JP2016205669A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2016205669A
JP2016205669A JP2015085568A JP2015085568A JP2016205669A JP 2016205669 A JP2016205669 A JP 2016205669A JP 2015085568 A JP2015085568 A JP 2015085568A JP 2015085568 A JP2015085568 A JP 2015085568A JP 2016205669 A JP2016205669 A JP 2016205669A
Authority
JP
Japan
Prior art keywords
dew condensation
state
refrigerant
pipe
condensation suppressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015085568A
Other languages
Japanese (ja)
Other versions
JP6539093B2 (en
Inventor
大平 昭義
Akiyoshi Ohira
昭義 大平
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
利広 小松
Toshihiro Komatsu
利広 小松
康仁 福井
Yasuhito Fukui
康仁 福井
山下 太一郎
Taichiro Yamashita
太一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015085568A priority Critical patent/JP6539093B2/en
Priority to CN201610132874.1A priority patent/CN106066110B/en
Publication of JP2016205669A publication Critical patent/JP2016205669A/en
Application granted granted Critical
Publication of JP6539093B2 publication Critical patent/JP6539093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator in which dew condensation suppression performance by a radiator provided at an opening edge of a box body and energy saving performance are improved.SOLUTION: A refrigerator includes a refrigeration cycle which has: a compressor 24; radiators provided at one or more places at a machine room, a side surface, a top surface and a back surface of a box body; a dew condensation suppressor 53 provided at an opening edge of the box body; a flow passage switching valve 48; and a decompression part 67. The flow passage switching valve 48 can execute: a first state in which a refrigerant flows in the radiator, from one end d side to the other f side of the dew condensation suppressor 53, and the decompression part 67 in this order; and a second state in which the refrigerant flows in the radiator, from the other f side to the one end d side of the dew condensation suppressor 53 and the decompression part 67 in this order.SELECTED DRAWING: Figure 10

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特許文献1が知られている。
特許文献1は、冷媒切換流路として、「4方弁24→放熱パイプ17→防露パイプ18」の順で冷媒を流して省エネルギー性能を優先する第1の切換状態と、「4方弁24→防露パイプ18→放熱パイプ17」の順で冷媒を流して防露を優先する第2の切換状態とを開示している(0014、図1、2)。放熱パイプ17は冷蔵庫本体1の背面部に埋設され、防露パイプ18は貯蔵室2〜6の前面開口部の周縁部に位置する仕切部に装着されている(0010)。
第1の切換状態では、放熱パイプ17により温度が低下した冷媒を防露パイプ18に流すことができるとしている(0014)。また、第2の切換状態では、放熱パイプ17よりも先に防露パイプ18に冷媒を流すことにより、温度の高い冷媒を防露パイプ18に流すことができるとしている。
Patent document 1 is known as a background art of this technical field.
Patent Document 1 discloses, as a refrigerant switching channel, a first switching state in which the refrigerant flows in the order of “four-way valve 24 → radiation pipe 17 → dew condensation prevention pipe 18” to give priority to energy saving performance, and “four-way valve 24”. The second switching state in which the refrigerant is flowed in the order of “dew prevention pipe 18 → heat radiation pipe 17” to give priority to dew prevention is disclosed (0014, FIGS. 1 and 2). The heat radiating pipe 17 is embedded in the back surface portion of the refrigerator main body 1, and the dew proof pipe 18 is attached to a partition portion located at the peripheral edge portion of the front opening of the storage chambers 2-6 (0010).
In the first switching state, the refrigerant whose temperature has been lowered by the heat radiating pipe 17 can be passed through the dew-proof pipe 18 (0014). In the second switching state, the refrigerant is allowed to flow through the dew prevention pipe 18 by flowing the refrigerant through the dew prevention pipe 18 before the heat radiating pipe 17.

特開2012−17920号公報JP 2012-17920 A

特許文献1では、冷媒が流れる順番について、放熱パイプ17が防露パイプ18の先か後かを4方弁24により切換可能としている。第1の切換状態では放熱パイプ17で放熱した冷媒が防露パイプ18に流入し、防露パイプ18内で徐々に低温になるので、防露パイプ18の上流側(放熱パイプ17側)は、気液二相域又は液相域の上流側の冷媒が流れ、比較的高温になる。一方、第2の切換状態では放熱パイプ17を経る前の冷媒が防露パイプ18に流入するので、防露パイプ18の下流側(放熱パイプ17側)の冷媒も、基本的に気液二相域又は液相域の上流側であるので、比較的高温の冷媒である。このため、第1の切換え状態の場合も第2の切換状態の場合も、防露パイプ18の放熱パイプ17側(第1の切換え状態の上流側、第2の切換え状態の下流側)は比較的高温の冷媒が流れるので、庫内への熱流入量が大きくなり、省エネ性に改善の余地がある。   In Patent Literature 1, the four-way valve 24 can switch whether the heat radiation pipe 17 is ahead or behind the dew-proof pipe 18 in the order in which the refrigerant flows. In the first switching state, the refrigerant radiated by the heat radiating pipe 17 flows into the dew proof pipe 18 and gradually decreases in temperature within the dew proof pipe 18, so the upstream side of the dew proof pipe 18 (the heat radiating pipe 17 side) The refrigerant on the upstream side of the gas-liquid two-phase region or the liquid-phase region flows and becomes relatively hot. On the other hand, since the refrigerant before passing through the heat radiating pipe 17 flows into the dew prevention pipe 18 in the second switching state, the refrigerant on the downstream side (heat radiating pipe 17 side) of the dew prevention pipe 18 is also basically a gas-liquid two-phase. Since it is upstream of the zone or the liquid phase zone, it is a relatively high temperature refrigerant. For this reason, in the case of the first switching state and the second switching state, the heat dissipation pipe 17 side (the upstream side of the first switching state and the downstream side of the second switching state) of the dewproof pipe 18 is compared. Since a high-temperature refrigerant flows, the amount of heat flowing into the warehouse increases, and there is room for improvement in energy saving.

上記課題に鑑みてなされた本発明は、圧縮機と、箱体の機械室、側面、天面及び背面の一箇所以上に設けた放熱器と、前記箱体の開口縁に設けた結露抑制器と、流路切換え部と、減圧部と、を有する冷凍サイクルを備える冷蔵庫であって、前記流路切換え部は、前記放熱器、前記結露抑制器の一端側から他端側、前記減圧部の順に前記冷媒を流す第一状態と、前記放熱器、前記結露抑制器の他端側から一端側、前記減圧部の順に前記冷媒を流す第二状態と、を実行可能なことを特徴とする。   The present invention made in view of the above problems includes a compressor, a radiator provided in one or more places in a machine room, a side surface, a top surface, and a back surface of a box, and a dew condensation suppressor provided at an opening edge of the box. A refrigerator having a refrigeration cycle having a flow path switching unit and a decompression unit, wherein the flow path switching unit is configured such that the one end side to the other end side of the radiator, the dew condensation suppressor, It is possible to execute a first state in which the refrigerant flows in order, and a second state in which the refrigerant flows in the order of the radiator, the other end side of the dew condensation suppressor to the one end side, and the decompression unit.

実施例1の冷蔵庫の正面図Front view of the refrigerator of Example 1 図1のA−A断面図AA sectional view of FIG. 実施例1の冷蔵庫に設けた放熱器の配置を示す図The figure which shows arrangement | positioning of the heat radiator provided in the refrigerator of Example 1. 実施例1の断熱仕切り壁の断面模式図Sectional schematic diagram of the heat insulation partition wall of Example 1 実施例1の冷蔵庫の冷凍サイクルの構成の概略図Schematic of the structure of the refrigerating cycle of the refrigerator of Example 1. 実施例1の放熱器配管内部における冷媒の状態を模式的に表した図The figure which represented typically the state of the refrigerant | coolant in the heat radiator piping of Example 1. 実施例1の放熱器配管内部における冷媒の状態を模式的に表した図(液相域拡大の場合)The figure which represented typically the state of the refrigerant | coolant in the radiator pipe of Example 1 (in the case of liquid phase area expansion) 実施例1のモリエル線図Mollier diagram of Example 1 実施例1の結露抑制器を構成する配管表面の温度分布の概略を説明する図The figure explaining the outline of the temperature distribution of the piping surface which comprises the dew condensation suppressor of Example 1. FIG. 実施例1の冷蔵庫の冷凍サイクルの切換構成を示す図The figure which shows the switching structure of the refrigerating cycle of the refrigerator of Example 1. 実施例1の結露抑制器を構成する配管表面の温度分布の概略を示す図(第一状態と第二状態とを組合せた場合)The figure which shows the outline of the temperature distribution of the piping surface which comprises the dew condensation inhibitor of Example 1 (when combining a 1st state and a 2nd state) 実施例2の冷蔵庫の冷凍サイクルの構成図The block diagram of the refrigerating cycle of the refrigerator of Example 2 実施例2の仕切りカバーの表面温度の経時変化を示す図The figure which shows the time-dependent change of the surface temperature of the partition cover of Example 2. 実施例2の結露抑制器の加熱制御のイメージ図Image of heating control of the dew condensation suppressor of Example 2 実施例3の冷凍サイクルの構成図Configuration diagram of refrigeration cycle of Example 3 実施例3の冷凍サイクルの構成図(減圧部73を選択した場合)Configuration diagram of refrigeration cycle of Example 3 (when decompression unit 73 is selected) 実施例3の冷凍サイクルの構成図(減圧部67を選択した場合)Configuration diagram of refrigeration cycle of Example 3 (when decompression unit 67 is selected)

以下、本発明の実施例について、添付の図面を参照しつつ詳細に説明する。同様の構成要素には同様の符号を付し、また、同様の説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Similar components are denoted by the same reference numerals, and the same description will not be repeated.

本発明の各種の構成要素は、必ずしも個々独立した存在である必要はなく、例えば、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、或る構成要素が他の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複していること、を許容する。   The various components of the present invention do not necessarily have to be independent of each other. For example, a plurality of components are formed as a single member, and a single component is formed of a plurality of members. That a certain component is a part of another component and that a certain component and a part of another component overlap.

本実施例によれば、冷蔵庫の箱体前面の開口縁に設けた結露抑制器に流れる冷媒の温度を、結露を抑制しつつ比較的低温に維持し、また、結露抑制器を流れる冷媒の温度の時間平均をより近い値にできる。これにより、省エネルギー性能を向上させた冷蔵庫を提供できる。   According to this embodiment, the temperature of the refrigerant flowing through the dew condensation suppressor provided at the opening edge of the front face of the refrigerator box is maintained at a relatively low temperature while suppressing dew condensation, and the temperature of the refrigerant flowing through the dew condensation suppressor The time average of can be made closer. Thereby, the refrigerator which improved energy saving performance can be provided.

[冷蔵庫1と開口縁]
図1は実施例1の冷蔵庫1の正面図である。冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、左右に分割された回転式で、冷蔵室2の開口を開閉する冷蔵室ドア2a、2bと、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aである。以下では、製氷室3、上段冷凍室4、下段冷凍室5は、まとめて冷凍室7と呼ぶ。
[Refrigerator 1 and opening edge]
FIG. 1 is a front view of the refrigerator 1 according to the first embodiment. The box 10 of the refrigerator 1 has a storage room in the order of a refrigerator compartment 2 from above, an ice making room 3 provided on the left and right, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6. The refrigerator 1 includes a door that opens and closes the opening of each storage chamber. These doors are divided into left and right, and are provided with refrigerating room doors 2a and 2b that open and close the opening of the refrigerating room 2, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 with openings. A drawer-type ice making door 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a that open and close, respectively. Hereinafter, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7.

