JP2013057415A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013057415A
JP2013057415A JP2011194501A JP2011194501A JP2013057415A JP 2013057415 A JP2013057415 A JP 2013057415A JP 2011194501 A JP2011194501 A JP 2011194501A JP 2011194501 A JP2011194501 A JP 2011194501A JP 2013057415 A JP2013057415 A JP 2013057415A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerator
pipe
heat radiating
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194501A
Other languages
Japanese (ja)
Other versions
JP5492845B2 (en
Inventor
Akiyoshi Ohira
昭義 大平
Ryoji Kawai
良二 河井
Shinichiro Okadome
慎一郎 岡留
Dai Itakura
大 板倉
Kenji Betsuyaku
健二 別役
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011194501A priority Critical patent/JP5492845B2/en
Priority to CN201210306431.1A priority patent/CN102997558B/en
Publication of JP2013057415A publication Critical patent/JP2013057415A/en
Application granted granted Critical
Publication of JP5492845B2 publication Critical patent/JP5492845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption by eliminating the shortage of a refrigerant caused by a residual refrigerant in a pipe generating in switching refrigerant pipes, and to reduce refrigerant flowing noise generated when the refrigerant passes through a switch valve.SOLUTION: In this refrigerator having a refrigerant circuit successively connecting a compressor, a heat radiating means, a pressure reducing means and a cooler, the heat radiating means includes a first heat radiating means radiating heat to the outside of the refrigerator, and a second heat radiating means for heating a partitioning section, and further includes a first refrigerant flow channel for allowing the refrigerant compressed by the compressor to flow to the first heat radiating means and the second heat radiating means, a second refrigerant flow channel for making the refrigerant bypass the first refrigerant flow channel after circulating to the first heat radiating means, and a flow channel switching means for switching the first refrigerant flow channel and the second refrigerant flow channel. Internal volumes of the first refrigerant flow channel and the second refrigerant flow channel are smaller than an internal volume of the first heat radiating means.

Description

本発明は冷蔵庫に関するものである。   The present invention relates to a refrigerator.

従来の冷蔵庫として、貯蔵室の開口縁部に結露防止配管を配置した冷蔵庫が知られている。冷蔵庫本体を構成する断熱箱体には、複数の貯蔵室が設けられ、貯蔵室前方の開口を開閉する断熱性の扉が取り付けられている。開口と扉との接触部、すなわち貯蔵室の開口縁部は、庫内の冷気により冷やされて、その表面は外気との温度差により結露が発生し易くなる。この結露発生現象を抑制するために、冷凍サイクルの放熱パイプを利用した結露防止配管が、貯蔵室の開口縁部に埋設してある。   As a conventional refrigerator, a refrigerator in which a dew condensation prevention pipe is arranged at an opening edge of a storage room is known. The heat insulation box constituting the refrigerator body is provided with a plurality of storage chambers, and a heat insulating door for opening and closing the opening in front of the storage chamber is attached. The contact portion between the opening and the door, that is, the opening edge portion of the storage chamber is cooled by the cool air inside the cabinet, and the surface of the contact portion is likely to generate condensation due to a temperature difference with the outside air. In order to suppress this phenomenon of dew condensation, a dew condensation prevention pipe using a heat radiating pipe of the refrigeration cycle is embedded in the opening edge of the storage chamber.

特許文献1に記載の冷蔵庫では、複数に分割された凝縮器の途中に切換え弁を設けて結露防止配管を効率良く加熱し、更に冷凍サイクルの冷媒不足現象を引き起こすことなく結露防止配管をバイパスさせる手段を備えて消費電力量の低減を図っている。   In the refrigerator described in Patent Document 1, a switching valve is provided in the middle of a plurality of divided condensers to efficiently heat the condensation prevention pipe, and further, bypass the condensation prevention pipe without causing a refrigerant shortage phenomenon in the refrigeration cycle. Means are provided to reduce power consumption.

また、結露防止配管に冷媒を流通させる加熱モードと、結露防止配管をバイパスさせて冷媒を流通させるモードのいずれかを、切換え弁によって切り換える構成が記載されている。結露防止配管への冷媒の流通を停止した際、結露防止配管内に残留する冷媒によって冷凍サイクル全体としての冷媒不足が発生する。それを回避する手段として、特許文献1では、結露防止配管を圧縮機と凝縮器との間に接続して、結露防止配管を気相域の冷媒で満たすことで、結露防止配管内に閉じ込められる冷媒量を少なくしている。   In addition, a configuration is described in which a switching valve is used to switch between a heating mode in which refrigerant flows through the dew condensation prevention pipe and a mode in which refrigerant flows through the dew condensation prevention pipe. When the circulation of the refrigerant to the dew condensation prevention pipe is stopped, the refrigerant remaining in the dew condensation prevention pipe causes a shortage of refrigerant as the whole refrigeration cycle. As means for avoiding this, in Patent Document 1, the condensation prevention pipe is connected between the compressor and the condenser, and the condensation prevention pipe is filled with the refrigerant in the gas phase region, thereby being confined in the condensation prevention pipe. Refrigerant amount is reduced.

特開2009−174767号公報JP 2009-174767 A

特許文献1に記載の冷蔵庫では、圧縮機、第一凝縮器、結露防止配管、第二凝縮器、絞り、冷却器の順に接続されて冷凍サイクルが構成されている。結露防止配管では主に気相域での放熱を利用するために、第一凝縮器と第二凝縮器の間に結露防止配管を設けている。圧縮機から放出される冷媒ガスは、第一凝縮器、結露防止配管、第二凝縮器を通過する際に、外部に熱を放出して過熱ガス域(気相域)、気液二相域、液相域へと順番に相変化していく。   In the refrigerator described in Patent Document 1, a compressor, a first condenser, a dew condensation prevention pipe, a second condenser, a throttle, and a cooler are connected in this order to constitute a refrigeration cycle. In the condensation prevention piping, in order to mainly use heat radiation in the gas phase region, the condensation prevention piping is provided between the first condenser and the second condenser. When the refrigerant gas discharged from the compressor passes through the first condenser, the dew condensation prevention pipe, and the second condenser, the refrigerant gas releases heat to the outside so that the superheated gas region (gas phase region) and the gas-liquid two-phase region. The phase changes in turn to the liquid phase region.

第一凝縮器は冷蔵庫背面側、第二凝縮器は冷蔵庫側面に設けた放熱パイプからそれぞれの壁面を介して外気に熱を放出する方式である。この構成において、例えば、第二凝縮器が設置されている冷蔵庫側壁付近に暖房器具(加熱源)が置かれた場合、第二凝縮器内の冷媒は外部の熱を吸熱して、冷媒の一部が気化してガス(気相)となる。   The first condenser is a system for releasing heat to the outside air from the heat sink pipe provided on the refrigerator back side, and the second condenser is provided on the side of the refrigerator. In this configuration, for example, when a heating appliance (heating source) is placed near the side wall of the refrigerator where the second condenser is installed, the refrigerant in the second condenser absorbs external heat, The portion is vaporized to become gas (gas phase).

第二凝縮器を流出した冷媒は絞りを経て冷却器に流入するが、冷却器出入り口におけるエンタルピ差が小さくなるので結果的に吸熱量が少なくなり、庫内の冷却性能が悪化して消費電力量が増加する(図11参照)。   The refrigerant flowing out of the second condenser flows into the cooler through the throttle, but the enthalpy difference at the cooler inlet / outlet becomes small, resulting in a decrease in heat absorption, resulting in deterioration of the cooling performance in the cabinet, and power consumption. (See FIG. 11).

特許文献1では、上記の課題に関する配慮が不十分である。   In patent document 1, the consideration regarding said subject is inadequate.

更に、第一凝縮器と第二凝縮器の間に、切換え弁を配置しているが、切換え弁内部の冷媒の状態は、気相域あるいは気液二相域になっているので、切換え弁を通過する際に冷媒流動音が発生する恐れがある。   Furthermore, although a switching valve is arranged between the first condenser and the second condenser, the state of the refrigerant inside the switching valve is in a gas phase region or a gas-liquid two-phase region. There is a risk that refrigerant flow noise will be generated when passing through.

また、切換え弁によって結露防止配管と、結露防止配管をバイパスさせる配管を切り換えているが、切換え弁からの冷媒漏れを一定量許容している。そのため、例えば、切換え弁を結露防止配管側に固定した場合、結露防止配管のバイパス側に冷媒が滞留するため、冷媒不足を引き起こすことがある。また、一般に冷凍サイクル内の配管に冷媒が滞留する場合、圧縮機吐出側に全閉機能を有する切換え弁で全閉状態にして、冷凍サイクル内の冷媒を回収することが行われている。   Further, the switching valve switches between the condensation prevention pipe and the pipe bypassing the condensation prevention pipe, but a certain amount of refrigerant leakage from the switching valve is allowed. For this reason, for example, when the switching valve is fixed to the dew condensation prevention piping side, the refrigerant stays on the bypass side of the dew condensation prevention piping, which may cause shortage of the refrigerant. In general, when the refrigerant stays in the piping in the refrigeration cycle, the refrigerant in the refrigeration cycle is recovered by switching to a fully closed state with a switching valve having a fully closed function on the compressor discharge side.

しかしながら、特許文献1に記載の冷凍サイクルの場合、結露防止配管とそれをバイパスする配管内に滞留する冷媒を、切換え装置によって切り換える度に回収すると、圧縮機の効率低下により消費電力量が増加してしまう恐れがある。   However, in the case of the refrigeration cycle described in Patent Document 1, if the refrigerant staying in the dew condensation prevention pipe and the pipe bypassing it is collected every time it is switched by the switching device, the power consumption increases due to a reduction in the efficiency of the compressor. There is a risk that.

ここで、可燃性冷媒ガスを用いた強制循環方式の冷蔵庫における冷媒封入量は、日本では100gと上限値が決められている。日本国内の冷蔵庫は電気部品が多く、また除霜時に電気ヒータ(一例として、ガラス管ヒータ)を用いているため、可燃性冷媒を用いる時の冷媒封入量の上限値が低く抑えられている。   Here, the upper limit of the amount of refrigerant sealed in a forced circulation type refrigerator using a combustible refrigerant gas is 100 g in Japan. The refrigerator in Japan has many electrical components and uses an electric heater (for example, a glass tube heater) at the time of defrosting. Therefore, the upper limit value of the refrigerant filling amount when using a flammable refrigerant is kept low.

一方、欧州の冷蔵庫では冷気自然対流式が多く、電気ヒータを用いずに霜を解かす製品が多いため、冷媒封入量の上限値が日本国内よりも多く、欧州のIEC規格で150gになっている。   On the other hand, in European refrigerators, there are many cold convection types, and there are many products that defrost frost without using an electric heater, so the upper limit of the amount of refrigerant filled is higher than in Japan, and the European IEC standard is 150 g. Yes.

日本国内の内容積400〜500Lクラスの冷蔵庫では、冷媒封入量は80〜90g程度であるため、凝縮器側を切り換える冷凍サイクルの冷媒不足を解消するために、冷媒封入量を増やそうとしても既に上限値に近いため、冷媒不足を解消することは容易ではない。   In refrigerators with an internal volume of 400 to 500 L in Japan, the amount of refrigerant enclosed is about 80 to 90 g. Therefore, in order to eliminate the shortage of refrigerant in the refrigeration cycle for switching the condenser side, it is already possible to increase the amount of refrigerant enclosed. Since it is close to the upper limit value, it is not easy to eliminate the refrigerant shortage.

そこで本発明は、以上のような問題点に鑑みてなされたものであり、冷媒配管を切り換える際に発生する配管内の残留冷媒による冷媒不足を解消して消費電力量の低減を図ることを目的とする。また、切換弁を冷媒が通過する際に発生する冷媒流動音を低減することを目的とする。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to solve the shortage of refrigerant due to the residual refrigerant in the pipe generated when switching the refrigerant pipe and to reduce the power consumption. And It is another object of the present invention to reduce refrigerant flow noise generated when refrigerant passes through the switching valve.

