flammable refrigerant is used, the amount of refrigerant charged into the refrigeration / air-conditioning system is reduced, refrigerant leakage from the equipment is suppressed, or in the event of a refrigerant leakage, the It is important to find the spot and repair it.

【0011】この発明は、上記のような問題を解決され
るためになされたもので、地球環境に対する悪影響の非
常に小さい可燃性冷媒を用いた冷凍空調装置において、
機器のエネルギー効率を向上させ、冷媒の漏洩を抑制し
たり漏洩時の影響を低減できる冷凍空調装置を得ること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and is directed to a refrigeration and air-conditioning system using a flammable refrigerant having a very small adverse effect on the global environment.
It is an object of the present invention to obtain a refrigeration / air-conditioning apparatus capable of improving the energy efficiency of equipment and suppressing leakage of a refrigerant or reducing the influence of leakage.

【0012】[0012]

【課題を解決するための手段】この発明の第1の発明に
係わる冷凍空調装置は、圧縮機、凝縮器、絞り装置、蒸
発器を、冷媒として可燃性冷媒を用いて流通させる冷媒
配管により順次連結してなる冷凍サイクルにおいて、圧
縮機出口から凝縮器の間の配管に油分離器を設けたもの
である。
According to a first aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus comprising: a compressor, a condenser, a throttle device, and an evaporator, which are sequentially arranged by a refrigerant pipe for circulating a flammable refrigerant as a refrigerant. In the refrigeration cycle connected, an oil separator is provided in a pipe between the compressor outlet and the condenser.

【0013】この発明の第2の発明に係わる冷凍空調装
置は、圧縮機を低圧シェルタイプとしたものである。
In a refrigeration / air-conditioning apparatus according to a second aspect of the present invention, the compressor is of a low-pressure shell type.

【0014】この発明の第3の発明に係わる冷凍空調装
置は、圧縮機、凝縮器、絞り装置、蒸発器を、冷媒とし
て可燃性冷媒を用いて流通させる冷媒配管により順次連
結してなる冷凍サイクルにおいて、圧縮機停止時に圧縮
機出口部から絞り装置までの高圧部と絞り装置から圧縮
機入口までの低圧部とを遮断する開閉弁を設けたもので
ある。
A refrigeration air conditioner according to a third aspect of the present invention is a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe through which a combustible refrigerant flows as a refrigerant. , An on-off valve for shutting off a high-pressure portion from the compressor outlet to the expansion device and a low-pressure portion from the expansion device to the compressor inlet when the compressor is stopped.

【0015】この発明の第4の発明に係わる冷凍空調装
置は、圧縮機、凝縮器、毛細管、蒸発器を、冷媒として
可燃性冷媒を用いて流通させる冷媒配管により順次連結
し、さらに蒸発器出口から圧縮機入口までの配管と毛細
管とを熱交換させた熱回収熱交換器を有する冷凍サイク
ルにおいて、熱回収熱交換器を二重管熱交換器で構成し
たものである。
In a refrigeration / air-conditioning apparatus according to a fourth aspect of the present invention, a compressor, a condenser, a capillary, and an evaporator are sequentially connected by a refrigerant pipe for circulating using a combustible refrigerant as a refrigerant, and further, an evaporator outlet is provided. In a refrigeration cycle having a heat recovery heat exchanger in which heat is exchanged between a pipe from a pipe to a compressor inlet and a capillary, the heat recovery heat exchanger is constituted by a double tube heat exchanger.

【0016】この発明の第5の発明に係わる冷凍空調装
置は、二重管熱交換器の内管を毛細管とし、二重管熱交
換器の環状部を圧縮機の吸入冷媒配管としたものであ
る。
A refrigeration / air-conditioning apparatus according to a fifth aspect of the present invention is such that the inner tube of the double tube heat exchanger is a capillary tube and the annular portion of the double tube heat exchanger is a suction refrigerant pipe of a compressor. is there.

【0017】この発明の第6の発明に係わる冷凍空調装
置は、圧縮機、凝縮器、絞り装置、蒸発器を、冷媒とし
て可燃性冷媒を用いて流通させる冷媒配管により順次連
結してなる冷凍サイクルにおいて、蒸発器出口から圧縮
機入口までの配管を溶接部のない1本の配管で構成した
ものである。
A refrigeration air conditioner according to a sixth aspect of the present invention is a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe through which a combustible refrigerant flows as a refrigerant. In the above, the pipe from the outlet of the evaporator to the inlet of the compressor is constituted by a single pipe having no welding portion.

【0018】この発明の第7の発明に係わる冷凍空調装
置は、圧縮機、凝縮器、絞り装置、蒸発器を、冷媒とし
て可燃性冷媒を用いて流通させる冷媒配管により順次連
結してなる冷凍サイクルにおいて、圧縮機の潤滑油に付
臭剤を添加したものである。
A refrigeration air conditioner according to a seventh aspect of the present invention is a refrigeration cycle in which a compressor, a condenser, a throttling device, and an evaporator are sequentially connected by a refrigerant pipe through which a combustible refrigerant flows as a refrigerant. Wherein the odorant is added to the lubricating oil of the compressor.

【0019】この発明の第8の発明に係わる冷凍空調装
置は、圧縮機、凝縮器、絞り装置、蒸発器を、冷媒とし
て可燃性冷媒を用いて流通させる冷媒配管により順次連
結してなる冷凍サイクルにおいて、圧縮機の潤滑油に着
色剤を添加したものである。
A refrigeration cycle air conditioner according to an eighth aspect of the present invention is a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe through which a combustible refrigerant flows as a refrigerant. Wherein the coloring agent is added to the lubricating oil of the compressor.

【0020】[0020]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態の一例を示す家庭用冷凍冷蔵庫の冷媒回路図
で、従来装置と同様の部分は同一符号で示している。図
において、1は圧縮機、2は凝縮器、3は絞り装置であ
る第1毛細管、4は蒸発器である。また圧縮機1と凝縮
器2の間の配管には、油分離器20が設けられており、
油分離器で分離された潤滑油は、第1電磁弁21および
第2毛細管22を介して、圧縮機1の吸入配管に接続さ
れている。また圧縮機1は圧縮機容器内が低圧となる低
圧シェル圧縮機を用いている。さらにこの冷凍冷蔵庫の
冷媒としては、可燃性を示すものの、地球温暖化への悪
影響が非常に小さい炭化水素系冷媒R600a(イソブ
タン)を用いている。また圧縮機1内には、圧縮機摺動
部の潤滑のために、鉱油を潤滑油として封入している。
また圧縮機1は、圧縮機内部が低圧状態となる低圧シェ
ル圧縮機を用いている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a refrigerant circuit diagram of a home refrigerator-freezer showing an example of an embodiment of the present invention, and the same parts as those of the conventional apparatus are denoted by the same reference numerals. In the figure, 1 is a compressor, 2 is a condenser, 3 is a first capillary tube as a throttle device, and 4 is an evaporator. An oil separator 20 is provided in a pipe between the compressor 1 and the condenser 2,
The lubricating oil separated by the oil separator is connected to a suction pipe of the compressor 1 via a first solenoid valve 21 and a second capillary tube 22. The compressor 1 uses a low-pressure shell compressor in which the pressure inside the compressor container is low. Further, as the refrigerant of the refrigerator, a hydrocarbon-based refrigerant R600a (isobutane) which exhibits flammability but has a very small adverse effect on global warming is used. Mineral oil is sealed in the compressor 1 as lubricating oil for lubricating sliding portions of the compressor.
The compressor 1 uses a low-pressure shell compressor in which the inside of the compressor is in a low-pressure state.