ドア2a、2b、3a、4a、5a、6aの閉状態で、ドア2a、2b、3a、4a、5a、6aが接する箱体10の断熱仕切り壁28、40、29の前方端部には、それぞれ仕切りカバー36a、36b、36cを設けてある。また、冷蔵庫1の底面部に設けた断熱仕切り壁46の前方にも、仕切りカバー36dを設けている。なお、箱体10のうち、ドア2a、2b、3a、4a、5a、6aが閉状態で接する箇所を開口縁と呼び、仕切りカバー(仕切り部)36はこの開口縁に設けられている。   In the closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a, the front end portions of the heat insulating partition walls 28, 40, and 29 of the box 10 that the doors 2a, 2b, 3a, 4a, 5a, and 6a are in contact with, Partition covers 36a, 36b, and 36c are provided, respectively. A partition cover 36 d is also provided in front of the heat insulating partition wall 46 provided on the bottom surface of the refrigerator 1. In the box 10, a portion where the doors 2 a, 2 b, 3 a, 4 a, 5 a, 6 a are in contact with each other in a closed state is called an opening edge, and a partition cover (partition portion) 36 is provided at the opening edge.

引き出し式のドア3a、4a、5a、6aを開くと、庫外の空気が開口に接触するため結露が生じるおそれがある。このため、これらのドア近くの開口には、冷媒が流れる配管(結露抑制器53)を設けている。結露抑制器53に温冷媒を供給することで、開口縁の結露を抑制できる。結露抑制器53は、仕切りカバー36で覆われている。   When the drawer-type doors 3a, 4a, 5a, and 6a are opened, there is a possibility that dew condensation occurs because the air outside the warehouse contacts the opening. For this reason, piping (condensation suppressor 53) through which refrigerant flows is provided in the openings near these doors. By supplying the hot refrigerant to the dew condensation suppressor 53, dew condensation on the opening edge can be suppressed. The dew condensation suppressor 53 is covered with a partition cover 36.

図2は図1のA−A断面図である。断熱仕切壁28によって、冷蔵室2、上段冷凍室4及び製氷室3が隔てられ、断熱仕切壁29によって下段冷凍室5と野菜室6が隔てられている。   2 is a cross-sectional view taken along the line AA in FIG. The refrigerating room 2, the upper freezing room 4 and the ice making room 3 are separated by the heat insulating partition wall 28, and the lower freezing room 5 and the vegetable room 6 are separated by the heat insulating partition wall 29.

冷却器14は下段冷凍室5の略背部に備えた冷却器収納室8内に設けてあり、冷却器14の上方に設けたファン9により、冷却器14と熱交換した冷気が冷蔵室2、上段冷凍室4、下段冷凍室5、製氷室3の各貯蔵室へ送られる。   The cooler 14 is provided in the cooler storage chamber 8 provided substantially at the back of the lower freezing chamber 5, and the cold air exchanged with the cooler 14 is cooled by the fan 9 provided above the cooler 14. It is sent to each storage room of the upper freezer room 4, the lower freezer room 5, and the ice making room 3.

冷蔵室2を冷却する冷蔵室冷却運転の場合には、冷蔵室ダンパ20を開、冷凍室ダンパ21を閉にして冷蔵室2に冷気を送る。   In the case of the refrigerating room cooling operation for cooling the refrigerating room 2, the refrigerating room damper 20 is opened, the freezing room damper 21 is closed, and cold air is sent to the refrigerating room 2.

冷凍室7を冷却する冷凍室冷却運転の場合には、冷蔵室ダンパ20を閉、冷凍室ダンパ21を開にして上段冷凍室4、下段冷凍室5、及び製氷室3に冷気を送る。冷蔵室2、及び冷凍室7の温度は、庫内に設けた冷蔵室温度センサ41、冷凍室温度センサ42で検知され、庫内の温度に応じて冷蔵室2と冷凍室7を同時に冷却する運転もあり、その場合には冷蔵室ダンパ20と冷凍室ダンパ21をいずれも開にして各貯蔵室に冷気を送風する。   In the case of the freezing room cooling operation for cooling the freezing room 7, the refrigerating room damper 20 is closed, the freezing room damper 21 is opened, and cold air is sent to the upper freezing room 4, the lower freezing room 5, and the ice making room 3. The temperature of the refrigerator compartment 2 and the freezer compartment 7 is detected by the refrigerator compartment temperature sensor 41 and the freezer compartment temperature sensor 42 provided in the warehouse, and the refrigerator compartment 2 and the freezer compartment 7 are simultaneously cooled according to the temperature in the warehouse. There is also an operation, and in that case, both the refrigerator compartment damper 20 and the freezer compartment damper 21 are opened, and cool air is blown to each storage compartment.

[放熱器50−52、結露抑制器53]
図3は冷蔵庫1に設けた放熱器の配置を示す図である。放熱器としては、例えば箱体10の表面近傍に配した冷媒が流れる配管を採用できる。第一の放熱器50は、冷蔵庫1の背面側下部に設けた機械室39内に設置してある。第二の放熱器51と第三の放熱器52は冷蔵庫1の側面断熱壁内に埋設している。結露抑制器53は、開口縁の一部又は全部に配設されている。第二の放熱器51、第三の放熱器52は、冷蔵庫1の側面に代えて天面や背面に沿って配置してもよい。また、第一の放熱器50、第二の放熱器51及び第三の放熱器52を全部備えることが好ましいが、何れか一つ以上を備えていればよい。
[Heatsink 50-52, Condensation suppressor 53]
FIG. 3 is a view showing the arrangement of radiators provided in the refrigerator 1. As the radiator, for example, a pipe through which a refrigerant disposed near the surface of the box 10 flows can be adopted. The first radiator 50 is installed in a machine room 39 provided in the lower part on the back side of the refrigerator 1. The second radiator 51 and the third radiator 52 are embedded in the side heat insulating wall of the refrigerator 1. The dew condensation suppressor 53 is disposed on a part or all of the opening edge. The second radiator 51 and the third radiator 52 may be arranged along the top surface or the back surface instead of the side surface of the refrigerator 1. Moreover, although it is preferable to provide all the 1st heat radiator 50, the 2nd heat radiator 51, and the 3rd heat radiator 52, what is necessary is just to provide any one or more.

結露抑制器53は、野菜室6付近(領域A)、冷凍室5の中間(領域B)、冷凍室7の上部付近(領域C)に設けられており、冷媒からの放熱によって開口縁を加熱している。結露抑制器53の端部は、冷媒が流れる配管が開口縁から離間する部分と考えてもよい。図3では、冷媒が機械室39側から野菜室6下方の開口縁に向かって流れ、冷凍室7の開口縁を経た後に、冷凍室7及び野菜室6側方の開口縁を経てから機械室39側へ向かって流れる場合を例示している。この場合、結露抑制器53は、後述するパイプ57から野菜室6下方の開口縁に至った点dを一端と、野菜室6側方の開口縁からパイプ58を経て流路切換え弁48へ向かい始める点fを他端と考えることができる。結露抑制器53は、冷凍室ドア3a、4a、5aに接する開口縁を含んで設けているが、野菜室のドア6aに接する開口縁や観音式の冷蔵室のドア2a、2bに接する開口縁を含んで設けても良い。なお、冷蔵庫1の冷蔵室や冷凍室の室数は特に限定されない。また、各貯蔵室のドアタイプは引き出し式と観音式の何れでも良い。   Condensation suppressor 53 is provided in the vicinity of vegetable compartment 6 (region A), in the middle of freezer compartment 5 (region B), and in the vicinity of the upper portion of freezer compartment 7 (region C), and heats the opening edge by heat radiation from the refrigerant. doing. The end portion of the dew condensation suppressor 53 may be considered as a portion where the piping through which the refrigerant flows is separated from the opening edge. In FIG. 3, the refrigerant flows from the machine room 39 side toward the opening edge below the vegetable room 6, passes through the opening edge of the freezer room 7, passes through the opening edge on the side of the freezer room 7 and the vegetable room 6, and then the machine room. The case where it flows toward the 39 side is illustrated. In this case, the dew condensation suppressor 53 is directed to a flow path switching valve 48 through one end of a point d that reaches the opening edge below the vegetable chamber 6 from the pipe 57 described later, and from the opening edge on the side of the vegetable chamber 6 through the pipe 58. The starting point f can be considered as the other end. The dew condensation suppressor 53 is provided including an opening edge that contacts the freezer compartment doors 3a, 4a, and 5a, but an opening edge that contacts the door 6a of the vegetable compartment and the doors 2a and 2b of the kannon-type refrigerator compartment. May be provided. In addition, the number of rooms in the refrigerator compartment or freezer compartment of the refrigerator 1 is not particularly limited. The door type of each storage room may be either a drawer type or a kannon type.

図4は開口縁の一例である断熱仕切り壁29、40の断面模式図である。ドア3a、4a、5aが接する又は近傍に位置する仕切りカバー36b、36cと略接触するように、結露抑制器53のパイプを設けている。結露抑制器53に冷媒を流すと、熱44により仕切りカバー36a、36b、36cを加熱して結露を抑制できる。しかし、結露抑制器53は冷凍室を加熱する熱45も発生させる。このため、結露を抑制可能な温度範囲で、結露抑制器53を流れる冷媒の温度を低くすることが好ましい。
断熱仕切り壁29、40と同様に、ドア3a、4a、6aが接する又は近傍に位置する断熱仕切り壁28、46の仕切りカバー36a、36dにも、結露抑制器53を配設している。
FIG. 4 is a schematic cross-sectional view of the heat insulating partition walls 29 and 40 as an example of the opening edge. A pipe for the dew condensation suppressor 53 is provided so that the doors 3a, 4a, 5a are in contact with or substantially in contact with the partition covers 36b, 36c located in the vicinity. When the refrigerant flows through the dew condensation suppressor 53, the partition covers 36a, 36b, 36c can be heated by the heat 44 to suppress dew condensation. However, the dew condensation suppressor 53 also generates heat 45 that heats the freezer compartment. For this reason, it is preferable to lower the temperature of the refrigerant flowing through the dew condensation suppressor 53 in a temperature range where dew condensation can be suppressed.
Similarly to the heat insulating partition walls 29 and 40, the dew condensation suppressor 53 is also disposed on the partition covers 36a and 36d of the heat insulating partition walls 28 and 46 that are in contact with or near the doors 3a, 4a, and 6a.

第二の放熱器51、第三の放熱器52を配設する冷蔵庫1の側方や背方は、周囲に暖房器具等が設置され得るが、結露抑制器53は箱体10の開口側に埋設してあるため、冷蔵庫1の周囲の急な温度変化の影響を受け難い。放熱器50−52及び結露抑制器53の中で最下流に結露抑制器53を配することで、減圧部67に流入させる冷媒の温度を効果的に低下させておくことができる。   The side and back of the refrigerator 1 in which the second radiator 51 and the third radiator 52 are disposed may be provided with a heater or the like around it, but the dew condensation suppressor 53 is disposed on the opening side of the box 10. Since it is buried, it is difficult to be affected by a sudden temperature change around the refrigerator 1. By disposing the dew condensation suppressor 53 in the most downstream of the radiator 50-52 and the dew condensation suppressor 53, the temperature of the refrigerant flowing into the decompression unit 67 can be effectively reduced.