上記課題を解決するために、例えば特許請求項の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、圧縮機と、放熱手段と、減圧手段と、冷却器とを順次接続した冷媒回路を有する冷蔵庫において、前記放熱手段は、庫外への放熱を行う第一の放熱手段と、前記仕切部を加熱する第二の放熱手段とを備え、前記圧縮機により圧縮された冷媒を、前記第一の放熱手段及び前記第二の放熱手段に流す第一の冷媒流路と、前記第一の放熱手段に冷媒を流通させた後に、前記第一の冷媒流路をバイパスさせる第二の冷媒流路と、前記第一の冷媒流路と前記第二の冷媒流路を切り換える流路切換手段とを備え、前記第一の冷媒流路及び前記第二の冷媒流路の内容積は前記第一の放熱手段の内容積よりも小さいことを特徴とする。   In order to solve the above problems, for example, the configuration described in the scope of the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, in a refrigerator having a refrigerant circuit in which a compressor, a heat radiating means, a pressure reducing means, and a cooler are sequentially connected, the heat radiating is performed. The means includes a first heat radiating means for radiating heat to the outside of the cabinet and a second heat radiating means for heating the partition, and the refrigerant compressed by the compressor is used as the first heat radiating means and the A first refrigerant flow path that flows to the second heat radiating means; a second refrigerant flow path that bypasses the first refrigerant flow path after circulating the refrigerant through the first heat radiating means; And a flow path switching means for switching the second refrigerant flow path, and the internal volume of the first refrigerant flow path and the second refrigerant flow path is the internal volume of the first heat dissipation means. It is characterized by being smaller than.

本発明によれば、冷媒配管を切り換える際に発生する配管内の残留冷媒による冷媒不足を解消して消費電力量の低減を図ることができる。また、切換弁を冷媒が通過する際に発生する冷媒流動音を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerant | coolant shortage by the residual refrigerant | coolant in the piping which generate | occur | produces when switching refrigerant piping can be eliminated, and reduction of power consumption can be aimed at. Further, it is possible to reduce the refrigerant flow noise generated when the refrigerant passes through the switching valve.

本発明の実施形態に係る冷蔵庫の正面外観図である。It is a front external view of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の庫内断面図である。It is a cross-sectional view in the refrigerator of the refrigerator according to the embodiment of the present invention. 本発明の実施形態に係る冷蔵庫の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の放熱器の配置図である。It is an arrangement drawing of a radiator of a refrigerator concerning an embodiment of the present invention. 本発明の実施形態に係る冷蔵庫の仕切壁の断面模式図である。It is a cross-sectional schematic diagram of the partition wall of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の機械室の内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of the machine room of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の機械室に機械室カバーを取り付けた状態の外観図である。It is an external view of the state which attached the machine room cover to the machine room of the refrigerator which concerns on embodiment of this invention. 結露防止配管を切り換える場合の制御イメージを説明する図である。It is a figure explaining the control image in the case of switching dew condensation prevention piping. 本発明の実施形態に係る冷蔵庫の冷却運転の一例を示すタイムチャートである。It is a time chart which shows an example of the cooling operation of the refrigerator which concerns on embodiment of this invention. 放熱器配管内部における冷媒の状態を模式的に表した図である。It is the figure which represented typically the state of the refrigerant | coolant in heat radiator piping. 本発明の実施形態に係る放熱器配管内部における冷媒の状態を模式的に表した図である。It is the figure which represented typically the state of the refrigerant | coolant in the radiator piping which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の運転状況を表すモリエル線図である。It is a Mollier diagram showing the driving | running state of the refrigerator which concerns on embodiment of this invention. 三方弁の内部の冷媒の状態を模式的に示した図である。It is the figure which showed typically the state of the refrigerant | coolant inside a three-way valve. 三方弁の内部の冷媒の状態を模式的に示した図である。It is the figure which showed typically the state of the refrigerant | coolant inside a three-way valve. 本発明の他の実施形態に係る冷蔵庫の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the refrigerator which concerns on other embodiment of this invention. 図13の他の実施形態における冷却運転の一例を示すフローチャートである。It is a flowchart which shows an example of the cooling operation in other embodiment of FIG.

以下、本発明の実施形態について、図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る冷蔵庫の正面外観図である。図2は、本発明の実施形態に係る冷蔵庫の庫内断面図である。図1に示すように、本実施の形態例に係る冷蔵庫1は、上方から冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6から構成されている。なお、製氷室3、上段冷凍室4は左右に並べて配置されている。冷蔵室2は左右に分割された冷蔵室扉2a、2bを備え、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a、2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを、単に扉と呼ぶ場合がある。また、冷蔵庫1には各扉の開閉状態をそれぞれ検知する扉センサ(図示せず)と、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に使用者に報知するアラーム(図示せず)、冷蔵室2や冷凍室5の温度設定をする温度設定器(図示せず)等を備えている。扉2a、2bを回動可能に冷蔵庫1に固定する扉ヒンジが冷蔵庫上部に設けてあり、扉ヒンジは扉ヒンジカバー80で覆われている。各貯蔵室のそれぞれの開口縁、すなわち図2に示す断熱性を有する仕切壁28、29、40には、結露防止配管43が埋設されている(図4、図5参照)。   FIG. 1 is a front external view of a refrigerator according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the refrigerator according to the embodiment of the present invention. As shown in FIG. 1, a refrigerator 1 according to this embodiment includes a refrigerator room 2, an ice making room 3, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6 from above. The ice making chamber 3 and the upper freezing chamber 4 are arranged side by side. The refrigerating room 2 includes left and right refrigerating room doors 2a and 2b. The ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are a pull-out ice making room door 3a and an upper freezing room door, respectively. 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a may be simply referred to as doors. Further, the refrigerator 1 notifies the user when a door sensor (not shown) that detects the open / closed state of each door and a state determined to be the door open state continue for a predetermined time, for example, 1 minute or more. Alarm (not shown), a temperature setting device (not shown) for setting the temperature of the refrigerator compartment 2 and the freezer compartment 5 and the like. A door hinge that rotatably fixes the doors 2 a and 2 b to the refrigerator 1 is provided at the upper part of the refrigerator, and the door hinge is covered with a door hinge cover 80. Condensation prevention pipes 43 are embedded in the respective opening edges of the storage chambers, that is, the partition walls 28, 29, and 40 having heat insulation properties shown in FIG. 2 (see FIGS. 4 and 5).

本実施形態の冷蔵庫1は、上側の仕切壁28により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが断熱的に隔てられ、下側の仕切壁29により、下段冷凍室5と野菜室6とが断熱的に隔てられている。また、図2に示すように、下段冷凍室5の上部には、仕切壁40を備えている。仕切壁40は、製氷室3及び上段冷凍室4と、下段冷凍室5とを上下方向に仕切っている。また、仕切壁40の上部には、製氷室3と上段冷凍室4との間を左右方向に仕切る縦仕切部(図示せず)を備えている。   In the refrigerator 1 of the present embodiment, the refrigerator compartment 2, the upper freezer compartment 4, and the ice making room 3 (see FIG. 1, the ice making room 3 is not shown in FIG. 2) are insulated from each other by the upper partition wall 28. The lower freezer compartment 5 and the vegetable compartment 6 are adiabatically separated by the lower partition wall 29. In addition, as shown in FIG. 2, a partition wall 40 is provided in the upper part of the lower freezer compartment 5. The partition wall 40 partitions the ice making chamber 3 and the upper freezing chamber 4 from the lower freezing chamber 5 in the vertical direction. In addition, a vertical partition (not shown) that partitions the ice making chamber 3 and the upper freezing chamber 4 in the left-right direction is provided on the upper portion of the partition wall 40.

仕切壁40は、仕切壁28前面及び左右側壁前面とともに、下段冷凍室扉5aの貯蔵室側の面に設けたシール部材(図示せず)を受けて、下段冷凍室扉5aとの間での気体の移動を抑制する。また、製氷室扉3a及び上段冷凍室扉4aの貯蔵室側の面に設けたシール部材(図示せず)は、仕切壁40、縦仕切部、仕切壁28及び冷蔵庫1の左右側壁前面と接することで、各貯蔵室と各扉との間での気体の移動をそれぞれ抑制する(詳細構造は後述)。   The partition wall 40 receives a seal member (not shown) provided on the storage chamber side surface of the lower freezer compartment door 5a together with the front surface of the partition wall 28 and the front surfaces of the left and right side walls, and is connected to the lower freezer compartment door 5a. Suppresses gas movement. Further, seal members (not shown) provided on the storage room side surfaces of the ice making door 3a and the upper freezing room door 4a are in contact with the partition wall 40, the vertical partition, the partition wall 28, and the front surfaces of the left and right side walls of the refrigerator 1. This suppresses the movement of gas between each storage chamber and each door (detailed structure will be described later).

なお、製氷室3、上段冷凍室4及び下段冷凍室5は、いずれも冷凍温度帯なので、仕切壁40及び縦仕切部は、各扉のシール部材を受けるために、少なくとも冷蔵庫の前側にあればよい(図2参照)。すなわち、冷凍温度帯の各貯蔵室間で気体の移動があってもよく、断熱区画しない場合であってもよい。一方、上段冷凍室4を温度切換室とする場合は、断熱区画する必要があるため、仕切壁40及び縦仕切部は、冷蔵庫1の前側から後壁まで延在させる。   The ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are all in the freezing temperature zone, so that the partition wall 40 and the vertical partitioning portion are at least on the front side of the refrigerator in order to receive the seal member of each door. Good (see FIG. 2). That is, there may be a movement of gas between the storage chambers in the freezing temperature zone, and there may be a case where the heat insulation section is not provided. On the other hand, when the upper freezer compartment 4 is a temperature switching chamber, the partition wall 40 and the vertical partition section extend from the front side of the refrigerator 1 to the rear wall because it is necessary to perform heat insulation.

冷蔵庫1の庫外と庫内は、発泡断熱材を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10には、複数の真空断熱材25を実装している。庫内は仕切壁28により、冷蔵室2と上段冷凍室4及び製氷室3が隔てられている。仕切壁29により、下段冷凍室5と野菜室6が隔てられている。扉2a、2bの庫内側には複数の扉ポケット32が備えられ、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。上段冷凍室4と下段冷凍室5の間には、仕切壁40が設けてある。   The outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material. A plurality of vacuum heat insulating materials 25 are mounted on the heat insulating box 10 of the refrigerator 1. The refrigerator compartment 2 separates the refrigerator compartment 2 from the upper freezer compartment 4 and the ice making compartment 3 by a partition wall 28. A partition wall 29 separates the lower freezer compartment 5 from the vegetable compartment 6. A plurality of door pockets 32 are provided inside the doors 2a and 2b, and the refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36. A partition wall 40 is provided between the upper freezer compartment 4 and the lower freezer compartment 5.

図1、図2に示したように、製氷室3、上段冷凍室4、下段冷凍室5及び野菜室6は、それぞれの冷却室の前方に備えられた扉3a、4a、5a、6aと一体に移動する収納容器3b、4b、5b、6bがそれぞれ設けられており、それぞれの扉4a、5a、6aを手前側に引き出すことにより、収納容器4b、5b、6bがそれぞれ引き出せるようになっている。   As shown in FIGS. 1 and 2, the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are integrated with doors 3a, 4a, 5a, 6a provided in front of the respective cooling rooms. Storage containers 3b, 4b, 5b, 6b are provided, respectively, and the storage containers 4b, 5b, 6b can be pulled out by pulling out the respective doors 4a, 5a, 6a to the front side. .