【0021】次に動作について説明する。家庭用冷凍冷
蔵庫は、基本的には圧縮機の断続運転によって、冷蔵庫
庫内の温度を一定に制御している。そこでここではまず
圧縮機が運転中の動作について説明する。圧縮機運転時
は、第1電磁弁21を開状態としている。圧縮機1を出
た高温高圧の冷媒蒸気は、油分離器20に流入し、ここ
で冷媒蒸気と潤滑油に分離される。この油分離器30で
分離された潤滑油は、重力によって油分離器30内の下
部に滞留し、第1電磁弁21および第2毛細管22を経
て、圧縮機1の吸入配管に戻される。油分離器30で分
離された冷媒蒸気は、凝縮器2に流入し、外気などで冷
却され気液二相状態まで凝縮する。
Next, the operation will be described. In a home refrigerator-freezer, basically, the temperature inside the refrigerator is controlled to be constant by intermittent operation of a compressor. Therefore, here, the operation during the operation of the compressor will be described first. During operation of the compressor, the first solenoid valve 21 is kept open. The high-temperature and high-pressure refrigerant vapor that has exited the compressor 1 flows into the oil separator 20, where it is separated into refrigerant vapor and lubricating oil. The lubricating oil separated by the oil separator 30 stays in the lower part of the oil separator 30 due to gravity and returns to the suction pipe of the compressor 1 via the first solenoid valve 21 and the second capillary tube 22. The refrigerant vapor separated by the oil separator 30 flows into the condenser 2 and is cooled by outside air and condensed to a gas-liquid two-phase state.

【0022】凝縮器2を出た気液二相冷媒は、毛細管3
に流入し減圧され、低圧の気液二相冷媒となる。毛細管
3は圧縮機1の吸入配管と熱回収熱交換器10を構成し
ているので、毛細管3を通る冷媒は、圧縮機1の吸入配
管によって冷却される。この低圧の気液二相冷媒は蒸発
器4に流入し、冷蔵庫庫内を冷却して、低圧の飽和蒸気
状態となって蒸発器4を流出する。この低圧の蒸気冷媒
は、熱回収熱交換器10に流入し、毛細管3を通る冷媒
によって加熱され、低圧の過熱蒸気となって、再び圧縮
機1に吸入される。一方、圧縮機停止中は、第1電磁弁
30を閉状態としている。
The gas-liquid two-phase refrigerant leaving the condenser 2 is supplied to the capillary 3
Into a low-pressure gas-liquid two-phase refrigerant. Since the capillary 3 constitutes the suction pipe of the compressor 1 and the heat recovery heat exchanger 10, the refrigerant passing through the capillary 3 is cooled by the suction pipe of the compressor 1. The low-pressure gas-liquid two-phase refrigerant flows into the evaporator 4, cools the inside of the refrigerator, becomes a low-pressure saturated vapor state, and flows out of the evaporator 4. The low-pressure vapor refrigerant flows into the heat recovery heat exchanger 10, is heated by the refrigerant passing through the capillary 3, becomes low-pressure superheated steam, and is sucked into the compressor 1 again. On the other hand, while the compressor is stopped, the first solenoid valve 30 is kept closed.

【0023】本実施の形態では、低圧シェルの圧縮機を
用いることにより、可燃性冷媒であるR600aの冷凍
サイクル内の冷媒充填量を高圧シェル圧縮機に比べて大
幅に削減し、冷媒漏洩時の漏洩量やその影響を低減させ
ている。一般に、炭化水素系冷媒は、鉱油との相互溶解
性がフロン系冷媒よりも大きい。図2は炭化水素系冷媒
であるR600aと鉱油との溶解度を示したものであ
り、横軸が圧力、縦軸が溶解度、図中の曲線パラメータ
が温度を示している。
In the present embodiment, the use of a low-pressure shell compressor significantly reduces the amount of flammable refrigerant R600a in the refrigeration cycle in the refrigeration cycle as compared with the high-pressure shell compressor, and reduces the amount of refrigerant that leaks. The leakage amount and its effects are reduced. In general, hydrocarbon-based refrigerants have greater mutual solubility with mineral oil than fluorocarbon-based refrigerants. FIG. 2 shows the solubility of R600a, which is a hydrocarbon-based refrigerant, and mineral oil. The horizontal axis represents pressure, the vertical axis represents solubility, and the curve parameter in the figure represents temperature.

【0024】すなわち、鉱油中への炭化水素系冷媒の溶
解度は、圧力、温度によって決定され、図2に示すよう
に圧力が高く、温度が低いほど溶解度は大きくなる。一
般的なR600aを用いた冷蔵庫の高圧は、4.3kg
/cm2abs.、低圧は0.45kg/cm2abs.
程度であり、高圧シェル圧縮機の場合の潤滑油が封入さ
れた圧縮機容器内の圧力は、4.3kg/cm2ab
s.、低圧シェル圧縮機の圧縮機容器内の圧力は0.4
5kg/cm2abs.となる。
That is, the solubility of the hydrocarbon-based refrigerant in the mineral oil is determined by the pressure and the temperature. As shown in FIG. 2, the higher the pressure and the lower the temperature, the higher the solubility. The high pressure of a refrigerator using a general R600a is 4.3 kg.
/ Cm 2 abs. , Low pressure is 0.45 kg / cm 2 abs.
And in the case of a high-pressure shell compressor, the pressure in the compressor vessel in which lubricating oil is sealed is 4.3 kg / cm 2 ab
s. The pressure in the compressor vessel of the low-pressure shell compressor is 0.4
5 kg / cm 2 abs. Becomes

【0025】今、圧縮機容器の温度を60℃とすると、
図2より高圧シェル圧縮機の溶解度は約21%(図2中
a点)、低圧シェル圧縮機の溶解度は約3%(図2中b
点)となり、低圧シェルの圧縮機を用いることにより圧
縮機内部の溶解度を大幅に削減することができる。圧縮
機内部の溶解度を大幅に削減できれば、圧縮機内部の潤
滑油内に溶解して存在する冷媒の量を大幅に削減でき、
結果として、冷凍サイクルに充填する可燃性冷媒の量を
削減する事ができ、冷媒漏洩時の漏洩量やその影響を低
減させることができる。
Now, assuming that the temperature of the compressor container is 60 ° C.,
2, the solubility of the high-pressure shell compressor is about 21% (point a in FIG. 2), and the solubility of the low-pressure shell compressor is about 3% (b in FIG. 2).
Point), and the solubility inside the compressor can be greatly reduced by using a compressor having a low-pressure shell. If the solubility inside the compressor can be significantly reduced, the amount of refrigerant dissolved and present in the lubricating oil inside the compressor can be significantly reduced,
As a result, it is possible to reduce the amount of the flammable refrigerant to be charged into the refrigeration cycle, and it is possible to reduce the leakage amount at the time of refrigerant leakage and its influence.

【0026】また本実施の形態では、圧縮機1の吐出配
管に油分離器20を設け、冷凍サイクル内を循環する潤
滑油の量を大幅に削減している。冷凍サイクル内を循環
する潤滑油は、冷媒配管内部に付着し、冷媒圧力損失の
増加や、熱交換器の伝熱特性の低下を招き、結果として
冷凍サイクルのエネルギー効率を低下させる。一般に、
低圧シェル圧縮機は、圧縮機内部の圧縮室から冷媒を直
接吐出配管に吐き出すため、油吐出量は高圧シェル圧縮
機よりも多くなる。
In this embodiment, the oil separator 20 is provided in the discharge pipe of the compressor 1 to greatly reduce the amount of lubricating oil circulating in the refrigeration cycle. The lubricating oil circulating in the refrigeration cycle adheres to the inside of the refrigerant pipe, causing an increase in refrigerant pressure loss and a decrease in heat transfer characteristics of the heat exchanger, resulting in a decrease in energy efficiency of the refrigeration cycle. In general,
Since the low-pressure shell compressor discharges the refrigerant directly from the compression chamber inside the compressor to the discharge pipe, the oil discharge amount is larger than that of the high-pressure shell compressor.