[冷凍サイクル]
図5は冷凍サイクルの構成の概略図である。冷蔵庫1は、冷凍サイクルによる冷媒の循環を利用して冷気を生成している。冷媒を圧縮する圧縮機24の吐出側のパイプ55には第一の放熱器50を接続している。第一の放熱器50から順番に、第二の放熱器51及び第三の放熱器52、流路切換え弁48の開口74に接続されている。第一の放熱器50を冷却する機械室ファン54を設けても良い。
[Refrigeration cycle]
FIG. 5 is a schematic diagram of the configuration of the refrigeration cycle. The refrigerator 1 generates cold air by utilizing the circulation of the refrigerant by the refrigeration cycle. A first radiator 50 is connected to a pipe 55 on the discharge side of the compressor 24 that compresses the refrigerant. In order from the first radiator 50, the second radiator 51, the third radiator 52, and the opening 74 of the flow path switching valve 48 are connected. A machine room fan 54 for cooling the first radiator 50 may be provided.

流路切換え弁48の内部には流路93、94を設けた弁体78を備えてある。流路切換え弁48は4つの開口74、75、76、77と弁体78とを有している。後述するように、例えばステッピングモータ(図示なし)などで弁体78を回転させることで、流路93、94と連通させる開口74−77を切換できる。   A valve body 78 provided with flow paths 93 and 94 is provided inside the flow path switching valve 48. The flow path switching valve 48 has four openings 74, 75, 76, 77 and a valve body 78. As will be described later, for example, by rotating the valve body 78 with a stepping motor (not shown) or the like, the openings 74 to 77 communicating with the flow paths 93 and 94 can be switched.

図5に例示した状態は後述する第一状態であり、開口74、75は流路93と連通し、開口76、77は流路94と連通している。この状態における冷凍サイクルを説明する。   The state illustrated in FIG. 5 is a first state which will be described later. The openings 74 and 75 communicate with the flow path 93, and the openings 76 and 77 communicate with the flow path 94. The refrigeration cycle in this state will be described.

まず、パイプ56を通過して開口74から流路切換え弁48の内部に流入した冷媒は、流路93、開口75を通過して、結露抑制器53の一端及び流路切換え弁48に接続するパイプ57へ流出する。冷媒はその後、結露抑制器53の一端dから他端fに流れ、結露抑制器53の他端及び流路切換え弁48に接続するパイプ58を経て、開口77から流路切換え弁48の内部に流入する。流路切換え弁48の内部に流入した冷媒は、流路94、開口76を通過してパイプ59に流出する。   First, the refrigerant passing through the pipe 56 and flowing into the flow path switching valve 48 from the opening 74 passes through the flow path 93 and the opening 75 and is connected to one end of the dew condensation suppressor 53 and the flow path switching valve 48. It flows out to the pipe 57. Thereafter, the refrigerant flows from one end d of the dew condensation suppressor 53 to the other end f, passes through the pipe 58 connected to the other end of the dew condensation suppressor 53 and the flow path switching valve 48, and enters the flow path switching valve 48 from the opening 77. Inflow. The refrigerant flowing into the flow path switching valve 48 passes through the flow path 94 and the opening 76 and flows out to the pipe 59.

パイプ59に流出した冷媒は、ドライヤ66、減圧部67、パイプ68を経て冷却器14に流れる。冷却器14の出口側には、減圧部67の近傍に配されることで減圧部67を流れる冷媒と熱交換可能な熱交換部69を有するパイプ70が接続している。冷却器14を通過した冷媒は、パイプ70を経て圧縮機24の吸込側に流れる。   The refrigerant that has flowed out into the pipe 59 flows into the cooler 14 through the dryer 66, the decompression unit 67, and the pipe 68. Connected to the outlet side of the cooler 14 is a pipe 70 having a heat exchanging portion 69 that is arranged in the vicinity of the pressure reducing portion 67 and can exchange heat with the refrigerant flowing through the pressure reducing portion 67. The refrigerant that has passed through the cooler 14 flows through the pipe 70 to the suction side of the compressor 24.

減圧部67は冷媒を減圧させるものであり、キャピラリチューブや膨張弁など、種々公知の構成を採用できる。結露抑制器53は放熱器50−52及び結露抑制器53の中で最下流側に設けてあり、これらの中では減圧部67に最も近い位置に設けられている。   The decompression unit 67 decompresses the refrigerant, and various known configurations such as a capillary tube and an expansion valve can be employed. The dew condensation suppressor 53 is provided on the most downstream side among the radiators 50-52 and the dew condensation suppressor 53, and is provided at a position closest to the decompression unit 67 among these.

[冷媒の相状態]
図6は放熱器内部における冷媒の状態を模式的に表したものである。第一の放熱器50(区間ac)、第二の放熱器51及び第三の放熱器52(区間cd)、結露抑制器53(区間df)内部の冷媒状態を説明する。図6に示した記号a〜fは、図5中に示した冷凍サイクルでの各位置に対応しており、記号aは圧縮機24の吐出側、記号bは冷媒が気相域から気液二相域になる点、記号cは第一の放熱器50と第二の放熱器51の間、記号dは結露抑制器53の一端、記号eは冷媒が気液二相域から液相域になる点、記号fは結露抑制器53の他端を表している。記号d、fは図3にも示している。ここでは、冷媒が結露抑制器53の一端d側から他端f側に流れている場合を説明する。
[Phase state of refrigerant]
FIG. 6 schematically shows the state of the refrigerant inside the radiator. The refrigerant state inside the first radiator 50 (section ac), the second radiator 51, the third radiator 52 (section cd), and the dew condensation suppressor 53 (section df) will be described. Symbols a to f shown in FIG. 6 correspond to the respective positions in the refrigeration cycle shown in FIG. 5, symbol a is the discharge side of the compressor 24, and symbol b is the refrigerant from the gas phase region to the gas-liquid phase. Point c becomes a two-phase region, symbol c is between first radiator 50 and second radiator 51, symbol d is one end of dew condensation suppressor 53, symbol e is a refrigerant from a liquid-gas two-phase region to a liquid-phase region. The symbol f represents the other end of the dew condensation suppressor 53. The symbols d and f are also shown in FIG. Here, the case where the refrigerant flows from the one end d side of the dew condensation suppressor 53 to the other end f side will be described.

圧縮機24で圧縮されて高温高圧になった冷媒は、気相成分71から成る気相域である。冷媒は第一乃至第三の放熱器50−52を通過して庫外に熱を放出し、結露抑制器53の一端dに至るまでに、気相成分71と液相成分72の混合である気液二相域又は液相成分72から成る液相域のうち、エンタルピが大きい状態に変化するように、配管長さや機械室ファン54の回転数などが調整されている。結露の効果的な抑制の観点からは、結露抑制器53の一端dを流れる冷媒は気液二相域が好ましい。また、結露抑制器53の他端fを流れる冷媒が液相域になるように調整すると好ましい。ここでは、第一の放熱器50の途中まで(区間ab)が気相域になり、第一の放熱器50の途中から結露抑制器53の途中まで(区間be)が気液二相域になり、結露抑制器53の途中から他端まで(区間ef)が液相域になるように調整している。そのため、図5の冷媒の流れにおいて、結露抑制器53の流入側である端部53dに対し、流出側の端部53fの方が温度が低くなる。   The refrigerant that has been compressed by the compressor 24 to a high temperature and high pressure is a gas phase region composed of the gas phase component 71. The refrigerant is a mixture of the gas phase component 71 and the liquid phase component 72 until it passes through the first to third heat radiators 50-52 to release heat to the outside and reaches one end d of the dew condensation suppressor 53. The pipe length, the rotational speed of the machine room fan 54, and the like are adjusted so that the enthalpy changes to a large state in the liquid phase region composed of the gas-liquid two-phase region or the liquid phase component 72. From the viewpoint of effective suppression of condensation, the refrigerant flowing through one end d of the condensation suppressor 53 is preferably in a gas-liquid two-phase region. Further, it is preferable that the refrigerant flowing through the other end f of the dew condensation suppressor 53 is adjusted so as to be in a liquid phase region. Here, the middle of the first radiator 50 (section ab) is a gas phase region, and the middle of the first radiator 50 to the middle of the dew condensation suppressor 53 (section be) is a gas-liquid two-phase region. Thus, adjustment is performed so that the middle of the dew condensation suppressor 53 to the other end (section ef) is in the liquid phase region. Therefore, in the refrigerant flow of FIG. 5, the temperature of the end portion 53 f on the outflow side is lower than the end portion 53 d on the inflow side of the dew condensation suppressor 53.

流路切換え弁48は、後述する第一状態と第二状態とを切換えることで、パイプ57、結露抑制器53、及びパイプ58を冷媒が流れる順番を変更する。すなわち、第一状態では、冷媒はパイプ57、結露抑制器53、パイプ58の順番に流れ、かつ、結露抑制器53については一端dから他端fに向けて流れる。一方、第二状態ではパイプ58、結露抑制器53、パイプ57の順番に流れ、かつ、結露抑制器53については他端fから一端dに向けて流れる。   The flow path switching valve 48 changes the order in which the refrigerant flows through the pipe 57, the dew condensation suppressor 53, and the pipe 58 by switching between a first state and a second state described later. That is, in the first state, the refrigerant flows in the order of the pipe 57, the dew condensation suppressor 53, and the pipe 58, and the dew condensation suppressor 53 flows from one end d toward the other end f. On the other hand, in the second state, the pipe 58, the dew condensation suppressor 53, and the pipe 57 flow in this order, and the dew condensation suppressor 53 flows from the other end f toward the one end d.

ここで、圧縮機24の吐出側端部(図5中の記号aの地点)から減圧部67上流側までの配管長さに対し、開口75から開口77までの配管長さ、すなわち、パイプ57、結露抑制器53及びパイプ58の配管長さの下限値を、例えば10%、15%、20%、25%にできる。この配管長さを長くすると、冷媒が結露抑制器53を流れる中で徐々に低温になり、結露抑制器53の下流側を、比較的温度の低い液相域の冷媒が流れるようになるので庫内への熱侵入量を抑制できる。一方、パイプ57、結露抑制器53及びパイプ58の配管長さの上限値は、例えば、圧縮機24の吐出側端部から減圧部67上流側までの配管長さの50%、40%、30%にできる。この配管長さを短くすると、結露抑制器53の上流側を、例えば気液二相域、または液相域の上流側で、比較的温度の高い冷媒で加熱して、結露を効果的に抑制できる。すなわち、結露抑制器53の上流側は結露を効果的に抑制できるよう加熱し易くなっており、下流側は熱侵入量を抑制できるよう加熱を抑えている。   Here, the pipe length from the opening 75 to the opening 77, that is, the pipe 57, with respect to the pipe length from the discharge side end (point of symbol a in FIG. 5) of the compressor 24 to the upstream side of the decompression unit 67. The lower limit values of the lengths of the dew condensation suppressor 53 and the pipe 58 can be set to 10%, 15%, 20%, and 25%, for example. When this pipe length is increased, the refrigerant gradually becomes low temperature while flowing through the dew condensation suppressor 53, and the liquid phase refrigerant having a relatively low temperature flows on the downstream side of the dew condensation suppressor 53. The amount of heat penetration into the inside can be suppressed. On the other hand, the upper limit values of the pipe lengths of the pipe 57, the dew condensation suppressor 53, and the pipe 58 are, for example, 50%, 40%, and 30% of the pipe length from the discharge side end of the compressor 24 to the upstream side of the decompression unit 67. %. When this piping length is shortened, the upstream side of the dew condensation suppressor 53 is heated, for example, in a gas-liquid two-phase region or an upstream side of the liquid phase region with a relatively high temperature refrigerant to effectively suppress dew condensation. it can. That is, it is easy to heat the upstream side of the dew condensation suppressor 53 so that dew condensation can be effectively suppressed, and the downstream side suppresses heating so that the heat penetration amount can be suppressed.