また、庫外の湿度及び温度を検知する湿度センサー81、温度センサー82は、例えば、冷蔵庫1の天井壁上側の扉ヒンジカバー80の内部に設けている。本実施例で扉ヒンジカバー80の内部に湿度センサー81、温度センサー82設けているのは、冷蔵庫1本体からの温度影響を直接受けにくくして、周囲湿度及び周囲温度を検知するためである。なお、湿度センサー81、温度センサー82の設置箇所はこれに限るものではないが、冷蔵庫1本体からの温度影響を直接受けずに、冷蔵庫1設置環境の周囲湿度及び周囲温度を適切に検知できる場所であればよい。   Moreover, the humidity sensor 81 and the temperature sensor 82 for detecting the humidity and temperature outside the refrigerator are provided, for example, inside the door hinge cover 80 above the ceiling wall of the refrigerator 1. The reason why the humidity sensor 81 and the temperature sensor 82 are provided inside the door hinge cover 80 in this embodiment is to detect the ambient humidity and the ambient temperature by making it less likely to be directly affected by the temperature from the refrigerator 1 main body. In addition, although the installation location of the humidity sensor 81 and the temperature sensor 82 is not restricted to this, the place which can detect the ambient humidity and ambient temperature of the refrigerator 1 installation environment appropriately, without receiving the temperature influence from the refrigerator 1 main body directly. If it is.

冷却器7は下段冷凍室5の略背部に備えられた冷却器収納室8内に設けられており、冷却器7の上方に設けられた庫内送風機9(一例として、プロペラファン)により冷却器7と熱交換した冷気が、冷蔵室送風ダクト11、上段冷凍室送風ダクト12、下段冷凍室送風ダクト13、及び製氷室送風ダクト(図示なし)を介して、冷蔵室2、上段冷凍室4、下段冷凍室5、製氷室3の各貯蔵室へ送られる。   The cooler 7 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezer compartment 5, and is cooled by an internal fan 9 (a propeller fan as an example) provided above the cooler 7. The cold air heat-exchanged with the refrigeration room 7 is connected to the refrigeration room 2, the upper freezer compartment 4, the upper freezer compartment air duct 12, the lower freezer compartment air duct 13, and the ice making room air duct (not shown). It is sent to each storage room of the lower freezing room 5 and the ice making room 3.

各貯蔵室への送風は冷蔵室ダンパ20と、冷凍室ダンパ34の開閉により制御される。具体的には冷蔵室ダンパ20が開状態、冷凍室ダンパ34が閉状態の時には、冷気は冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られる。冷蔵室2の冷却を終えた後に、冷蔵室2下部に設けた冷蔵室戻り口(図示なし)に冷気が流入し、その後、冷却器7に戻される。野菜室6の冷却手段については種々の方法があるが、例えば、冷蔵室2を冷却した後に野菜室6に冷気を直接送る方法や、冷却器7で発生した冷気を、冷蔵室2を経由しないで野菜室6に単独で送る方法が考えられる。この場合には、野菜室6に供給する冷気を制御するために、野菜室専用のダンパが必要になる。本願においては、野菜室6への冷気の供給方法についてはいずれの場合でも良い。図2に記載の例では、野菜室6に流入した冷気は、仕切壁29の下部前方に設けられた、野菜室戻り口6dから野菜室戻りダクト18を介して、野菜室戻り吐出口18aから冷却器7に流入する。   The air blowing to each storage room is controlled by opening and closing the refrigerator compartment damper 20 and the freezer compartment damper 34. Specifically, when the refrigerator compartment damper 20 is in the open state and the freezer compartment damper 34 is in the closed state, the cold air is sent to the refrigerator compartment 2 from the outlets 2c provided in multiple stages via the refrigerator compartment air duct 11. After the cooling of the refrigerator compartment 2 is finished, cold air flows into a refrigerator compartment return port (not shown) provided at the lower part of the refrigerator compartment 2 and then returned to the cooler 7. There are various methods for cooling the vegetable compartment 6, for example, a method of directly sending cold air to the vegetable compartment 6 after cooling the refrigerator compartment 2, or a cool air generated in the cooler 7 does not pass through the refrigerator compartment 2. Thus, a method of sending it alone to the vegetable compartment 6 can be considered. In this case, in order to control the cold air supplied to the vegetable compartment 6, a damper dedicated to the vegetable compartment is required. In the present application, any method may be used for supplying cold air to the vegetable compartment 6. In the example shown in FIG. 2, the cold air that has flowed into the vegetable compartment 6 passes from the vegetable compartment return outlet 18 a through the vegetable compartment return duct 18 from the vegetable compartment return port 6 d provided in front of the lower part of the partition wall 29. It flows into the cooler 7.

冷凍室に送り込まれた冷気は、上段冷凍室4、下段冷凍室5、及び製氷室3を冷却した後、冷凍室戻り口17から冷却器7に戻される。冷却器7の下部には除霜ヒータ22を設けてあり、除霜時に発生したドレン水は樋23に一旦落下し、ドレン孔27を通じて圧縮機24の上部に設けた蒸発皿21に放出される。冷蔵庫1の天井壁上面にはメモリー、インターフェース回路を搭載した制御装置である制御基板33が配置されており、制御基板33に従って冷凍サイクル、及び送風系の制御が実施される。制御基板33は基板カバー83で覆われている。   The cool air sent into the freezer compartment cools the upper freezer compartment 4, the lower freezer compartment 5, and the ice making chamber 3, and then returns to the cooler 7 from the freezer compartment return port 17. A defrost heater 22 is provided at the lower part of the cooler 7, and the drain water generated at the time of defrosting once falls into the eaves 23 and is discharged to the evaporating dish 21 provided at the upper part of the compressor 24 through the drain hole 27. . A control board 33 which is a control device equipped with a memory and an interface circuit is disposed on the upper surface of the ceiling wall of the refrigerator 1, and the refrigeration cycle and the blower system are controlled according to the control board 33. The control board 33 is covered with a board cover 83.

次に、図3は本発明の実施形態に係る冷蔵庫の冷凍サイクルの構成図である。圧縮機24の吐出側のパイプ66には、機械室ファン45(庫外送風機)を備えた第一の放熱器46と、第二の放熱器41a、41b、第三の放熱器42を順番に接続している。前記第三の放熱器42に接続したパイプ51の他端には、三方弁48(流路切換手段)のC側(流入側)に接続している。冷却運転時には、前記三方弁48はその出口側となるサイクルA側とサイクルB側の2方向に分岐して、そのうち1方向に流すことができ、また必要に応じてサイクルA側とサイクルB側の両方の出口を閉じて冷媒の流動を止めることもできる。更に、冷凍サイクルに冷媒を封入する際には、前記三方弁48のサイクルA側、サイクルB側の両方を開放することも可能である。   Next, FIG. 3 is a block diagram of the refrigeration cycle of the refrigerator according to the embodiment of the present invention. In the discharge side pipe 66 of the compressor 24, a first radiator 46 provided with a machine room fan 45 (external fan), second radiators 41a and 41b, and a third radiator 42 are sequentially arranged. Connected. The other end of the pipe 51 connected to the third radiator 42 is connected to the C side (inflow side) of the three-way valve 48 (flow path switching means). During the cooling operation, the three-way valve 48 branches in two directions, the cycle A side and the cycle B side, which are the outlet sides, and can flow in one direction, and if necessary, the cycle A side and the cycle B side. It is also possible to stop the refrigerant flow by closing both outlets. Furthermore, when the refrigerant is sealed in the refrigeration cycle, both the cycle A side and the cycle B side of the three-way valve 48 can be opened.

三方弁48のA側にはパイプ52を接続し、パイプ52の他端には第四の放熱器43、すなわち結露防止配管が接続されている。また、三方弁48のB側にはパイプ53、すなわち結露防止配管バイパスパイプを接続している。   A pipe 52 is connected to the A side of the three-way valve 48, and a fourth radiator 43, that is, a dew condensation prevention pipe is connected to the other end of the pipe 52. A pipe 53, that is, a dew condensation prevention pipe bypass pipe is connected to the B side of the three-way valve 48.

圧縮機24と三方弁48の間に設けた、第一の放熱器46、第二の放熱器41a、41b、第三の放熱器42をまとめて第一の放熱手段とし、圧縮機24の吐出口から三方弁48のC側(三方弁48入口)までを冷媒流路配管aとする。三方弁48の下流側に分岐して設けて、第四の放熱器43側を第二の放熱手段とし、三方弁48のA側(三方弁48出口)に接続する第四の放熱器43の出口側パイプ54の他端と合流する合流管56(第一の冷媒流路)と、三方弁48のB側(三方弁48出口)に接続するパイプ53の他端と合流する合流管56(第二の冷媒流路)を冷媒流路配管bとする。   The first radiator 46, the second radiators 41a and 41b, and the third radiator 42 provided between the compressor 24 and the three-way valve 48 are collectively used as a first radiator, and the compressor 24 discharges. From the outlet to the C side of the three-way valve 48 (three-way valve 48 inlet) is a refrigerant flow pipe a. The fourth radiator 43 is provided on the downstream side of the three-way valve 48, and the fourth radiator 43 side serves as the second radiator, and is connected to the A side (three-way valve 48 outlet) of the three-way valve 48. A merge pipe 56 (first refrigerant flow path) that merges with the other end of the outlet side pipe 54, and a merge pipe 56 (that merges with the other end of the pipe 53 connected to the B side (three-way valve 48 outlet) of the three-way valve 48. The second refrigerant channel) is defined as a refrigerant channel pipe b.

第四の放熱器43と合流管56の間には、逆止弁55を設けている。合流管56にはパイプ57を接続し、パイプ57の途中にはドライヤ58、二方弁49の順に設けてある。二方弁49の他端にはパイプ60を接続し、絞り61、庫内送風機9を備えた冷却器7の順番に接続している。冷却器7の出口側にはパイプ64を接続し、その途中に絞り61との熱交換部65を設け、パイプ64の他端は圧縮機24の吸込側に接続されている。第四の放熱器43のパイプは仕切壁28、29、40(図2参照)に埋設されているため、冷凍温度帯室からの影響により冷却される。三方弁48によって、第四の放熱器43(サイクルA側)とパイプ53(サイクルB側)が所定の時間ごとに切り換わる。パイプ53(サイクルB側)に冷媒を流している時には、第四の放熱器43には冷媒が流れていないため、冷凍室からの影響により第四の放熱器43の温度は低下する。従って、三方弁48によってパイプ53(サイクルB側)に固定されていても、合流管56を介してパイプ53を流れる冷媒の一部が第四の放熱器43に逆流してしまい、第四の放熱器43のパイプ内に冷媒が残留し、サイクルB側で運転している場合に冷媒不足を引き起こす可能性がある。従って、第四の放熱器43と合流管56の間に逆止弁55を設けて、サイクルB側で運転している場合に第四の放熱器43の配管内に冷媒が流入しないようにしている。   A check valve 55 is provided between the fourth radiator 43 and the junction pipe 56. A pipe 57 is connected to the junction pipe 56, and a dryer 58 and a two-way valve 49 are provided in the middle of the pipe 57 in this order. A pipe 60 is connected to the other end of the two-way valve 49, and the throttle 61 and the cooler 7 provided with the internal fan 9 are connected in this order. A pipe 64 is connected to the outlet side of the cooler 7, and a heat exchanging portion 65 with the throttle 61 is provided in the middle, and the other end of the pipe 64 is connected to the suction side of the compressor 24. Since the pipe of the fourth radiator 43 is embedded in the partition walls 28, 29, and 40 (see FIG. 2), it is cooled by the influence from the freezing temperature zone. The three-way valve 48 switches the fourth radiator 43 (cycle A side) and the pipe 53 (cycle B side) at predetermined time intervals. When the refrigerant is flowing through the pipe 53 (cycle B side), since the refrigerant does not flow through the fourth radiator 43, the temperature of the fourth radiator 43 decreases due to the influence from the freezer compartment. Therefore, even though the three-way valve 48 is fixed to the pipe 53 (cycle B side), a part of the refrigerant flowing through the pipe 53 flows back to the fourth radiator 43 through the junction pipe 56, and the fourth When the refrigerant remains in the pipe of the radiator 43 and the operation is performed on the cycle B side, there is a possibility of causing a refrigerant shortage. Accordingly, a check valve 55 is provided between the fourth radiator 43 and the junction pipe 56 so that the refrigerant does not flow into the piping of the fourth radiator 43 when operating on the cycle B side. Yes.

図4は、本発明の実施形態に係る冷蔵庫の放熱器の配置図である。図5は、本発明の実施形態に係る冷蔵庫の断熱仕切り壁の断面模式図である。   FIG. 4 is a layout diagram of the refrigerator heat radiator according to the embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of the heat insulating partition wall of the refrigerator according to the embodiment of the present invention.