【0027】そこで冷媒漏洩時の影響を低減させるため
に、圧縮機内部の溶解度を大幅に低下させ冷媒充填量を
低減させた低圧シェル圧縮機を採用した冷凍サイクルに
おいて、油分離器20を圧縮機吐出配管に設け、冷凍サ
イクル内を循環する潤滑油の量を大幅に低減し、圧力損
失の増大や伝熱特性の低下によるエネルギー効率の低下
を防止している。
Therefore, in order to reduce the influence of leakage of the refrigerant, in the refrigerating cycle employing a low-pressure shell compressor in which the solubility inside the compressor is greatly reduced and the amount of refrigerant charged is reduced, the oil separator 20 is connected to the compressor. Provided in the discharge pipe, the amount of lubricating oil circulating in the refrigeration cycle is greatly reduced, preventing a decrease in energy efficiency due to an increase in pressure loss and a decrease in heat transfer characteristics.

【0028】また油分離器20を設けて冷凍サイクル内
の潤滑油循環量を削減することにより、冷凍サイクルに
存在する潤滑油の量も削減でき、結果として圧縮機内部
に封入する潤滑油の量も削減することができる。この圧
縮機内部の潤滑油油量の削減により、潤滑油に溶解して
存在する冷媒も少なくなるため、冷凍サイクルへの冷媒
充填量もさらに削減でき、冷媒漏洩時の安全性もより一
層向上する。また潤滑油の初期封入量が少なくて済むた
め、潤滑油のコストが低減でき、安価なシステムが提供
できる。
Also, by providing the oil separator 20 to reduce the amount of lubricating oil circulating in the refrigeration cycle, the amount of lubricating oil present in the refrigeration cycle can also be reduced. As a result, the amount of lubricating oil sealed in the compressor can be reduced. Can also be reduced. By reducing the amount of lubricating oil inside the compressor, the amount of refrigerant dissolved in the lubricating oil is reduced, so that the amount of refrigerant charged into the refrigeration cycle can be further reduced, and the safety at the time of refrigerant leakage is further improved. . Further, since the amount of the lubricating oil to be initially charged is small, the cost of the lubricating oil can be reduced, and an inexpensive system can be provided.

【0029】なお、本実施の形態では、油分離器20の
油戻し配管に設けた第1電磁弁21を圧縮機運転中には
開状態にし、圧縮機運転中に油分離器20で分離した油
を連続的に圧縮機1の吸入配管に戻すようにしている
が、圧縮機運転中に第1電磁弁21を閉状態とし、圧縮
機運転中に分離した油を油分離器20内に貯留するよう
にしてもよい。このとき油分離器20に貯留された油
は、圧縮機停止時の一定時間に第1電磁弁21を開状態
とし、圧縮機吸入配管に戻すようにすればよい。
In the present embodiment, the first solenoid valve 21 provided in the oil return pipe of the oil separator 20 is opened during the operation of the compressor, and is separated by the oil separator 20 during the operation of the compressor. Although the oil is continuously returned to the suction pipe of the compressor 1, the first solenoid valve 21 is closed during the operation of the compressor, and the oil separated during the operation of the compressor is stored in the oil separator 20. You may make it. At this time, the oil stored in the oil separator 20 may be returned to the compressor suction pipe by opening the first solenoid valve 21 for a predetermined time when the compressor is stopped.

【0030】また本実施の形態では、冷媒として可燃性
を有する炭化水素冷媒イソブタン(R600a)を用い
た場合について説明したがこれに限ることは無く、ブタ
ン(R600)やプロパン(R290)などの炭化水素
冷媒やアンモニアなどの自然冷媒、あるいはこれらの混
合冷媒であってもよい。またR32やR152aなど、
地球温暖化係数の小さなHFC系フロン冷媒、あるいは
その混合冷媒であってもよい。
In this embodiment, the case where the flammable hydrocarbon refrigerant isobutane (R600a) is used as the refrigerant has been described. However, the present invention is not limited to this, and the hydrocarbon refrigerant such as butane (R600) and propane (R290) is used. It may be a natural refrigerant such as a hydrogen refrigerant or ammonia, or a mixed refrigerant thereof. Also, R32 and R152a, etc.
An HFC-based Freon refrigerant having a small global warming potential, or a mixed refrigerant thereof may be used.

【0031】また本実施の形態では、潤滑油として鉱油
を用いた場合について説明したがこれに限ることは無
く、アルキルベンゼン、エステル油、エーテル油、PA
G油などの合成油であっても良い。
In this embodiment, the case where mineral oil is used as the lubricating oil has been described. However, the present invention is not limited to this, and alkylbenzene, ester oil, ether oil, PA
It may be a synthetic oil such as G oil.

【0032】実施の形態2.図3はこの発明の実施の形
態の他の例を示す冷凍空調装置の冷媒回路図で、凝縮器
2と第1毛細管3の間の配管には、第2電磁弁30が設
けられており、また蒸発器4と圧縮機1の間の配管に
は、圧縮機1から蒸発器4への冷媒の流れを閉止する逆
止弁31が設けられている。この冷凍冷蔵庫の冷媒とし
ては、可燃性を示すものの、地球温暖化への悪影響が非
常に小さい炭化水素系冷媒R600a(イソブタン)を
用いている。なお、図1に示したものと同一の構成部品
には同一符号を付して、その重複する説明を省略する。
Embodiment 2 FIG. FIG. 3 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus showing another example of the embodiment of the present invention. In a pipe between the condenser 2 and the first capillary 3, a second solenoid valve 30 is provided. A check valve 31 for closing the flow of the refrigerant from the compressor 1 to the evaporator 4 is provided in a pipe between the evaporator 4 and the compressor 1. As a refrigerant of the refrigerator, a hydrocarbon-based refrigerant R600a (isobutane) which exhibits flammability but has a very small adverse effect on global warming is used. Note that the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.

【0033】本実施の形態では、圧縮機運転中は、第2
電磁弁30を開状態とし、実施の形態1と同様の冷媒の
流れで運転される。圧縮機停止時は、第2電磁弁30を
閉状態とし、高圧部から第1毛細管3を通って低圧部に
冷媒が移動することを防止している。また逆止弁31
は、圧縮機停止時の高圧部から圧縮機を通って低圧部に
冷媒が移動することを防止している。
In this embodiment, during the operation of the compressor, the second
The solenoid valve 30 is opened, and operation is performed with the same refrigerant flow as in the first embodiment. When the compressor is stopped, the second solenoid valve 30 is closed to prevent the refrigerant from moving from the high pressure section through the first capillary tube 3 to the low pressure section. Check valve 31
Prevents the refrigerant from moving from the high pressure section through the compressor to the low pressure section when the compressor is stopped.

【0034】圧縮機の断続運転によって冷蔵庫庫内を一
定の温度に制御している家庭用冷凍冷蔵庫では、圧縮機
停止時に高圧部から低圧部に冷媒が移動すると、冷蔵庫
のエネルギー効率が低下する。これは圧縮機停止時の冷
媒移動により、蒸発器が暖められたり、高圧部の冷媒量
が少なくなり、圧縮機再起動時に冷媒不足状態となって
効率の悪い運転状態がしばらく続くためである。
In a home refrigerator which controls the inside of the refrigerator to a constant temperature by the intermittent operation of the compressor, the energy efficiency of the refrigerator is reduced when the refrigerant moves from the high pressure section to the low pressure section when the compressor is stopped. This is because the evaporator is warmed by the movement of the refrigerant when the compressor is stopped, the amount of refrigerant in the high-pressure section is reduced, and the refrigerant is in a shortage state when the compressor is restarted, and the inefficient operating state continues for a while.