また、パイプ57、結露抑制器53及びパイプ58の配管長さに対して、結露抑制器53の配管長さの下限値を、例えば50%、65%、80%にできる。結露抑制器53の配管長さを長くすると、結露抑制器53の上流側を気液二相域または比較的温度の高い液相域の冷媒が流れ、下流側を比較的温度の低い液相域の冷媒が流れ、上記した効果が得やすくなる。また、結露抑制器53の下流側、すなわち第一状態のパイプ58、第二状態のパイプ57は、密度の高い液冷媒が流れるので、パイプ57、58を比較的短くすることで、冷凍サイクルに封入する冷媒量を抑えている。このとき、パイプ57及びパイプ58それぞれの配管長さは互いに略同じにしても良いし異ならせても良いが、後述する第一状態と第二状態の切換での対称性を高める観点から、略同じだと好ましい。 上記のように配管長さを設定することで、後述する第一状態及び第二状態の何れにおいても、結露防止パイプ53の上流側を、気液二相域または比較的温度の高い液相域の冷媒が流れ、下流側を比較的温度の低い液相域の冷媒が流れるので、結露抑制器53の一端及び他端の温度差を大きくできる。これにより、結露抑制と開口縁から貯蔵室内への熱侵入量の抑制を両立できる。 結露抑制器53の一部を液相域で冷媒が流れるため、結露抑制器53の一端と他端に温度差が生じる。結露抑制と熱侵入量の抑制の両立の観点から、温度差が1℃以上生じるようにすると好ましい。   Further, the lower limit value of the pipe length of the dew condensation suppressor 53 can be set to, for example, 50%, 65%, and 80% with respect to the pipe lengths of the pipe 57, the dew condensation suppressor 53, and the pipe 58. When the pipe length of the dew condensation suppressor 53 is increased, refrigerant in a gas-liquid two-phase region or a liquid phase region having a relatively high temperature flows on the upstream side of the dew condensation suppressor 53, and a liquid phase region on the downstream side having a relatively low temperature. This makes it easier to obtain the above-described effects. In addition, since the liquid refrigerant having a high density flows through the downstream side of the dew condensation suppressor 53, that is, the pipe 58 in the first state and the pipe 57 in the second state, the pipes 57 and 58 are made relatively short so that the refrigeration cycle can be achieved. The amount of refrigerant to be sealed is suppressed. At this time, the pipe lengths of the pipe 57 and the pipe 58 may be substantially the same or different from each other. However, from the viewpoint of enhancing symmetry in switching between a first state and a second state described later, The same is preferable. By setting the pipe length as described above, the upstream side of the dew condensation prevention pipe 53 is either a gas-liquid two-phase region or a relatively high-temperature liquid phase region in both the first state and the second state described later. Since the refrigerant in the liquid phase region having a relatively low temperature flows on the downstream side, the temperature difference between one end and the other end of the dew condensation suppressor 53 can be increased. Thereby, it is possible to achieve both suppression of condensation and suppression of the amount of heat penetration from the opening edge into the storage chamber. Since the refrigerant flows in a part of the dew condensation suppressor 53 in the liquid phase region, a temperature difference occurs between one end and the other end of the dew condensation suppressor 53. From the viewpoint of coexistence of dew condensation suppression and heat penetration, it is preferable that the temperature difference be 1 ° C. or more.

図7は、図6で例示した場合よりも液相域が拡大した場合の冷媒の状態を示す図である。図8は冷媒状態を説明するモリエル線図である。図8(a)は図6に対応し、図8(b)は図7に対応する。図8に示す点a−fは、図5で示す各点a−fにおける冷媒の圧力と比エンタルピに対応している。
例えば、減圧部67による減圧量を大きくした場合や、機械室ファン54を高速運転させて第一の放熱器50の放熱性能を向上させた場合、気液二相域から液相域に変化する冷凍サイクルでの点eが上流側e1に移動する。そのため、図6に示した液相域(区間ef)が、図7に示した液相域(区間ef)に拡大し、第四の結露抑制器53の配管内を占める液相域が長くなる。従って、結露抑制器53のより上流側から冷媒の温度低下が始まり、結露抑制器53の他端fの液相冷媒のエンタルピは、モリエル線図に示す図8(a)の点fから低下して、図8(b)の点fになる。このため、図8(a)に比べ、 図8(b)の方が減圧部67に流入する冷媒の比エンタルピが低下する。これにより、熱交換部69で熱交換する冷媒のエンタルピ差を大きくすることができるので、省エネルギー性能が向上する。
FIG. 7 is a diagram illustrating the state of the refrigerant when the liquid phase region is expanded as compared to the case illustrated in FIG. 6. FIG. 8 is a Mollier diagram illustrating the refrigerant state. 8A corresponds to FIG. 6, and FIG. 8B corresponds to FIG. Points af shown in FIG. 8 correspond to the refrigerant pressure and specific enthalpy at each point af shown in FIG.
For example, when the amount of decompression by the decompression unit 67 is increased, or when the heat radiation performance of the first radiator 50 is improved by operating the machine room fan 54 at a high speed, the gas-liquid two-phase region changes to the liquid-phase region. The point e in the refrigeration cycle moves to the upstream side e1. Therefore, the liquid phase region (section ef) shown in FIG. 6 expands to the liquid phase region (section e 1 f) shown in FIG. 7, and the liquid phase region occupying the piping of the fourth dew condensation suppressor 53 is increased. become longer. Therefore, the refrigerant temperature starts to decrease from the upstream side of the dew condensation suppressor 53, and the enthalpy of the liquid phase refrigerant at the other end f of the dew condensation suppressor 53 decreases from the point f in FIG. 8A shown in the Mollier diagram. Thus, the point f in FIG. For this reason, the specific enthalpy of the refrigerant flowing into the decompression unit 67 is lower in FIG. 8B than in FIG. Thereby, since the enthalpy difference of the refrigerant | coolant heat-exchanged in the heat exchange part 69 can be enlarged, energy saving performance improves.

図9は結露抑制器53(区間df)の温度分布の概略を説明する図である。図9(a)は図6に対応し、図9(b)は図7に対応する。
図9(a)、(b)いずれの場合も、結露抑制器53の上流側(区間de、de)は気液二相域のため冷媒温度は一定に保たれるが、区間ef、efは液相域のため冷媒温度は徐々に低くなり、結露抑制器53の端部53f側に位置する開口縁の平均温度はTC、TC1となる。結露抑制器53における液相域長さを増加させた図9(b)の場合は、結露抑制器53の配管内で液相域となっている長さが増加するので、TC1はTCより低い。
FIG. 9 is a diagram for explaining the outline of the temperature distribution of the dew condensation suppressor 53 (section df). FIG. 9A corresponds to FIG. 6, and FIG. 9B corresponds to FIG.
9 (a) and 9 (b), the refrigerant temperature is kept constant because the upstream side (sections de and de 1 ) of the dew condensation suppressor 53 is a gas-liquid two-phase region, but the sections ef and e Since 1 f is a liquid phase region, the refrigerant temperature gradually decreases, and the average temperature of the opening edge located on the end 53 f side of the dew condensation suppressor 53 becomes TC and TC1. In the case of FIG. 9B in which the liquid phase region length in the dew condensation suppressor 53 is increased, the length of the liquid phase region in the pipe of the dew condensation suppressor 53 increases, so TC1 is lower than TC. .

[冷凍サイクルの切換]
図10は冷凍サイクルの切換構成を示す図である。流路切換え弁48は、結露抑制器53に流す冷媒の向きを切換え可能である。
[Switching refrigeration cycle]
FIG. 10 is a diagram showing a switching configuration of the refrigeration cycle. The flow path switching valve 48 can switch the direction of the refrigerant flowing through the dew condensation suppressor 53.

図10(a)は、野菜室6の開口縁を含む領域Aから冷凍室7上部の開口縁を含む領域Cに向かって冷媒を流す第一状態を示す図である。図10(b)は、領域Cから領域Aに向かって冷媒を流す第二状態を示す図である。   FIG. 10A is a diagram showing a first state in which the refrigerant flows from the region A including the opening edge of the vegetable compartment 6 toward the region C including the opening edge of the freezer compartment 7. FIG. 10B is a diagram illustrating a second state in which the refrigerant flows from the region C toward the region A.

第一状態での冷媒の流れは上述した通りであるので、第二状態での冷媒の流れについて説明する。第二状態では、流路切換え弁48の内部に設けた弁体78を第一状態から回転させて、開口74、77を流路94と連通させ、開口75、76を流路93と連通させている。第一乃至第三の放熱器50−52を通過した冷媒は開口74から流路切換え弁48の内部に流入し、開口77に接続しているパイプ58から流出して、結露抑制器53の他端fである領域Cの側から一端dである領域Aの側に向かって流れる。その後、冷媒はパイプ57を通過して開口75から流路切換え弁43の内部に再度流入する。流路切換え弁43の内部に流入した冷媒は流路93を通過して、開口76に接続されたパイプ59に流出する。   Since the refrigerant flow in the first state is as described above, the refrigerant flow in the second state will be described. In the second state, the valve element 78 provided inside the flow path switching valve 48 is rotated from the first state so that the openings 74 and 77 communicate with the flow path 94 and the openings 75 and 76 communicate with the flow path 93. ing. The refrigerant that has passed through the first to third radiators 50-52 flows into the flow path switching valve 48 from the opening 74, flows out of the pipe 58 connected to the opening 77, and other than the dew condensation suppressor 53. It flows from the region C side which is the end f toward the region A side which is the one end d. Thereafter, the refrigerant passes through the pipe 57 and flows again into the flow path switching valve 43 from the opening 75. The refrigerant flowing into the flow path switching valve 43 passes through the flow path 93 and flows out to the pipe 59 connected to the opening 76.

図11は結露抑制器53の温度分布の概略を示す図である。図11(a)は第二状態における結露抑制器53を流れる冷媒の温度分布であり、図11(b)は第一状態と第二状態を組み合わせた場合における、結露抑制器53を流れる冷媒の温度分布である。なお、第一状態における結露抑制器53を流れる冷媒の温度分布は、図9(b)に示したものと同様である。また、図11(b)に示す各温度は時間平均した値である。   FIG. 11 is a diagram showing an outline of the temperature distribution of the dew condensation suppressor 53. FIG. 11A shows the temperature distribution of the refrigerant flowing through the condensation suppressor 53 in the second state, and FIG. 11B shows the refrigerant flowing through the condensation suppressor 53 when the first state and the second state are combined. Temperature distribution. In addition, the temperature distribution of the refrigerant | coolant which flows through the dew condensation suppressor 53 in a 1st state is the same as that of what was shown in FIG.9 (b). Each temperature shown in FIG. 11B is a time averaged value.