第一の放熱器46は、冷蔵庫1の背面側下部に設けた機械室44内に設置してある(図6参照)。第二の放熱器41a、41bは冷蔵庫1の側面断熱壁内(図4中に破線で記載)、第三の放熱器42は冷蔵庫1の背面断熱壁内に埋設している(図4中に点線で記載)。なお、第二の放熱器41a、41b及び第三の放熱器42は、冷蔵庫1の外観を形成する金属製の外板に接触又は近接して、放熱するように配置されている。第四の放熱器43、すなわち結露防止配管は、各貯蔵室を分割する仕切壁28、29、40に埋設されている(図4に実線で記載)。   The 1st heat radiator 46 is installed in the machine room 44 provided in the back side lower part of the refrigerator 1 (refer FIG. 6). The second radiators 41a and 41b are embedded in the side heat insulating walls of the refrigerator 1 (indicated by broken lines in FIG. 4), and the third radiator 42 is embedded in the rear heat insulating wall of the refrigerator 1 (in FIG. 4). (Dotted line) The second radiators 41 a and 41 b and the third radiator 42 are arranged so as to radiate heat in contact with or close to a metal outer plate that forms the appearance of the refrigerator 1. The fourth radiator 43, that is, the dew condensation prevention pipe is embedded in the partition walls 28, 29, and 40 that divide the storage chambers (shown by solid lines in FIG. 4).

図5は仕切壁28、29、40の断面模式図である。仕切壁に設けた仕切カバー84(一例として、高熱伝導性の金属板)と接触又は近接するように、第四の放熱器43のパイプを設けている。冷蔵庫周囲の温度が例えば30℃の場合、定常運転時の第四の放熱器43のパイプ温度は約33℃となり、仕切壁28、29、40に近接した約−20℃の冷凍温度帯室(製氷室3、上段冷凍室4、下段冷凍室5)に対して大きな温度差を形成する。仕切カバー84の表面とその周囲空気は、冷凍温度帯室によって冷やされるため温度が低下し、仕切カバー84近傍の空気中の水分によって仕切カバー84の表面に結露が発生する場合がある。それを回避するために、第四の放熱器43に冷媒を流して仕切カバー84を加熱しているが(図5に符号86で示す熱の流れ)、第四の放熱器43から放出される熱は、温度差が大きい冷凍温度帯室に対しても加熱していることになり(図5に符号85で示す熱の流れ)、省エネ性の悪化、つまり消費電力量の増加原因になっている。   FIG. 5 is a schematic cross-sectional view of the partition walls 28, 29, and 40. The pipe of the fourth radiator 43 is provided so as to be in contact with or close to the partition cover 84 (as an example, a highly heat conductive metal plate) provided on the partition wall. When the temperature around the refrigerator is, for example, 30 ° C., the pipe temperature of the fourth radiator 43 during steady operation is about 33 ° C., and a freezing temperature zone (about −20 ° C. close to the partition walls 28, 29, 40 ( A large temperature difference is formed with respect to the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5). Since the surface of the partition cover 84 and the surrounding air are cooled by the freezing temperature zone, the temperature decreases, and moisture in the air near the partition cover 84 may cause condensation on the surface of the partition cover 84. In order to avoid this, the refrigerant is passed through the fourth radiator 43 to heat the partition cover 84 (the heat flow indicated by reference numeral 86 in FIG. 5), but is released from the fourth radiator 43. The heat is also heated even in the freezing temperature zone room where the temperature difference is large (the heat flow indicated by reference numeral 85 in FIG. 5), resulting in deterioration in energy saving, that is, an increase in power consumption. Yes.

図6は本発明の実施形態に係る冷蔵庫の機械室44の内部構造を示す模式図である。図7は本発明の実施形態に係る冷蔵庫の機械室44に機械室カバー87を取り付けた状態の外観図である。   FIG. 6 is a schematic diagram showing the internal structure of the machine room 44 of the refrigerator according to the embodiment of the present invention. FIG. 7 is an external view of a state in which a machine room cover 87 is attached to the machine room 44 of the refrigerator according to the embodiment of the present invention.

機械室44の機械室ベース47には、第一の放熱器46、機械室ファン45(庫外送風機)、圧縮機24の順番に風上側から配置されている。圧縮機24の上部には冷却器7の霜が解けた際に生じるドレン水を受ける蒸発皿21を設けている。三方弁48、二方弁49はそれぞれ予め固定具50に固定しているので、機械室44内でパイプと接続した後でも弁の姿勢をほぼ垂直に保持することができる。機械室44には通常、機械室カバー87(図7参照)を取り付けた状態になっているため、機械室カバー87に設けた空気吸入口62、空気排出口63を利用して第一の放熱器46、圧縮機24の熱を放出している。また、機械室ベース47にも空気吸入口、排出口(図示なし)が設けられている。   In the machine room base 47 of the machine room 44, the first radiator 46, the machine room fan 45 (external fan), and the compressor 24 are arranged in this order from the windward side. An evaporating dish 21 for receiving drain water generated when the frost of the cooler 7 is thawed is provided on the upper portion of the compressor 24. Since the three-way valve 48 and the two-way valve 49 are respectively fixed to the fixture 50 in advance, the posture of the valve can be maintained almost vertically even after being connected to the pipe in the machine chamber 44. Since the machine room cover 87 (see FIG. 7) is usually attached to the machine room 44, the first heat radiation is performed using the air inlet 62 and the air outlet 63 provided in the machine room cover 87. The heat of the compressor 46 and the compressor 24 is released. The machine room base 47 is also provided with an air inlet and outlet (not shown).

図8は本発明の実施形態に係る冷凍サイクルにおいて、三方弁48で第四の放熱器43(結露防止配管)を切り換える場合の制御イメージを説明する図である。   FIG. 8 is a diagram illustrating a control image when the fourth radiator 43 (condensation prevention piping) is switched by the three-way valve 48 in the refrigeration cycle according to the embodiment of the present invention.

先に説明したように、結露防止配管、すなわち第四の放熱器43に冷媒を流して仕切カバー84を加熱して、仕切カバー84の表面に空気中の水分が結露することを防止している。   As described above, the refrigerant is flown through the dew condensation prevention pipe, that is, the fourth radiator 43 to heat the partition cover 84, thereby preventing moisture in the air from condensing on the surface of the partition cover 84. .

サイクルA側、すなわち第四の放熱器43に冷媒を流す場合と、サイクルB側、すなわち第四の放熱器43をバイパスさせてパイプ53に冷媒を流す場合のいずれかに三方弁48で切り換える制御は、冷蔵庫1に設けた庫外湿度センサー81、庫外温度センサー82で得られた冷蔵庫周囲の温度及び湿度によって制御する。仕切壁28、29、40の表面を覆う仕切カバー84に直接温度センサーと湿度センサー、すなわち検知手段を取り付け、その検出温度及び湿度に応じて仕切カバー84の表面に結露が生じないように、三方弁48によって切換え制御を行うことが考えられる。しかしながら、仕切カバー84の表面や仕切壁内に検知手段を取り付けることは設置スペースの問題や、仕切カバー84と接触するドアパッキンとの干渉による熱侵入量の増加が懸念される。そのため、実際には冷蔵庫1の天井面に設けた庫外湿度センサー81、庫外温度センサー82の検出温度及び検出湿度によって、サイクルA側とサイクルB側の切り換え時間を予め決めた値に従って制御する。   Control using the three-way valve 48 to switch between the cycle A side, i.e., the fourth radiator 43 and the cycle B side, i.e., bypassing the fourth radiator 43 and flowing the refrigerant through the pipe 53 Is controlled by the temperature and humidity around the refrigerator obtained by the outside humidity sensor 81 and the outside temperature sensor 82 provided in the refrigerator 1. A temperature sensor and a humidity sensor, that is, detection means are directly attached to the partition cover 84 that covers the surfaces of the partition walls 28, 29, and 40, so that condensation does not occur on the surface of the partition cover 84 according to the detected temperature and humidity. It is conceivable to perform switching control by the valve 48. However, mounting the detection means on the surface of the partition cover 84 or in the partition wall is concerned about the problem of installation space and an increase in the amount of heat penetration due to interference with the door packing contacting the partition cover 84. Therefore, in practice, the switching time between the cycle A side and the cycle B side is controlled according to a predetermined value according to the detected temperature and detected humidity of the outside humidity sensor 81 and the outside temperature sensor 82 provided on the ceiling surface of the refrigerator 1. .

図8は庫外湿度センサー81、庫外温度センサー82で検出された、ある周囲温度の場合の、三方弁切換え制御の一例を示している。横軸は相対湿度、縦軸は結露防止配管の加熱割合である。例えば、相対湿度が高いRH2の場合、仕切カバー84の表面で結露する可能性が高くなるので、サイクルA側に冷媒を流す時間の割合(tA2)を長く、サイクルB側に冷媒を流す時間の割合(tB2)を短くする。反対に湿度が低いRH1の場合、仕切カバー84の表面で結露する可能性が低くなるので、サイクルA側に冷媒を流す時間の割合(tA1)を短く、サイクルB側に冷媒を流す時間の割合(tB1)を長くすると良い。図5で説明したように、仕切カバー84の表面を冷媒で加熱することにより結露防止を図っているが、結露防止配管の加熱割合、すなわちサイクルA側の時間の割合が長いほど冷凍温度帯室への熱侵入が多くなり、その結果、省エネルギー性が悪化する傾向にある。実際の冷却運転では圧縮機24がONの時に、サイクルA側、サイクルB側の時間を予め決めておき、その時間に従って三方弁48で冷媒流路を切り換えるように運転する。なお、三方弁48のような流路切換手段を持たない冷蔵庫では常時サイクルA側となるので、結露防止配管の加熱割合は100%となる。   FIG. 8 shows an example of the three-way valve switching control in the case of a certain ambient temperature detected by the outside humidity sensor 81 and the outside temperature sensor 82. The horizontal axis is the relative humidity, and the vertical axis is the heating rate of the dew condensation prevention pipe. For example, in the case of RH2 where the relative humidity is high, there is a high possibility of condensation on the surface of the partition cover 84. Therefore, the ratio of the time for flowing the refrigerant to the cycle A side (tA2) is long and the time for the refrigerant to flow to the cycle B side The ratio (tB2) is shortened. On the other hand, in the case of RH1 where the humidity is low, the possibility of dew condensation on the surface of the partition cover 84 is reduced, so the ratio of the time for which the refrigerant flows to the cycle A side (tA1) is short and the ratio of the time for the refrigerant to flow to the cycle B side It is preferable to lengthen (tB1). As described with reference to FIG. 5, the surface of the partition cover 84 is heated by the refrigerant to prevent condensation. However, the longer the heating rate of the condensation prevention pipe, that is, the time rate on the cycle A side, the longer the freezing temperature chamber. As a result, heat intrusion into the water increases, and as a result, energy saving tends to deteriorate. In the actual cooling operation, when the compressor 24 is ON, the time on the cycle A side and the cycle B side is determined in advance, and the three-way valve 48 is operated to switch the refrigerant flow path according to the time. In the refrigerator having no flow path switching means such as the three-way valve 48, since it is always on the cycle A side, the heating rate of the dew condensation prevention pipe is 100%.