【0035】炭化水素系冷媒はフロン系冷媒に比べてノ
ズルなどの流動抵抗の大きな部分を通る流量は増加する
傾向を示す。したがって従来のフロン系冷媒を用いた冷
蔵庫では、第1毛細管や圧縮機1の流動抵抗が高圧部と
低圧部の冷媒移動を抑制していたが、炭化水素系冷媒を
用いた場合では、毛細管や圧縮機の流動抵抗では十分で
はなく、高圧部から低圧部の冷媒移動量は、フロン系冷
媒よりも増加する。
The flow rate of the hydrocarbon-based refrigerant through a portion having a large flow resistance such as a nozzle tends to increase as compared with the CFC-based refrigerant. Therefore, in a conventional refrigerator using a chlorofluorocarbon-based refrigerant, the flow resistance of the first capillary and the compressor 1 suppresses the movement of the refrigerant between the high-pressure part and the low-pressure part. The flow resistance of the compressor is not sufficient, and the amount of refrigerant transfer from the high-pressure section to the low-pressure section increases as compared with the CFC-based refrigerant.

【0036】ノズルを通る気体の体積流量Gは G=v*F*{2/(κ+1)}{ 1/( κ -1) }*〔2*
{κ/(κ+1)}*(P/v)〕0.5 で求められる。ここでFはノズル断面積、κは比熱比、
Pは高圧、vは比容積である。この式を用いて、炭化水
素系冷媒R600aとフロン系冷媒R134aの高圧部
から低圧部の移動冷媒流量を計算する。
The volume flow rate G of gas passing through the nozzle is G = v * F * {2 / (κ + 1)}{ 1 / ( κ -1) }* [2 *
{Κ / (κ + 1)} * (P / v)]0.5  Is required. Where F is the nozzle cross-sectional area, κ is the specific heat ratio,
P is high pressure and v is specific volume. Using this formula,
High pressure part of elementary refrigerant R600a and chlorofluorocarbon refrigerant R134a
Calculate the moving refrigerant flow rate in the low pressure section from

【0037】冷蔵庫の圧縮機停止直後の凝縮温度を30
℃、蒸発温度を−30℃とすると、R600aの物性値
は、κ=1.138、P=404kPa、v=0.09
561m3/kgであり、R134aの物性値は、κ=
1.198、P=770kPa、v=0.02667m
3/kgとなる。これらの物性値を上式を代入し、R6
00aとR134aの同一ノズル断面積での移動冷媒流
量を求めると、 G600a/G134a=1.22 となる。すなわちR600aの高圧部から低圧部への移
動冷媒流量は、R134aよりも22%大きくなり、こ
の分R600aを用いた冷蔵庫のエネルギー効率はR1
34aよりも低下する。
The condensing temperature immediately after stopping the compressor of the refrigerator is 30
° C and the evaporation temperature at -30 ° C, the physical properties of R600a are κ = 1.138, P = 404 kPa, and v = 0.09.
561 m 3 / kg, and the physical property value of R134a is κ =
1.198, P = 770 kPa, v = 0.02667m
3 / kg. Substituting the above equations for these physical properties, R6
When the flow rate of the moving refrigerant at the same nozzle cross-sectional area of 00a and R134a is obtained, G600a / G134a = 1.22. That is, the flow rate of the moving refrigerant from the high pressure section to the low pressure section of R600a is 22% larger than that of R134a, and the energy efficiency of the refrigerator using R600a is R1.
34a.

【0038】そこで本実施の形態では、このR600a
を用いた冷蔵庫の圧縮機停止時の高圧部から低圧部への
冷媒移動を防止するために、第2電磁弁30と逆止弁3
1を設けている。この結果、圧縮機停止時の高圧部から
低圧部への冷媒移動による冷蔵庫のエネルギー効率の低
下は防止され、エネルギー効率の高い可燃性冷媒を用い
た冷凍冷蔵庫を提供することができる。
Therefore, in the present embodiment, the R600a
The second solenoid valve 30 and the check valve 3 prevent the refrigerant from moving from the high pressure section to the low pressure section when the compressor of the refrigerator is stopped.
1 is provided. As a result, a decrease in the energy efficiency of the refrigerator due to the movement of the refrigerant from the high-pressure section to the low-pressure section when the compressor is stopped can be prevented, and a refrigerating refrigerator using a highly energy-efficient flammable refrigerant can be provided.

【0039】なお本実施の形態では、凝縮器2と第1毛
細管3の間の配管に電磁弁を、蒸発器4と圧縮機1の間
の配管に逆止弁を設けたが、これに限るものではなく、
圧縮機停止時に高圧部から低圧部への冷媒移動を防止で
きるものならばどのような構成でもよい。例えば、逆止
弁31を電磁弁としてもよい。また第2電磁弁30を弁
前後の差圧が大きいときに開状態となり、弁前後の差圧
が小さいときに閉状態となる差圧弁を用いてもよい。さ
らに第2電磁弁30および逆止弁31のどちらか一方の
みを用いてもよい。
In the present embodiment, the solenoid valve is provided in the pipe between the condenser 2 and the first capillary tube 3 and the check valve is provided in the pipe between the evaporator 4 and the compressor 1. However, the present invention is not limited to this. Not a thing,
Any configuration may be used as long as the refrigerant can be prevented from moving from the high pressure section to the low pressure section when the compressor is stopped. For example, the check valve 31 may be an electromagnetic valve. Alternatively, a differential pressure valve that opens the second solenoid valve 30 when the differential pressure before and after the valve is large and closes when the differential pressure before and after the valve is small may be used. Further, only one of the second solenoid valve 30 and the check valve 31 may be used.

【0040】実施の形態3.図4はこの発明の実施の形
態の他の例を示す冷凍空調装置の冷媒回路図で、熱回収
熱交換器10は、内管を第1毛細管、環状部を圧縮機1
の吸入配管とする二重管熱交換器で構成されている。な
お、図1に示したものと同一の構成部品には同一符号を
付して、その重複する説明を省略する。
Embodiment 3 FIG. 4 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus showing another embodiment of the present invention. In the heat recovery heat exchanger 10, the inner tube is a first capillary tube and the annular portion is a compressor 1
It consists of a double pipe heat exchanger which is used as a suction pipe. Note that the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.

【0041】本実施の形態では、熱回収熱交換器10を
二重管熱交換器で構成することにより、従来の半田接触
式熱交換器に比べて熱交換性能を向上させることができ
るため、熱回収熱交換器がコンパクトとなる。この熱回
収熱交換器のコンパクト化により、熱回収熱交換器の内
容積も小さくなり、冷媒量を削減し、冷媒漏洩時の安全
性を一層向上させることができる。また半田による接触
を行わずに熱回収熱交換器を製作できるので、リサイク
ル性も向上する。
In this embodiment, since the heat recovery heat exchanger 10 is constituted by a double tube heat exchanger, the heat exchange performance can be improved as compared with the conventional solder contact type heat exchanger. The heat recovery heat exchanger becomes compact. By making the heat recovery heat exchanger compact, the internal volume of the heat recovery heat exchanger is also reduced, the amount of refrigerant is reduced, and safety at the time of refrigerant leakage can be further improved. In addition, since the heat recovery heat exchanger can be manufactured without making contact with solder, recyclability is also improved.