第一状態を維持すると、全部又は下流側の一部を液相域の冷媒が流れる結露抑制器53の下流側、すなわち他端近傍(領域C)は低温になりやすく、結露が発生し易くなる。これに対し、第二状態に切換えて冷媒の流れる向きを変更することで、気液二相域又は液相域の上流側で、比較的温度が高い冷媒(温度TC2)を領域Cに流入させることができる。このとき、図11(a)に例示するように、領域Aには液相域の冷媒(温度TA1<TC2)が流れるようになる。第一状態と第二状態とを、例えば交互に略等しい時間実行すると、図11(b)に例示するように、第一状態及び第二状態に比して結露抑制器53の温度分布が均一化される。   If the first state is maintained, all or a part of the downstream side of the dew condensation suppressor 53 through which the refrigerant in the liquid phase region flows, that is, the vicinity of the other end (region C) tends to be low temperature, and dew condensation is likely to occur. . On the other hand, by switching to the second state and changing the flow direction of the refrigerant, the refrigerant (temperature TC2) having a relatively high temperature is caused to flow into the region C on the upstream side of the gas-liquid two-phase region or the liquid phase region. be able to. At this time, as illustrated in FIG. 11A, the liquid phase region refrigerant (temperature TA1 <TC2) flows through the region A. When the first state and the second state are executed alternately for substantially the same time, for example, as illustrated in FIG. 11B, the temperature distribution of the dew condensation suppressor 53 is uniform compared to the first state and the second state. It becomes.

流路切換え弁48の切換状態がどちらの場合でも、前記したように、結露抑制器53の上流側は結露を効果的に抑制できるよう加熱し易くなっており、下流側は熱侵入量を抑制できるよう加熱を抑制している。一方、第一状態と第二状態との切換を繰り返すことで、結露抑制器53の温度の時間平均の分布が、各点で露点温度を超えるようにできる。また、例えば第一状態で比較的高い温度の冷媒で加熱している上流側(領域A)も、第二状態に切換えることで加熱を抑制でき、同様に第二状態で比較的高い温度の冷媒で加熱している上流側(領域C)も、第一状態に切換えることで加熱を抑制できる。よって、結露抑制器53の上流側も下流側も、結露を抑制しながら、熱侵入量を抑制することができる。   Regardless of the switching state of the flow path switching valve 48, as described above, the upstream side of the dew condensation suppressor 53 is easy to heat so that dew condensation can be effectively suppressed, and the downstream side suppresses the amount of heat penetration. Heating is suppressed so that it can be done. On the other hand, by repeating the switching between the first state and the second state, the time-average distribution of the temperature of the dew condensation suppressor 53 can exceed the dew point temperature at each point. Further, for example, the upstream side (region A) that is heated with a relatively high temperature refrigerant in the first state can also be suppressed by switching to the second state, and similarly, a relatively high temperature refrigerant in the second state. The upstream side (region C) that is being heated at can also be suppressed by switching to the first state. Therefore, the heat penetration amount can be suppressed while suppressing condensation on both the upstream side and the downstream side of the condensation suppressor 53.

第一状態と第二状態を切換えるタイミングは、例えば、圧縮機24が止まって冷媒による加熱が行えずに結露しやすい、冷却運転中の圧縮機24の停止や、冷却器14の除霜運転の直前などのあらかじめ決めた時に実行することができる。具体的には、例えば、冷凍室温度センサ42が温度TFになった場合に圧縮機24を停止させる冷蔵庫において、冷凍室温度センサ42が温度(TF+0.3℃)から(TF+2.0℃)までの範囲の所定の温度になった場合,例えば温度TFよりも約0.9℃高温になった場合に第一状態と第二状態を切換える。また、例えば、冷却器14の除霜運転開始10分前から60分前までの所定の時間,例えば除霜運転開始30分前に第一状態と第二状態を切換える。   The timing of switching between the first state and the second state is, for example, when the compressor 24 is stopped and the refrigerant 24 is not heated and is likely to condense, and the compressor 24 is stopped during the cooling operation or the defrosting operation of the cooler 14 is performed. It can be executed at a predetermined time such as immediately before. Specifically, for example, in a refrigerator that stops the compressor 24 when the freezer temperature sensor 42 reaches the temperature TF, the freezer temperature sensor 42 is from temperature (TF + 0.3 ° C.) to (TF + 2.0 ° C.). When the temperature reaches a predetermined temperature in the range of, for example, when the temperature becomes about 0.9 ° C. higher than the temperature TF, the first state and the second state are switched. Further, for example, the first state and the second state are switched for a predetermined time from 10 minutes before the start of the defrosting operation of the cooler 14 to 60 minutes before, for example, 30 minutes before the start of the defrosting operation.

また、各状態を10分から60分までの範囲の所定の時間続けた場合、すなわち時間により、第一状態と第二状態を切換えることもできる。例えば,第一の状態を20分行うと第二の状態に切換え,第二の状態を20分行うと第一の状態に切換える。   Further, when each state is continued for a predetermined time in a range from 10 minutes to 60 minutes, that is, according to time, the first state and the second state can be switched. For example, when the first state is performed for 20 minutes, the state is switched to the second state, and when the second state is performed for 20 minutes, the state is switched to the first state.

また、第一状態と第二状態に優先順位を設けることもできる。例えば、冷却運転中は基本的に第一状態とし、前記した圧縮機24停止直前や除霜運転直前のみは第二状態にすることができる。また、例えば、圧縮機24の駆動直後は常に第一状態から開始するようにすることができる。時間により切換える場合も,例えば,第一状態を30分,第二状態を10分と,第一状態の方が切換えるまでの時間を長くすることもできる。   Also, priorities can be set for the first state and the second state. For example, the first state can be basically set during the cooling operation, and the second state can be set only before the compressor 24 is stopped or just before the defrosting operation. Further, for example, it is possible to always start from the first state immediately after the compressor 24 is driven. Also in the case of switching according to time, for example, the first state may be 30 minutes, the second state may be 10 minutes, and the time until the first state is switched can be lengthened.

また、結露抑制器53の下流側の仕切カバー36に温度センサをそれぞれ1つ又は2つ以上設けて(図示なし)、所定の温度以下になった時に切換えても良い。温度センサや湿度センサは、それぞれ、結露抑制器53の一端d及び他端fの一方又は両方に設けると好ましい。また、結露抑制器53の略中間部分に設けても良い。   Alternatively, one or more temperature sensors may be provided on the partition cover 36 on the downstream side of the dew condensation suppressor 53 (not shown), and the temperature may be switched when the temperature falls below a predetermined temperature. It is preferable that the temperature sensor and the humidity sensor are provided on one or both of the one end d and the other end f of the dew condensation suppressor 53, respectively. Moreover, you may provide in the substantially intermediate part of the dew condensation suppressor 53. FIG.

また、例えばヒンジカバー16に温度センサ及び湿度センサを設けて外気の温度・湿度を測定し、第一状態の実行中、結露抑制器53の他端近傍の温度が露点温度以下になったことを検知した後に第二状態に切換えるようにできる。同様に第二状態の実行中、結露抑制器53の一端近傍の温度が露点温度以下になったことを検知した後に第一状態に切換えるようにできる。これらの場合の切換は、露点温度以下となったことを検知してから、滴下するまでの時間を考慮して、例えば検知直後、20分、30分、40分又は50分のうち、何れかを下限とし他のいずれかを上限として行っても良い。なお、露点温度以下になってから結露が成長する時間を考慮すると、上限は20分又は30分が好ましい。   Further, for example, a temperature sensor and a humidity sensor are provided on the hinge cover 16 to measure the temperature / humidity of the outside air. During the execution of the first state, the temperature near the other end of the dew condensation suppressor 53 is below the dew point temperature. After detection, it can be switched to the second state. Similarly, during the execution of the second state, it is possible to switch to the first state after detecting that the temperature near one end of the dew condensation suppressor 53 has become equal to or lower than the dew point temperature. In these cases, the switching is performed in consideration of the time from the detection that the dew point temperature has been reached or less until the dropping, for example, either immediately after detection, 20 minutes, 30 minutes, 40 minutes or 50 minutes. May be set as the lower limit and any other as the upper limit. Note that the upper limit is preferably 20 minutes or 30 minutes in consideration of the time for dew condensation to grow after the dew point temperature is reached.

本実施例によれば、結露抑制器53の両側(領域A及び領域C)の温度低下を抑制して結露を抑制できる。また、冷媒の向きを切換えることで、結露抑制器53の何れかの部分が他の部分に比して大きく高温になることを抑制し、庫内への熱の侵入量を低減できる。   According to the present embodiment, it is possible to suppress dew condensation by suppressing the temperature decrease on both sides (region A and region C) of the dew condensation suppressor 53. Moreover, by switching the direction of the refrigerant, it is possible to suppress any part of the dew condensation suppressor 53 from becoming much hotter than the other parts, and to reduce the amount of heat entering the interior.

実施例2について説明する。実施例2の構成は、以下の点を除き、実施例1と同様にできる。
図12は実施例2の冷凍サイクルの構成を示す図である。本実施例の流路切換え弁43は、第一状態及び第二状態に加え、結露抑制器53に冷媒を流さずにバイパスさせる第三状態が可能である。従って、開口縁の過熱を抑制できる。
Example 2 will be described. The configuration of the second embodiment can be the same as that of the first embodiment except for the following points.
FIG. 12 is a diagram illustrating the configuration of the refrigeration cycle of the second embodiment. In addition to the first state and the second state, the flow path switching valve 43 of the present embodiment can be in a third state in which the dew condensation suppressor 53 is bypassed without flowing the refrigerant. Therefore, overheating of the opening edge can be suppressed.

図12(a)は第一状態を示す図である。第三の放熱器52に接続したパイプ56の他端は、流路切換え弁43の入口側の開口60に接続している。流路切換え弁43の内部には、弁座65と弁体64を備えている。弁座65にはパイプ56、57、58、59それぞれと接続している開口60、61、62、63を設けてある。第一状態では、開口60から流路切換え弁43の内部に流入した冷媒は、開口61を通過して流路切換え弁43からパイプ57に流出する。パイプ57、結露抑制器53の一端側から他端側、パイプ58の順に冷媒が流れた後、パイプ58に接続している開口62から再び流路切換え弁64の内部に冷媒が流入する。流路切換え弁43の内部に流入した冷媒は、溝80によって開口62と開口63が連通されることになり、開口63に接続されたパイプ59に流出する。   FIG. 12A shows the first state. The other end of the pipe 56 connected to the third radiator 52 is connected to the opening 60 on the inlet side of the flow path switching valve 43. A valve seat 65 and a valve body 64 are provided inside the flow path switching valve 43. The valve seat 65 is provided with openings 60, 61, 62, 63 connected to the pipes 56, 57, 58, 59, respectively. In the first state, the refrigerant flowing into the flow path switching valve 43 from the opening 60 passes through the opening 61 and flows out from the flow path switching valve 43 to the pipe 57. After the refrigerant flows in the order of the pipe 57 and the one end side of the dew condensation suppressor 53 and the pipe 58, the refrigerant again flows into the flow path switching valve 64 from the opening 62 connected to the pipe 58. The refrigerant flowing into the flow path switching valve 43 is communicated between the opening 62 and the opening 63 by the groove 80 and flows out to the pipe 59 connected to the opening 63.