図9は本発明の実施形態に係る冷蔵庫の冷却運転の一例を示すタイムチャートである。庫内が所定の温度に到達した後の安定状態における冷却運転は、冷蔵温度帯室を冷却する冷蔵運転、冷凍温度帯室を冷却する冷凍運転、圧縮機が停止するOFFからなる運転パターンを基本とし、周囲温度の変動や食品等の投入が行われない限り、これらの運転を繰り返す。すなわち、圧縮機停止中に冷凍室温度TF1まで上昇した時に圧縮機24がONになる。冷蔵室温度が低下して温度TR2になると冷蔵運転が終了し、引き続き冷凍室温度がTF2になるまで冷凍運転を実施する。ここでは主に三方弁48、二方弁49の動作を圧縮機24に関連付けて説明する。圧縮機24が停止中の場合、放熱器側、すなわち、第一の放熱器46から第四の放熱器43、及びパイプ53内の冷媒は冷却器7よりも高温高圧となるため、それらの圧力差によって放熱器側の冷媒が冷却器側に流入する。これにより冷却器7の温度が上昇して、庫内熱負荷が増加するため、消費電力量の増加につながる。従って、圧縮機停止中は、この冷媒の流動を止めるために二方弁49を閉にする。また、本実施例の冷蔵庫では、庫内送風機9をON、冷蔵室ダンパ20を開、冷凍室ダンパ34を閉にして、冷却器7に成長した霜の潜熱により冷気を発生させて冷蔵室2を冷却できるので、圧縮機24が停止中に二方弁49を閉にすると、冷却器7及び霜の温度上昇を抑制することができ、霜を冷熱源とした冷蔵室2の冷却効率が高まることになり、消費電力量の低減に寄与する。   FIG. 9 is a time chart showing an example of the cooling operation of the refrigerator according to the embodiment of the present invention. The cooling operation in a stable state after the inside of the chamber reaches a predetermined temperature is based on an operation pattern consisting of a refrigeration operation for cooling the refrigeration temperature zone chamber, a refrigeration operation for cooling the refrigeration temperature zone chamber, and an OFF state in which the compressor stops. These operations are repeated as long as the ambient temperature does not change or food is not charged. That is, the compressor 24 is turned on when the freezer temperature rises to TF1 while the compressor is stopped. When the temperature in the refrigerator compartment decreases and reaches the temperature TR2, the refrigerator operation is terminated, and the refrigerator operation is continued until the temperature in the freezer compartment reaches TF2. Here, the operations of the three-way valve 48 and the two-way valve 49 will be mainly described in relation to the compressor 24. When the compressor 24 is stopped, since the refrigerant in the radiator side, that is, the first radiator 46 to the fourth radiator 43 and the pipe 53 has a higher temperature and pressure than the cooler 7, Due to the difference, the refrigerant on the radiator side flows into the cooler side. As a result, the temperature of the cooler 7 rises and the internal heat load increases, leading to an increase in power consumption. Therefore, when the compressor is stopped, the two-way valve 49 is closed to stop the flow of the refrigerant. Further, in the refrigerator of the present embodiment, the internal fan 9 is turned on, the refrigerator compartment damper 20 is opened, the freezer compartment damper 34 is closed, and cold air is generated by the latent heat of the frost grown on the refrigerator 7 to produce the refrigerator compartment 2. If the two-way valve 49 is closed while the compressor 24 is stopped, the temperature rise of the cooler 7 and the frost can be suppressed, and the cooling efficiency of the refrigerator compartment 2 using the frost as a cold heat source is increased. As a result, it contributes to a reduction in power consumption.

圧縮機24が運転中の場合、三方弁48は図8に示した温度及び湿度に応じたサイクルA側(第四の放熱器43;結露防止配管)とサイクルB側(パイプ53)の切換え時間(tA、tB)を予め決めておき、それに従って三方弁48を切り換える。例えば、湿度及び温度が高いRH2の場合、予め決めたサイクルA側の時間の割合tA2、サイクルB側の時間の割合tB2を繰り返し動作させる。切り換える時間は冷蔵庫によって異なるが、例えば、外気30℃、相対湿度70%では、サイクルA側は15分、サイクルB側は30分程度となる。   When the compressor 24 is in operation, the three-way valve 48 is switched between the cycle A side (fourth radiator 43; condensation prevention piping) and the cycle B side (pipe 53) according to the temperature and humidity shown in FIG. (TA, tB) is determined in advance, and the three-way valve 48 is switched accordingly. For example, in the case of RH2 where the humidity and temperature are high, a predetermined time ratio tA2 on the cycle A side and time ratio tB2 on the cycle B side are repeatedly operated. Although the switching time varies depending on the refrigerator, for example, at 30 ° C. outside air and 70% relative humidity, the cycle A side is about 15 minutes and the cycle B side is about 30 minutes.

図9に示す冷却運転では、一例として、圧縮機24が停止する前に、三方弁48をサイクルA側に固定している。これは、圧縮機停止中では第四の放熱器43の温度が低温になり易いので、圧縮機停止前に第四の放熱器43によって仕切カバー84の表面温度を高めて結露防止をするためである。圧縮機停止中は、その直前に三方弁48をサイクルA側に固定しているので、圧縮機停止中も継続してサイクルA側にしてある。   In the cooling operation shown in FIG. 9, as an example, the three-way valve 48 is fixed to the cycle A side before the compressor 24 stops. This is because the temperature of the fourth radiator 43 tends to be low when the compressor is stopped, so that the surface temperature of the partition cover 84 is increased by the fourth radiator 43 before the compressor is stopped to prevent condensation. is there. Since the three-way valve 48 is fixed to the cycle A side immediately before the compressor is stopped, it is continuously set to the cycle A side even when the compressor is stopped.

三方弁48はサイクルA側(第四の放熱器43;結露防止配管)とサイクルB側(パイプ53)の切り換え時間に応じて冷媒の流れを制御しているが、サイクルB側に切り換えた後にはサイクルA側に、またサイクルA側に切り換えた後にはサイクルB側に冷媒が滞留することになる。   The three-way valve 48 controls the flow of the refrigerant according to the switching time of the cycle A side (fourth radiator 43; dew condensation prevention piping) and the cycle B side (pipe 53), but after switching to the cycle B side. The refrigerant stays on the cycle A side and on the cycle B side after switching to the cycle A side.

しかしながら、サイクルを切り換えた後の冷媒不足を解消するために、サイクルを切換える前のパイプ内に滞留している冷媒をサイクルが切り換わる度に回収することは、圧縮機の効率低下により結果的に消費電力量の増加を招くことになる。従って、サイクルを切り換える度に冷媒を回収することなく冷媒不足を解消するために、第四の放熱器43、パイプ53のパイプ容積を小さくし、液相域となるパイプ容積を小さくすることが良い。   However, in order to eliminate the shortage of refrigerant after switching the cycle, recovery of the refrigerant remaining in the pipe before switching the cycle every time the cycle is switched results in a decrease in efficiency of the compressor. This leads to an increase in power consumption. Therefore, in order to eliminate the refrigerant shortage without collecting the refrigerant every time the cycle is switched, it is preferable to reduce the pipe volume of the fourth radiator 43 and the pipe 53 and to reduce the pipe volume serving as the liquid phase region. .

そこで本実施の形態では冷媒流路配管bのパイプ容積を、冷媒流路配管aのパイプ容積に比べて小さくしている。これにより、液相域で満たされるパイプ容積が小さくなり、消費電力量を抑制しつつ、冷媒不足を解消することが可能となる。   Therefore, in the present embodiment, the pipe volume of the refrigerant flow path pipe b is made smaller than the pipe volume of the refrigerant flow path pipe a. Thereby, the volume of the pipe filled in the liquid phase region is reduced, and it becomes possible to eliminate the shortage of refrigerant while suppressing the power consumption.

なお、野菜室の冷却方法は三方弁48、二方弁49の動作に直接関係していないので、図示していない。   The vegetable room cooling method is not shown because it is not directly related to the operation of the three-way valve 48 and the two-way valve 49.

図10aは放熱器配管内部における冷媒の状態を模式的に表した図である。圧縮機24の吐出側パイプ66に接続される第一の放熱器46(区間ac)、第二の放熱器41a、41b及び第三の放熱器42(区間cd)、第四の放熱器43及びパイプ53(区間df)で構成される放熱器の、配管内部の冷媒状態を説明する。本実施例の冷蔵庫には、第一の放熱器46、第二の放熱器41a、41b、第三の放熱器42をまとめて第一の放熱手段(冷媒流路配管a)とし、冷媒流路切換手段を設けた第四の放熱器43側を第二の放熱手段とする。そして、三方弁48のA側(三方弁48出口)に接続する第四の放熱器43の出口側パイプ54の他端と合流する合流管56(第一の冷媒流路)と、三方弁48のB側(三方弁48出口)に接続するパイプ53の他端と合流する合流管56(第二の冷媒流路)を冷媒流路配管bとする。   FIG. 10a is a diagram schematically showing the state of the refrigerant in the radiator pipe. The first radiator 46 (section ac), the second radiators 41a and 41b, the third radiator 42 (section cd), the fourth radiator 43, and the like connected to the discharge side pipe 66 of the compressor 24. The refrigerant state inside the piping of the radiator constituted by the pipe 53 (section df) will be described. In the refrigerator of this embodiment, the first radiator 46, the second radiators 41a and 41b, and the third radiator 42 are collectively used as the first radiator (refrigerant channel pipe a), and the refrigerant channel The side of the fourth radiator 43 provided with the switching means is the second heat radiating means. A merging pipe 56 (first refrigerant flow path) that merges with the other end of the outlet side pipe 54 of the fourth radiator 43 connected to the A side (three-way valve 48 outlet) of the three-way valve 48, and the three-way valve 48. A joining pipe 56 (second refrigerant passage) that joins the other end of the pipe 53 connected to the B side (outlet of the three-way valve 48) is referred to as a refrigerant passage pipe b.

圧縮機24で圧縮されて高温高圧になったガス冷媒は、第一の放熱器46、第二の放熱器41a、41b、第三の放熱器42の順に庫外に熱を放出し、気相域、相変化中の気液二相域、液相域と冷媒の状態は変化していく。気相域(気相成分)を符号67、液相域(液相成分)を符号68とすると、気相域67は区間ab、気液二相域(気相域67と液相域68)は区間be、液相域68は区間efとなる。第四の放熱器43、あるいはパイプ53のいずれかを切り換える三方弁48を図中の位置dに設けた場合、区間deでは気相成分69が存在する気液二相域となる。   The gas refrigerant compressed to a high temperature and high pressure by the compressor 24 releases heat to the outside in the order of the first radiator 46, the second radiators 41 a and 41 b, and the third radiator 42. The state of the refrigerant, the gas-liquid two-phase region during the phase change, the liquid-phase region and the refrigerant change. When the gas phase region (gas phase component) is denoted by reference numeral 67 and the liquid phase region (liquid phase component) is denoted by reference symbol 68, the gas phase region 67 is the section ab and the gas-liquid two phase region (gas phase region 67 and liquid phase region 68). Is the section be, and the liquid phase region 68 is the section ef. When the three-way valve 48 for switching either the fourth radiator 43 or the pipe 53 is provided at the position d in the figure, the section de is a gas-liquid two-phase region where the gas phase component 69 exists.

図10bは本発明の実施形態に係る放熱器配管内部における冷媒の状態を模式的に表した図である。三方弁48で切り換える冷媒流路、すなわち第四の放熱器43、パイプ53の領域では、冷媒の状態は液相域68が大部分であるため(図11参照)、第四の放熱器43、またはパイプ53には三方弁48で切り換える度に液冷媒が残留し易くなる。すなわち、図10aで示した三方弁48で分岐される第四の放熱器43、パイプ53のそれぞれのパイプ容積を小さくすると、三方弁48によって切換え制御を行う度にパイプ内に液冷媒が残留する。よって、第四の放熱器43、またはパイプ53の冷媒の気相域を残すことなく(図10aの気相域69)、液相域68で満たすことができるようになる。   FIG. 10b is a diagram schematically showing the state of the refrigerant in the radiator pipe according to the embodiment of the present invention. In the refrigerant flow path switched by the three-way valve 48, that is, in the region of the fourth radiator 43 and the pipe 53, the liquid state is mostly in the liquid phase region 68 (see FIG. 11). Alternatively, the liquid refrigerant tends to remain in the pipe 53 every time the three-way valve 48 is switched. That is, if the pipe volume of the fourth radiator 43 and the pipe 53 branched by the three-way valve 48 shown in FIG. 10a is reduced, the liquid refrigerant remains in the pipe every time switching control is performed by the three-way valve 48. . Therefore, the fourth heat radiator 43 or the gas phase region of the refrigerant in the pipe 53 can be filled with the liquid phase region 68 without leaving the gas phase region of the refrigerant (FIG. 10a).

第四の放熱器43、パイプ53のパイプ容積を小さくする手段としては、例えばパイプ径を小さくすることやパイプ長さを短くすることである。第四の放熱器43、パイプ53のパイプ内径をφ4.0mmからφ3.6mmに小さくすると約20%体積を小さくすることが可能となる。図10bに示すように第二の放熱手段、すなわち第四の放熱器43、またはパイプ53の領域dfを液相域68で満たしておくことにより、冷凍サイクルの運転状況によらず第二の放熱手段に残留する液冷媒量がこれ以上増えることはない。第二の放熱手段を切り換える手段を有する冷蔵庫では、液冷媒が溜まる第二の放熱手段のパイプ容積を、第一の放熱手段を構成するパイプ容積よりも小さくすることで、冷凍サイクルの運転状況によらず、第二の放熱手段を切り換えても冷媒不足が起こり難くすることができる。   Means for reducing the volume of the fourth radiator 43 and the pipe 53 include, for example, reducing the pipe diameter or shortening the pipe length. When the inner diameter of the fourth radiator 43 and the pipe 53 is reduced from φ4.0 mm to φ3.6 mm, the volume can be reduced by about 20%. As shown in FIG. 10b, the second heat radiation means, that is, the fourth heat radiator 43 or the region df of the pipe 53 is filled with the liquid phase region 68, so that the second heat radiation is performed regardless of the operation state of the refrigeration cycle. There is no further increase in the amount of liquid refrigerant remaining in the means. In a refrigerator having means for switching the second heat radiating means, the pipe volume of the second heat radiating means in which the liquid refrigerant accumulates is made smaller than the pipe volume constituting the first heat radiating means, so that the refrigeration cycle can be operated. Regardless, it is possible to make the refrigerant shortage hardly occur even if the second heat radiation means is switched.

上記のように、第四の放熱器43、パイプ53の配管内が液相域で満たされるようにしているので、例えば、図3に示すサイクルA側に三方弁48を切り換えると、サイクルB側のパイプ53内は液封状態となり、急激な温度変化によりパイプが破損する恐れがある。これを回避するために、三方弁48をサイクルA側に固定した場合にはサイクルB側へ、サイクルB側に固定した場合はサイクルA側への冷媒漏れ量を許容している。   As described above, since the inside of the fourth radiator 43 and the pipe 53 is filled with the liquid phase region, for example, when the three-way valve 48 is switched to the cycle A side shown in FIG. The pipe 53 is in a liquid-sealed state, and the pipe may be damaged by a sudden temperature change. In order to avoid this, the refrigerant leakage amount to the cycle B side is allowed when the three-way valve 48 is fixed to the cycle A side, and when the three-way valve 48 is fixed to the cycle B side, the refrigerant leakage amount to the cycle A side is allowed.

図11は本発明の実施形態に係る冷蔵庫の運転状況を表すモリエル線図である。これにより図10a、図10bで説明した放熱側、すなわち、第一から第四の放熱器の冷媒の状態をモリエル線図上で説明する。圧縮機24で圧縮された冷媒は、パイプ66に接続している第一の放熱器46、第二の放熱器41a、41b、第三の放熱器42、第四の放熱器43の順に冷媒が流れ(三方弁48をサイクルA側に固定の場合)、その間、パイプ内の冷媒は外気に放熱するために、気相域(区間ab)、気液二相域(区間be)、液相域(区間ef、または区間df)の順にその状態は変化する。第四の放熱器43から流出する冷媒は、絞り61で減圧されて冷却器7に流入する。冷却器7を通過する際に冷媒が庫内空気からの熱を吸熱し、庫内の空気は冷却されるが、冷却能力は冷却器7の出入り口のエンタルピ差で表すことができる。従って、状態fから減圧して冷却器7に冷媒が流入する場合の冷却能力はΔh1で表すことができる。   FIG. 11 is a Mollier diagram showing the operation status of the refrigerator according to the embodiment of the present invention. Thus, the state of the refrigerant on the heat dissipation side described in FIGS. 10a and 10b, that is, the first to fourth radiators will be described on the Mollier diagram. The refrigerant compressed by the compressor 24 is in the order of the first radiator 46, the second radiators 41 a and 41 b, the third radiator 42, and the fourth radiator 43 connected to the pipe 66. Flow (when the three-way valve 48 is fixed to the cycle A side), during which the refrigerant in the pipe dissipates heat to the outside air, so that the gas phase region (section ab), gas-liquid two-phase region (section be), liquid phase region The state changes in the order of (section ef or section df). The refrigerant flowing out of the fourth radiator 43 is decompressed by the throttle 61 and flows into the cooler 7. When the refrigerant passes through the cooler 7, the refrigerant absorbs heat from the internal air and the internal air is cooled, but the cooling capacity can be expressed by an enthalpy difference at the entrance and exit of the cooler 7. Therefore, the cooling capacity when the pressure is reduced from the state f and the refrigerant flows into the cooler 7 can be expressed by Δh1.

一方、特許文献1に示す冷凍サイクルの構成の場合、結露防止配管(本発明では第四の放熱器43)の下流側に、冷蔵庫の側壁面に埋設して別の放熱器が接続されている構成が開示されている。通常、結露防止配管、結露防止配管の下流側に設けた放熱器の順番に庫外の空気に放熱する。しかしながら、結露防止配管の下流側の放熱器の近くに例えば、暖房器具が置かれた場合、冷媒は暖房器具によって加熱され配管内の冷媒が蒸発するため、状態fの冷媒が気液二相域である状態gに変化することがある。この場合、前記放熱器の下流側に別の放熱器を設けていないため、状態gから減圧することになる。従って、冷却器7における冷却能力はΔh2となり、冷却能力が低下する恐れがある。結露防止配管は、通常、貯蔵室開口縁部に埋設されているので、その部分を外部から加熱される心配はなく、複数の放熱器を備えた冷蔵庫の場合には、上記の現象を回避するために、結露防止配管を配置する順番は最後にした方が良い。   On the other hand, in the case of the configuration of the refrigeration cycle shown in Patent Document 1, another heat radiator is connected to the downstream side of the dew condensation prevention pipe (the fourth heat radiator 43 in the present invention) by being embedded in the side wall surface of the refrigerator. A configuration is disclosed. Usually, heat is radiated to the air outside the cabinet in the order of the dew condensation prevention pipe and the radiator provided downstream of the dew condensation prevention pipe. However, for example, when a heater is placed near the radiator on the downstream side of the dew condensation prevention pipe, the refrigerant is heated by the heater and the refrigerant in the pipe evaporates. May change to state g. In this case, since another radiator is not provided on the downstream side of the radiator, the pressure is reduced from the state g. Therefore, the cooling capacity in the cooler 7 becomes Δh2, and the cooling capacity may be reduced. Since the anti-condensation piping is normally embedded in the opening edge of the storage room, there is no concern that the portion will be heated from the outside, and in the case of a refrigerator equipped with a plurality of radiators, the above phenomenon is avoided. Therefore, it is better to place the dew condensation prevention piping last.

図12a、12bは、それぞれ三方弁48の内部の冷媒の状態を模式的に示した図である。三方弁48の内部に設けた弁体70、72を駆動させるステッピングモータ等は省略してある。入口側開口部71にはパイプ51(C側)、出口側にはパイプ52(A側:サイクルA側)、パイプ53(B側:サイクルB側)をそれぞれ接続してある。パイプ52とパイプ53の開閉を制御するために弁体70、72を設けてあり、パイプ52(A側:サイクルA側)に冷媒を流す時には弁体70を開、弁体72は閉、パイプ53(B側:サイクルB側)に冷媒を流す時には弁70を閉、弁体72を開にする。パイプ52、パイプ53いずれにも冷媒を流さない場合には弁体70、72を閉、パイプ52、パイプ53いずれにも冷媒を流す場合には弁体70、72を開にすることができ、その制御は制御基板33に設置したメモリー回路によって行われる。   12a and 12b are diagrams schematically showing the state of the refrigerant inside the three-way valve 48, respectively. A stepping motor and the like for driving the valve bodies 70 and 72 provided inside the three-way valve 48 are omitted. A pipe 51 (C side) is connected to the inlet side opening 71, and a pipe 52 (A side: cycle A side) and a pipe 53 (B side: cycle B side) are connected to the outlet side, respectively. Valve bodies 70 and 72 are provided to control the opening and closing of the pipe 52 and the pipe 53, and when the refrigerant flows through the pipe 52 (A side: cycle A side), the valve body 70 is opened, and the valve body 72 is closed. 53 (B side: cycle B side) When the refrigerant flows, the valve 70 is closed and the valve body 72 is opened. The valve bodies 70 and 72 can be closed when no refrigerant flows through the pipe 52 and the pipe 53, and the valve bodies 70 and 72 can be opened when the refrigerant can flow through the pipe 52 and the pipe 53. The control is performed by a memory circuit installed on the control board 33.

図10aに示すように、三方弁48を放熱器の途中、すなわち第四の放熱器43の上流側に設けているため、三方弁48内部の冷媒は、図12aに示すように気液二相流(気相域67、液相域68)になる場合がある。気相域67と液相域68が複雑に混ざりあって三方弁48の弁体70、72、入口側開口部71を通過する場合、三方弁48の内部には、三方弁48と接続するパイプ51、52、53よりも径が小さい流路が一般的に存在するので、冷媒流路の縮小や拡大によって冷媒流動音が発生する場合がある。従って、図10bで説明した通り、第一の放熱手段となる放熱器のパイプ容積に対し、第二の放熱手段となる第四の放熱器43、またはパイプ53のパイプ容積を小さくして、液相域を三方弁48の設置場所まで拡大させると、図12bに示すように三方弁48の内部は液相域68で満たされるので、弁体70、72、入口側開口部71を冷媒が通過する際の冷媒流動音を低減することができる。   Since the three-way valve 48 is provided in the middle of the radiator, that is, upstream of the fourth radiator 43 as shown in FIG. 10a, the refrigerant inside the three-way valve 48 is a gas-liquid two-phase as shown in FIG. 12a. In some cases, a flow (gas phase region 67, liquid phase region 68) is formed. When the gas phase region 67 and the liquid phase region 68 are mixed in a complicated manner and pass through the valve bodies 70 and 72 and the inlet side opening 71 of the three-way valve 48, a pipe connected to the three-way valve 48 is provided inside the three-way valve 48. Since there are generally channels having diameters smaller than 51, 52, and 53, refrigerant flow noise may occur due to the reduction or expansion of the refrigerant channel. Therefore, as described with reference to FIG. 10b, the pipe volume of the fourth radiator 43 or the pipe 53 serving as the second heat radiating means is made smaller than the pipe volume of the heat radiating means serving as the first heat radiating means. When the phase area is expanded to the place where the three-way valve 48 is installed, the interior of the three-way valve 48 is filled with the liquid phase area 68 as shown in FIG. 12b, so that the refrigerant passes through the valve bodies 70 and 72 and the inlet side opening 71. It is possible to reduce the refrigerant flow noise during the operation.

冷凍サイクルの運転状況によっては、三方弁48内を通過する冷媒が気液二相域となる場合もありうる。万が一そのような状態になった場合には、パイプ51から流入した冷媒を、パイプ51の内径よりも大きい三方弁48の内部で一旦拡大し、気相域67と液相域68を重力方向に対して上下に二分割させてから、三方弁48の下面に設けた弁体70(A側:サイクルA側)、あるいは弁体72(B側:サイクルB側)から冷媒を流出させれば良い。気相域67と液相域68を上下に二分割して(図12a参照)、三方弁48の下面に設けた弁体70、72、入口側開口部71側に液相域となるように、機械室44の内部に取り付ける際の三方弁48の姿勢は、予め固定具50に三方弁48を取り付けることによって、機械室に取り付ける際の姿勢を一義的に決めることができる。   Depending on the operating condition of the refrigeration cycle, the refrigerant passing through the three-way valve 48 may be in a gas-liquid two-phase region. In such a case, the refrigerant flowing from the pipe 51 is temporarily expanded inside the three-way valve 48 larger than the inner diameter of the pipe 51, and the gas phase region 67 and the liquid phase region 68 are moved in the direction of gravity. On the other hand, the refrigerant is allowed to flow out from the valve body 70 (A side: cycle A side) or the valve body 72 (B side: cycle B side) provided on the lower surface of the three-way valve 48 after being divided into two vertically. . The gas phase region 67 and the liquid phase region 68 are divided into two vertically (see FIG. 12a) so that the liquid phase region is formed on the valve bodies 70 and 72 provided on the lower surface of the three-way valve 48 and the inlet side opening 71 side. The posture of the three-way valve 48 when attached to the inside of the machine room 44 can be uniquely determined by attaching the three-way valve 48 to the fixture 50 in advance.

以上より、流路切換手段によって該流路切換手段の後流側の放熱手段を分岐した後、再び合流するまでの間に形成される第二の放熱手段となる放熱器のパイプ容積を、圧縮機と冷媒流路切換手段との間に形成される第一の放熱手段となる放熱器のパイプ容積よりも小さくすることによって、三方弁48の設置場所まで液相域を拡大して、三方弁48を通過する際に発生する冷媒流動音を低減することができ、更に三方弁48の取り付け姿勢によっても、三方弁48を通過する際に発生する冷媒流動音を抑えた冷却運転も実現できる。   From the above, the pipe volume of the radiator, which is the second heat radiating means, is compressed after the heat radiating means on the downstream side of the flow path switching means is branched by the flow path switching means and then merged again. The liquid phase area is expanded to the place where the three-way valve 48 is installed by making it smaller than the pipe volume of the radiator which is the first heat radiating means formed between the machine and the refrigerant flow switching means. It is possible to reduce the refrigerant flow noise generated when passing through 48, and also to realize a cooling operation that suppresses the refrigerant flow noise generated when passing through the three-way valve 48 depending on the mounting orientation of the three-way valve 48.

図13は本発明の他の実施形態に係る冷蔵庫の冷凍サイクルの構成図である。   FIG. 13 is a configuration diagram of a refrigeration cycle of a refrigerator according to another embodiment of the present invention.

図3に示す冷凍サイクルに対して、絞り61の手前に二方弁を設けずに、全閉機能を有した三方弁48によって、第二の放熱手段となる、第四の放熱器43とパイプ53を切り換えることを特徴とした冷凍サイクルである。二方弁49、三方弁48の設置場所は、図6に示したように例えば機械室44内であるが、冷蔵庫1の幅が小さい場合、二方弁49と三方弁48の両方を設置するスペースを確保することが困難なことがあるため、三方弁48のみで第二の放熱手段となる第四の放熱器43と、パイプ53を切り換える制御を行うこともできる。   For the refrigeration cycle shown in FIG. 3, a fourth radiator 43 and a pipe serving as a second heat radiation means are provided by a three-way valve 48 having a fully-closed function without providing a two-way valve in front of the throttle 61. The refrigeration cycle is characterized by switching 53. As shown in FIG. 6, the installation place of the two-way valve 49 and the three-way valve 48 is, for example, in the machine room 44. When the width of the refrigerator 1 is small, both the two-way valve 49 and the three-way valve 48 are installed. Since it may be difficult to secure a space, it is also possible to perform control for switching the fourth radiator 43 serving as the second heat radiating means and the pipe 53 using only the three-way valve 48.

図14は、図13の他の実施形態における冷却運転の一例を示すフローチャートである。すなわち、図13に示す冷凍サイクルに関して、第四の放熱器43とパイプ3を切り換える制御である。図9に示した制御と同様に、庫内が所定の温度に到達し、安定状態における冷蔵庫の運転は、冷蔵運転、冷凍運転、圧縮機OFFからなる運転が基本となり、周囲温度の変動や食品等の投入が行われない限り、これらの運転を繰り返す。ここでは主に、三方弁48の動作を圧縮機24に関連付けて説明する。   FIG. 14 is a flowchart showing an example of the cooling operation in another embodiment of FIG. That is, with respect to the refrigeration cycle shown in FIG. 13, control is performed to switch the fourth radiator 43 and the pipe 3. Similar to the control shown in FIG. 9, the refrigerator reaches a predetermined temperature, and the operation of the refrigerator in a stable state is basically a refrigeration operation, a refrigeration operation, and an operation including a compressor OFF. These operations are repeated as long as no other input is made. Here, the operation of the three-way valve 48 will be mainly described in relation to the compressor 24.

圧縮機24が停止中の場合、放熱器側、すなわち、第一の放熱器46から第四の放熱器43、及びパイプ53内の冷媒は、冷却器7よりも高温高圧となるため、それらの圧力差によって放熱器側の冷媒が冷却器側に流入する。これにより冷却器7を介して庫内への熱負荷が増加することになり、消費電力量の増加につながる。従って、圧縮機停止中に発生する冷媒の流動を止めるために、圧縮機24が停止する前に放熱器側の冷媒を回収する。三方弁48には第四の放熱器43に固定するサイクルA側と、パイプ53側に固定するサイクルB側に加えて、サイクルA側とサイクルB側の両方を閉状態、または両方を開状態とすることができる。それぞれの所定の時間、サイクルA側、あるいはサイクルB側に固定して冷蔵庫を運転すると、冷却器7に対して高温高圧側となるサイクルA側とサイクルB側それぞれに冷媒が残留することになる。圧縮機停止中にこの冷媒が冷却器7に流入しないように、圧縮機24を停止する前に三方弁48を全閉にして第一の放熱器46、第二の放熱器41a、41b、第三の放熱器42内に冷媒を移動させる冷媒回収運転を時間tcloseだけ実施する。冷媒回収時間は3、4分程度で、圧縮機停止中も三方弁48は継続して閉状態にしておく。   When the compressor 24 is stopped, since the refrigerant in the radiator side, that is, the first radiator 46 to the fourth radiator 43 and the pipe 53 becomes higher temperature and pressure than the cooler 7, The refrigerant on the radiator side flows into the cooler side due to the pressure difference. As a result, the heat load on the inside of the cabinet via the cooler 7 increases, leading to an increase in power consumption. Therefore, in order to stop the flow of the refrigerant generated while the compressor is stopped, the refrigerant on the radiator side is collected before the compressor 24 stops. In addition to the cycle A side fixed to the fourth radiator 43 and the cycle B side fixed to the pipe 53 side, both the cycle A side and the cycle B side are closed, or both are opened. It can be. When the refrigerator is operated while being fixed to the cycle A side or the cycle B side for each predetermined time, the refrigerant remains on the cycle A side and the cycle B side which are the high-temperature and high-pressure sides with respect to the cooler 7. . In order to prevent this refrigerant from flowing into the cooler 7 while the compressor is stopped, the three-way valve 48 is fully closed before the compressor 24 is stopped, and the first radiator 46, the second radiators 41a, 41b, the second The refrigerant recovery operation for moving the refrigerant into the third radiator 42 is performed for a time tclose. The refrigerant recovery time is about 3 or 4 minutes, and the three-way valve 48 is kept closed even when the compressor is stopped.

以上のように二方弁がない場合でも、三方弁48の全閉機能を活用することによって圧縮機停止時の冷却器7への冷媒流入を抑制することができるが、第二の放熱手段を構成する第四の放熱器43、またはパイプ53のパイプ容積を小さくし、液相域となるパイプ容積を小さくすれば冷媒回収時間も短くすることができ、消費電力量を小さくした冷蔵庫の運転が可能である。   Even when there is no two-way valve as described above, the refrigerant flow into the cooler 7 when the compressor is stopped can be suppressed by utilizing the fully-closed function of the three-way valve 48. Refrigerant recovery time can be shortened by reducing the pipe volume of the fourth radiator 43 or the pipe 53 constituting the pipe and reducing the pipe volume serving as the liquid phase region, and the operation of the refrigerator with reduced power consumption can be achieved. Is possible.

以上より、本発明の冷蔵庫は、圧縮機と、放熱手段と、減圧手段と、冷却器とを順次接続した冷媒回路を有する冷蔵庫において、前記放熱手段は、庫外への放熱を行う第一の放熱手段と、前記仕切部を加熱する第二の放熱手段とを備え、前記圧縮機により圧縮された冷媒を、前記第一の放熱手段及び前記第二の放熱手段に流す第一の冷媒流路と、前記第一の放熱手段に冷媒を流通させた後に、前記第一の冷媒流路をバイパスさせる第二の冷媒流路と、前記第一の冷媒流路と前記第二の冷媒流路を切り換える流路切換手段とを備え、前記第一の冷媒流路及び前記第二の冷媒流路の内容積は前記第一の放熱手段の内容積よりも小さくする。すなわち、冷媒流路配管b(図3参照)の内容積を、冷媒流路配管a(図3参照)の内容積よりも小さくして第二の放熱手段の配管内部に残留する冷媒量を少なくしている。従って、冷媒不足による冷却性能の悪化を回避することができ、消費電力量を低減する冷却運転が実施できる。   As described above, the refrigerator of the present invention has a refrigerant circuit in which a compressor, a heat radiating means, a pressure reducing means, and a cooler are sequentially connected. In the refrigerator, the heat radiating means performs heat radiation to the outside. A first refrigerant flow path comprising a heat radiating means and a second heat radiating means for heating the partition portion, and causing the refrigerant compressed by the compressor to flow to the first heat radiating means and the second heat radiating means. And after passing the refrigerant through the first heat radiating means, a second refrigerant channel that bypasses the first refrigerant channel, the first refrigerant channel, and the second refrigerant channel A switching means for switching, and the internal volume of the first refrigerant flow path and the second refrigerant flow path is made smaller than the internal volume of the first heat dissipation means. That is, the internal volume of the refrigerant passage pipe b (see FIG. 3) is made smaller than the internal volume of the refrigerant passage pipe a (see FIG. 3) to reduce the amount of refrigerant remaining inside the pipe of the second heat radiation means. doing. Therefore, the deterioration of the cooling performance due to the lack of refrigerant can be avoided, and the cooling operation for reducing the power consumption can be performed.

また、前記第一の放熱手段を流れる前記冷媒の温度は、所定範囲内で変化しないように流れた後、温度が次第に低下し始める変曲点を有するように流れることを特徴とする。これにより、流路切換手段(三方弁48)の設置場所まで液相域を拡大して、流路切換手段を通過する際に発生する冷媒流動音を低減することができる。   In addition, the temperature of the refrigerant flowing through the first heat radiating means flows so as not to change within a predetermined range, and then flows so as to have an inflection point at which the temperature starts to gradually decrease. Thereby, a liquid phase area can be expanded to the installation place of a flow-path switching means (three-way valve 48), and the refrigerant | coolant flow noise generated when passing a flow-path switching means can be reduced.

また、前記第一の冷媒流路に冷媒を流す第一のモードと、前記第二の冷媒流路に冷媒を流す第二のモードと、前記第一の冷媒流路と第二の冷媒流路のいずれにも冷媒を流さない第三のモードとを備え、前記第一のモード又は前記第二のモードの少なくともいずれかを所定時間実施した場合、前記圧縮機稼働状態で前記第三のモードを実施する。これにより、冷媒流路配管b(図3参照)の配管内に残留した冷媒を圧縮機に回収する運転を実施するので、冷媒不足による冷却性能の悪化を回避して消費電力量の削減を図ることができる。   A first mode for flowing a refrigerant through the first refrigerant flow path; a second mode for flowing a refrigerant through the second refrigerant flow path; and the first refrigerant flow path and the second refrigerant flow path. A third mode in which no refrigerant is allowed to flow, and when at least one of the first mode and the second mode is performed for a predetermined time, the third mode is set in the compressor operating state. carry out. As a result, the operation of collecting the refrigerant remaining in the refrigerant flow pipe b (see FIG. 3) in the compressor is performed, so that the deterioration of the cooling performance due to the lack of refrigerant is avoided and the power consumption is reduced. be able to.

また、温度及び湿度を検知する検知手段を備え、該検知手段によって検出される温度と湿度に応じて前記第一のモードの時間と前記第二のモードの時間を変化させる。これのより、モードの切り換え時間を予め決めた値に従って制御することができる。   In addition, a detection unit that detects temperature and humidity is provided, and the time of the first mode and the time of the second mode are changed according to the temperature and humidity detected by the detection unit. Thus, the mode switching time can be controlled according to a predetermined value.

また、前記第一の冷媒流路と前記第二の冷媒流路が合流した位置よりも下流であって、前記減圧手段の上流に冷媒流路開閉手段を設ける。これにより、圧縮機停止時の冷却器への冷媒流入を抑制することができる。   Further, a refrigerant flow path opening / closing means is provided downstream of the position where the first refrigerant flow path and the second refrigerant flow path merge, and upstream of the pressure reducing means. Thereby, the refrigerant | coolant inflow to the cooler at the time of a compressor stop can be suppressed.

また、前記流路切換手段は前記冷蔵庫の貯蔵室外に設けた三方弁であって、該三方弁の開閉出口部を下部に位置するように配置する。これにより、三方弁の取り付け姿勢によっても、三方弁を通過する際に発生する冷媒流動音を抑えた冷却運転も実現できる。   Further, the flow path switching means is a three-way valve provided outside the storage room of the refrigerator, and the opening / closing outlet portion of the three-way valve is disposed at the lower part. Thereby, the cooling operation which suppressed the refrigerant flow noise generated when passing through the three-way valve can also be realized depending on the mounting orientation of the three-way valve.

1 冷蔵庫
9 庫内送風機
20 冷蔵室ダンパ
28、29、40 仕切壁
34 冷凍室ダンパ
41a、41b 第二の放熱器
42 第三の放熱器
43 第四の放熱器(結露防止配管)
45 庫外送風機(機械室ファン)
46 第一の放熱器
48 三方弁(流路切換手段)
49 二方弁(冷媒流路開閉手段)
51、52、53、54、57、59、60、64、66 パイプ
55 逆止弁
56 合流管
58 ドライヤ
61 絞り
65 熱交換部
67、69 気相域(気相成分)
68 液相域(液相成分)
70、72 弁体
71 入口側開口部
80 扉ヒンジカバー
81 湿度センサー(検知手段)
82 温度センサー(検知手段)
83 基板カバー
84 仕切カバー
85、86 熱の流れ
DESCRIPTION OF SYMBOLS 1 Refrigerator 9 Blower 20 Refrigeration room dampers 28, 29, 40 Partition wall 34 Freezer compartment dampers 41a, 41b Second radiator 42 Third radiator 43 Fourth radiator (condensation prevention piping)
45 Outside fan (machine room fan)
46 First radiator 48 Three-way valve (flow path switching means)
49 Two-way valve (Refrigerant channel opening / closing means)
51, 52, 53, 54, 57, 59, 60, 64, 66 Pipe 55 Check valve 56 Junction pipe 58 Dryer 61 Restriction 65 Heat exchange section 67, 69 Gas phase region (gas phase component)
68 Liquid phase region (Liquid phase component)
70, 72 Valve body 71 Entrance side opening 80 Door hinge cover 81 Humidity sensor (detection means)
82 Temperature sensor (detection means)
83 Substrate cover 84 Partition cover 85, 86 Heat flow

Claims (6)

圧縮機と、放熱手段と、減圧手段と、冷却器とを順次接続した冷媒回路を有する冷蔵庫において、
前記放熱手段は、庫外への放熱を行う第一の放熱手段と、前記仕切部を加熱する第二の放熱手段とを備え、
前記圧縮機により圧縮された冷媒を、前記第一の放熱手段及び前記第二の放熱手段に流す第一の冷媒流路と、
前記第一の放熱手段に冷媒を流通させた後に、前記第一の冷媒流路をバイパスさせる第二の冷媒流路と、
前記第一の冷媒流路と前記第二の冷媒流路を切り換える流路切換手段とを備え、
前記第一の冷媒流路及び前記第二の冷媒流路の内容積は前記第一の放熱手段の内容積よりも小さいことを特徴とする冷蔵庫。
In a refrigerator having a refrigerant circuit in which a compressor, a heat radiating means, a pressure reducing means, and a cooler are sequentially connected,
The heat radiating means includes a first heat radiating means for radiating heat to the outside of the cabinet, and a second heat radiating means for heating the partition part,
A first refrigerant flow path for flowing the refrigerant compressed by the compressor to the first heat radiating means and the second heat radiating means;
A second refrigerant flow path that bypasses the first refrigerant flow path after circulating the refrigerant to the first heat radiation means;
Channel switching means for switching between the first refrigerant channel and the second refrigerant channel;
The refrigerator, wherein the internal volume of the first refrigerant flow path and the second refrigerant flow path is smaller than the internal volume of the first heat radiation means.
前記第一の放熱手段を流れる前記冷媒の温度は、所定範囲内で変化しないように流れた後、温度が次第に低下し始める変曲点を有するように流れることを特徴とする、請求項1記載の冷蔵庫。   The temperature of the refrigerant flowing through the first heat radiating means flows so as not to change within a predetermined range, and then flows so as to have an inflection point at which the temperature starts to gradually decrease. Refrigerator. 前記第一の冷媒流路に冷媒を流す第一のモードと、前記第二の冷媒流路に冷媒を流す第二のモードと、前記第一の冷媒流路と第二の冷媒流路のいずれにも冷媒を流さない第三のモードとを備え、
前記第一のモード又は前記第二のモードの少なくともいずれかを所定時間実施した場合、前記圧縮機稼働状態で前記第三のモードを実施することを特徴とする、請求項1又は2に記載の冷蔵庫。
Any of the first mode in which the refrigerant flows through the first refrigerant channel, the second mode in which the refrigerant flows through the second refrigerant channel, the first refrigerant channel, and the second refrigerant channel With a third mode that does not flow refrigerant,
3. The third mode according to claim 1, wherein the third mode is performed in the compressor operating state when at least one of the first mode and the second mode is performed for a predetermined time. refrigerator.
温度及び湿度を検知する検知手段を備え、該検知手段によって検出される温度と湿度に応じて前記第一のモードの時間と前記第二のモードの時間を変化させることを特徴とする、請求項3に記載の冷蔵庫。   A detection means for detecting temperature and humidity is provided, and the time of the first mode and the time of the second mode are changed according to the temperature and humidity detected by the detection means. 3. The refrigerator according to 3. 前記第一の冷媒流路と前記第二の冷媒流路が合流した位置よりも下流であって、前記減圧手段の上流に冷媒流路開閉手段を設けたことを特徴とする、請求項1又は2に記載の冷蔵庫。   The refrigerant flow path opening / closing means is provided downstream of the position where the first refrigerant flow path and the second refrigerant flow path merge, and upstream of the pressure reducing means. 2. The refrigerator according to 2. 前記流路切換手段は前記冷蔵庫の貯蔵室外に設けた三方弁であって、該三方弁の開閉出口部を下部に位置するように配置したことを特徴とする、請求項1乃至5のいずれかに記載の冷蔵庫。   The flow path switching means is a three-way valve provided outside the storage room of the refrigerator, and is arranged so that an opening / closing outlet portion of the three-way valve is located at a lower part. Refrigerator.
JP2011194501A 2011-09-07 2011-09-07 refrigerator Active JP5492845B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011194501A JP5492845B2 (en) 2011-09-07 2011-09-07 refrigerator
CN201210306431.1A CN102997558B (en) 2011-09-07 2012-08-24 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194501A JP5492845B2 (en) 2011-09-07 2011-09-07 refrigerator

Publications (2)

Publication Number Publication Date
JP2013057415A true JP2013057415A (en) 2013-03-28
JP5492845B2 JP5492845B2 (en) 2014-05-14

Family

ID=47926450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194501A Active JP5492845B2 (en) 2011-09-07 2011-09-07 refrigerator

Country Status (2)

Country Link
JP (1) JP5492845B2 (en)
CN (1) CN102997558B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205669A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 refrigerator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990168B (en) * 2015-06-08 2017-12-19 广东美的制冷设备有限公司 Air conditioner
CN105115221B (en) * 2015-07-23 2018-09-04 合肥美的电冰箱有限公司 Hinged cover and refrigerator
JP6623962B2 (en) * 2016-07-26 2019-12-25 株式会社デンソー Refrigeration cycle device
CN110657629A (en) * 2019-09-23 2020-01-07 广州美的华凌冰箱有限公司 Refrigerator, control method and control device thereof, and computer-readable storage medium
CN112277774A (en) * 2020-11-16 2021-01-29 李东旭 Integrated vehicle-mounted container for transporting cold fresh food

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490454A (en) * 1990-08-01 1992-03-24 Hitachi Ltd Freezer
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2001099541A (en) * 1999-09-28 2001-04-13 Sanyo Electric Co Ltd Refrigerator
JP2001124454A (en) * 1999-10-27 2001-05-11 Matsushita Refrig Co Ltd Refrigerator
JP2001355954A (en) * 2001-05-11 2001-12-26 Matsushita Refrig Co Ltd Refrigerator
JP2003227675A (en) * 2002-02-06 2003-08-15 Sanyo Electric Co Ltd Refrigerator
JP2004092939A (en) * 2002-08-29 2004-03-25 Sanyo Electric Co Ltd Refrigerator-freezer
JP2005127601A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Refrigerator
JP2006220377A (en) * 2005-02-10 2006-08-24 Toshiba Corp Refrigerator
JP2009074761A (en) * 2007-09-21 2009-04-09 Toshiba Corp Refrigerator
JP2009174767A (en) * 2008-01-23 2009-08-06 Sharp Corp Refrigerator
JP2010038516A (en) * 2008-08-08 2010-02-18 Sharp Corp Refrigerator-freezer and cooling storage
JP2010196948A (en) * 2009-02-24 2010-09-09 Toshiba Corp Refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275496A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Refrigerating device and refrigerator

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490454A (en) * 1990-08-01 1992-03-24 Hitachi Ltd Freezer
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2001099541A (en) * 1999-09-28 2001-04-13 Sanyo Electric Co Ltd Refrigerator
JP2001124454A (en) * 1999-10-27 2001-05-11 Matsushita Refrig Co Ltd Refrigerator
JP2001355954A (en) * 2001-05-11 2001-12-26 Matsushita Refrig Co Ltd Refrigerator
JP2003227675A (en) * 2002-02-06 2003-08-15 Sanyo Electric Co Ltd Refrigerator
JP2004092939A (en) * 2002-08-29 2004-03-25 Sanyo Electric Co Ltd Refrigerator-freezer
JP2005127601A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Refrigerator
JP2006220377A (en) * 2005-02-10 2006-08-24 Toshiba Corp Refrigerator
JP2009074761A (en) * 2007-09-21 2009-04-09 Toshiba Corp Refrigerator
JP2009174767A (en) * 2008-01-23 2009-08-06 Sharp Corp Refrigerator
JP2010038516A (en) * 2008-08-08 2010-02-18 Sharp Corp Refrigerator-freezer and cooling storage
JP2010196948A (en) * 2009-02-24 2010-09-09 Toshiba Corp Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205669A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 refrigerator

Also Published As

Publication number Publication date
JP5492845B2 (en) 2014-05-14
CN102997558B (en) 2016-08-10
CN102997558A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5507511B2 (en) refrigerator
JP5492845B2 (en) refrigerator
JP6687384B2 (en) refrigerator
JP5198022B2 (en) refrigerator
JP2013061089A (en) Refrigerator
JP6177605B2 (en) refrigerator
JP5572606B2 (en) refrigerator
JP2012017920A (en) Refrigerator
JP6469966B2 (en) refrigerator
JP2013155910A (en) Refrigerator
JP2013019598A (en) Refrigerator
WO2013088462A1 (en) Refrigerator
JP6101926B2 (en) refrigerator
JP2013044438A (en) Refrigerator
JP2019100585A (en) refrigerator
JP6539093B2 (en) refrigerator
JP5838238B2 (en) refrigerator
JP6762149B2 (en) refrigerator
JP6506645B6 (en) refrigerator
JP2017026210A (en) refrigerator
WO2020121404A1 (en) Refrigerator
JP6533479B2 (en) refrigerator
JP2017040398A (en) refrigerator
CN113396307A (en) Refrigerator with direct cooling door inner chamber
JP2019138514A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350