【0042】また本実施の形態では、内管を第1毛細
管、環状部を圧縮機1の吸入配管とする二重管熱交換器
で熱回収熱交換器10を構成していので、第1毛細管を
通る低温の冷媒の熱は、確実に環状部を流れる冷媒に伝
わり、熱交換器ロスが発生することはなく、冷蔵庫のエ
ネルギー効率をより一層向上させることができる。また
内管と毛細管を兼用することにより、コンパクトな二重
管熱交換器を実現することができる。
In this embodiment, the heat recovery heat exchanger 10 is constituted by a double-tube heat exchanger in which the inner tube is the first capillary tube and the annular portion is the suction pipe of the compressor 1, so that the first capillary tube is formed. The heat of the low-temperature refrigerant passing through the refrigerant is surely transmitted to the refrigerant flowing through the annular portion, and no heat exchanger loss occurs, so that the energy efficiency of the refrigerator can be further improved. Further, by using both the inner tube and the capillary tube, a compact double tube heat exchanger can be realized.

【0043】実施の形態4.図5はこの発明の実施の形
態の他の例を示す冷凍空調装置の冷媒回路図で、蒸発器
4の出口側配管には、従来装置にあるヘッダーを設け
ず、蒸発器4の出口配管を溶接などの接続部のない1本
の配管で構成している。なお、図1に示したものと同一
の構成部品には同一符号を付して、その重複する説明を
省略する。
Embodiment 4 FIG. FIG. 5 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus showing another embodiment of the present invention. The outlet pipe of the evaporator 4 does not have a header in the conventional apparatus, and the outlet pipe of the evaporator 4 is not provided. It is composed of one pipe with no connection such as welding. Note that the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.

【0044】本実施の形態では、蒸発器4の出口部のヘ
ッダーを廃止し、蒸発器4の出口配管を溶接などの接続
部のない1本の配管で構成しているので、溶接不良など
配管接続部の不良による冷媒漏洩の発生を低減でき、信
頼性の高い冷凍空調装置を実現できる。
In this embodiment, the header at the outlet of the evaporator 4 is abolished, and the outlet pipe of the evaporator 4 is constituted by a single pipe having no connection such as welding. It is possible to reduce the occurrence of refrigerant leakage due to a defective connection portion, and to realize a highly reliable refrigeration / air-conditioning apparatus.

【0045】なお、本実施の形態では、冷蔵庫の置かれ
ている周囲温度変化などの負荷変化時などに発生する余
剰冷媒を溜めることはできないが、R134aに比べて
R600aは冷媒密度が小さく、R600aの冷媒充填
量はR134aより小さいため、負荷変化時に発生する
余剰冷媒量も小さい。また熱回収熱交換器10を熱交換
性能の高い二重管熱交換器としているので、負荷変化に
より余剰冷媒が多少発生しても、圧縮機への液バックに
よる信頼性低下や圧縮機吸入配管の露付きなどの問題が
生じることはない。
In the present embodiment, the excess refrigerant generated at the time of a load change such as a change in ambient temperature where the refrigerator is placed cannot be stored, but the refrigerant density of R600a is smaller than that of R134a, and R600a is smaller than R134a. Is smaller than R134a, the amount of surplus refrigerant generated when the load changes is also small. Further, since the heat recovery heat exchanger 10 is a double-pipe heat exchanger having a high heat exchange performance, even if a small amount of excess refrigerant is generated due to a change in load, the reliability decreases due to liquid back to the compressor and the compressor suction piping There is no problem such as dew.

【0046】実施の形態5.図6はこの発明の実施の形
態の他の例を示す冷凍空調装置の冷媒回路図で、図1に
示したものと同一の構成部品には同一符号を付して、そ
の重複する説明を省略する。本実施の形態では、圧縮機
の摺動部の潤滑のために封入された潤滑油に付臭剤を添
加している。このため、万一可燃性を示す冷媒が冷凍サ
イクルから漏洩した場合には、潤滑油も冷媒と共に漏洩
するため、その匂いで冷媒漏洩および潤滑油漏洩を容易
に知ることができ、使用者は適切な対策を施すことがで
きる。また漏洩の発生した冷蔵庫の修理を行なう際に
も、漏洩部位が容易に特定できるので、適切な処理を迅
速に行なうことができる。
Embodiment 5 FIG. FIG. 6 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus showing another example of the embodiment of the present invention. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. I do. In the present embodiment, an odorant is added to the lubricating oil sealed for lubricating the sliding parts of the compressor. Therefore, if a flammable refrigerant leaks from the refrigeration cycle, the lubricating oil also leaks together with the refrigerant, so that the odor can be used to easily identify the refrigerant leakage and the lubricating oil leakage, and the user can take appropriate measures. Measures can be taken. Also, when repairing a refrigerator in which a leak has occurred, the leak site can be easily specified, so that appropriate processing can be quickly performed.

【0047】なお本実施の形態では、潤滑油に付臭剤を
添加する例について示したが、潤滑油に付着剤を添加
し、冷媒漏洩を、冷媒とともに漏洩する油の色で検知で
きるようにしても同様の効果を発揮する。付着剤として
は例えば赤色着色剤が用いられ、その成分としては以下
のものが代表的である。 化 学 名:アゾ、ジアゾ系化合物(下記の混合物)(染料) 化学物質審査規制法による既存化学物質の整理番号 第5類3087番(ソルベントレッド23) 第5類5049番(ソルベントオレンジ73) 成分及び含有量:染料成分60〜70% キシレン(溶剤)30〜40% これらアゾ、ジアゾ系染料の化学構造の特徴としては、
分子内に芳香族環および−N=N−結合を持っている。
In this embodiment, an example in which an odorant is added to lubricating oil has been described. However, an adhering agent is added to lubricating oil so that refrigerant leakage can be detected by the color of oil leaking with refrigerant. The same effect can be obtained. For example, a red coloring agent is used as the adhesive, and the following components are typical. Chemical name: Azo and diazo compounds (the following mixtures) (dyes) Reference numbers of existing chemical substances according to the Chemical Substances Control Law 5th Class 3087 (Solvent Red 23) 5th Class 5049 (Solvent Orange 73) Ingredients And content: dye component 60 to 70% xylene (solvent) 30 to 40% The chemical structure of these azo and diazo dyes is characterized by:
It has an aromatic ring and a -N = N- bond in the molecule.

【0048】[0048]

【発明の効果】以上説明したとおり第1の発明に係わる
冷凍空調装置は、圧縮機、凝縮器、絞り装置、蒸発器
を、冷媒として可燃性冷媒を用いて流通させる冷媒配管
により順次連結してなる冷凍サイクルにおいて、圧縮機
出口から凝縮器の間の配管に油分離器を設けたものであ
るので、圧力損失の増大や伝熱性能の低下によるエネル
ギー効率の低下を抑制でき、効率の高い冷凍空調装置を
提供できる。また冷媒充填量の削減による漏洩時の影響
を低減できるとともに、安価なシステムを提供すること
ができる。
As described above, the refrigeration / air-conditioning apparatus according to the first aspect of the present invention comprises a compressor, a condenser, a throttling device, and an evaporator which are sequentially connected by a refrigerant pipe through which a combustible refrigerant flows as a refrigerant. In this refrigerating cycle, an oil separator is provided in the pipe between the compressor outlet and the condenser, so that a decrease in energy efficiency due to an increase in pressure loss and a decrease in heat transfer performance can be suppressed, resulting in a highly efficient refrigeration. An air conditioner can be provided. In addition, it is possible to reduce the influence at the time of leakage due to the reduction of the refrigerant charging amount, and to provide an inexpensive system.