図12(b)は第三状態を示す図である。弁体64を回転させて開口60と開口63を連通させると、開口60から流路切換え弁43の内部に流入した冷媒は、開口63に接続しているパイプ59に流出する。このため、冷媒が結露抑制器53に流れることを抑制できる。   FIG. 12B shows the third state. When the valve body 64 is rotated to connect the opening 60 and the opening 63, the refrigerant that has flowed into the flow path switching valve 43 from the opening 60 flows out into the pipe 59 connected to the opening 63. For this reason, it can suppress that a refrigerant | coolant flows into the dew condensation suppressor 53. FIG.

図12(c)は第二状態を示す図である。弁体64を回転させて所定の位置に固定すると、開口60から流路切換え弁43の内部に流入した冷媒は、開口62に接続しているパイプ58から流出して、結露抑制器53の他端から一端に向けて流れる。結露抑制器53に接続したパイプ57を冷媒が通過した後、開口61から流路切換え弁43の内部に流入する。流路切換え弁43の内部に流入した冷媒は、溝81によって開口61と開口63が連通されることになり、開口63に接続されたパイプ59から流出する。   FIG. 12C shows the second state. When the valve body 64 is rotated and fixed at a predetermined position, the refrigerant that has flowed into the flow path switching valve 43 from the opening 60 flows out of the pipe 58 connected to the opening 62, and the dew condensation suppressor 53. It flows from one end to the other. After the refrigerant passes through the pipe 57 connected to the dew condensation suppressor 53, the refrigerant flows into the flow path switching valve 43 from the opening 61. The refrigerant flowing into the flow path switching valve 43 is communicated between the opening 61 and the opening 63 by the groove 81 and flows out from the pipe 59 connected to the opening 63.

図13は開口縁温度の経時変化の一例である。結露抑制器53に冷媒を流して開口縁を加熱する第一状態及び第二状態を加熱運転と呼ぶ。結露抑制器53をバイパスさせる第三状態を非加熱運転と呼ぶ。本実施例では、予め決められた加熱運転と非加熱運転の時間に応じて状態を繰り返し切換える制御を行う。これにより、開口縁の表面平均温度を実施例1の場合に比べて低くできる。このため、庫内への熱侵入をより抑えられる。   FIG. 13 is an example of a change with time in the opening edge temperature. The first state and the second state in which the refrigerant flows through the condensation suppressor 53 and heats the opening edge are referred to as a heating operation. The third state in which the dew condensation suppressor 53 is bypassed is called non-heating operation. In the present embodiment, control is performed to repeatedly switch the state according to a predetermined heating operation time and non-heating operation time. Thereby, the surface average temperature of an opening edge can be made low compared with the case of Example 1. For this reason, the heat penetration | invasion into a store | warehouse | chamber is suppressed more.

図14は結露抑制器53の加熱制御のイメージ図であり、横軸は相対湿度、縦軸は結露抑制器53による加熱割合である。例えば、相対湿度が高いRH2の場合、開口縁の表面で結露する可能性が高くなるので、結露抑制器53側に冷媒を流す時間(tA2)の割合を長く、結露抑制器53のバイパス側に冷媒を流す時間(tB2)の割合を短くする。反対に湿度が低いRH1の場合、開口縁の表面で結露する可能性が低くなるので、結露抑制器53側に冷媒を流す時間の割合(tA1)を短く、結露抑制器53のバイパス側に冷媒を流す時間の割合(tB1)を長くすると良い。   FIG. 14 is an image diagram of the heating control of the dew condensation suppressor 53, where the horizontal axis is the relative humidity and the vertical axis is the heating rate by the dew condensation suppressor 53. For example, in the case of RH2 where the relative humidity is high, there is a high possibility of dew condensation on the surface of the opening edge. Therefore, the ratio of the time (tA2) for which the refrigerant flows to the dew condensation suppressor 53 side is long, and The ratio of the time (tB2) during which the refrigerant flows is shortened. On the other hand, in the case of RH1 where the humidity is low, the possibility of dew condensation on the surface of the opening edge is reduced. Therefore, the ratio (tA1) of flowing the refrigerant to the dew condensation suppressor 53 side is short, and the refrigerant is placed on the bypass side of the dew condensation suppressor 53. It is preferable to increase the proportion of time (tB1) during which the gas flows.

加熱運転と非加熱運転の制御は、実施例1と同様に冷蔵庫1に設けた庫外温度センサ37、庫外湿度センサ38で得られた冷蔵庫周囲の温度と湿度によって制御できる。開口縁に温湿度センサを取り付け、その検出温湿度に応じて開口縁に結露が生じないように、流路切換え弁43によって切換え制御を行えば良い。設置スペースの問題や、開口縁と接触するドアパッキンとの干渉による熱侵入量の増加が懸念される場合は、庫外温度センサ37、庫外湿度センサ38を冷蔵庫1の天井面に設けても良い。   The control of the heating operation and the non-heating operation can be controlled by the temperature and humidity around the refrigerator obtained by the outside temperature sensor 37 and the outside humidity sensor 38 provided in the refrigerator 1 as in the first embodiment. A temperature / humidity sensor may be attached to the opening edge, and switching control may be performed by the flow path switching valve 43 so that condensation does not occur on the opening edge according to the detected temperature / humidity. If there is a concern about an installation space problem or an increase in the amount of heat penetration due to interference with the door packing contacting the opening edge, the outside temperature sensor 37 and the outside humidity sensor 38 may be provided on the ceiling surface of the refrigerator 1. good.

実施例3について説明する。実施例3の構成は、以下の点を除き、実施例2と同様にできる。
図15は冷凍サイクルの構成図である。本実施例の冷凍サイクルは、第一乃至第三状態に加えて、減圧部67と減圧部73を切換え可能である。
Example 3 will be described. The configuration of the third embodiment can be the same as that of the second embodiment except for the following points.
FIG. 15 is a configuration diagram of the refrigeration cycle. In the refrigeration cycle of this embodiment, the decompression unit 67 and the decompression unit 73 can be switched in addition to the first to third states.

庫内の熱負荷が小さい場合、例えばドア2−6の開閉が少ない場合は、圧縮機24を低速運転とし、それに応じて減圧量が大きい減圧部73を選択すると省エネルギー性が向上する。一方、庫内の熱負荷が大きい場合、例えば冷蔵庫1に保存する食品を一度にたくさん入れた場合は、圧縮機24を高速運転とし、減圧量が小さい減圧部67を選択して、高い冷却性能を発揮させるとよい。   When the heat load in the chamber is small, for example, when the door 2-6 is not opened or closed, the compressor 24 is operated at a low speed, and the pressure reducing unit 73 having a large pressure reduction amount is selected accordingly, thereby improving energy saving. On the other hand, when the heat load in the refrigerator is large, for example, when a large amount of food stored in the refrigerator 1 is put at a time, the compressor 24 is operated at high speed and the decompression unit 67 with a small decompression amount is selected to achieve high cooling performance. It is good to show.

第三の放熱器52に接続したパイプ56の他端は、流路切換え弁47の入口側の開口82に接続している。流路切換え弁47の内部には、弁座90と弁体89を備えている。弁座90にはパイプ56、57、58、91、92と対応して接続している開口82、83、85、84、86をそれぞれ設けてある。流路切換え弁47は、パイプ56、57、58、91、92を接続する5つの開口82−86を有する五方弁である。   The other end of the pipe 56 connected to the third radiator 52 is connected to the opening 82 on the inlet side of the flow path switching valve 47. A valve seat 90 and a valve body 89 are provided inside the flow path switching valve 47. The valve seat 90 is provided with openings 82, 83, 85, 84, 86 connected to the pipes 56, 57, 58, 91, 92, respectively. The flow path switching valve 47 is a five-way valve having five openings 82-86 connecting the pipes 56, 57, 58, 91, 92.

図16,図17は冷凍サイクルの各切換状態を示す構成図である。図16(a)、(b)、(c)はそれぞれ、減圧部73を選択した上で、その他は実施例1の第二状態と同様に冷媒を流す強第二状態、第三状態と同様に冷媒を流す強第三状態、第一状態と同様に冷媒を流す強第一状態である。これらをまとめて強状態と呼ぶ。   16 and 17 are configuration diagrams showing the switching states of the refrigeration cycle. 16 (a), (b), and (c) are the same as in the strong second state and third state in which the refrigerant is flown in the same manner as in the second state of Example 1 after selecting the decompression unit 73, respectively. The strong third state in which the refrigerant is flown through, and the strong first state in which the refrigerant is flowed in the same manner as the first state. These are collectively called the strong state.

図17(a)、(b)、(c)はそれぞれ、減圧部67を選択した上で、その他は実施例1の第二状態と同様に冷媒を流す弱第二状態、第三状態と同様に冷媒を流す弱第三状態、第一状態と同様に冷媒を流す弱第一状態である。これらをまとめて弱状態と呼ぶ。   17 (a), (b), and (c) are similar to the weak second state and the third state, respectively, in which the decompression unit 67 is selected and the other flows in the same manner as the second state of the first embodiment. The weak first state in which the refrigerant is flown in the same manner as the first state and the weak third state in which the refrigerant flows. These are collectively referred to as the weak state.

強第二状態では、パイプ56を通過した冷媒は開口82から流路切換え弁47の内部に流入し、開口85を通過して流路切換え弁47からパイプ58に流出する。パイプ58に接続した結露抑制器53を領域C側から冷媒が流れた後、結露抑制器53の他端に接続したパイプ57を通過し、パイプ57の他端に接続している開口83から再び流路切換え弁47の内部に冷媒が流入する。流路切換え弁47の内部に流入した冷媒は、溝88よって開口83と開口86が連通されることになり、開口86に接続されたパイプ92から流出する。パイプ92の他端にはドライヤ66が接続されており、前記ドライヤ66の他端には、減圧部73、パイプ68、冷却器14を順に接続してある。   In the strong second state, the refrigerant that has passed through the pipe 56 flows into the flow path switching valve 47 from the opening 82, passes through the opening 85, and flows out from the flow path switching valve 47 to the pipe 58. After the refrigerant has flowed from the region C side through the dew condensation suppressor 53 connected to the pipe 58, the refrigerant passes through the pipe 57 connected to the other end of the dew condensation suppressor 53, and again from the opening 83 connected to the other end of the pipe 57. The refrigerant flows into the flow path switching valve 47. The refrigerant that has flowed into the flow path switching valve 47 communicates with the opening 83 and the opening 86 through the groove 88 and flows out from the pipe 92 connected to the opening 86. A dryer 66 is connected to the other end of the pipe 92, and a decompression unit 73, a pipe 68, and a cooler 14 are connected to the other end of the dryer 66 in this order.

強第三状態では、パイプ56を通過した冷媒は開口82から流路切換え弁47の内部に流入し、開口86を通過して流路切換え弁47からパイプ92に流出するので、結露抑制器53をバイパスさせることができる。   In the strong third state, the refrigerant that has passed through the pipe 56 flows into the flow path switching valve 47 from the opening 82, passes through the opening 86, and flows out from the flow path switching valve 47 to the pipe 92. Can be bypassed.

強第一状態では、パイプ56を通過した冷媒は開口82から流路切換え弁47の内部に流入し、開口83を通過して流路切換え弁47からパイプ57に流出する。パイプ57に接続した結露抑制器53の領域A側から冷媒が流れた後、結露抑制器53の他端に接続したパイプ58を通過し、パイプ58の他端に接続している開口85から再び流路切換え弁47の内部に冷媒が流入する。流路切換え弁47の内部に流入した冷媒は、溝87よって開口85と開口86が連通されることになり、開口86に接続されたパイプ92から流出する。   In the strong first state, the refrigerant that has passed through the pipe 56 flows into the flow path switching valve 47 from the opening 82, passes through the opening 83, and flows out from the flow path switching valve 47 to the pipe 57. After the refrigerant flows from the region A side of the dew condensation suppressor 53 connected to the pipe 57, the refrigerant passes through the pipe 58 connected to the other end of the dew condensation suppressor 53, and again from the opening 85 connected to the other end of the pipe 58. The refrigerant flows into the flow path switching valve 47. The refrigerant that has flowed into the flow path switching valve 47 communicates between the opening 85 and the opening 86 through the groove 87 and flows out from the pipe 92 connected to the opening 86.

弱第二状態では、パイプ56を通過した冷媒は開口82から流路切換え弁47の内部に流入し、開口85を通過して流路切換え弁47からパイプ58に流出する。パイプ58に接続した結露抑制器53の領域C側から冷媒が流れた後、結露抑制器53の他端に接続したパイプ57を通過し、パイプ57の他端に接続している開口83から再び流路切換え弁47の内部に冷媒が流入する。流路切換え弁47の内部に流入した冷媒は、溝88よって開口83と開口84が連通されることになり、開口84に接続されたパイプ91から流出する。パイプ91の他端にはドライヤ66を接続し、前記ドライヤ66の他端には、減圧部67、パイプ68、冷却器14が順に接続されている。   In the weak second state, the refrigerant that has passed through the pipe 56 flows into the flow path switching valve 47 from the opening 82, passes through the opening 85, and flows out from the flow path switching valve 47 to the pipe 58. After the refrigerant flows from the region C side of the dew condensation suppressor 53 connected to the pipe 58, the refrigerant passes through the pipe 57 connected to the other end of the dew condensation suppressor 53, and again from the opening 83 connected to the other end of the pipe 57. The refrigerant flows into the flow path switching valve 47. The refrigerant that has flowed into the flow path switching valve 47 communicates with the opening 83 and the opening 84 through the groove 88 and flows out from the pipe 91 connected to the opening 84. A dryer 66 is connected to the other end of the pipe 91, and a decompression unit 67, a pipe 68, and a cooler 14 are connected to the other end of the dryer 66 in this order.

弱第三状態では、パイプ56を通過した冷媒は開口82から流路切換え弁47の内部に流入し、開口84を通過して流路切換え弁47からパイプ91に流出するので、結露抑制器53をバイパスさせることができる。   In the weak third state, the refrigerant that has passed through the pipe 56 flows into the flow path switching valve 47 from the opening 82, passes through the opening 84, and flows out from the flow path switching valve 47 to the pipe 91. Can be bypassed.

弱第一状態では、パイプ56を通過した冷媒は開口82から流路切換え弁47の内部に流入し、開口83を通過して流路切換え弁47からパイプ57に流出する。パイプ57に接続した結露抑制器53の領域A側から冷媒が流れた後、結露抑制器53の他端に接続したパイプ58を通過し、パイプ58の他端に接続している開口85から再び流路切換え弁47の内部に冷媒が流入する。流路切換え弁47の内部に流入した冷媒は、溝87よって開口85と開口84が連通されることになり、開口84に接続されたパイプ91から流出する。   In the weak first state, the refrigerant that has passed through the pipe 56 flows into the flow path switching valve 47 from the opening 82, passes through the opening 83, and flows out from the flow path switching valve 47 to the pipe 57. After the refrigerant flows from the region A side of the dew condensation suppressor 53 connected to the pipe 57, the refrigerant passes through the pipe 58 connected to the other end of the dew condensation suppressor 53, and again from the opening 85 connected to the other end of the pipe 58. The refrigerant flows into the flow path switching valve 47. The refrigerant that has flowed into the flow path switching valve 47 communicates between the opening 85 and the opening 84 through the groove 87 and flows out from the pipe 91 connected to the opening 84.

強第一状態を実行すると、上述したように、より上流側で液相域に至る。また、機械室ファン54の回転数を上げて第一の放熱器50の放熱性能を向上させる場合も、同様に液相域が拡大する。   When the strong first state is executed, as described above, the liquid phase region is reached further upstream. Further, when the rotational speed of the machine room fan 54 is increased to improve the heat dissipation performance of the first radiator 50, the liquid phase region is similarly expanded.

上述したように、庫内の熱負荷が小さい場合に強状態を実行すると省エネルギー性能を向上できる。また、庫内の熱負荷が大きい場合に弱状態を実行すると同様の効果が得られる。強運転、弱運転共に、第一状態と第二状態を切換えるタイミングは、実施例1と同様にできる。   As described above, the energy saving performance can be improved by executing the strong state when the thermal load in the warehouse is small. Moreover, the same effect is acquired if a weak state is performed when the thermal load in a warehouse is large. The timing for switching between the first state and the second state in both the strong operation and the weak operation can be the same as in the first embodiment.

[まとめ]
以上、本発明の例示である各実施形態において、流路切換え弁の切換操作を通じて、結露抑制器の一端側から他端側に流れる第一状態と、他端側から一端側に流れる第二状態とを実現できる。この際、第一状態及び第二状態の何れにおいても、放熱器、結露抑制器、減圧部の順に冷媒を流すことができる。これにより、結露抑制器を流れる冷媒温度が高くなり過ぎることを抑制し、省エネ性を改善できる。
[Summary]
As described above, in each embodiment that is an example of the present invention, through the switching operation of the flow path switching valve, the first state that flows from one end side to the other end side of the dew condensation suppressor and the second state that flows from the other end side to the one end side Can be realized. At this time, in both the first state and the second state, the refrigerant can flow in the order of the radiator, the dew condensation suppressor, and the decompression unit. Thereby, it can suppress that the refrigerant | coolant temperature which flows through a dew condensation inhibitor becomes high too much, and can improve energy saving property.

また、結露抑制器をバイパスさせる第三状態を実行可能な場合は、さらに省エネ性を改善できる。
なお、第一状態及び第二状態は、放熱器、結露抑制器、減圧部それぞれの間に他の構成要素が存在することを必ずしも除外するものではなく、放熱器、結露抑制器、減圧部という3つの構成要素について、冷媒が流れる順番が、上記の通りであればよい。第三状態もまた、放熱器及び減圧部の間に他の構成要素が存在することを必ずしも除外するものではない。
Moreover, when the 3rd state which bypasses a dew condensation inhibitor can be performed, energy-saving property can be improved further.
The first state and the second state do not necessarily exclude the presence of other components between the radiator, the dew condensation suppressor, and the decompression unit, but are referred to as the radiator, the dew condensation suppressor, and the decompression unit. For the three components, the order in which the refrigerant flows may be as described above. The third state also does not necessarily exclude the presence of other components between the radiator and the decompression unit.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯の貯蔵室)
2a、2b 冷蔵室ドア
3 製氷室
3a 製氷室ドア
3b 収納容器
4 上段冷凍室
4a 上段冷凍室ドア
4b 収納容器
5 下段冷凍室
5a 下段冷凍室ドア
5b 収納容器
6 野菜室
6a 野菜室ドア
6b 収納容器
7 冷凍室(冷凍温度帯の貯蔵室)
8 冷却器収納室
9 ファン
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室冷気ダクト
11a、11b、11c 冷蔵室冷気吐出口
12 上段冷凍室冷気ダクト
12a 吐出口
13 下段冷凍室冷気ダクト
13a、13b 吐出口
14 冷却器
15 カバー
16 ヒンジカバー
17 冷凍室冷気戻り部
18 野菜室冷気戻りダクト
18a 野菜室側の冷気戻り部
18b 野菜室冷気戻り部
19 ヒータ
20 冷蔵室ダンパ
20a バッフル
21 冷凍室ダンパ
21a バッフル
22 ラジアントヒータ
23 樋
24 圧縮機
25 真空断熱材
26 操作部
27 ドレン孔
28、29 断熱仕切り壁
30 基板カバー
31 制御基板
32 蒸発皿
33a、33b、33c ドアポケット
34a、34b、34c、34d 棚
35 貯蔵室
36a、36b、36c、36d 仕切りカバー
37 庫外温度センサ
38 庫外湿度センサ
39 機械室
40 断熱仕切壁
41 冷蔵室温度センサ(冷蔵室温度)
42 冷凍室温度センサ(冷凍室温度)
43 流路切換え弁(四方弁)
44 熱の流れ(庫外側)
45 熱の流れ(庫内側)
46 断熱仕切り壁
47 流路切換え弁(五方弁)
48 流路切換え弁(冷媒逆転弁)
50 第一の放熱器
51 第二の放熱器
52 第三の放熱器
53 結露抑制器
54 機械室ファン
55、56、57、58、59 パイプ
60、61、62、63 開口
64 弁体
65 弁座
66 ドライヤ
67 減圧部(第一の減圧部)
68 パイプ
69 熱交換部
70 パイプ
71 気相成分
72 液相成分
73 減圧部(第二の減圧部)
74、75、76、77 開口
78 弁体
80、81 溝
82、83、84、85、86 開口
87、88 溝
89 弁体
90 弁座
91、92 パイプ
93、94、95、96 内部流路
1 Refrigerator 2 Refrigerated room (storage room in refrigerated temperature zone)
2a, 2b Refrigeration room door 3 Ice making room 3a Ice making room door 3b Storage container 4 Upper freezing room 4a Upper freezing room door 4b Storage container 5 Lower freezing room 5a Lower freezing room door 5b Storage container 6 Vegetable room 6a Vegetable room door 6b Storage container 7 Freezer room (freezer temperature storage room)
8 Cooler storage chamber 9 Fan 10 Heat insulation box 10a Outer box 10b Inner box 11 Refrigeration room cold air duct 11a, 11b, 11c Refrigeration room cold air discharge port 12 Upper stage freezing room cold air duct 12a Outlet 13 Lower stage freezing room cold air duct 13a, 13b Discharge port 14 Cooler 15 Cover 16 Hinge cover 17 Freezing room cold air return section 18 Vegetable room cold air return duct 18a Vegetable room cold air return section 18b Vegetable room cold air return section 19 Heater 20 Cold room damper 20a Baffle 21 Freezer room damper 21a Baffle 22 Radiant heater 23 樋 24 Compressor 25 Vacuum heat insulating material 26 Operation part 27 Drain hole 28, 29 Heat insulating partition wall 30 Substrate cover 31 Control substrate 32 Evaporating dishes 33a, 33b, 33c Door pockets 34a, 34b, 34c, 34d Shelf 35 Storage Chambers 36a, 36b, 36c, 36d Partition cover 37 Outside temperature sensor 38 Outside humidity sensor 39 Machine room 40 Insulating partition wall 41 Cold room temperature sensor (refrigerated room temperature)
42 Freezer temperature sensor (freezer temperature)
43 Channel switching valve (four-way valve)
44 Heat flow (outside)
45 Heat flow (inside the warehouse)
46 Insulation partition wall 47 Flow path switching valve (5-way valve)
48 Channel switching valve (refrigerant reverse valve)
50 First heat radiator 51 Second heat radiator 52 Third heat radiator 53 Condensation suppressor 54 Machine room fan 55, 56, 57, 58, 59 Pipe 60, 61, 62, 63 Opening 64 Valve body 65 Valve seat 66 Dryer 67 Pressure reducing part (first pressure reducing part)
68 Pipe 69 Heat exchange section 70 Pipe 71 Gas phase component 72 Liquid phase component 73 Decompression section (second decompression section)
74, 75, 76, 77 Opening 78 Valve body 80, 81 Groove 82, 83, 84, 85, 86 Opening 87, 88 Groove 89 Valve body 90 Valve seat 91, 92 Pipe 93, 94, 95, 96 Internal flow path