【0049】また第2の発明に係わる冷凍空調装置は、
圧縮機を低圧シェルタイプとしたものであるので、冷凍
空調装置への冷媒充填量を大幅に削減でき、万一の冷媒
漏洩時の影響を低減させることができる。
The refrigeration / air-conditioning apparatus according to the second invention is
Since the compressor is of a low-pressure shell type, the amount of refrigerant to be charged into the refrigeration and air-conditioning apparatus can be greatly reduced, and the effect of leakage of the refrigerant can be reduced.

【0050】また第3の発明に係わる冷凍空調装置は、
圧縮機、凝縮器、絞り装置、蒸発器を、冷媒として可燃
性冷媒を用いて流通させる冷媒配管により順次連結して
なる冷凍サイクルにおいて、圧縮機停止時に圧縮機出口
部から絞り装置までの高圧部と絞り装置から圧縮機入口
までの低圧部とを遮断する開閉弁を設けたものであるの
で、圧縮機停止時の高圧部から低圧部への冷媒移動が防
止され、エネルギー効率の高い冷凍空調装置を提供でき
る。
The refrigeration / air-conditioning apparatus according to the third invention is characterized in that:
In a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a flammable refrigerant as a refrigerant, a high-pressure section from the compressor outlet to the throttle device when the compressor is stopped. And an on-off valve that shuts off the low-pressure section from the expansion device to the compressor inlet. This prevents refrigerant from moving from the high-pressure section to the low-pressure section when the compressor is stopped, and provides a highly energy-efficient refrigeration and air-conditioning system. Can be provided.

【0051】また第4の発明に係わる冷凍空調装置は、
圧縮機、凝縮器、毛細管、蒸発器を、冷媒として可燃性
冷媒を用いて流通させる冷媒配管により順次連結し、さ
らに蒸発器出口から圧縮機入口までの配管と毛細管とを
熱交換させた熱回収熱交換器を有する冷凍サイクルにお
いて、熱回収熱交換器を二重管熱交換器で構成したもの
であるので、冷媒充填量の削減による漏洩時の影響を低
減できるとともに、リサイクル性も向上させることがで
きる。
The refrigeration / air-conditioning apparatus according to the fourth invention is characterized in that:
Heat recovery by connecting the compressor, condenser, capillary, and evaporator sequentially with refrigerant piping that circulates using a flammable refrigerant as the refrigerant, and further exchanging heat between the piping from the evaporator outlet to the compressor inlet and the capillary. In a refrigeration cycle with a heat exchanger, the heat recovery heat exchanger is composed of a double-tube heat exchanger, so that the effects of leakage due to the reduction of the refrigerant charge can be reduced and the recyclability is improved. Can be.

【0052】また第5の発明に係わる冷凍空調装置は、
二重管熱交換器の内管を毛細管とし、二重管熱交換器の
環状部を圧縮機の吸入冷媒配管としたものであるので、
エネルギー効率をより一層向上させることができるとと
もに、コンパクトな二重管熱交換器を実現することがで
きる。
A refrigeration / air-conditioning apparatus according to a fifth aspect of the present invention
Since the inner tube of the double tube heat exchanger is a capillary tube and the annular portion of the double tube heat exchanger is the suction refrigerant pipe of the compressor,
Energy efficiency can be further improved, and a compact double tube heat exchanger can be realized.

【0053】また第6の発明に係わる冷凍空調装置は、
圧縮機、凝縮器、絞り装置、蒸発器を、冷媒として可燃
性冷媒を用いて流通させる冷媒配管により順次連結して
なる冷凍サイクルにおいて、蒸発器出口から圧縮機入口
までの配管を溶接部のない1本の配管で構成したもので
あるので、溶接不良など配管接続部の不良による冷媒漏
洩の発生を低減でき、信頼性の高い冷凍空調装置を実現
できる。
The refrigeration / air-conditioning apparatus according to the sixth aspect of the present invention
In a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a flammable refrigerant as a refrigerant, a pipe from an evaporator outlet to a compressor inlet has no welded portion. Since it is composed of a single pipe, it is possible to reduce the occurrence of refrigerant leakage due to defective pipe connections such as poor welding, and to realize a highly reliable refrigeration / air-conditioning apparatus.

【0054】また第7の発明に係わる冷凍空調装置は、
圧縮機、凝縮器、絞り装置、蒸発器を、冷媒として可燃
性冷媒を用いて流通させる冷媒配管により順次連結して
なる冷凍サイクルにおいて、圧縮機の潤滑油に付臭剤を
添加したものであるので、冷媒漏洩を匂いで容易に知る
ことができ、使用者は冷媒の漏洩を的確に知ることがで
きる。また漏洩の発生した冷蔵庫の修理を行なう際に
も、漏洩部位が容易に特定できるので、適切な処理を迅
速に行なうことができる。
The refrigeration / air-conditioning apparatus according to the seventh aspect of the present invention
In a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a flammable refrigerant as a refrigerant, an odorant is added to lubricating oil of the compressor. Therefore, the leakage of the refrigerant can be easily known by the smell, and the user can accurately know the leakage of the refrigerant. Also, when repairing a refrigerator in which a leak has occurred, the leak site can be easily specified, so that appropriate processing can be quickly performed.

【0055】また第8の発明に係わる冷凍空調装置は、
圧縮機、凝縮器、絞り装置、蒸発器を、冷媒として可燃
性冷媒を用いて流通させる冷媒配管により順次連結して
なる冷凍サイクルにおいて、圧縮機の潤滑油に着色剤を
添加したものであるので、冷媒漏洩を色で容易に知るこ
とができ、使用者は冷媒の漏洩を的確に知ることができ
る。また漏洩の発生した冷蔵庫の修理を行なう際にも、
漏洩部位が容易に特定できるので、適切な処理を迅速に
行なうことができる。
The refrigeration / air-conditioning apparatus according to the eighth invention is characterized in that:
In a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a flammable refrigerant as a refrigerant, a coloring agent is added to lubricating oil of the compressor. In addition, the leakage of the refrigerant can be easily known by the color, and the user can accurately know the leakage of the refrigerant. Also, when repairing a leaked refrigerator,
Since the leak site can be easily specified, appropriate processing can be quickly performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す冷凍空調装置
の冷媒回路図。
FIG. 1 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to Embodiment 1 of the present invention.

【図2】 R600aと鉱油の溶解度曲線。FIG. 2 shows solubility curves of R600a and mineral oil.

【図3】 この発明の実施の形態2示す冷凍空調装置の
冷媒回路図。
FIG. 3 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.

【図4】 この発明の実施の形態3を示す冷凍空調装置
の冷媒回路図。
FIG. 4 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to Embodiment 3 of the present invention.

【図5】 この発明の実施の形態4を示す冷凍空調装置
の冷媒回路図。
FIG. 5 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus showing Embodiment 4 of the present invention.

【図6】 この発明の実施の形態5を示す冷凍空調装置
の冷媒回路図。
FIG. 6 is a refrigerant circuit diagram of a refrigerating air conditioner showing a fifth embodiment of the present invention.

【図7】 従来の冷凍空調装置の冷媒回路図。FIG. 7 is a refrigerant circuit diagram of a conventional refrigeration / air-conditioning apparatus.

【図8】 従来の冷凍空調装置の動作を示す特性図。FIG. 8 is a characteristic diagram showing an operation of a conventional refrigeration / air-conditioning apparatus.

【符号の説明】[Explanation of symbols]

1 圧縮機、 2 凝縮器、 3 第1毛細管、 4
蒸発器、 10 熱回収熱交換器、 20 油分離
器。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 First capillary tube, 4
Evaporator, 10 heat recovery heat exchanger, 20 oil separator.

フロントページの続き (72)発明者 中山 雅弘 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 丸山 等 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内Continuation of the front page (72) Inventor Masahiro Nakayama 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Maruyama, etc. 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. In company

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、絞り装置、蒸発器を、
冷媒として可燃性冷媒を用いて流通させる冷媒配管によ
り順次連結してなる冷凍サイクルにおいて、前記圧縮機
出口から前記凝縮器の間の配管に油分離器を設けたこと
を特徴とする可燃性冷媒を用いた冷凍空調装置。
1. A compressor, a condenser, a throttle device, and an evaporator,
In a refrigeration cycle sequentially connected by a refrigerant pipe that circulates using a flammable refrigerant as a refrigerant, a flammable refrigerant characterized by having an oil separator provided in a pipe between the compressor outlet and the condenser. Refrigeration air conditioner used.
【請求項2】 圧縮機は低圧シェルタイプとしたことを
特徴とする請求項1に記載の可燃性冷媒を用いた冷凍空
調装置。
2. The refrigeration and air-conditioning system using a flammable refrigerant according to claim 1, wherein the compressor is of a low-pressure shell type.
【請求項3】 圧縮機、凝縮器、絞り装置、蒸発器を、
冷媒として可燃性冷媒を用いて流通させる冷媒配管によ
り順次連結してなる冷凍サイクルにおいて、前記圧縮機
停止時に前記圧縮機出口部から前記絞り装置までの高圧
部と前記絞り装置から前記圧縮機入口までの低圧部とを
遮断する開閉弁を設けたことを特徴とする可燃性冷媒を
用いた冷凍空調装置。
3. A compressor, a condenser, a throttle device, and an evaporator,
In a refrigeration cycle that is sequentially connected by a refrigerant pipe that circulates using a flammable refrigerant as a refrigerant, when the compressor is stopped, a high-pressure portion from the compressor outlet to the expansion device and from the expansion device to the compressor inlet. A refrigeration / air-conditioning system using a flammable refrigerant, comprising an on-off valve for shutting off a low-pressure section of the refrigeration system.
【請求項4】 圧縮機、凝縮器、毛細管、蒸発器を、冷
媒として可燃性冷媒を用いて流通させる冷媒配管により
順次連結し、さらに前記蒸発器出口から前記圧縮機入口
までの配管と前記毛細管とを熱交換させた熱回収熱交換
器を有する冷凍サイクルにおいて、前記熱回収熱交換器
を二重管熱交換器で構成したことを特徴とする可燃性冷
媒を用いた冷凍空調装置。
4. A compressor, a condenser, a capillary, and an evaporator are sequentially connected by a refrigerant pipe for flowing a combustible refrigerant as a refrigerant, and a pipe from an outlet of the evaporator to an inlet of the compressor and the capillary. A refrigeration cycle having a heat recovery heat exchanger in which heat exchange is performed between the heat recovery heat exchanger and the heat recovery heat exchanger, wherein the heat recovery heat exchanger is constituted by a double tube heat exchanger.
【請求項5】 二重管熱交換器の内管を毛細管とし、前
記二重管熱交換器の環状部を前記圧縮機の吸入冷媒配管
としたことをを特徴とする請求項4に記載の可燃性冷媒
を用いた冷凍空調装置。
5. The double pipe heat exchanger according to claim 4, wherein the inner pipe of the double pipe heat exchanger is a capillary tube, and the annular portion of the double pipe heat exchanger is a suction refrigerant pipe of the compressor. A refrigeration air conditioner using a flammable refrigerant.
【請求項6】 圧縮機、凝縮器、絞り装置、蒸発器を、
冷媒として可燃性冷媒を用いて流通させる冷媒配管によ
り順次連結してなる冷凍サイクルにおいて、前記蒸発器
出口から前記圧縮機入口までの配管を溶接部のない1本
の配管で構成したことを特徴とする可燃性冷媒を用いた
冷凍空調装置。
6. A compressor, a condenser, a throttle device, and an evaporator,
In a refrigeration cycle sequentially connected by a refrigerant pipe that circulates using a flammable refrigerant as a refrigerant, a pipe from the evaporator outlet to the compressor inlet is constituted by one pipe without a welded part. Refrigeration and air-conditioning systems using flammable refrigerants.
【請求項7】 圧縮機、凝縮器、絞り装置、蒸発器を、
冷媒として可燃性冷媒を用いて流通させる冷媒配管によ
り順次連結してなる冷凍サイクルにおいて、前記圧縮機
の潤滑油に付臭剤を添加したことを特徴とする可燃性冷
媒を用いた冷凍空調装置。
7. A compressor, a condenser, a throttle device, and an evaporator,
A refrigeration cycle using flammable refrigerant, wherein an odorant is added to lubricating oil of the compressor in a refrigeration cycle sequentially connected by refrigerant pipes that circulate using flammable refrigerant as refrigerant.
【請求項8】 圧縮機、凝縮器、絞り装置、蒸発器を、
冷媒として可燃性冷媒を用いて流通させる冷媒配管によ
り順次連結してなる冷凍サイクルにおいて、前記圧縮機
の潤滑油に着色剤を添加したことを特徴とする可燃性冷
媒を用いた冷凍空調装置。
8. A compressor, a condenser, a throttle device, and an evaporator,
A refrigeration cycle using a flammable refrigerant, wherein a coloring agent is added to lubricating oil of the compressor in a refrigeration cycle sequentially connected by refrigerant pipes circulating using a flammable refrigerant as a refrigerant.
JP36425798A 1998-12-22 1998-12-22 Refrigeration air conditioner using flammable refrigerant Expired - Fee Related JP3485006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36425798A JP3485006B2 (en) 1998-12-22 1998-12-22 Refrigeration air conditioner using flammable refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36425798A JP3485006B2 (en) 1998-12-22 1998-12-22 Refrigeration air conditioner using flammable refrigerant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003107408A Division JP2003307369A (en) 2003-04-11 2003-04-11 Refrigerating air conditioner using combustible refrigerant

Publications (2)

Publication Number Publication Date
JP2000186863A true JP2000186863A (en) 2000-07-04
JP3485006B2 JP3485006B2 (en) 2004-01-13

Family

ID=18481375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36425798A Expired - Fee Related JP3485006B2 (en) 1998-12-22 1998-12-22 Refrigeration air conditioner using flammable refrigerant

Country Status (1)