Claims (7)

圧縮機と、
箱体の機械室、側面、天面及び背面の一箇所以上に設けた放熱器と、
前記箱体の開口縁に設けた結露抑制器と、
流路切換え部と、
減圧部と、を有する冷凍サイクルを備える冷蔵庫であって、
前記流路切換え部は、
前記放熱器、前記結露抑制器の一端側から他端側、前記減圧部の順に前記冷媒を流す第一状態と、
前記放熱器、前記結露抑制器の他端側から一端側、前記減圧部の順に前記冷媒を流す第二状態と、を実行可能なことを特徴とする冷蔵庫。
A compressor,
A radiator provided in one or more places in the machine room, side, top and back of the box;
A dew condensation suppressor provided at the opening edge of the box;
A flow path switching unit;
A refrigerator including a refrigeration cycle having a decompression unit,
The flow path switching unit is
A first state in which the refrigerant flows in the order of the radiator, the other end side from the one end side of the dew condensation suppressor, and the decompression unit;
A refrigerator capable of executing the second state in which the refrigerant flows in the order of the radiator, the other end side of the dew condensation suppressor, the one end side, and the decompression unit.
前記第一状態及び前記第二状態の両方の場合で、前記結露抑制器を流れる冷媒の一部または全部が液相域であることを特徴とする請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein a part or all of the refrigerant flowing through the dew condensation suppressor is in a liquid phase region in both the first state and the second state. 前記流路切換え部は、前記放熱器、前記減圧部の順に前記冷媒を流して前記結露抑制器をバイパスさせる第三状態を実行可能なことを特徴とする請求項2に記載の冷蔵庫。   The refrigerator according to claim 2, wherein the flow path switching unit is capable of executing a third state in which the refrigerant flows in the order of the radiator and the decompression unit to bypass the dew condensation suppressor. 前記減圧部は、
第一の減圧部と、
該第一の減圧部より減圧量の大きい第二の減圧部を有し、
前記流路切換え部は、
前記第一、第二及び第三状態のそれぞれについて、前記第一の減圧部に冷媒を流す弱第一、弱第二、弱第三状態と、
前記第二の減圧部に冷媒を流す強第一、強第二、強第三状態と、を区別して実行可能なことを特徴とする請求項3に記載の冷蔵庫。
The decompression unit is
A first decompression section;
Having a second decompression part having a greater decompression amount than the first decompression part,
The flow path switching unit is
For each of the first, second and third states, a weak first, weak second, weak third state in which a refrigerant flows through the first decompression section, and
The refrigerator according to claim 3, wherein the refrigerator can be executed by distinguishing between a strong first state, a strong second state, and a strong third state in which the refrigerant flows through the second decompression unit.
前記流路切換え部及び前記結露抑制器の一端を繋ぐパイプと、前記結露抑制器と、前記流路切換え部及び前記結露抑制器の他端を繋ぐパイプと、の長さの和は、前記圧縮機の吐出側から前記減圧部の上流側までの長さの10%以上であることを特徴とする請求項1乃至4何れか一項に記載の冷蔵庫。   The sum of the lengths of the pipe connecting one end of the flow path switching unit and the dew condensation suppressor, the dew condensation suppressor, and the pipe connecting the other end of the flow path switching unit and the dew condensation suppressor is the compression The refrigerator according to any one of claims 1 to 4, wherein the refrigerator is 10% or more of a length from a discharge side of the machine to an upstream side of the decompression unit. 前記結露抑制器の長さは、前記流路切換え部及び前記結露抑制器の一端を繋ぐパイプと、前記結露抑制器と、前記流路切換え部及び前記結露抑制器の他端を繋ぐパイプと、の長さの和の50%以上であることを特徴とする請求項1乃至5何れか一項に記載の冷蔵庫。   The length of the dew condensation suppressor is a pipe that connects one end of the flow path switching unit and the dew condensation suppressor, the dew condensation suppressor, a pipe that connects the flow path switching unit and the other end of the dew condensation suppressor, The refrigerator according to claim 1, wherein the refrigerator is 50% or more of the sum of the lengths of the refrigerators. 前記結露抑制器を覆う仕切部のうち、該結露抑制器の一端側、他端側及び略中間部分の1つ、2つ又は3つの部分に温度センサを設けたことを特徴とする請求項1乃至4何れか一項に記載の冷蔵庫。   The temperature sensor is provided in one, two, or three portions of one end side, the other end side, and a substantially intermediate portion of the partition portion that covers the dew condensation suppressor. The refrigerator as described in any one of thru | or 4.
JP2015085568A 2015-04-20 2015-04-20 refrigerator Active JP6539093B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015085568A JP6539093B2 (en) 2015-04-20 2015-04-20 refrigerator
CN201610132874.1A CN106066110B (en) 2015-04-20 2016-03-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085568A JP6539093B2 (en) 2015-04-20 2015-04-20 refrigerator

Publications (2)

Publication Number Publication Date
JP2016205669A true JP2016205669A (en) 2016-12-08
JP6539093B2 JP6539093B2 (en) 2019-07-03

Family

ID=57419751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085568A Active JP6539093B2 (en) 2015-04-20 2015-04-20 refrigerator

Country Status (2)

Country Link
JP (1) JP6539093B2 (en)
CN (1) CN106066110B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121404A1 (en) * 2018-12-11 2020-06-18 三菱電機株式会社 Refrigerator
CN113790557A (en) * 2021-11-04 2021-12-14 浙江星星冷链集成股份有限公司 Dew removing device for single-temperature multi-door refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102658800B1 (en) 2017-02-02 2024-04-19 엘지전자 주식회사 refrigerator for vehicle, and vehicle

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189753A (en) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd Refrigerator
JPH11211241A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Refrigerator
JP2009174767A (en) * 2008-01-23 2009-08-06 Sharp Corp Refrigerator
JP2012017920A (en) * 2010-07-08 2012-01-26 Toshiba Corp Refrigerator
JP2013057415A (en) * 2011-09-07 2013-03-28 Hitachi Appliances Inc Refrigerator
JP2013061089A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
JP2013155910A (en) * 2012-01-30 2013-08-15 Hitachi Appliances Inc Refrigerator
JP2014048032A (en) * 2012-09-04 2014-03-17 Sharp Corp Refrigerator
JP2014059110A (en) * 2012-09-18 2014-04-03 Sharp Corp Refrigerator and cooling mechanism
JP2014234955A (en) * 2013-06-03 2014-12-15 日立アプライアンス株式会社 Refrigerator
JP2015001243A (en) * 2013-06-13 2015-01-05 日立アプライアンス株式会社 Refrigerant switching valve and equipment with the same
JP2015014373A (en) * 2013-07-03 2015-01-22 日立アプライアンス株式会社 Refrigerator
JP2015218938A (en) * 2014-05-16 2015-12-07 日立アプライアンス株式会社 refrigerator
JP2016205670A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 Fluid circuit and refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248005A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Refrigerator
JP5572606B2 (en) * 2011-09-12 2014-08-13 日立アプライアンス株式会社 refrigerator
JP5391250B2 (en) * 2011-09-28 2014-01-15 日立アプライアンス株式会社 Refrigerator and freezer
JP6129627B2 (en) * 2013-04-18 2017-05-17 日立アプライアンス株式会社 Refrigerant switching valve

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189753A (en) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd Refrigerator
JPH11211241A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Refrigerator
JP2009174767A (en) * 2008-01-23 2009-08-06 Sharp Corp Refrigerator
JP2012017920A (en) * 2010-07-08 2012-01-26 Toshiba Corp Refrigerator
JP2013057415A (en) * 2011-09-07 2013-03-28 Hitachi Appliances Inc Refrigerator
JP2013061089A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
JP2013155910A (en) * 2012-01-30 2013-08-15 Hitachi Appliances Inc Refrigerator
JP2014048032A (en) * 2012-09-04 2014-03-17 Sharp Corp Refrigerator
JP2014059110A (en) * 2012-09-18 2014-04-03 Sharp Corp Refrigerator and cooling mechanism
JP2014234955A (en) * 2013-06-03 2014-12-15 日立アプライアンス株式会社 Refrigerator
JP2015001243A (en) * 2013-06-13 2015-01-05 日立アプライアンス株式会社 Refrigerant switching valve and equipment with the same
JP2015014373A (en) * 2013-07-03 2015-01-22 日立アプライアンス株式会社 Refrigerator
JP2015218938A (en) * 2014-05-16 2015-12-07 日立アプライアンス株式会社 refrigerator
JP2016205670A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 Fluid circuit and refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121404A1 (en) * 2018-12-11 2020-06-18 三菱電機株式会社 Refrigerator
JPWO2020121404A1 (en) * 2018-12-11 2021-09-02 三菱電機株式会社 refrigerator
CN113790557A (en) * 2021-11-04 2021-12-14 浙江星星冷链集成股份有限公司 Dew removing device for single-temperature multi-door refrigerator

Also Published As

Publication number Publication date
CN106066110A (en) 2016-11-02
CN106066110B (en) 2018-10-16
JP6539093B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US10495368B2 (en) Refrigerator and operation method of the same
JP5530852B2 (en) refrigerator
JP5507511B2 (en) refrigerator
JP6177605B2 (en) refrigerator
JP5572606B2 (en) refrigerator
JP5492845B2 (en) refrigerator
JP6469966B2 (en) refrigerator
JP2012017920A (en) Refrigerator
JP6539093B2 (en) refrigerator
JP2021139591A (en) refrigerator
JP2013155910A (en) Refrigerator
JP2013019598A (en) Refrigerator
WO2019107066A1 (en) Refrigerator
JP2013044438A (en) Refrigerator
JP2013068388A (en) Refrigerator
JP6109520B2 (en) refrigerator
JP6506645B6 (en) refrigerator
JP2016044875A (en) refrigerator
JP6762149B2 (en) refrigerator
JP2017026210A (en) refrigerator
JP2013053801A (en) Refrigerator
JP5877301B2 (en) refrigerator
JP2017040398A (en) refrigerator
WO2020121404A1 (en) Refrigerator
JP2019132506A (en) refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150