Country Link
JP (1) JP3485006B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106983A (en) * 2000-09-28 2002-04-10 Matsushita Refrig Co Ltd Cooling device and vending machine employing the cooling device
JP2002206890A (en) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp Heat exchanger, and freezing air-conditioning cycle device using it
JP2002267287A (en) * 2001-03-08 2002-09-18 Mitsubishi Electric Corp Method for manufacturing product, and compressor technology information device
JP2002372319A (en) * 2001-06-19 2002-12-26 Matsushita Refrig Co Ltd Refrigerator
JP2003287390A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Heat exchanger and air conditioner using this heat exchanger
JP2003302127A (en) * 2002-04-09 2003-10-24 Daikin Ind Ltd Refrigeration unit
JP2005351590A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Cooling/warming system
JP2007512396A (en) * 2003-11-13 2007-05-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Detectable refrigerant composition and use thereof
JP2008190864A (en) * 2008-05-14 2008-08-21 Daikin Ind Ltd Air conditioner
CN100416178C (en) * 2002-09-07 2008-09-03 三菱电机株式会社 Compressor technology data device
WO2008117530A1 (en) * 2007-03-26 2008-10-02 Daikin Industries, Ltd. Refrigeration device and oil return method for refrigeration device
JP2009525453A (en) * 2006-02-03 2009-07-09 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system
JP2010048463A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
US8033123B2 (en) 2006-07-24 2011-10-11 Daikin Industries, Ltd. Air conditioner
CN102997558A (en) * 2011-09-07 2013-03-27 日立空调·家用电器株式会社 Refrigerator
CN103486780A (en) * 2013-09-13 2014-01-01 青岛海信日立空调系统有限公司 Vapor-injected multi-connected air conditioning system
JP2014006027A (en) * 2012-06-27 2014-01-16 Mitsubishi Electric Corp Refrigeration cycle device
CN104236168A (en) * 2014-07-10 2014-12-24 广东美的集团芜湖制冷设备有限公司 Oil return control method and oil return control system for compressor system
JP2015073606A (en) * 2013-10-07 2015-04-20 株式会社東芝 Clothes dryer
WO2020157806A1 (en) * 2019-01-28 2020-08-06 三菱電機株式会社 Refrigerator
WO2020158652A1 (en) * 2019-01-31 2020-08-06 ダイキン工業株式会社 Refrigerant cycle device
WO2020235053A1 (en) * 2019-05-22 2020-11-26 三菱電機株式会社 Refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949454A (en) * 1982-09-13 1984-03-22 松下電器産業株式会社 Refrigeration cycle device
JPH07190590A (en) * 1993-12-24 1995-07-28 Matsushita Refrig Co Ltd Refrigerator
JPH07208819A (en) * 1993-04-27 1995-08-11 Mitsubishi Electric Corp Refrigerant circulating system
JPH0814675A (en) * 1994-06-29 1996-01-19 Matsushita Refrig Co Ltd Freezer
JPH08334272A (en) * 1995-06-09 1996-12-17 Daikin Ind Ltd Air conditioner
JPH09329386A (en) * 1996-06-07 1997-12-22 Hitachi Ltd Refrigerator
JPH10292962A (en) * 1997-04-18 1998-11-04 Hitachi Ltd Refrigerator
JPH10300246A (en) * 1997-04-25 1998-11-13 Mitsubishi Electric Corp Refrigerating equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949454A (en) * 1982-09-13 1984-03-22 松下電器産業株式会社 Refrigeration cycle device
JPH07208819A (en) * 1993-04-27 1995-08-11 Mitsubishi Electric Corp Refrigerant circulating system
JPH07190590A (en) * 1993-12-24 1995-07-28 Matsushita Refrig Co Ltd Refrigerator
JPH0814675A (en) * 1994-06-29 1996-01-19 Matsushita Refrig Co Ltd Freezer
JPH08334272A (en) * 1995-06-09 1996-12-17 Daikin Ind Ltd Air conditioner
JPH09329386A (en) * 1996-06-07 1997-12-22 Hitachi Ltd Refrigerator
JPH10292962A (en) * 1997-04-18 1998-11-04 Hitachi Ltd Refrigerator
JPH10300246A (en) * 1997-04-25 1998-11-13 Mitsubishi Electric Corp Refrigerating equipment

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106983A (en) * 2000-09-28 2002-04-10 Matsushita Refrig Co Ltd Cooling device and vending machine employing the cooling device
JP2002206890A (en) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp Heat exchanger, and freezing air-conditioning cycle device using it
JP2002267287A (en) * 2001-03-08 2002-09-18 Mitsubishi Electric Corp Method for manufacturing product, and compressor technology information device
JP2002372319A (en) * 2001-06-19 2002-12-26 Matsushita Refrig Co Ltd Refrigerator
JP4654539B2 (en) * 2001-06-19 2011-03-23 パナソニック株式会社 refrigerator
JP2003287390A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Heat exchanger and air conditioner using this heat exchanger
JP2003302127A (en) * 2002-04-09 2003-10-24 Daikin Ind Ltd Refrigeration unit
CN100416178C (en) * 2002-09-07 2008-09-03 三菱电机株式会社 Compressor technology data device
JP2007512396A (en) * 2003-11-13 2007-05-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Detectable refrigerant composition and use thereof
JP2005351590A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Cooling/warming system
JP2009525453A (en) * 2006-02-03 2009-07-09 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system
US8033123B2 (en) 2006-07-24 2011-10-11 Daikin Industries, Ltd. Air conditioner
WO2008117530A1 (en) * 2007-03-26 2008-10-02 Daikin Industries, Ltd. Refrigeration device and oil return method for refrigeration device
JP2008241065A (en) * 2007-03-26 2008-10-09 Daikin Ind Ltd Refrigerating device and oil returning method of refrigerating device
JP2008190864A (en) * 2008-05-14 2008-08-21 Daikin Ind Ltd Air conditioner
JP2010048463A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
CN102997558A (en) * 2011-09-07 2013-03-27 日立空调·家用电器株式会社 Refrigerator
JP2013057415A (en) * 2011-09-07 2013-03-28 Hitachi Appliances Inc Refrigerator
JP2014006027A (en) * 2012-06-27 2014-01-16 Mitsubishi Electric Corp Refrigeration cycle device
CN103486780A (en) * 2013-09-13 2014-01-01 青岛海信日立空调系统有限公司 Vapor-injected multi-connected air conditioning system
JP2015073606A (en) * 2013-10-07 2015-04-20 株式会社東芝 Clothes dryer
CN104236168A (en) * 2014-07-10 2014-12-24 广东美的集团芜湖制冷设备有限公司 Oil return control method and oil return control system for compressor system
WO2020157806A1 (en) * 2019-01-28 2020-08-06 三菱電機株式会社 Refrigerator
JPWO2020157806A1 (en) * 2019-01-28 2021-09-09 三菱電機株式会社 refrigerator
WO2020158652A1 (en) * 2019-01-31 2020-08-06 ダイキン工業株式会社 Refrigerant cycle device
JP2020122645A (en) * 2019-01-31 2020-08-13 ダイキン工業株式会社 Refrigerant cycle device
CN113412401A (en) * 2019-01-31 2021-09-17 大金工业株式会社 Refrigerant cycle device
US11448440B2 (en) 2019-01-31 2022-09-20 Daikin Industries, Ltd. Refrigerant cycle apparatus having refrigerant leak detector used to control first and second shutoff valves
WO2020235053A1 (en) * 2019-05-22 2020-11-26 三菱電機株式会社 Refrigerator
JPWO2020235053A1 (en) * 2019-05-22 2020-11-26
JP7229348B2 (en) 2019-05-22 2023-02-27 三菱電機株式会社 refrigerator

Also Published As

Publication number Publication date
JP3485006B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JP3485006B2 (en) Refrigeration air conditioner using flammable refrigerant
JP4225304B2 (en) Control method of refrigeration air conditioner
JP5627713B2 (en) Air conditioner
US6073454A (en) Reduced pressure carbon dioxide-based refrigeration system
JP2001227822A (en) Refrigerating air conditioner
EP0926454B1 (en) Refrigerating apparatus
CN103842745A (en) High efficiency refrigeration system
US20040123608A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
KR19990064122A (en) Air conditioner
JPH0942817A (en) Refrigerator and condenser
JP2000249413A (en) Refrigeration unit
JP3726541B2 (en) Refrigeration air conditioner
KR20040036874A (en) Refrigerating cycle device
JP2001082815A (en) Refrigeration airconditioning cycle device
JP2010112693A (en) Air conditioner
JPH10325622A (en) Refrigerating cycle device
JP2004012127A (en) Refrigerator using inflammable refrigerant
JP2004069295A (en) Refrigerator using inflammable refrigerant
JP3661548B2 (en) Refrigerator using flammable refrigerant
JP5008235B2 (en) Heat pump water heater
JP3510587B2 (en) Cooling cycle for air conditioner and lubricating oil for cooling cycle
JP2003307369A (en) Refrigerating air conditioner using combustible refrigerant
JP6393181B2 (en) Refrigeration cycle equipment
JP2008215748A (en) Air conditioner
JPH11294873A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees