JP2013155910A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013155910A
JP2013155910A JP2012016048A JP2012016048A JP2013155910A JP 2013155910 A JP2013155910 A JP 2013155910A JP 2012016048 A JP2012016048 A JP 2012016048A JP 2012016048 A JP2012016048 A JP 2012016048A JP 2013155910 A JP2013155910 A JP 2013155910A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerator
compressor
dew condensation
refrigerant circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012016048A
Other languages
Japanese (ja)
Inventor
Shinichiro Okadome
慎一郎 岡留
Akiyoshi Ohira
昭義 大平
Ryoji Kawai
良二 河井
Dai Itakura
大 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012016048A priority Critical patent/JP2013155910A/en
Publication of JP2013155910A publication Critical patent/JP2013155910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator that has high energy saving performance while suppressing a refrigerant flowing sound by a refrigerant flow passage switching means.SOLUTION: A refrigerator including a compressor 24, a decompression means 45, a cooler 7, a plurality of storage compartments, partition parts 28, 29, and 30 partitioning off the plurality of storage compartments, and a dew condensation-proof pipe 43 heating the partition parts 28, 29, and 30 includes a heat dissipation means 42 in a refrigerant flow passage between the compressor 24 and the dew condensation-proof pipe 43, and also includes a first refrigerant circulation flow passage through which a refrigerant flows to the compressor 24, the heat dissipation means 42, the dew condensation-proof pipe 43, the decompression means 45, the cooler 7, and the compressor 24 in order, and a second refrigerant circulation flow passage through which a refrigerant flows to the compressor 24, the heat dissipation means 42, the decompression means 45, the cooler 7, and the compressor 24 in order, and there is provided a refrigerant flow passage switching means 101 for switching refrigerant flow passages of the first refrigerant circulation flow passage and the second refrigerant circulation flow passage in a place as a liquid phase area of the refrigerants flowing through the first refrigerant circulation flow passage and the second refrigerant circulation flow passage.

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特開2004−92939号公報(特許文献1)及び特開2001−153493号公報(特許文献2)がある。   As background art of this technical field, there are JP-A-2004-92939 (Patent Document 1) and JP-A-2001-153493 (Patent Document 2).

特許文献1には、冷凍温度帯の貯蔵空間と、冷蔵温度帯の貯蔵空間と、冷蔵庫の両側壁に埋め込まれて放熱する凝縮パイプと、開口の周囲に配設され結露を防止するための開口縁凝縮パイプと、この開口縁凝縮パイプを介さずに冷媒を流すバイパス流路を形成するバイパスパイプと、この開口縁凝縮パイプとバイパスパイプに流す冷媒を調節する流路制御手段としての三方弁を備える冷凍冷蔵庫が記載されている(特許文献1段落0018、図2)。   In Patent Document 1, a storage space in a freezing temperature zone, a storage space in a refrigeration temperature zone, a condensing pipe that is embedded in both side walls of the refrigerator and dissipates heat, and an opening that is disposed around the opening to prevent condensation. An edge condensing pipe, a bypass pipe for forming a bypass passage for flowing the refrigerant without going through the opening edge condensing pipe, and a three-way valve as a passage control means for adjusting the refrigerant flowing through the opening edge condensing pipe and the bypass pipe. A refrigerator-freezer provided is described (Patent Document 1, paragraph 0018, FIG. 2).

また特許文献2には、圧縮機と、主凝縮器(放熱器)と、副凝縮器(放熱器)と、キャピラリチューブと、蒸発器と、電動式切換弁とを有し、圧縮機の吐出側には冷媒通路によって主凝縮器の上流側(入口側)が接続され、主凝縮器の下流側(出口側)より分岐した冷媒通路に副凝縮器の上流側(入口側)が接続され、主凝縮器の下流側(出口側)は冷媒通路によって電動式切換弁の第1の入口ポートに接続され、副凝縮器の下流側(出口側)は冷媒通路によって電動式切換弁の第2の入口ポートに接続され、電動式切換弁の出口ポートにはキャピラリチューブ、蒸発器が順に接続され、蒸発器の出口側が冷媒通路によって圧縮機の吸入側に接続された冷蔵庫用の冷凍サイクル装置が記載されている(特許文献2段落0016、0017、図1)。   Patent Document 2 includes a compressor, a main condenser (heat radiator), a sub-condenser (heat radiator), a capillary tube, an evaporator, and an electric switching valve. The upstream side (inlet side) of the main condenser is connected to the side by the refrigerant path, and the upstream side (inlet side) of the sub-condenser is connected to the refrigerant path branched from the downstream side (outlet side) of the main condenser, The downstream side (outlet side) of the main condenser is connected to the first inlet port of the electric switching valve by the refrigerant passage, and the downstream side (outlet side) of the sub-condenser is connected to the second switching port of the electric switching valve by the refrigerant passage. A refrigeration cycle apparatus for a refrigerator is described in which a capillary tube and an evaporator are connected in order to an outlet port of an electric switching valve connected to an inlet port, and an outlet side of the evaporator is connected to a suction side of a compressor by a refrigerant passage. (Patent Document 2, paragraphs 0016 and 0017, FIG. ).

特開2004−92939号公報JP 2004-92939 A 特開2001−153493号公報JP 2001-153493 A

特許文献1に記載の冷蔵庫では、必要に応じて開口縁凝縮パイプをバイパスさせることで、必要以上に開口縁凝縮パイプから庫内に熱が流入することを防止している。   In the refrigerator described in Patent Document 1, heat is prevented from flowing from the opening edge condensing pipe into the cabinet more than necessary by bypassing the opening edge condensing pipe as necessary.

しかしながら、圧縮機から放出される冷媒は、凝縮パイプと開口縁凝縮パイプを通過する際に、外部に熱を放出して過熱ガス域(気相域)、気液二相域、液相域へと順番に相変化していく。基本的には開口縁凝縮パイプ途中で冷媒が液相域に達するため、凝縮パイプと結露防止パイプの間に三方弁を設けて開口縁凝縮パイプで放熱を行う場合、三方弁内部の冷媒の状態は気相域あるいは気液二相域の状態であり、三方弁を通過する際に冷媒流動音が大きくなりやすく、ユーザーに不快感を与える恐れがある。特許文献1では、この冷媒の状態は考慮されておらず、切換手段(三方弁)の設置箇所に関する配慮はされていなかった。   However, when the refrigerant discharged from the compressor passes through the condensing pipe and the opening edge condensing pipe, the refrigerant releases heat to the superheated gas region (gas phase region), gas-liquid two-phase region, and liquid phase region. And the phase changes in order. Basically, since the refrigerant reaches the liquid phase in the middle of the opening edge condensation pipe, when a three-way valve is installed between the condensation pipe and the condensation prevention pipe and heat is radiated through the opening edge condensation pipe, the state of the refrigerant inside the three-way valve Is a gas phase region or a gas-liquid two-phase region, and the refrigerant flow noise tends to increase when passing through the three-way valve, which may cause discomfort to the user. In Patent Document 1, the state of the refrigerant is not taken into consideration, and consideration is not given to the installation location of the switching means (three-way valve).

また、特許文献2に記載の冷凍サイクル装置は、凝縮器及び副凝縮器に関する具体的な記載がない。すなわち、副凝縮器を結露防止パイプとする記載はなく、冷凍サイクルにおける放熱量を調整する手段として凝縮器の一部をバイパスさせる手段を備えたものである。このような手段は、恒温培養槽のように槽内の温度変動を例えば1℃以内に抑える必要のある製品や、冷蔵庫の庫内と庫外の温度差が極端に少ない場合、例えば冷蔵庫起動直後等の放熱量調整には有効であるが、冷蔵庫の通常の冷却運転(貯蔵室が目標温度まで冷却されて庫内と庫外の温度差が大きい状態)においては、放熱量を低減させても省エネルギー性能は向上し難い。   Moreover, the refrigeration cycle apparatus described in Patent Document 2 has no specific description regarding the condenser and the sub-condenser. That is, there is no description that the sub-condenser is a dew condensation prevention pipe, and there is provided means for bypassing a part of the condenser as means for adjusting the heat radiation amount in the refrigeration cycle. Such means can be used for products that need to keep the temperature fluctuation in the tank within 1 ° C., such as a constant temperature culture tank, or when the temperature difference between the inside and outside of the refrigerator is extremely small. Although it is effective for adjusting the amount of heat dissipation, etc., in the normal cooling operation of the refrigerator (the storage room is cooled to the target temperature and the temperature difference between inside and outside the warehouse is large), even if the amount of heat radiation is reduced Energy saving performance is difficult to improve.

本発明は以上のような問題点に鑑みてなされたもので、冷媒流路切換手段による冷媒流動音を抑えつつ、省エネルギー性能が高い冷蔵庫を提供することを目的とする。   This invention is made | formed in view of the above problems, and it aims at providing the refrigerator with high energy saving performance, suppressing the refrigerant | coolant flow noise by a refrigerant | coolant flow path switching means.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、圧縮機と、減圧手段と、冷却器と、複数の貯蔵室と、該複数の貯蔵室を仕切る仕切部と、該仕切部を加熱する結露防止パイプと、を備えた冷蔵庫において、前記圧縮機と前記結露防止パイプとの間の冷媒流路中に放熱手段を備え、前記冷媒を前記圧縮機、前記放熱手段、前記結露防止パイプ、前記減圧手段、前記冷却器、前記圧縮機の順に流す第一の冷媒循環流路と、前記冷媒を前記圧縮機、前記放熱手段、前記減圧手段、前記冷却器、前記圧縮機の順に流す第二の冷媒循環流路と、を備え、前記第一の冷媒循環流路及び前記第二の冷媒循環流路をそれぞれ流れる前記冷媒が液相域となる箇所に、前記第一の冷媒循環流路と前記第二の冷媒循環流路を切換える冷媒流路切換手段を設けた。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a compressor, a decompression means, a cooler, a plurality of storage chambers, and a partition that partitions the plurality of storage chambers. And a dew condensation prevention pipe for heating the partition part, wherein the refrigerant flow path is provided between the compressor and the dew condensation prevention pipe, and the refrigerant is supplied to the compressor and the heat radiation means. , The dew condensation prevention pipe, the decompression means, the cooler, and the first refrigerant circulation channel that flows in the order of the compressor, the refrigerant, the compressor, the heat dissipation means, the decompression means, the cooler, and the compression A second refrigerant circulation channel that flows in the order of the machine, and the first refrigerant circulation channel and the second refrigerant circulation channel that respectively flow through the first refrigerant circulation channel in the liquid phase region. A cooling circuit for switching between the second refrigerant circulation channel and the second refrigerant circulation channel. It provided with a flow path switching means.

本発明によれば、冷媒流路切換手段による冷媒流動音を抑えつつ、省エネルギー性能が高い冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerator with high energy saving performance can be provided, suppressing the refrigerant | coolant flow noise by a refrigerant | coolant flow path switching means.

本発明の実施例1に関わる冷蔵庫の正面図である。It is a front view of the refrigerator in connection with Example 1 of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 冷蔵庫の冷気ダクトや冷気吹き出し口の配置などを示す正面模式図である。It is a front schematic diagram which shows arrangement | positioning etc. of the cold air duct of a refrigerator, a cold air outlet. 実施例1に関わる冷蔵庫の機械室内部構成を背面から見た際の模式図である。It is a schematic diagram at the time of seeing the machine room interior structure of the refrigerator in connection with Example 1 from the back. 実施例1の冷蔵庫における側面放熱パイプ、結露防止パイプの配設位置を示す模式図である。It is a schematic diagram which shows the arrangement | positioning position of the side surface heat radiating pipe in the refrigerator of Example 1, and a dew condensation prevention pipe. 実施例1の冷蔵庫における仕切り壁の前面部近傍の断面模式図である。3 is a schematic cross-sectional view of the vicinity of a front surface portion of a partition wall in the refrigerator of Example 1. FIG. 実施例1の冷蔵庫における仕切り壁の前面部近傍の断面模式図である。3 is a schematic cross-sectional view of the vicinity of a front surface portion of a partition wall in the refrigerator of Example 1. FIG. 実施例1の冷蔵庫における仕切り壁の前面部近傍の断面模式図である。3 is a schematic cross-sectional view of the vicinity of a front surface portion of a partition wall in the refrigerator of Example 1. FIG. 実施例1の冷蔵庫における冷凍サイクル(冷媒流路)構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a refrigeration cycle (refrigerant flow path) in the refrigerator according to the first embodiment. 実施例1の冷蔵庫における、冷媒流路を切換える時間割合と相対湿度との関係を説明する図である。It is a figure explaining the relationship between the time ratio which switches a refrigerant | coolant flow path, and relative humidity in the refrigerator of Example 1. FIG. 実施例1の冷蔵庫における圧縮機からキャピラリチューブまでの配管内部の冷媒の状態を模式的に示した図である。It is the figure which showed typically the state of the refrigerant | coolant inside piping from the compressor in the refrigerator of Example 1 to a capillary tube. 実施例1の冷蔵庫における圧縮機からキャピラリチューブまでの配管内部の冷媒の状態を模式的に示した図である。It is the figure which showed typically the state of the refrigerant | coolant inside piping from the compressor in the refrigerator of Example 1 to a capillary tube. 実施例1の冷蔵庫における冷却運転の一例を示すタイムチャートである。3 is a time chart illustrating an example of a cooling operation in the refrigerator according to the first embodiment. 図7の三方弁に換えて二方弁を用いた冷媒流路の冷凍サイクル構成を示す図である。It is a figure which shows the refrigerating cycle structure of the refrigerant | coolant flow path using the two-way valve instead of the three-way valve of FIG. 比較例の冷蔵庫における冷凍サイクル構成を示す図である。It is a figure which shows the refrigerating cycle structure in the refrigerator of a comparative example. 比較例の冷蔵庫における圧縮機からキャピラリチューブまでの配管内部の冷媒の状態を模式的に示した図である。It is the figure which showed typically the state of the refrigerant | coolant inside piping from the compressor to the capillary tube in the refrigerator of a comparative example. 比較例の冷蔵庫における圧縮機からキャピラリチューブまでの配管内部の冷媒の状態を模式的に示した図である。It is the figure which showed typically the state of the refrigerant | coolant inside piping from the compressor to the capillary tube in the refrigerator of a comparative example. 比較例の冷蔵庫における第三の冷媒流路使用時のモリエル(圧力−比エンタルピ)線図である。It is a Mollier (pressure-specific enthalpy) diagram at the time of the 3rd refrigerant | coolant flow path use in the refrigerator of a comparative example. 実施例2の冷蔵庫における側面放熱パイプ、背面放熱パイプ、結露防止パイプの配設位置を示す模式図である。It is a schematic diagram which shows the arrangement | positioning position of the side surface heat radiating pipe in the refrigerator of Example 2, a back surface heat radiating pipe, and a dew condensation prevention pipe. 実施例2の冷蔵庫における冷凍サイクル構成を示す図である。It is a figure which shows the refrigerating cycle structure in the refrigerator of Example 2. FIG. 実施例3の冷蔵庫における冷凍サイクル構成を示す図である。FIG. 6 is a diagram showing a refrigeration cycle configuration in the refrigerator of Example 3.

以下、本発明の実施例について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
本発明に関わる冷蔵庫の実施例1を、図1から図8を参照して説明する。
Example 1
Embodiment 1 of a refrigerator according to the present invention will be described with reference to FIGS.

図1は、本発明の実施例1に関わる冷蔵庫の正面図である。実施例1の冷蔵庫1は、食品貯蔵室として上方から冷蔵室2、下段冷凍室5、野菜室6を備えている。また、冷蔵室2と下段冷凍室5との間に、製氷室3と上段冷凍室4が同じ高さ位置に左右に配置されている。なお、以下では製氷室3と上段冷凍室4と下段冷凍室5の総称として、冷凍温度帯室60を用いる場合があり、冷蔵室2と野菜室6の総称として冷蔵温度帯室61を用いる場合がある。   FIG. 1 is a front view of a refrigerator according to Embodiment 1 of the present invention. The refrigerator 1 of Example 1 is provided with the refrigerator compartment 2, the lower freezer compartment 5, and the vegetable compartment 6 from the top as a food storage compartment. Further, between the refrigerator compartment 2 and the lower freezer compartment 5, the ice making compartment 3 and the upper freezer compartment 4 are arranged on the left and right at the same height position. In the following, the freezing temperature zone 60 may be used as a general term for the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, and the refrigerated temperature zone chamber 61 is used as a generic term for the refrigerating room 2 and the vegetable room 6. There is.

冷蔵室2は前面側に左右に分割された観音開きの冷蔵室扉2a、2bを備え、製氷室3と、上段冷凍室4と、下段冷凍室5と、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。   The refrigerating room 2 is provided with doors 2a and 2b that are separated from each other on the front side, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each a drawer type ice making. The room door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are provided.

冷蔵庫1の庫内は、上仕切り壁28により、冷蔵室2と冷凍温度帯室60とに断熱的に隔てられ、下仕切り壁29により、冷凍温度帯室60と野菜室6とに断熱的に隔てられている。ここで、製氷室3、上段冷凍室4、及び下段冷凍室5間を断熱的に隔てる仕切りは設けられていないが、扉3a、4a、5aのそれぞれの内面に周状に設けたシール部材の着磁面を形成して、扉3a、4a、5aのそれぞれの隙間から庫外への冷凍温度帯室60内空気の漏れを防止する冷凍温度帯室仕切り壁30が備えられている。   The interior of the refrigerator 1 is thermally insulated from the refrigerator compartment 2 and the freezing temperature zone 60 by the upper partition wall 28, and is insulated from the freezing temperature zone 60 and the vegetable compartment 6 by the lower partition wall 29. It is separated. Here, although the partition which heat-separates between the ice-making room 3, the upper stage freezing room 4, and the lower stage freezing room 5 is not provided, the sealing member provided in the circumferential shape on each inner surface of the doors 3a, 4a, and 5a. A freezing temperature zone chamber partition wall 30 that forms a magnetized surface and prevents leakage of air in the freezing temperature zone chamber 60 from the gaps of the doors 3a, 4a, and 5a to the outside of the refrigerator is provided.

また、冷蔵庫1は、各扉の開閉状態をそれぞれ検知する扉センサ(図示せず)と、所定時間以上、例えば1分間、扉を開放状態であると判定した場合に使用者に報知するアラーム(図示せず)と、冷蔵室2や野菜室6の温度設定や冷凍温度帯室60の温度設定をする温度設定器(図示せず)等を備えている。扉2a、2bを回動可能に冷蔵庫1に固定する扉ヒンジが冷蔵庫上部に設けてあり、扉ヒンジは扉ヒンジカバー110で覆われている。少なくとも左右いずれかの扉ヒンジカバー110の内部には、庫外の温度及び湿度を検知する外気温度センサ111、外気湿度センサ112を設けている。なお、本実施例で扉ヒンジカバー110の内部に外気温度センサ111、外気湿度センサ112を設けているのは、冷蔵庫1本体からの温度影響を直接受けにくくして、周囲温度及び周囲湿度を検知するためである。なお、外気温度センサ111、外気湿度センサ112の設置箇所はこれに限るものではなく、冷蔵庫1本体からの温度影響を直接受けずに、冷蔵庫1設置環境の周囲温度及び周囲湿度を適切に検知できる場所であればよい。   The refrigerator 1 also has a door sensor (not shown) that detects the open / closed state of each door, and an alarm that informs the user when it is determined that the door is open for a predetermined time or longer, for example, 1 minute ( And a temperature setting device (not shown) for setting the temperature of the refrigerator compartment 2 and the vegetable compartment 6 and the temperature setting of the freezing temperature zone 60. A door hinge that rotatably fixes the doors 2 a and 2 b to the refrigerator 1 is provided at the upper part of the refrigerator, and the door hinge is covered with a door hinge cover 110. At least one of the left and right door hinge covers 110 is provided with an outside air temperature sensor 111 and an outside air humidity sensor 112 that detect the temperature and humidity outside the warehouse. In the present embodiment, the outside air temperature sensor 111 and the outside air humidity sensor 112 are provided inside the door hinge cover 110 so that the temperature influence from the main body of the refrigerator 1 is not easily received, and the ambient temperature and the ambient humidity are detected. It is to do. In addition, the installation location of the outside air temperature sensor 111 and the outside air humidity sensor 112 is not limited to this, and the ambient temperature and the ambient humidity of the refrigerator 1 installation environment can be appropriately detected without being directly affected by the temperature from the refrigerator 1 body. Any place is acceptable.

図2は、冷蔵庫の庫内の構成を示す図1のA−A断面図である。冷蔵庫1の庫内と庫外は、外箱1aと内箱1bの間に例えば発泡ポリウレタンなどの発泡断熱材を充填することにより形成される断熱箱体10によって、隔てられている。また、冷蔵庫1の断熱箱体10には真空断熱材26を実装している。   FIG. 2 is a cross-sectional view taken along the line AA of FIG. The inside and outside of the refrigerator 1 are separated by a heat insulating box 10 formed by filling a foam heat insulating material such as polyurethane foam between the outer box 1a and the inner box 1b. A vacuum heat insulating material 26 is mounted on the heat insulating box 10 of the refrigerator 1.

扉2a、2bの庫内側には複数の扉ポケット32が備えられている。また、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。上段冷凍室4、下段冷凍室5及び野菜室6には、それぞれ各室の前部に備えられた扉と一体に引き出される収納容器4b、5b、6bを設けており、各扉の取手部(図示せず)に手を掛けて手前側に引き出すことにより収納容器4b、5b、6bを引き出せるようになっている。図1に示す製氷室3にも同様に、製氷室扉3aと一体に引き出される収納容器(図2中の符号3b)を設け、製氷室扉3aの取手部(図示せず)に手を掛けて手前側に引き出すことにより、収納容器3bを引き出せるようになっている。なお、上段冷凍室4は、急速冷凍室として使用できるように構成されている。急速冷凍性能の向上のために、上段冷凍室4の収納容器4bにはアルミトレー(図示せず)が備えられており、冷凍速度を向上させるようになっている。   A plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b. The refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36. The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided with storage containers 4b, 5b, 6b that are pulled out integrally with the doors provided at the front of each chamber, respectively. The storage containers 4b, 5b, and 6b can be pulled out by placing the hand on (not shown) and pulling it out to the front side. Similarly, the ice making chamber 3 shown in FIG. 1 is provided with a storage container (reference numeral 3b in FIG. 2) that is pulled out integrally with the ice making chamber door 3a, and a handle (not shown) of the ice making chamber door 3a is hooked. The container 3b can be pulled out by pulling it out to the front side. The upper freezer compartment 4 is configured to be used as a quick freezer compartment. In order to improve the quick freezing performance, the storage container 4b of the upper freezer compartment 4 is provided with an aluminum tray (not shown) to improve the freezing speed.

また、冷蔵庫1は冷凍温度帯室60の略背部に、冷却器収納室8を区画形成されている。冷却器7は下段冷凍室5の略背部に配置され、冷却器収納室8内に備えられている。冷却器7と熱交換して冷やされた空気は、冷却器7の上方に設けられた庫内ファン9により、冷蔵室ダクト11を介して冷蔵室2に送られ、野菜室ダクト(図示せず)を介して野菜室6に送られる。また、同様にこの冷却器7で冷やされた空気は、冷凍室ダクト13を介して製氷室3と、上段冷凍室4と、下段冷凍室5の各室へ送られる。各室への送風は、後述する各室に設けた温度センサと連動して、冷蔵室ダンパ50、野菜室ダンパ51(図3参照)、冷凍室ダンパ52の開閉により制御している。なお野菜室6が過度に低温となった場合は、野菜室6に設けた野菜室電気ヒータ(図示せず)を通電することにより野菜室6を加熱する。   In the refrigerator 1, a cooler storage chamber 8 is defined in a substantially back portion of the freezing temperature zone chamber 60. The cooler 7 is disposed substantially at the back of the lower freezer compartment 5 and is provided in the cooler storage chamber 8. The air cooled by exchanging heat with the cooler 7 is sent to the refrigerating room 2 through the refrigerating room duct 11 by the internal fan 9 provided above the cooler 7, and the vegetable room duct (not shown). ) To the vegetable compartment 6. Similarly, the air cooled by the cooler 7 is sent to the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 through the freezer duct 13. The air blowing to each room is controlled by opening and closing the refrigerator compartment damper 50, the vegetable compartment damper 51 (see FIG. 3), and the freezer compartment damper 52 in conjunction with a temperature sensor provided in each compartment to be described later. In addition, when the vegetable compartment 6 becomes too low temperature, the vegetable compartment 6 is heated by supplying with electricity the vegetable compartment electric heater (not shown) provided in the vegetable compartment 6.

冷蔵庫1は、正面から見て冷却器7の左上部に冷却器温度センサ35、冷蔵室2に冷蔵室温度センサ33、野菜室6に野菜室温度センサ33a、下段冷凍室5に冷凍室温度センサ34をそれぞれ備えている。これら冷却器温度センサ35、冷蔵室温度センサ33、野菜室温度センサ33a、冷凍室温度センサ34は、それぞれ冷却器7の温度、冷蔵室2の温度、野菜室6の温度、下段冷凍室5の温度を検知できるように構成されている。さらに前述のように、冷蔵庫1は庫外の温度を検知する外気温度センサ111と外気湿度センサ112も備えている。   The refrigerator 1 has a cooler temperature sensor 35 at the upper left of the cooler 7 when viewed from the front, a refrigerator temperature sensor 33 at the refrigerator compartment 2, a vegetable compartment temperature sensor 33a at the vegetable compartment 6, and a freezer compartment temperature sensor at the lower freezer compartment 5. 34 respectively. The cooler temperature sensor 35, the refrigerator temperature sensor 33, the vegetable room temperature sensor 33a, and the freezer temperature sensor 34 are respectively the temperature of the cooler 7, the temperature of the refrigerator room 2, the temperature of the vegetable room 6, and the temperature of the lower freezer room 5. It is configured to detect the temperature. Further, as described above, the refrigerator 1 is also provided with an outside air temperature sensor 111 and an outside air humidity sensor 112 that detect the temperature outside the refrigerator.

冷蔵庫1は、天井壁上面側にCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、前述した外気温度センサ111、外気湿度センサ112、冷却器温度センサ35、冷蔵室温度センサ33、野菜室温度センサ33a、冷凍室温度センサ34、各扉の開閉状態をそれぞれ検知する前述した扉センサ、温度設定器等と接続されている。これらの出力値と前述のROMに予め記録したプログラムを基に、前述のCPUは、圧縮機24のON/OFF等の制御、後述する三方弁101(図4参照)の制御、冷蔵室ダンパ50、野菜室ダンパ51、及び冷凍室ダンパ52を個別に駆動させるそれぞれのアクチュエータ(図示せず)の制御、庫内ファン9のON/OFF制御や回転速度制御、前述した扉の開放状態を報知するアラームのON/OFF等の制御を行う。   The refrigerator 1 has a control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted on the upper surface of the ceiling wall. The control board 31 detects the open / closed state of each door, as described above, the outside air temperature sensor 111, the outside air humidity sensor 112, the cooler temperature sensor 35, the refrigerating room temperature sensor 33, the vegetable room temperature sensor 33a, the freezer room temperature sensor 34, and the like. It is connected to the door sensor, temperature setter, etc. described above. Based on these output values and a program recorded in advance in the ROM, the CPU described above controls the ON / OFF of the compressor 24, the control of a three-way valve 101 (see FIG. 4) described later, and the refrigerator damper 50. Control of each actuator (not shown) for individually driving the vegetable compartment damper 51 and the freezer compartment damper 52, ON / OFF control and rotational speed control of the internal fan 9, and notification of the above-described door open state Controls alarm ON / OFF, etc.

また、冷却器7の下方に、冷却器7に付着した霜を除霜運転時に加熱する除霜ヒータ22を設置している。除霜によって生じた除霜水は、冷却器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して後述する機械室19に配された蒸発皿21に達して、庫外放熱器41(図4参照)と圧縮機24の熱により蒸発する。   In addition, a defrost heater 22 that heats frost adhering to the cooler 7 during the defrosting operation is installed below the cooler 7. The defrosted water generated by the defrosting flows into the eaves 23 provided at the lower part of the cooler storage chamber 8, and then reaches the evaporating dish 21 disposed in the machine chamber 19 described later via the drain pipe 27. It evaporates due to the heat from the external radiator 41 (see FIG. 4) and the compressor 24.

図3は、庫内の冷気ダクトや冷気吹き出し口の配置を示す正面模式図である。冷蔵室ダンパ50が開状態の時、冷却器7で熱交換された冷気は、庫内ファン9により昇圧され、冷蔵室ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られる。冷蔵室2を冷却した冷気は、冷蔵室2内の背面下部に形成された冷蔵室冷気戻り口2dから、冷蔵室戻りダクト16を介して冷却器収納室8に戻り、再び冷却器7で冷却される。   FIG. 3 is a schematic front view showing the arrangement of the cold air duct and the cold air outlet in the warehouse. When the refrigerator compartment damper 50 is in the open state, the cold air exchanged by the cooler 7 is boosted by the internal fan 9 and sent to the refrigerator compartment 2 from the outlets 2c provided in multiple stages via the refrigerator compartment duct 11. . The cold air that has cooled the refrigerator compartment 2 returns to the cooler housing chamber 8 through the refrigerator compartment return duct 16 from the refrigerator inlet air return port 2d formed in the lower back of the refrigerator compartment 2, and is cooled again by the cooler 7. Is done.

野菜室ダンパ51が開状態の時、冷却器7で熱交換された冷気は、庫内ファン9により昇圧され、野菜室ダクト(図示せず)を介して、野菜室6の背面右側上部に設けられた野菜室吹き出し口6cから野菜室6に流入して野菜室6を冷却する。野菜室6を冷却した冷気は、下仕切り壁29の下部左前方に設けられた野菜室戻り口6dから、野菜室戻りダクト18(図2参照)を介して冷却器収納室8に戻り、再び冷却器7で冷却される。   When the vegetable compartment damper 51 is in the open state, the cold air exchanged by the cooler 7 is pressurized by the internal fan 9 and provided at the upper right side of the vegetable compartment 6 via the vegetable compartment duct (not shown). The vegetable room 6 is cooled by flowing into the vegetable room 6 from the vegetable room outlet 6c. The cold air that has cooled the vegetable compartment 6 returns from the vegetable compartment return port 6d provided at the lower left front of the lower partition wall 29 to the cooler storage compartment 8 via the vegetable compartment return duct 18 (see FIG. 2). Cooled by the cooler 7.

また、冷凍室ダンパ52が開状態のときには、冷却器7で熱交換された冷気が庫内ファン9により昇圧され、冷凍室ダクト13を経て各吹き出し口3c、4c、5cからそれぞれ製氷室3、上段冷凍室4、下段冷凍室5へ送風される。そして、製氷室3、上段冷凍室4、下段冷凍室5を冷却した冷気は、冷凍室戻り口17から冷却器収納室8に戻り(図2参照)、再び冷却器7で冷却される。なお、冷凍温度帯室60の吹き出し口3c、4c、5cは、ここではそれぞれ製氷室3で1個、上段冷凍室4で1個、下段冷凍室5で5個としているがこれに限定されるものではない。   When the freezer damper 52 is in the open state, the cold air heat-exchanged by the cooler 7 is boosted by the internal fan 9 and passes through the freezer duct 13 from the outlets 3c, 4c and 5c, respectively. The air is sent to the upper freezer compartment 4 and the lower freezer compartment 5. Then, the cold air that has cooled the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 returns to the cooler storage chamber 8 from the freezer return port 17 (see FIG. 2), and is cooled again by the cooler 7. Here, the number of outlets 3c, 4c, and 5c of the freezing temperature zone chamber 60 is one in the ice making chamber 3, one in the upper freezing chamber 4, and five in the lower freezing chamber 5, respectively. It is not a thing.

図4は、実施例1に関わる冷蔵庫の機械室内部構成を背面から見た際の模式図である。冷蔵庫1は、図2に示すように断熱箱体10の外側で、冷蔵庫1の野菜室6背面下部、冷却器収納室8の下部に機械室19を備えている。機械室19には左から順に、後述する三方弁101、圧縮機24、庫外ファン41a、後述する庫外放熱器41を配設しており、また圧縮機24の上部で排水管27の下部に蒸発皿21を備えている。また機械室19は両側面に機械室開口部19a、19bを備えており、機械室開口部19a、19bから機械室19内に外気が出入りできる構造としている。冷却運転時、高温となる圧縮機24及び庫外放熱器41は、庫外ファン41aを駆動して機械室開口部19aから取り入れた庫外空気によって放熱している。この放熱により昇温された空気は機械室開口部19bから外部に排出される。蒸発皿21は、除霜後に排水管27から滴下する水を貯め、この水は機械室19内の熱により気化され、機械室開口部19bから外気に放出される構造となっている。   FIG. 4 is a schematic diagram of the machine room configuration of the refrigerator according to the first embodiment when viewed from the back. As shown in FIG. 2, the refrigerator 1 includes a machine room 19 on the outside of the heat insulating box 10, on the lower back of the vegetable room 6 of the refrigerator 1 and on the lower part of the cooler storage room 8. In the machine room 19, a three-way valve 101, a compressor 24, an outside fan 41 a, and an outside heat radiator 41, which will be described later, are disposed in order from the left, and the lower part of the drain pipe 27 is disposed above the compressor 24. Is provided with an evaporating dish 21. The machine room 19 is provided with machine room openings 19a and 19b on both side surfaces so that outside air can enter and exit from the machine room openings 19a and 19b. During the cooling operation, the high-temperature compressor 24 and the external radiator 41 radiate heat by external air taken from the machine room opening 19a by driving the external fan 41a. The air heated by the heat radiation is discharged outside from the machine room opening 19b. The evaporating dish 21 stores water dripped from the drain pipe 27 after defrosting, and this water is vaporized by the heat in the machine room 19 and discharged to the outside air from the machine room opening 19b.

図5は、実施例1に関わる冷蔵庫における側面放熱パイプ42と結露防止パイプ43の配設位置を示す図である。本実施の形態例の冷蔵庫1は、後述する側面放熱パイプ42を、図5中に点線で示す冷蔵庫1の側面側の外箱1aと内箱1bとの間であって、外箱1a面に接するように配設されている。外箱1aは鋼板製であり、外箱1a外表面から庫外空気に良好に放熱することができる。また図5中に一点鎖線で示す結露防止パイプ43は、上仕切り壁28、下仕切り壁29、冷凍温度帯室仕切り壁30の前方に配設されている。   FIG. 5 is a diagram illustrating the arrangement positions of the side heat radiation pipe 42 and the dew condensation prevention pipe 43 in the refrigerator according to the first embodiment. The refrigerator 1 according to the present embodiment has a side heat radiating pipe 42, which will be described later, between the outer box 1a and the inner box 1b on the side of the refrigerator 1 indicated by a dotted line in FIG. It arrange | positions so that it may contact | connect. The outer box 1a is made of a steel plate and can radiate heat well from the outer surface of the outer box 1a to the outside air. Further, a dew condensation prevention pipe 43 indicated by a one-dot chain line in FIG. 5 is disposed in front of the upper partition wall 28, the lower partition wall 29, and the freezing temperature zone partition wall 30.

結露防止パイプ43近傍の詳細を図6a、図6b、図6cに示す。図6aは、実施例1の冷蔵庫における仕切り壁の前面部近傍の断面模式図であり、実施例1結露防止パイプ43近傍の冷凍温度帯室仕切り壁30の前面部近傍の断面を模式的に示す図2の拡大図である。冷凍温度帯室仕切り壁30の内部に、圧縮機24から吐出する高温冷媒が流れる結露防止パイプ43が設けられ、この結露防止パイプ43は冷凍温度帯室仕切り壁30の前面部に設けた仕切りカバー30aの近傍に設けられている。なお本実施の形態例に関わる冷蔵庫1の仕切りカバー30aは、熱伝導性を高めるために鋼板製としている。   Details of the vicinity of the condensation prevention pipe 43 are shown in FIGS. 6a, 6b, and 6c. 6a is a schematic cross-sectional view of the vicinity of the front surface portion of the partition wall in the refrigerator of the first embodiment, and schematically illustrates a cross section of the front surface portion of the freezing temperature zone partition wall 30 in the vicinity of the dew condensation prevention pipe 43 of the first embodiment. FIG. 3 is an enlarged view of FIG. 2. A dew condensation prevention pipe 43 through which the high-temperature refrigerant discharged from the compressor 24 flows is provided inside the refrigeration temperature zone chamber partition wall 30, and the dew condensation prevention pipe 43 is a partition cover provided on the front surface of the refrigeration temperature zone chamber partition wall 30. It is provided in the vicinity of 30a. In addition, the partition cover 30a of the refrigerator 1 according to the present embodiment is made of a steel plate in order to increase thermal conductivity.

仕切りカバー30aの表面とその周囲空気は、冷凍温度帯室仕切り壁30が設けられている約−18℃の冷凍温度帯室60により冷やされて低温となるため、冷蔵庫周囲が高湿となっていた場合、仕切りカバー30a近傍の空気中の水分によって仕切りカバー30aの表面に結露が発生することがある。この結露を回避するために結露防止パイプ43に高温の冷媒を流し、仕切りカバー30aと冷媒とで熱交換させ、図中の93で示す熱の流れ(結露防止パイプ43から外部へ伝わる熱の流れ)で仕切りカバー30aを加熱している。図6bは、実施例1に関わる冷蔵庫の結露防止パイプ43近傍の上仕切り壁28の前面部近傍の断面、図6cは、実施例1に関わる冷蔵庫の結露防止パイプ43近傍の下仕切り壁29の前面部近傍の断面を模式的に示す図2の拡大図である。上仕切り壁28、下仕切り壁29も図6aで示した冷凍温度帯室仕切り壁30と同様の構成となっており、各仕切り壁28、29の内部で、かつ前面部に設けた仕切りカバー28a、29aの近傍となる箇所に結露防止パイプ43を設け、仕切りカバー28a、29aの結露を抑制している。   The surface of the partition cover 30a and the ambient air are cooled by the refrigeration temperature zone chamber 60 at about -18 ° C. where the refrigeration temperature zone compartment partition wall 30 is provided, so that the humidity around the refrigerator is not high. In such a case, condensation may occur on the surface of the partition cover 30a due to moisture in the air near the partition cover 30a. In order to avoid this dew condensation, a high-temperature refrigerant is caused to flow through the dew condensation prevention pipe 43, heat is exchanged between the partition cover 30a and the refrigerant, and the heat flow indicated by 93 in the figure (the flow of heat transmitted from the dew condensation prevention pipe 43 to the outside) ) Is heating the partition cover 30a. 6B is a cross section of the front partition wall 28 in the vicinity of the dew condensation prevention pipe 43 of the refrigerator according to the first embodiment, and FIG. 6C is a diagram of the lower partition wall 29 in the vicinity of the dew condensation prevention pipe 43 of the refrigerator according to the first embodiment. FIG. 3 is an enlarged view of FIG. 2 schematically showing a cross section in the vicinity of the front surface portion. The upper partition wall 28 and the lower partition wall 29 have the same configuration as the refrigeration temperature zone partition wall 30 shown in FIG. 6a, and a partition cover 28a provided inside the partition walls 28 and 29 and on the front surface portion. , 29a, a dew condensation prevention pipe 43 is provided to suppress dew condensation on the partition covers 28a, 29a.

一方で、隣接した物体及び物質の間に温度差があると熱交換が生じることを考えると、各仕切り壁に設けた結露防止パイプ43内の冷媒は、各仕切り壁28、29、30に隣接した冷蔵室2、冷凍温度帯室60、野菜室6内の空気とも熱交換を行う。すなわち結露防止パイプ43により、図中の94で示す熱の流れ(結露防止パイプ43から貯蔵室内側へ伝わる熱の流れ)で冷蔵室2、冷凍温度帯室60、野菜室6内の空気と、結露防止パイプ43内の冷媒とで熱交換し、庫内を加熱する。その結果、この結露防止パイプ43により庫内に流入した熱を改めて冷却する必要が生じるため、省エネルギー性能の低下を招く。   On the other hand, considering that heat exchange occurs when there is a temperature difference between adjacent objects and substances, the refrigerant in the dew condensation prevention pipe 43 provided on each partition wall is adjacent to each partition wall 28, 29, 30. Heat exchange is also performed with the air in the refrigerator compartment 2, the freezing temperature zone 60, and the vegetable compartment 6. That is, the dew condensation prevention pipe 43 causes the heat in the refrigerator compartment 2, the freezing temperature zone room 60, and the vegetable room 6 to flow in the heat flow indicated by 94 in the figure (heat flow transmitted from the dew condensation prevention pipe 43 to the storage room side), and Heat is exchanged with the refrigerant in the dew condensation prevention pipe 43 to heat the interior. As a result, it is necessary to cool again the heat that has flowed into the cabinet by the dew condensation prevention pipe 43, resulting in a decrease in energy saving performance.

そこで本実施例の冷蔵庫1では、結露防止パイプ43による加熱量を調整できるように冷凍サイクルを構成している。図7は、実施例1に関わる冷蔵庫の冷凍サイクル(冷媒流路)の構成を示す図である。本実施例の冷蔵庫1では、圧縮機24、庫外放熱器41、側面放熱パイプ42、結露防止パイプ43、ドライヤ44、キャピラリチューブ45、冷却器7、気液分離器46を備え、また冷媒分岐部100と、冷媒流路を制御する三方弁101を備えており、これらは符号72から82で示す冷凍サイクルを構成する各部材を接続する接続配管で接続されている。以下、接続配管72から81をまとめて、接続配管71と称する場合がある。   Therefore, in the refrigerator 1 of the present embodiment, the refrigeration cycle is configured so that the heating amount by the dew condensation prevention pipe 43 can be adjusted. FIG. 7 is a diagram illustrating the configuration of the refrigeration cycle (refrigerant flow path) of the refrigerator according to the first embodiment. The refrigerator 1 of the present embodiment includes a compressor 24, an external radiator 41, a side heat radiating pipe 42, a dew condensation preventing pipe 43, a dryer 44, a capillary tube 45, a cooler 7, and a gas-liquid separator 46, and a refrigerant branch. The part 100 and the three-way valve 101 for controlling the refrigerant flow path are provided, and these are connected by connecting pipes connecting members constituting the refrigeration cycle indicated by reference numerals 72 to 82. Hereinafter, the connection pipes 72 to 81 may be collectively referred to as the connection pipe 71.

なお、本実施の形態例の冷蔵庫1は冷媒にイソブタンを用いている。   Note that the refrigerator 1 of the present embodiment uses isobutane as a refrigerant.

冷媒分岐部100は3つの接続配管74、75、76と接続し、この冷媒分岐部100に接続された3つの接続配管74、75、76を常に連通状態とする部材である。三方弁101は、101i_A、101i_Bで示す2つの流入口と、101oで示す流出口を備え、2つの流入口101i_A、101i_Bのうち何れかの流入口と、流出口101oとを連通させる部材である。さらに本実施の形態例の三方弁101では、流出口101oを、流入口101i_A、101i_Bのどちらの流入口とも連通しない状態として冷媒流路を閉塞することもできる部材としている。なお、以下では流入口101i_Aと流出口101oを連通とした状態をA状態、流入口101i_Bと流出口101oを連通とした状態をB状態とし、流入口101i_A、101i_Bのどちらの流入口とも連通しない状態をC状態とする。   The refrigerant branch part 100 is a member that is connected to the three connection pipes 74, 75, and 76, and always connects the three connection pipes 74, 75, and 76 connected to the refrigerant branch part 100. The three-way valve 101 includes two inlets indicated by 101i_A and 101i_B and an outlet indicated by 101o, and is a member that allows any one of the two inlets 101i_A and 101i_B to communicate with the outlet 101o. . Furthermore, in the three-way valve 101 of the present embodiment, the outlet 101o is a member that can close the refrigerant flow path in a state where it does not communicate with any of the inlets 101i_A and 101i_B. In the following, the state in which the inlet 101i_A and the outlet 101o are in communication are in the A state, the state in which the inlet 101i_B and the outlet 101o are in communication are in the B state, and neither the inlet 101i_A or 101i_B is in communication. Let the state be the C state.

次に各構成部材の接続関係について説明する。接続配管72は圧縮機24の吐出口と庫外放熱器41とを、接続配管73は庫外放熱器41と側面放熱パイプ42とを、接続配管74は側面放熱パイプ42と冷媒分岐部100とをそれぞれ接続している。冷媒分岐部100は、その他に接続配管75及び接続配管76と接続している。   Next, the connection relationship of each component will be described. The connection pipe 72 connects the discharge port of the compressor 24 and the external heat radiator 41, the connection pipe 73 connects the external heat radiator 41 and the side heat radiating pipe 42, and the connection pipe 74 connects the side heat radiating pipe 42 and the refrigerant branch portion 100. Are connected to each other. In addition, the refrigerant branching portion 100 is connected to a connection pipe 75 and a connection pipe 76.

接続配管75は冷媒分岐部100と結露防止パイプ43とを接続している。結露防止パイプ43は、他端に接続配管77により三方弁101の流入口101i_Aと接続している。また冷媒分岐部100と接続している接続配管76の他端は、三方弁101の流入口101i_Bと接続している。   The connection pipe 75 connects the refrigerant branch part 100 and the dew condensation prevention pipe 43. The dew condensation prevention pipe 43 is connected to the inflow port 101i_A of the three-way valve 101 at the other end by a connection pipe 77. The other end of the connection pipe 76 connected to the refrigerant branching unit 100 is connected to the inlet 101 i_B of the three-way valve 101.

また、接続配管78は三方弁101の流出口101oとドライヤ44とを、接続配管79はドライヤ44とキャピラリチューブ45とを、接続配管80はキャピラリチューブ45と冷却器7とを、接続配管81は冷却器7と気液分離器46とを、接続配管82は気液分離器46と圧縮機24とをそれぞれ接続している。   The connection pipe 78 connects the outlet 101o of the three-way valve 101 and the dryer 44, the connection pipe 79 connects the dryer 44 and the capillary tube 45, the connection pipe 80 connects the capillary tube 45 and the cooler 7, and the connection pipe 81 The cooling pipe 7 and the gas-liquid separator 46 are connected, and the connection pipe 82 connects the gas-liquid separator 46 and the compressor 24.

以上が、本実施例の冷蔵庫1の冷凍サイクル構成である。次に三方弁101を流入口101i_Aと流出口101oを連通状態、すなわちA状態として形成する第一の冷媒循環流路Aについて説明する。   The above is the refrigeration cycle configuration of the refrigerator 1 of the present embodiment. Next, the first refrigerant circulation passage A in which the three-way valve 101 is formed with the inflow port 101i_A and the outflow port 101o in communication, that is, the A state will be described.

圧縮機24により高温高圧となった冷媒は、接続配管72、73を介し、庫外放熱器41、側面放熱パイプ42に流入し、これらにより放熱される。その後、冷媒は接続配管74を介して冷媒分岐部100に流入する。ここで三方弁101は流入口101i_Aと流出口101oを連通状態としており、接続配管76は通過できないため、冷媒分岐部100に流入した冷媒は、接続配管75を介して結露防止パイプ43に流入し、この結露防止パイプ43においても放熱する。この放熱により仕切りカバー28a、29a、30a(図6a、図6b、図6c参照)を加熱し、その後、冷媒は接続配管77を介し、三方弁101に流入する。   The refrigerant that has become high temperature and high pressure by the compressor 24 flows into the external heat radiator 41 and the side surface heat radiation pipe 42 via the connection pipes 72 and 73 and is radiated by these. Thereafter, the refrigerant flows into the refrigerant branch portion 100 through the connection pipe 74. Here, since the three-way valve 101 is in communication between the inlet 101i_A and the outlet 101o and the connection pipe 76 cannot pass through, the refrigerant that has flowed into the refrigerant branch portion 100 flows into the dew condensation prevention pipe 43 via the connection pipe 75. The dew condensation prevention pipe 43 also radiates heat. The heat is applied to the partition covers 28a, 29a, 30a (see FIGS. 6a, 6b, and 6c), and then the refrigerant flows into the three-way valve 101 through the connection pipe 77.

三方弁101では流入口101i_Aと流出口101oを連通しているため、冷媒は接続配管78、79を介し、ドライヤ44、キャピラリチューブ45に流入し、このキャピラリチューブ45にて減圧される。減圧された冷媒は接続配管80を介して冷却器7に流入し、冷却器7にて蒸発・吸熱する。吸熱した冷媒は接続配管81、気液分離器46、接続配管82を介して圧縮機24に戻る。   In the three-way valve 101, since the inlet 101i_A and the outlet 101o are communicated with each other, the refrigerant flows into the dryer 44 and the capillary tube 45 through the connection pipes 78 and 79, and the pressure is reduced in the capillary tube 45. The decompressed refrigerant flows into the cooler 7 through the connection pipe 80, and evaporates and absorbs heat in the cooler 7. The refrigerant that has absorbed heat returns to the compressor 24 via the connection pipe 81, the gas-liquid separator 46, and the connection pipe 82.

次に三方弁101を流入口101i_Bと流出口101oを連通状態、すなわちB状態として形成する第二の冷媒循環流路Bについて説明する。   Next, the second refrigerant circulation passage B in which the three-way valve 101 is formed with the inflow port 101i_B and the outflow port 101o in communication, that is, in the B state will be described.

第一の冷媒循環流路A同様に、圧縮機24により高温高圧となった冷媒は、各接続配管71を介し庫外放熱器41、側面放熱パイプ42により放熱しながら冷媒分岐部100に流入する。ここで三方弁101は流入口101i_Bと流出口101oを連通状態としているため、冷媒分岐部100に流入した冷媒は、接続配管76を介して三方弁101に流入する。その後は第一の冷媒循環流路Aと同様に、接続配管78〜82を介して、ドライヤ44、キャピラリチューブ45、冷却器7、気液分離器46に流入しながら、圧縮機24に戻る。   Similarly to the first refrigerant circulation flow path A, the refrigerant that has become high temperature and high pressure by the compressor 24 flows into the refrigerant branching portion 100 through each connection pipe 71 while radiating heat through the external radiator 41 and the side surface heat radiating pipe 42. . Here, since the three-way valve 101 communicates the inflow port 101i_B and the outflow port 101o, the refrigerant that has flowed into the refrigerant branch portion 100 flows into the three-way valve 101 via the connection pipe 76. Thereafter, similarly to the first refrigerant circulation flow path A, the flow returns to the compressor 24 while flowing into the dryer 44, the capillary tube 45, the cooler 7, and the gas-liquid separator 46 via the connection pipes 78 to 82.

以上のように、本実施の形態例の冷蔵庫1は、結露防止パイプ43に冷媒を流す流路と流さない流路、すなわち第一の冷媒循環流路Aを流れる状態と第二の冷媒循環流路Bを流れる状態とを設けており、これらを切換えることができる。これにより結露防止パイプ43の加熱量を調整する。   As described above, the refrigerator 1 according to the present embodiment includes the flow path for flowing the refrigerant through the dew condensation prevention pipe 43 and the flow path for not flowing the refrigerant, that is, the state flowing through the first refrigerant circulation path A and the second refrigerant circulation flow. The state which flows through the path | route B is provided, and these can be switched. Thereby, the heating amount of the dew condensation prevention pipe 43 is adjusted.

前述のように、結露防止パイプ43による放熱は、仕切りカバー28a、29a、30a(図6a、図6b、図6c参照)の結露の抑制に有効であるが、庫内を加熱することになるため、省エネルギー性能の低下を招く。そこで、結露が生じ易い周囲環境が高温高湿の場合、第一の冷媒循環流路を流れる状態を用いる時間の割合を長くして結露防止パイプ43の加熱量を多くする。結露が生じ難い周囲環境が低温低湿の場合には、第二の冷媒循環流路Bを流れる状態を用いる時間の割合を長くして結露防止パイプ43の加熱量を少なくする。つまり第一の冷媒循環流路Aにより結露が生じない又は成長しないように仕切りカバー30aを加熱するが、第二の冷媒循環流路Bに冷媒を切換えて、それ以上は加熱しないようにして、結露を防止しつつ、省エネルギー性能を向上させている。   As described above, the heat radiation by the dew condensation prevention pipe 43 is effective in suppressing the dew condensation of the partition covers 28a, 29a, and 30a (see FIGS. 6a, 6b, and 6c), but it heats the inside of the cabinet. This leads to a decrease in energy saving performance. Therefore, when the ambient environment in which condensation is likely to occur is high temperature and high humidity, the heating rate of the condensation prevention pipe 43 is increased by increasing the proportion of time in which the state flowing through the first refrigerant circulation passage is used. When the ambient environment where condensation is unlikely to occur is low temperature and low humidity, the heating rate of the condensation prevention pipe 43 is reduced by increasing the proportion of time using the state flowing through the second refrigerant circulation passage B. That is, the partition cover 30a is heated so that no condensation occurs or grows by the first refrigerant circulation flow path A, but the refrigerant is switched to the second refrigerant circulation flow path B so that it is not heated further. Energy saving performance is improved while preventing condensation.

図8は、実施例1に関わる冷蔵庫における三方弁101で第一の冷媒循環流路と第二の冷媒循環流路を切換える時間割合と相対湿度との関係を説明する図である。本実施の形態例の冷蔵庫1では、前述した外気温度センサ111と外気湿度センサ112で得られた冷蔵庫周囲の温度及び湿度によって、第一の冷媒循環流路Aと第二の冷媒循環流路Bを切換える。   FIG. 8 is a diagram for explaining the relationship between the relative humidity and the time ratio at which the first refrigerant circulation channel and the second refrigerant circulation channel are switched by the three-way valve 101 in the refrigerator according to the first embodiment. In the refrigerator 1 of the present embodiment, the first refrigerant circulation channel A and the second refrigerant circulation channel B are determined by the temperature and humidity around the refrigerator obtained by the outside temperature sensor 111 and the outside humidity sensor 112 described above. Is switched.

図8は外気温度センサ111で検出されたある周囲温度の場合の、外気湿度センサ112で検出する周囲湿度に対する冷媒流路を第一の冷媒循環流路A側にしている時間割合の関係を示している。横軸は相対湿度、縦軸は結露防止パイプ43の加熱割合、すなわち冷媒流路を第一の冷媒循環流路A側にしている時間の割合である。例えば、相対湿度が高いRH2の場合、各仕切りカバー28a、29a、30aの表面で結露する可能性が高くなるので、三方弁101をA状態にして冷媒を流す時間の割合(tA2)を長く、B状態にして冷媒を流す時間の割合(tB2)を短くする。反対に湿度が低いRH1の場合、各仕切りカバーの表面で結露する可能性が低くなるので、三方弁101をA状態にして冷媒を流す時間の割合(tA1)を短く、三方弁101をB状態にして冷媒を流す時間の割合(tB1)を長くすると良い。実際の冷却運転では、温度及び湿度に合わせた第一の冷媒循環流路A側、第二の冷媒循環流路B側の切換時間を予め決めておき、圧縮機24がONの時に、その時間に従って三方弁101をA状態とB状態とを切換えて運転する。冷媒流路を切換える時間は冷蔵庫によって異なるが、例えば本実施の形態例の冷蔵庫1では、外気30℃相対湿度50%でA状態を10分、B状態を20分で切換え、外気30℃相対湿度70%ではA状態を20分、B状態を10分で切換える。   FIG. 8 shows the relationship of the time ratio when the refrigerant flow path is set to the first refrigerant circulation flow path A side with respect to the ambient humidity detected by the outside air humidity sensor 112 in the case of a certain ambient temperature detected by the outside air temperature sensor 111. ing. The horizontal axis represents the relative humidity, and the vertical axis represents the heating rate of the dew condensation prevention pipe 43, that is, the rate of time during which the refrigerant flow path is on the first refrigerant circulation flow path A side. For example, in the case of RH2 where the relative humidity is high, there is a high possibility of dew condensation on the surface of each partition cover 28a, 29a, 30a. Therefore, the ratio of time for flowing the refrigerant with the three-way valve 101 in the A state (tA2) is increased. The ratio (tB2) of flowing the refrigerant in the B state is shortened. On the other hand, in the case of RH1 where the humidity is low, the possibility of condensation on the surface of each partition cover is low. Thus, it is preferable to increase the ratio (tB1) of the flow time of the refrigerant. In actual cooling operation, the switching time on the first refrigerant circulation channel A side and the second refrigerant circulation channel B side in accordance with the temperature and humidity is determined in advance, and when the compressor 24 is ON, the time Accordingly, the three-way valve 101 is operated by switching between the A state and the B state. For example, in the refrigerator 1 according to the present embodiment, the A state is switched to 10 minutes when the ambient air is 30 ° C. and the relative humidity is 50%, and the B state is switched to 20 minutes when the ambient temperature is 30 ° C. relative humidity. At 70%, the A state is switched in 20 minutes and the B state is switched in 10 minutes.

以上のように本実施の形態例の冷蔵庫1は、壁面への結露を抑制しつつ省エネルギー性能を向上させるため、上仕切り壁28、下仕切り壁29、冷凍温度帯室仕切り壁30の前面を加熱して結露を防止する結露防止パイプ43を備え、この結露防止パイプ43に冷媒を流す第一の冷媒循環流路Aを流れる状態と、結露防止パイプ43をバイパスし、結露防止パイプ43以外の冷凍サイクル構成部材に冷媒を流す第二の冷媒循環流路Bを流れる状態を備え、この2つの冷媒流路を切換えて結露防止パイプ43の加熱量を調整している。   As described above, the refrigerator 1 according to the present embodiment heats the front surfaces of the upper partition wall 28, the lower partition wall 29, and the freezing temperature zone chamber partition wall 30 in order to improve energy saving performance while suppressing condensation on the wall surface. A dew condensation prevention pipe 43 for preventing dew condensation, a state of flowing through the first refrigerant circulation channel A for flowing the refrigerant through the dew condensation prevention pipe 43, and a refrigeration other than the dew condensation prevention pipe 43 by bypassing the dew condensation prevention pipe 43. A state is provided in which the refrigerant flows through the second refrigerant circulation passage B that causes the refrigerant to flow through the cycle constituent member, and the amount of heating of the dew condensation prevention pipe 43 is adjusted by switching between the two refrigerant passages.

また、図7で示したように、この第一の冷媒循環流路と第二の冷媒循環流路を切換える冷媒流路切換手段である三方弁101を、液相域の冷媒が流れる、結露防止パイプ43よりも冷媒流路下流側に備えている。これにより、冷媒流路切換手段による冷媒流動音の上昇を抑えつつ、省エネルギー性能が高い冷蔵庫を得られる。以下で冷媒流動音の上昇を抑えられる理由を説明する。   In addition, as shown in FIG. 7, condensation prevention is achieved in which the refrigerant in the liquid phase flows through the three-way valve 101 which is a refrigerant flow path switching means for switching between the first refrigerant circulation path and the second refrigerant circulation path. The pipe 43 is provided downstream of the refrigerant flow path. Thereby, a refrigerator with high energy saving performance can be obtained while suppressing an increase in refrigerant flow noise caused by the refrigerant flow switching means. The reason why an increase in refrigerant flow noise can be suppressed will be described below.

図9a、図9bは実施例1の圧縮機24吐出口からキャピラリチューブ45までの配管内部の冷媒状態を模式的に表した図であり、図9aは第一の冷媒循環流路A、図9bは第二の冷媒循環流路Bの状態を表す。図9aにおいて、符号91をガス冷媒、符号92を液冷媒として、ガス冷媒91のみの気相域は区間ab、ガス冷媒91と液冷媒92が混在する気液二相域は区間bc、液冷媒92のみの液相域は区間cdと表す。また区間aeは庫外放熱器41を含む圧縮機24の吐出から庫外放熱器41流出部まで、区間efは側面放熱パイプ42を含む庫外放熱器41流出部から冷媒分岐部100まで、区間fgは結露防止パイプ43を含む冷媒分岐部100から三方弁101まで、区間gdはドライヤ44を含む三方弁101からキャピラリチューブ45までを表す。また、図9bでは、冷媒分岐部100から結露防止パイプ43をバイパスして、接続配管76を流れて三方弁101まで流れる。   9a and 9b are diagrams schematically showing the refrigerant state inside the pipe from the discharge port of the compressor 24 to the capillary tube 45 of the first embodiment, and FIG. 9a is a diagram showing the first refrigerant circulation channel A and FIG. 9b. Represents the state of the second refrigerant circulation passage B. In FIG. 9a, the reference numeral 91 is a gas refrigerant, the reference numeral 92 is a liquid refrigerant, the gas phase region of the gas refrigerant 91 only is the section ab, the gas-liquid two-phase area where the gas refrigerant 91 and the liquid refrigerant 92 are mixed is the section bc, and the liquid refrigerant. The liquid phase region of only 92 is denoted as section cd. The section ae is from the discharge of the compressor 24 including the external radiator 41 to the outflow portion of the external radiator 41, and the section ef is from the outflow portion of the external radiator 41 including the side surface heat radiating pipe 42 to the refrigerant branching section 100. fg represents from the refrigerant branching portion 100 including the condensation prevention pipe 43 to the three-way valve 101, and a section gd represents from the three-way valve 101 including the dryer 44 to the capillary tube 45. In FIG. 9 b, the condensation branch pipe 100 bypasses the dew condensation prevention pipe 43, flows through the connection pipe 76, and flows to the three-way valve 101.

圧縮機24で圧縮されて高温高圧になったガス冷媒は、庫外放熱器41、側面放熱パイプ42、結露防止パイプ43の順に庫外に熱を放出し、区間abで示す気相域、区間bcで示す相変化中の気液二相域、区間cdで示す液相域と冷媒の状態は変化していく。結露防止パイプ43とドライヤ44の間に第一の冷媒循環流路Aと第二の冷媒循環流路Bを切換える三方弁101を設けているため、三方弁101は図9a、図9b中のgに位置し、これらの位置では第一の冷媒循環流路A側、第二の冷媒循環流路B側、共に液冷媒92のみの液相域の冷媒が流れている。   The gas refrigerant compressed to high temperature and high pressure by the compressor 24 releases heat in the order of the external radiator 41, the side surface heat radiating pipe 42, and the dew condensation preventing pipe 43 in order, and the gas phase region and section indicated by the section ab The gas-liquid two-phase region during phase change indicated by bc, the liquid phase region indicated by section cd, and the state of the refrigerant change. Since the three-way valve 101 for switching the first refrigerant circulation passage A and the second refrigerant circulation passage B is provided between the dew condensation prevention pipe 43 and the dryer 44, the three-way valve 101 is indicated by g in FIGS. 9a and 9b. In these positions, the liquid refrigerant of only the liquid refrigerant 92 flows on both the first refrigerant circulation channel A side and the second refrigerant circulation channel B side.

ここで、冷媒を制御する三方弁101の内部は、弁の開閉が行い易いように、一般的に前後の接続配管77、78よりも径が小さい流路が存在するので、質量保存則から、密度一定の条件では冷媒流路断面積の縮小によって冷媒の流速が速くなり、その結果、冷媒流動音が大きくなる。この時、液冷媒92はガス冷媒91に比べて密度が高く、例えばイソブタンでは液体は気体よりも50〜100倍となるため、質量流量が一定の場合、同じ流路ではガス冷媒91に比べて低速の1/50〜1/100倍で流れる。そのためガス冷媒91に比べて液冷媒92は、冷媒流路の縮小により流速が速くなったとしても、ガス冷媒91に比べた場合、十分に低速であり、冷媒流動音も小さい。従って、本実施例の冷蔵庫1における三方弁101は、ガス冷媒91に比べて流速の遅い液冷媒92を制御する位置にあることにより、冷媒流動音の上昇を抑えることができる。   Here, the inside of the three-way valve 101 that controls the refrigerant generally has a flow path having a smaller diameter than the front and rear connecting pipes 77 and 78 so that the valve can be easily opened and closed. Under constant density conditions, the flow rate of the refrigerant increases due to the reduction in the cross-sectional area of the refrigerant flow path, and as a result, the refrigerant flow noise increases. At this time, the density of the liquid refrigerant 92 is higher than that of the gas refrigerant 91. For example, in the case of isobutane, the liquid is 50 to 100 times that of the gas. It flows at 1/50 to 1/100 times the low speed. Therefore, even if the liquid refrigerant 92 has a higher flow rate due to the reduction of the refrigerant flow path than the gas refrigerant 91, the liquid refrigerant 92 is sufficiently slow compared to the gas refrigerant 91 and the refrigerant flow noise is small. Accordingly, the three-way valve 101 in the refrigerator 1 according to the present embodiment is in a position for controlling the liquid refrigerant 92 having a slower flow rate than the gas refrigerant 91, thereby suppressing an increase in refrigerant flow noise.

また、図9aで示す第一の冷媒循環流路A側と、図9bで示す第二の冷媒循環流路B側とで共に液冷媒92を制御するため、冷媒流路切換えによる冷媒状態の変化もなく、冷媒流路切換えに伴う冷媒流動音の変化も小さいと考えられる。従って液相域の冷媒を三方弁101で制御することで、冷媒流路切換手段による冷媒流動音の上昇を抑制しつつ、結露防止パイプ43による庫内加熱を抑制した省エネルギー性能の高い冷蔵庫を得られる。   Further, since the liquid refrigerant 92 is controlled on both the first refrigerant circulation channel A side shown in FIG. 9a and the second refrigerant circulation channel B side shown in FIG. In addition, it is considered that the change of the refrigerant flow sound accompanying the refrigerant flow switching is small. Therefore, by controlling the refrigerant in the liquid phase region with the three-way valve 101, it is possible to obtain a refrigerator with high energy-saving performance that suppresses the rise of the refrigerant flow noise caused by the refrigerant flow switching means and suppresses the internal heating by the condensation prevention pipe 43. It is done.

さらに本実施の形態例の冷蔵庫1では、三方弁101のA状態とB状態の切換時間を3秒と比較的長い時間としている。三方弁101の切換えに要する時間を短く、例えば0.5秒以内とした場合、三方弁101の前後の圧力が急激に変化するため、三方弁101への負荷が大きい。また、例えば気液二相域や液相域では液冷媒92が存在するため、ウォーターハンマーが生じるといったことも考えられる。一方で弁の切換時間を長くした場合、例えば三方弁101のA状態からB状態への切換えでは、流入口101i_Aは冷媒流路が徐々に縮小し、流入口101i_Bは徐々に拡大し、その間、非常に断面積の小さい冷媒流路が存在することになるため、流速が速まって大きな冷媒流動音が生じる可能性がある。そこで、本実施の形態は三方弁101を通過する冷媒を液冷媒92とすることで、ガス冷媒91に比べて冷媒流速を低速で制御できるため、断面積が小さくなっても冷媒流動音が大きくなり難く、ガス域又は二相域の冷媒を制御する場合に比べて弁の切換時間を長くすることができる。従って、三方弁101の流入口101i_A、101i_Bを瞬時に閉じることなく三方弁101の状態を切換えるので、ウォーターハンマーや三方弁101への負荷を抑制することができる。   Furthermore, in the refrigerator 1 of this embodiment, the switching time of the A state and the B state of the three-way valve 101 is set to a relatively long time of 3 seconds. When the time required for switching the three-way valve 101 is short, for example, within 0.5 seconds, the pressure before and after the three-way valve 101 changes abruptly, so the load on the three-way valve 101 is large. In addition, for example, the liquid refrigerant 92 exists in the gas-liquid two-phase region or the liquid-phase region, so that a water hammer may be generated. On the other hand, when the switching time of the valve is lengthened, for example, when the three-way valve 101 is switched from the A state to the B state, the refrigerant flow path of the inlet 101i_A is gradually reduced and the inlet 101i_B is gradually enlarged. Since a refrigerant flow path having a very small cross-sectional area exists, there is a possibility that a large flow rate of the refrigerant flows due to an increase in the flow velocity. Therefore, in the present embodiment, the refrigerant flow rate through the three-way valve 101 is the liquid refrigerant 92, so that the refrigerant flow rate can be controlled at a lower speed than that of the gas refrigerant 91. Therefore, the valve switching time can be extended as compared with the case where the refrigerant in the gas region or the two-phase region is controlled. Therefore, since the state of the three-way valve 101 is switched without instantaneously closing the inlets 101i_A and 101i_B of the three-way valve 101, the load on the water hammer and the three-way valve 101 can be suppressed.

また本実施の形態の冷蔵庫1では、圧縮機停止中においても省エネルギー性能を向上させている。図10は、実施例1に関わる冷蔵庫の冷却運転の一例を示すタイムチャートである。庫内が所定の温度に到達した後の安定状態における冷却運転は、冷蔵室2を冷却する冷蔵運転、冷凍温度帯室60を冷却する冷凍運転、圧縮機が停止した状態で冷却器に成長した霜によって冷蔵温度帯室を冷却する霜冷却運転からなる運転パターンを基本とし、周囲温度の変動や食品等の投入が行われない限り、これらの運転を繰り返す。具体的には、圧縮機停止中に冷凍室温度TF1まで上昇した時に圧縮機24がONになり、冷蔵運転を実施する。冷蔵室温度が低下して温度TRになると冷蔵運転が終了し、引き続き冷凍室温度がTF2になるまで冷凍運転を実施する。   Moreover, in the refrigerator 1 of this Embodiment, the energy saving performance is improved even when the compressor is stopped. FIG. 10 is a time chart illustrating an example of the cooling operation of the refrigerator according to the first embodiment. The cooling operation in a stable state after the inside of the chamber reaches a predetermined temperature is a refrigeration operation for cooling the refrigeration chamber 2, a refrigeration operation for cooling the refrigeration temperature zone chamber 60, and has grown into a cooler with the compressor stopped. Based on an operation pattern consisting of a frost cooling operation in which the refrigeration temperature zone chamber is cooled by frost, these operations are repeated as long as the ambient temperature is not changed or food is not charged. Specifically, the compressor 24 is turned on when the temperature rises to the freezer compartment temperature TF1 while the compressor is stopped, and the refrigeration operation is performed. When the temperature of the refrigerator compartment decreases and reaches the temperature TR, the refrigerator operation is terminated, and the refrigerator operation is continued until the temperature of the freezer compartment reaches TF2.

次に三方弁101の動作を圧縮機24に関連付けて説明する。なお本実施の形態例の冷蔵庫では、野菜室6の冷却方法は三方弁101の動作に直接関係していないので、図示していない。   Next, the operation of the three-way valve 101 will be described in relation to the compressor 24. In the refrigerator of the present embodiment, the method for cooling the vegetable compartment 6 is not shown because it is not directly related to the operation of the three-way valve 101.

圧縮機24が運転中の場合、図8を用いて示したように、温度及び湿度に応じてA状態とB状態の切換時間を予め決めておき、それに従って三方弁101を切換える。また図10に示す冷却運転では、圧縮機24が停止する前に、三方弁101をA状態に固定している。これは、圧縮機24停止中では結露防止パイプ43の温度が低温になり易いので、圧縮機24停止前に結露防止パイプ43によって仕切りカバー28a、29a、30aの表面温度を高めて結露を防止するためである。同様に圧縮機24停止中に低温となった仕切りカバー28a、29a、30aの表面温度を高めるため、圧縮機24始動直後も三方弁101をA状態としている。   When the compressor 24 is in operation, as shown in FIG. 8, the switching time of the A state and the B state is determined in advance according to the temperature and humidity, and the three-way valve 101 is switched accordingly. In the cooling operation shown in FIG. 10, the three-way valve 101 is fixed in the A state before the compressor 24 stops. This is because the temperature of the dew condensation prevention pipe 43 tends to be low when the compressor 24 is stopped. Therefore, before the compressor 24 is stopped, the dew condensation prevention pipe 43 increases the surface temperature of the partition covers 28a, 29a, 30a to prevent dew condensation. Because. Similarly, in order to increase the surface temperature of the partition covers 28a, 29a, and 30a that have become low temperature while the compressor 24 is stopped, the three-way valve 101 is in the A state immediately after the compressor 24 is started.

圧縮機24が停止中の場合、放熱側、すなわち、庫外放熱器41、側面放熱パイプ42、結露防止パイプ43、ドライヤ44、及び接続配管71〜79までの冷媒は、吸熱側、すなわち冷却器7、気液分離器46、及び接続配管80〜82までの冷媒よりも高圧となっているため、冷媒流路を制御しない場合はその圧力差によって放熱側の高温冷媒が冷却器側に流入する。そのため冷却器7の温度が上昇し、次の圧縮機24駆動時にその温度上昇した冷却器7を冷却する必要が生じ、省エネルギー性能の低下につながる。そこで本実施の形態の冷蔵庫1では、圧縮機停止中は、三方弁101をC状態(流入口101i_A、101i_Bのいずれの流入口とも連通しない状態)にして冷媒流路を閉塞して、この冷媒の流動を止めて省エネルギー性能向上を図っている。また、本実施の形態の冷蔵庫1では、庫内ファン9をON、冷蔵室ダンパ50を開、冷凍室ダンパ52を閉にして、冷却器7に成長した霜により冷気を発生させて冷蔵室2を冷却する運転(霜冷却運転)を備えている。すなわち、図10に示す圧縮機停止中はこの霜冷却運転を行っている。ここで、圧縮機24が停止中に三方弁101をC状態にすると、前述のように冷却器7及び冷却器7に成長した霜の温度上昇を抑制することができ、霜冷却運転における冷蔵室2の冷却効率が高まり、省エネルギー性能向上に寄与する。   When the compressor 24 is stopped, the refrigerant from the heat dissipation side, i.e., the external heat radiator 41, the side heat radiation pipe 42, the dew condensation prevention pipe 43, the dryer 44, and the connection pipes 71 to 79 is the heat absorption side, i.e., the cooler. 7. Since the pressure is higher than that of the refrigerant up to the gas-liquid separator 46 and the connecting pipes 80 to 82, the high-temperature refrigerant on the heat radiation side flows into the cooler side due to the pressure difference when the refrigerant flow path is not controlled. . Therefore, the temperature of the cooler 7 rises, and it becomes necessary to cool the cooler 7 whose temperature has risen when the next compressor 24 is driven, leading to a reduction in energy saving performance. Therefore, in the refrigerator 1 of the present embodiment, when the compressor is stopped, the three-way valve 101 is in the C state (the state where it does not communicate with any one of the inlets 101i_A and 101i_B) to close the refrigerant flow path, and this refrigerant The flow of energy is stopped and energy saving performance is improved. Further, in the refrigerator 1 of the present embodiment, the internal fan 9 is turned on, the refrigerator compartment damper 50 is opened, the freezer compartment damper 52 is closed, and cold air is generated by the frost grown on the cooler 7 to produce the refrigerator compartment 2. Operation (frost cooling operation) is provided. That is, the frost cooling operation is performed while the compressor shown in FIG. 10 is stopped. Here, when the three-way valve 101 is set to the C state while the compressor 24 is stopped, the temperature rise of the frost grown on the cooler 7 and the cooler 7 can be suppressed as described above, and the refrigerator compartment in the frost cooling operation. The cooling efficiency of No. 2 increases, contributing to energy saving performance improvement.

このように本実施の形態の三方弁101は、第一の冷媒循環流路A側と第二の冷媒循環流路B側の切換制御とともに、圧縮機24停止中には三方弁101をC状態とし、三方弁101よりも冷媒流路の上流側にある高温冷媒の流動を止める制御も行っている。これにより結露防止パイプ43による庫内加熱の抑制と共に、高温冷媒による冷却器7の加熱の抑制も行うため、より省エネルギー性能が高い冷蔵庫を得られる。   As described above, the three-way valve 101 of the present embodiment has the three-way valve 101 in the C state while the compressor 24 is stopped, as well as the switching control of the first refrigerant circulation channel A side and the second refrigerant circulation channel B side. In addition, control for stopping the flow of the high-temperature refrigerant on the upstream side of the refrigerant flow path from the three-way valve 101 is also performed. This suppresses heating in the cabinet by the dew condensation prevention pipe 43 and also suppresses heating of the cooler 7 by the high-temperature refrigerant, so that a refrigerator with higher energy saving performance can be obtained.

なお、本実施の形態の冷蔵庫1では、第一の冷媒循環流路A側と第二の冷媒循環流路B側を切換える手段として三方弁101を用いたが、特に三方弁に限ったものではない。図11は、図7の三方弁に換えて二方弁を用いた冷媒流路の冷凍サイクル構成を示す図である。なお、二方弁102Aは結露防止パイプ43と冷媒分岐部200の間、三方弁102Bは結露防止パイプ43をバイパスして分岐部100と冷媒分岐部200の間に設けられており、各流路の開放、閉塞を切換えることができる部材である。図11のように冷媒流路を構成することで、図7と同等の冷媒流路を構成できる。具体的には、二方弁102Aを開放状態、二方弁102Bを閉塞状態とすることで三方弁101のA状態と同等、すなわち第一の冷媒循環流路A側を構成し、二方弁102Aを閉塞状態、二方弁102Bを開放状態とすることでB状態と同等、すなわち第一の冷媒循環流路B側を構成する。また、二方弁102A、102Bを閉塞状態とすることで三方弁101のC状態と同等とすることもできる。そして、二方弁102Aは、結露防止パイプ43の下流側に設けているため液相域の冷媒が流れる。なお二方弁102Bは、二方弁102Bを冷媒が通過する第二の冷媒循環流路B側における、末端の放熱部である側面放熱パイプ42よりも下流側にあるため、こちらも液相域の冷媒が流れる。これにより、図7に示す実施例1の冷蔵庫1と同様に、二方弁102A及び二方弁102Bは液冷媒92を制御することができる。すなわち冷媒流動音の上昇を抑制しつつ、省エネルギー性能の高い冷蔵庫を得られる。   In the refrigerator 1 of the present embodiment, the three-way valve 101 is used as a means for switching between the first refrigerant circulation channel A side and the second refrigerant circulation channel B side. Absent. FIG. 11 is a diagram showing a refrigerant cycle refrigeration cycle configuration using a two-way valve instead of the three-way valve of FIG. The two-way valve 102A is provided between the condensation prevention pipe 43 and the refrigerant branching portion 200, and the three-way valve 102B is provided between the branching portion 100 and the refrigerant branching portion 200, bypassing the condensation prevention pipe 43. It is a member that can be switched between opening and closing. By configuring the refrigerant flow path as shown in FIG. 11, a refrigerant flow path equivalent to that in FIG. 7 can be configured. Specifically, the two-way valve 102A is opened and the two-way valve 102B is closed, so that it is equivalent to the state A of the three-way valve 101, that is, the first refrigerant circulation passage A side is configured. By setting 102A to the closed state and the two-way valve 102B to the open state, the same state as the B state, that is, the first refrigerant circulation channel B side is configured. Moreover, it can also be made equivalent to the C state of the three-way valve 101 by making the two-way valves 102A and 102B closed. Since the two-way valve 102A is provided on the downstream side of the dew condensation prevention pipe 43, the refrigerant in the liquid phase region flows. In addition, since the two-way valve 102B is on the downstream side of the side heat radiation pipe 42 that is the terminal heat radiation part on the second refrigerant circulation channel B side through which the refrigerant passes through the two-way valve 102B, this is also the liquid phase region. The refrigerant flows. Thereby, like the refrigerator 1 of Example 1 shown in FIG. 7, the two-way valve 102A and the two-way valve 102B can control the liquid refrigerant 92. That is, a refrigerator with high energy saving performance can be obtained while suppressing an increase in refrigerant flow noise.

(比較例)
次に、比較例の冷蔵庫(特許文献1参照)の構成について説明する。この比較例の冷蔵庫1の冷媒流路構成に関し、図12、図13a、図13bを参照して説明する。なお、実施例1と同一の部材については、同一符号を付して説明を省略する。
(Comparative example)
Next, the structure of the refrigerator (refer patent document 1) of a comparative example is demonstrated. The refrigerant flow path configuration of the refrigerator 1 of this comparative example will be described with reference to FIGS. 12, 13a, and 13b. In addition, about the member same as Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図12は比較例の冷蔵庫における冷凍サイクル構成を示す図である。図12に示す冷媒流路は、図7の冷媒分岐部100の代わりに三方弁201を備え、三方弁101の代わりに冷媒分岐部200を備えている。三方弁201は201iで示す流入口と、201o_Aと201o_Bで示す2つの流出口を備える部材であり、三方弁201の流入口201iと流出口201o_Aが連通状態でD状態となり第三の冷媒循環流路を構成し、流入口201iと流出口201o_Bが連通状態でE状態となり第四の冷媒循環流路を構成する。また、比較例の三方弁201では、流入口201iをどちらの流出口201i_A、201i_Bとも連通しないF状態も備える部材としている。なお、本比較例の冷蔵庫1も、実施例1と同様に冷媒にはイソブタンを用いている。   FIG. 12 is a diagram showing a refrigeration cycle configuration in the refrigerator of the comparative example. The refrigerant flow path shown in FIG. 12 includes a three-way valve 201 instead of the refrigerant branch part 100 of FIG. 7 and includes a refrigerant branch part 200 instead of the three-way valve 101. The three-way valve 201 is a member having an inlet port 201i and two outlet ports 201o_A and 201o_B. The inlet 201i and the outlet port 201o_A of the three-way valve 201 are in the D state when in communication with each other. The inflow port 201i and the outflow port 201o_B are in the E state when in communication with each other, forming a fourth refrigerant circulation channel. Further, in the three-way valve 201 of the comparative example, the inflow port 201i is a member having an F state that does not communicate with any of the outflow ports 201i_A and 201i_B. In addition, the refrigerator 1 of this comparative example also uses isobutane as a refrigerant as in the first embodiment.

図13aは比較例の冷蔵庫1に関わる、第三の冷媒循環流路の圧縮機24吐出口からキャピラリチューブ45までの配管内部の冷媒状態を模式的に表した図である。結露防止パイプ43の上流側である図中の位置fに第三の冷媒循環流路と第四の冷媒循環流路を切換える三方弁201を設けた場合、位置fの冷媒は気液二相域のため、三方弁201はガス冷媒91と液冷媒92の混合状態の冷媒を制御することになる。   FIG. 13 a is a diagram schematically showing the refrigerant state inside the pipe from the compressor 24 discharge port of the third refrigerant circulation passage to the capillary tube 45 related to the refrigerator 1 of the comparative example. When the three-way valve 201 for switching the third refrigerant circulation channel and the fourth refrigerant circulation channel is provided at a position f in the figure, which is upstream of the dew condensation prevention pipe 43, the refrigerant at the position f is in a gas-liquid two-phase region. Therefore, the three-way valve 201 controls the mixed refrigerant of the gas refrigerant 91 and the liquid refrigerant 92.

前述の三方弁101と同様に、三方弁201内部の配管は一般的に前後の接続配管74、75と径が異なり、三方弁201を通過する際に、冷媒流路の縮小によって冷媒流動音が大きくなる。ここで、実施例1で述べたように、ガス冷媒91は液冷媒92に比べ密度が低いために流速が元々速く、ガス冷媒91が三方弁を通過すると、冷媒流路の縮小によりさらに流速が増し、大きな冷媒流動音が生じることが考えられる。   Similar to the three-way valve 101 described above, the pipe inside the three-way valve 201 is generally different in diameter from the front and rear connection pipes 74 and 75, and when passing through the three-way valve 201, the refrigerant flow noise is generated due to the reduction of the refrigerant flow path. growing. Here, as described in the first embodiment, the gas refrigerant 91 has a lower density than the liquid refrigerant 92 and thus has a high flow rate. When the gas refrigerant 91 passes through the three-way valve, the flow rate is further reduced due to the reduction of the refrigerant flow path. It is considered that a large refrigerant flow noise is generated.

また、三方弁201のD状態とE状態を切換える際には、連通状態であった三方弁201の流出口201o_Aまたは流出口201o_Bを閉塞することになる。この時、三方弁201の切換えを短時間で行った場合は、圧力が急激に変化して三方弁201への負荷が大きく、また気液二相域では液冷媒92が存在するためにウォーターハンマーの衝撃による音が生じることも考えられる。一方で三方弁201の切換時間を長くした場合は、例えばD状態からE状態への切換えにおいて、ガス冷媒91を含む気液二相域の冷媒が流れる三方弁201内の流出口201o_Aを徐々に閉塞し、流出口201o_Bを徐々に拡大していくために、狭い冷媒流路を冷媒が通過してガス冷媒91の流速が非常に速くなるため、大きな冷媒流動音が生じやすい。従って、三方弁201の切換時の冷媒流動音や弁への負荷を抑えることは難しい。   Further, when switching between the D state and the E state of the three-way valve 201, the outflow port 201o_A or the outflow port 201o_B of the three-way valve 201 that is in the communication state is closed. At this time, when the switching of the three-way valve 201 is performed in a short time, the pressure changes abruptly and the load on the three-way valve 201 is large, and the liquid refrigerant 92 exists in the gas-liquid two-phase region. It is also conceivable that a sound is generated due to the impact. On the other hand, when the switching time of the three-way valve 201 is increased, for example, when switching from the D state to the E state, the outlet 201o_A in the three-way valve 201 in which the gas-liquid two-phase refrigerant including the gas refrigerant 91 flows gradually Since the refrigerant closes and gradually expands the outlet 201o_B, the refrigerant passes through the narrow refrigerant flow path and the flow velocity of the gas refrigerant 91 becomes very fast, so that a large refrigerant flow noise is likely to occur. Therefore, it is difficult to suppress the refrigerant flow noise and the load on the valve when the three-way valve 201 is switched.

また、比較例の冷蔵庫1では、第三の冷媒循環流路D側と第四の冷媒循環流路E側で、三方弁201を通過する冷媒の状態が異なる。図13bは図12の第四の冷媒循環流路E側の凝縮器内部における冷媒の状態を模式的に表した図である。第四の冷媒循環流路は庫外放熱器41、側面放熱パイプ42のみで放熱するため、最も下流の放熱手段は側面放熱パイプ42となり、基本的にはここまでで冷媒は液相域に達している。そのため位置fに備えた三方弁201は、液相域の冷媒が流れることになる。つまり図13の位置fに三方弁201を設けていた場合、第三の冷媒循環流路では気液二相域の冷媒が流れ、また第四の冷媒循環流路では液相域の冷媒が流れ、流路の切換えによって三方弁201を通過する冷媒の状態が変化する。そのため、流路の切換えによって冷媒流動音も変化すると考えられる。人は定常な音よりも音量の大小や音色が急激に変化した時にその音に気づき易く、この冷媒切換時の冷媒流動音の変化を不快に感じる場合がある。またさらに、第四の冷媒循環流路から第三の冷媒循環流路へ切換える際には、三方弁201を流れる冷媒の一部が液冷媒92からガス冷媒91に変化するため、沸騰音が発生することも考えられる。   In the refrigerator 1 of the comparative example, the state of the refrigerant passing through the three-way valve 201 is different between the third refrigerant circulation channel D side and the fourth refrigerant circulation channel E side. FIG. 13b is a diagram schematically showing the state of the refrigerant in the condenser on the fourth refrigerant circulation passage E side in FIG. Since the fourth refrigerant circulation channel dissipates heat only by the external radiator 41 and the side surface heat radiation pipe 42, the most downstream heat radiation means is the side surface heat radiation pipe 42, and basically the refrigerant reaches the liquid phase region up to here. ing. Therefore, the refrigerant in the liquid phase flows through the three-way valve 201 provided at the position f. That is, when the three-way valve 201 is provided at the position f in FIG. 13, the gas-liquid two-phase region refrigerant flows in the third refrigerant circulation channel, and the liquid-phase region refrigerant flows in the fourth refrigerant circulation channel. The state of the refrigerant passing through the three-way valve 201 is changed by switching the flow path. Therefore, it is considered that the refrigerant flow noise also changes by switching the flow path. Humans are more likely to notice sound when the volume level or tone changes abruptly than a steady sound, and may feel uncomfortable with the change in refrigerant flow noise during refrigerant switching. Furthermore, when switching from the fourth refrigerant circulation channel to the third refrigerant circulation channel, a part of the refrigerant flowing through the three-way valve 201 changes from the liquid refrigerant 92 to the gas refrigerant 91, and thus a boiling sound is generated. It is also possible to do.

なお、比較例の冷蔵庫1において三方弁201による冷媒流動音の上昇を抑制する方法として、冷媒流路に封入する冷媒量を増やすことが考えられる。冷媒封入量を増やすと、一般的に密度の高い液冷媒92が増え、液相域の領域が増加する。すなわち、図13aの線cの位置が右にずれる。従って三方弁201を通過する時の液冷媒92の割合が増加し、三方弁201による冷媒流動音の上昇を抑制できる。   As a method for suppressing an increase in refrigerant flow noise caused by the three-way valve 201 in the refrigerator 1 of the comparative example, it is conceivable to increase the amount of refrigerant enclosed in the refrigerant flow path. When the amount of refrigerant filled is increased, generally the liquid refrigerant 92 having a high density is increased, and the region of the liquid phase region is increased. That is, the position of the line c in FIG. 13a is shifted to the right. Therefore, the ratio of the liquid refrigerant 92 when passing through the three-way valve 201 is increased, and an increase in refrigerant flow noise caused by the three-way valve 201 can be suppressed.

一方で液冷媒92が増えると冷媒の過冷却度が大きくなり、結露防止パイプ43を流れる冷媒温度が低下する。図14は比較例に関わる冷蔵庫の第三の冷媒循環流路A使用時のモリエル(圧力−比エンタルピ)線図である。図13aで示したように、第三の冷媒循環流路を用いている場合、圧縮機24で圧縮された冷媒(区間ia)は、庫外放熱器41、側面放熱パイプ42、結露防止パイプ43の順に冷媒が流れ、その間、パイプ内の冷媒は外気に放熱するために、気相域(区間ab)、気液二相域(区間bc)、液相域(区間cd)の順にその状態は変化する。結露防止パイプ43から流出する冷媒は、キャピラリチューブ45で減圧されて(区間dh)冷却器7に流入する。そして冷却器7を通過して低温低圧となった冷媒が庫内空気からの熱を吸熱し、庫内の空気は冷却され(区間hi)冷媒が圧縮機24に戻る。ここで、区間cdで示した液相域の割合が大きくなると、図14中のdの位置が左にずれることになる。同圧力下において比エンタルピが下がると、液相域の冷媒は温度が下がるため、図14中のdの位置が左にずれるとキャピラリチューブ45で減圧される前の冷媒の温度が下がる。すなわち、結露防止パイプ43の下流における冷媒の温度が低下する。   On the other hand, when the liquid refrigerant 92 increases, the degree of supercooling of the refrigerant increases, and the temperature of the refrigerant flowing through the dew condensation prevention pipe 43 decreases. FIG. 14 is a Mollier (pressure-specific enthalpy) diagram when using the third refrigerant circulation passage A of the refrigerator according to the comparative example. As shown in FIG. 13 a, when the third refrigerant circulation passage is used, the refrigerant (section ia) compressed by the compressor 24 is the external radiator 41, the side heat radiation pipe 42, and the dew condensation prevention pipe 43. Since the refrigerant flows in this order, and the refrigerant in the pipe radiates heat to the outside air, the state of the gas phase region (section ab), gas-liquid two-phase region (section bc), and liquid phase region (section cd) Change. The refrigerant flowing out from the dew condensation prevention pipe 43 is decompressed by the capillary tube 45 (section dh) and flows into the cooler 7. Then, the refrigerant that has passed through the cooler 7 and has become low temperature and low pressure absorbs heat from the internal air, the internal air is cooled (section hi), and the refrigerant returns to the compressor 24. Here, when the proportion of the liquid phase region indicated by the section cd increases, the position of d in FIG. 14 is shifted to the left. When the specific enthalpy decreases under the same pressure, the temperature of the refrigerant in the liquid phase region decreases. Therefore, when the position d in FIG. 14 shifts to the left, the temperature of the refrigerant before being depressurized by the capillary tube 45 decreases. That is, the temperature of the refrigerant downstream of the dew condensation prevention pipe 43 decreases.

比較例の冷蔵庫1では、結露防止パイプ43の放熱により仕切りカバー28a、29a、30aを加熱しているが、結露防止パイプ43を流れる冷媒が低温となると、各仕切りカバー28a、29a、30aと、結露防止パイプ43との温度差が低下し、結露防止パイプ43による時間当たりの加熱量が減少する。そのため、第三の冷媒循環流路D側のみを使用しても過度な高湿時に結露が生じることや、結露は防げるとしても、時間当たりの加熱量の減少を補うために結露防止パイプ43による加熱の時間を増やす必要が生じ、第四の冷媒循環流路E側を使用する割合が減少することが考えられる。加えて、比較例のように可燃性冷媒であるイソブタンを冷媒として用いた冷蔵庫では、IEC(国際電気標準会議)規格やJEMA(日本電機工業会)自主基準により冷媒量の上限が設けられている。従って過度に冷媒封入量を増やすことはできず、比較の形態例の冷蔵庫1では、冷媒流動音を抑制することは困難である。   In the refrigerator 1 of the comparative example, the partition covers 28a, 29a, 30a are heated by the heat radiation of the dew condensation prevention pipe 43, but when the refrigerant flowing through the dew condensation prevention pipe 43 becomes low temperature, the partition covers 28a, 29a, 30a, The temperature difference with the dew condensation prevention pipe 43 decreases, and the amount of heating per hour by the dew condensation prevention pipe 43 decreases. Therefore, even if only the third refrigerant circulation passage D side is used, condensation occurs at excessively high humidity, and even if condensation can be prevented, the condensation prevention pipe 43 is used to compensate for the decrease in heating amount per hour. It may be necessary to increase the heating time, and the ratio of using the fourth refrigerant circulation flow path E side may be reduced. In addition, in a refrigerator using isobutane, which is a flammable refrigerant, as a comparative example, an upper limit of the refrigerant amount is provided according to IEC (International Electrotechnical Commission) standards and JEMA (Japan Electrical Manufacturers Association) voluntary standards. . Therefore, the refrigerant filling amount cannot be increased excessively, and it is difficult to suppress the refrigerant flow noise in the refrigerator 1 of the comparative example.

また比較の形態例の冷蔵庫1における三方弁201では、実施例1の冷蔵庫1における三方弁101に比べて、圧縮機24停止時にF状態にして得られる省エネルギー性能向上効果が少ない。実施例1の三方弁101では、圧縮機24停止時に三方弁101をC状態として、三方弁101の上流側、すなわち図9のag間の高温冷媒の、冷却器7への侵入を抑えることで省エネルギー性能を向上させている。一方で、比較の形態例の冷蔵庫1の三方弁201では、図13a、図13bのaf間の冷媒の流入しか抑えることができない。すなわち、比較例の冷蔵庫1では、図13aのfg間にあたる結露防止パイプ43内の冷媒の流入を抑制することができない。図13aからわかるように、結露防止パイプ43内は液冷媒92の割合が大きく、前述のようにこの液冷媒92はガス冷媒91に比べて密度が非常に高いため、結露防止パイプ43内には多くの冷媒が存在する。従って圧縮機24停止時に三方弁201をF状態としても、冷却器7に多くの高温冷媒が流入してしまうため、圧縮機24停止時に得られる省エネルギー性能の向上効果は少ない。   Moreover, in the three-way valve 201 in the refrigerator 1 of the comparative example, the energy saving performance improvement effect obtained in the F state when the compressor 24 is stopped is less than the three-way valve 101 in the refrigerator 1 of the first embodiment. In the three-way valve 101 of the first embodiment, when the compressor 24 is stopped, the three-way valve 101 is set to the C state, and the high temperature refrigerant between the upstream side of the three-way valve 101, that is, between ag in FIG. Energy saving performance is improved. On the other hand, the three-way valve 201 of the refrigerator 1 of the comparative embodiment can only suppress the inflow of refrigerant between af in FIGS. 13a and 13b. That is, in the refrigerator 1 of the comparative example, the inflow of the refrigerant in the dew condensation prevention pipe 43 corresponding to fg in FIG. 13a cannot be suppressed. As can be seen from FIG. 13 a, the ratio of the liquid refrigerant 92 is large in the condensation prevention pipe 43, and the density of the liquid refrigerant 92 is extremely higher than that of the gas refrigerant 91 as described above. There are many refrigerants. Therefore, even if the three-way valve 201 is set to the F state when the compressor 24 is stopped, a large amount of high-temperature refrigerant flows into the cooler 7, so that the energy saving performance improvement effect obtained when the compressor 24 is stopped is small.

(実施例2)
次に、実施例2の冷蔵庫1の冷媒流路構成に関し、図15及び図16を参照して説明する。なお、実施例1と同一の部材については、同一符号を付して説明を省略する。
(Example 2)
Next, the refrigerant flow path configuration of the refrigerator 1 of Example 2 will be described with reference to FIGS. 15 and 16. In addition, about the member same as Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図15は、実施例2に関わる冷蔵庫における側面放熱パイプ42と結露防止パイプ43と背面放熱パイプ47の配設位置を示す図である。図16は、実施例2に関わる冷蔵庫の冷凍サイクル(冷媒流路)の構成を示す図である。本実施の形態の冷蔵庫1では、図15に示すように、側面放熱パイプ42、結露防止パイプ43とともに、背面より放熱する図15中に二点鎖線で示す背面放熱パイプ47を、冷蔵庫1の背面側の外箱1aと内箱1bとの間であって、外箱1a面に接するように配設している。そして図16に示すように、図7の接続配管76の代わりに、前述の背面放熱パイプ47と、接続配管76a、76bにより冷媒分岐部100と三方弁101の流入口101i_Bを接続している。結露防止パイプ43は仕切りカバー28a、29a、30a及び冷凍温度帯室60等と熱交換するため、第一の冷媒循環流路A側では、冷媒は結露防止パイプ43においても放熱している。一方で、結露防止パイプ43をバイパスする第二の冷媒循環流路B側では、結露防止パイプ43による放熱が行えないため、冷媒の放熱量が減少して十分に放熱することができず、冷凍サイクルの効率が低下することがある。そこで、実施例2の冷蔵庫1では、補助放熱手段として結露防止パイプ43のバイパス流路に背面放熱パイプ47を設け、背面放熱パイプ47により放熱を行うことで結露防止パイプ43をバイパスすることによる放熱量の減少を抑えている。従って、本実施の形態の冷蔵庫とすることで、結露防止パイプ43による庫内加熱を抑制し、さらに背面放熱パイプ47によって放熱量を補うことで、結露防止パイプ43をバイパスすることによる放熱量の減少も抑制できるため、より省エネルギー性能の高い冷蔵庫を得られる。   FIG. 15 is a diagram illustrating the arrangement positions of the side heat radiation pipe 42, the dew condensation prevention pipe 43, and the rear heat radiation pipe 47 in the refrigerator according to the second embodiment. FIG. 16 is a diagram illustrating the configuration of the refrigeration cycle (refrigerant flow path) of the refrigerator according to the second embodiment. In the refrigerator 1 of the present embodiment, as shown in FIG. 15, the rear heat radiation pipe 47 indicated by a two-dot chain line in FIG. Between the outer box 1a and the inner box 1b on the side, it is disposed so as to be in contact with the surface of the outer box 1a. As shown in FIG. 16, the refrigerant branching portion 100 and the inlet 101i_B of the three-way valve 101 are connected by the backside heat radiation pipe 47 and the connection pipes 76a and 76b instead of the connection pipe 76 of FIG. Since the dew condensation prevention pipe 43 exchanges heat with the partition covers 28a, 29a, 30a, the freezing temperature zone chamber 60 and the like, the refrigerant also dissipates heat in the dew condensation prevention pipe 43 on the first refrigerant circulation flow path A side. On the other hand, on the second refrigerant circulation passage B side that bypasses the dew condensation prevention pipe 43, heat cannot be radiated by the dew condensation prevention pipe 43, so that the amount of heat radiated from the refrigerant is reduced and the heat cannot be sufficiently radiated. Cycle efficiency may be reduced. Therefore, in the refrigerator 1 of the second embodiment, the back heat radiation pipe 47 is provided in the bypass flow path of the dew condensation prevention pipe 43 as auxiliary heat radiation means, and the heat radiation by the back heat radiation pipe 47 is performed to bypass the condensation prevention pipe 43. Reduces heat loss. Therefore, by using the refrigerator of the present embodiment, the internal heating by the dew condensation prevention pipe 43 is suppressed, and further, the heat radiation amount is compensated by the back surface heat radiation pipe 47, so that the heat radiation amount by bypassing the dew condensation prevention pipe 43 is reduced. Since the decrease can also be suppressed, a refrigerator with higher energy saving performance can be obtained.

なお、第二の冷媒循環流路の放熱量を増加させる方法としては、冷媒分岐部100よりも冷媒流路の上流側に背面放熱パイプ47を設け、第二の冷媒循環流路で同等の放熱性能を得られるように構成することも考えられる。この場合、第一の冷媒循環流路では図16記載の形態よりも高い放熱性能を得られる。一方で第一の冷媒循環流路によって構成される冷媒流路では、庫外放熱器41、側面放熱パイプ42、背面放熱パイプ47、結露防止パイプ43が構成されており、圧縮機24から減圧手段45までの冷媒流路が長くなっているため、冷媒が不足して却って冷凍サイクル効率が低下することが考えられる。従って両流路の放熱量と冷媒流路長さを適切にするためには、最初に第一の冷媒循環流路の適切な流路長さを検討し、第二の冷媒循環流路使用時の放熱量が不足していると判断した場合、第二の冷媒循環流路に放熱手段を追加して放熱量を補う方がよい。   As a method for increasing the heat radiation amount of the second refrigerant circulation channel, a rear heat radiation pipe 47 is provided on the upstream side of the refrigerant channel with respect to the refrigerant branching portion 100, and the same heat radiation is achieved in the second refrigerant circulation channel. It is also conceivable to configure so as to obtain performance. In this case, higher heat dissipation performance can be obtained in the first refrigerant circulation channel than in the embodiment shown in FIG. On the other hand, in the refrigerant flow path constituted by the first refrigerant circulation flow path, the external heat radiator 41, the side heat radiation pipe 42, the rear heat radiation pipe 47, and the dew condensation prevention pipe 43 are configured. Since the refrigerant flow path up to 45 is long, it is conceivable that the refrigerant is insufficient and the refrigeration cycle efficiency is lowered. Therefore, in order to make the heat dissipation amount and the refrigerant flow path length of both flow paths appropriate, first, consider the appropriate flow path length of the first refrigerant circulation flow path and use the second refrigerant circulation flow path. If it is determined that the amount of heat released is insufficient, it is better to add heat radiating means to the second refrigerant circulation passage to supplement the amount of heat released.

また、本実施の形態では結露防止パイプ43の放熱量を補う補助放熱手段として背面放熱パイプ47を設けたが、背面放熱パイプ47に限られるものではなく、例えば冷蔵庫1の天面より放熱する天面冷媒パイプを設けて、これを背面放熱パイプ47の代わりに配設してもよい。   In the present embodiment, the rear heat radiation pipe 47 is provided as auxiliary heat radiation means for supplementing the heat radiation amount of the dew condensation prevention pipe 43, but is not limited to the rear heat radiation pipe 47, for example, a ceiling that radiates heat from the top surface of the refrigerator 1. A surface refrigerant pipe may be provided and disposed instead of the rear heat radiating pipe 47.

(実施例3)
次に、実施例3の冷蔵庫1の冷媒流路構成に関し、図17を参照して説明する。なお、実施例1と同一の部材については、同一符号を付して説明を省略する。
(Example 3)
Next, the refrigerant flow path configuration of the refrigerator 1 of Example 3 will be described with reference to FIG. In addition, about the member same as Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図17は、実施例3に関わる冷蔵庫の冷凍サイクル(冷媒流路)の構成を示す図である。本実施の形態に関わる冷蔵庫1では、熱交換部48として、キャピラリチューブ45内の冷媒、つまり冷却器7で吸熱する前の冷媒と、接続配管82内の冷媒、つまり冷却器7で吸熱した後の冷媒とで熱交換する箇所を備えている。   FIG. 17 is a diagram illustrating the configuration of the refrigeration cycle (refrigerant flow path) of the refrigerator according to the third embodiment. In the refrigerator 1 according to the present embodiment, as the heat exchanging unit 48, the refrigerant in the capillary tube 45, that is, the refrigerant before absorbing heat by the cooler 7 and the refrigerant in the connection pipe 82, that is, after absorbing heat by the cooler 7 are used. There is a place to exchange heat with the refrigerant.

一般的に、イソブタン等の冷媒を用いた冷蔵庫では、冷却器7の前後、すなわち、キャピラリチューブ45内の冷媒と接続配管82内の冷媒とで熱交換する、熱交換部48を備えることで冷却効率が向上することが知られている。また、熱交換部48を備えていない場合、機械室19内に配された接続配管82(図4参照)は冷却器7で気化した冷媒により低温となり、接続配管82への結露や着霜の配慮も必要となる。一方で、熱交換部48を備えることで放熱側の高温冷媒により接続配管82が加熱でき、機械室19での結露や着霜を抑制することができる。なお、図17で示している本実施の形態の冷蔵庫1では、キャピラリチューブ45の全部と接続配管82の一部で熱交換するように熱交換部48を設けているが、それぞれ冷却器7で吸熱する前の冷媒と吸熱した後の冷媒が熱交換する箇所を少なくとも一部設けていればよく、例えばキャピラリチューブ45の一部と接続配管81の一部とで熱交換するように設けてもよい。   Generally, a refrigerator using a refrigerant such as isobutane is cooled by including a heat exchanging unit 48 that exchanges heat before and after the cooler 7, that is, between the refrigerant in the capillary tube 45 and the refrigerant in the connection pipe 82. It is known to improve efficiency. Further, when the heat exchanging section 48 is not provided, the connection pipe 82 (see FIG. 4) disposed in the machine room 19 becomes low temperature due to the refrigerant evaporated in the cooler 7, and condensation or frost formation on the connection pipe 82 occurs. Consideration is also required. On the other hand, by providing the heat exchange part 48, the connection pipe 82 can be heated by the high-temperature refrigerant on the heat radiation side, and condensation and frost formation in the machine room 19 can be suppressed. In the refrigerator 1 according to the present embodiment shown in FIG. 17, the heat exchanging portion 48 is provided so as to exchange heat between the entire capillary tube 45 and a part of the connection pipe 82. It is only necessary to provide at least a portion where heat exchange is performed between the refrigerant before absorbing heat and the refrigerant after absorbing heat. For example, heat exchange may be performed between a part of the capillary tube 45 and a part of the connection pipe 81. Good.

ここで、図12に示した比較例の冷蔵庫のように、第三の冷媒循環流路D側と第四の冷媒循環流路E側を切換える三方弁201を気液二相域の冷媒が流れる箇所に備えた冷蔵庫で、三方弁201による冷媒流動音の上昇を抑制する手段としては、前述の冷媒封入量を増やすという手段が考えられる。冷媒封入量を増やすと、比較例を用いて前述したように、液冷媒が増えて冷媒流路のより上流側まで液相域となり、三方弁201を通過する冷媒のガス冷媒91の割合が減少し、冷媒流動音が減少すると考えられる。一方で、図14を用いて前述したように液相域の領域が増えて過冷却度が大きくなり、過度な高湿時の結露を防ぎ難い等の問題が生じる。さらに熱交換部48を備えた冷蔵庫では、過冷却度が高くなると、キャピラリチューブ45に流入する時の冷媒温度が低下して、キャピラリチューブ45と接続配管82での温度差が減少し、熱交換部48での冷媒間の熱交換量が減少する。そのため接続配管82の温度が上昇し難く、機械室19内での接続配管82に結露又は着霜が発生しやすくなり、また熱交換部48による冷却効率向上の効果も減少する。従って熱交換部48を備えた冷蔵庫では、熱交換部48を備えていない冷蔵庫よりもさらに、過度に冷媒封入量を多くすることは望ましくない。   Here, the refrigerant in the gas-liquid two-phase region flows through the three-way valve 201 that switches between the third refrigerant circulation channel D side and the fourth refrigerant circulation channel E side as in the refrigerator of the comparative example shown in FIG. As a means for suppressing an increase in refrigerant flow noise caused by the three-way valve 201 in a refrigerator provided at a location, a means for increasing the above-described refrigerant filling amount can be considered. When the refrigerant filling amount is increased, as described above with reference to the comparative example, the liquid refrigerant is increased and becomes a liquid phase region to the upstream side of the refrigerant flow path, and the ratio of the gas refrigerant 91 of the refrigerant passing through the three-way valve 201 is decreased. However, it is considered that the refrigerant flow noise decreases. On the other hand, as described above with reference to FIG. 14, the liquid phase region increases, the degree of supercooling increases, and problems such as difficulty in preventing condensation at excessively high humidity occur. Further, in the refrigerator equipped with the heat exchanging section 48, when the degree of supercooling increases, the refrigerant temperature when flowing into the capillary tube 45 decreases, the temperature difference between the capillary tube 45 and the connection pipe 82 decreases, and heat exchange occurs. The amount of heat exchange between the refrigerants in the portion 48 decreases. For this reason, the temperature of the connection pipe 82 is unlikely to rise, and condensation or frost formation is likely to occur in the connection pipe 82 in the machine room 19, and the effect of improving the cooling efficiency by the heat exchange unit 48 is also reduced. Therefore, in the refrigerator provided with the heat exchange unit 48, it is not desirable to excessively increase the refrigerant filling amount as compared with the refrigerator not provided with the heat exchange unit 48.

そこで、実施例3の冷蔵庫1は、第一の冷媒循環流路A側と第二の冷媒循環流路B側を切換える三方弁101を結露防止パイプ43よりも下流側に設けることで、冷媒封入量を増やすことなく、冷媒流動音を抑制している。そのため、熱交換部48による接続配管82の結露抑制と冷却効率向上の効果を減少させることなく、三方弁101による冷媒流動音を抑制している。すなわち、冷媒流動音と接続配管82の結露を抑制しつつ、結露防止パイプ43による庫内加熱の抑制と熱交換部48による冷却効率向上効果を十分に得られた省エネルギー性能の高い冷蔵庫を得られる。   Therefore, the refrigerator 1 according to the third embodiment includes a three-way valve 101 that switches between the first refrigerant circulation passage A side and the second refrigerant circulation passage B side on the downstream side of the dew condensation prevention pipe 43, so that the refrigerant is sealed. The refrigerant flow noise is suppressed without increasing the amount. Therefore, the refrigerant flow noise caused by the three-way valve 101 is suppressed without reducing the effects of suppressing the dew condensation of the connection pipe 82 by the heat exchange unit 48 and improving the cooling efficiency. That is, it is possible to obtain a refrigerator with high energy saving performance that can sufficiently suppress the internal heating by the dew condensation prevention pipe 43 and the cooling efficiency improvement effect by the heat exchange unit 48 while suppressing the refrigerant flow noise and the condensation of the connection pipe 82. .

なお、本発明は前述した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した各実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to each Example mentioned above, Various modifications are included. For example, each of the above-described embodiments has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、本実施の形態では、基本的に常に液相域の冷媒が流れる箇所として結露防止パイプ43の冷媒流路の下流側に三方弁101を設けたが、第一の冷媒循環流路と第二の冷媒循環流路B側の両方で液相域となる冷媒流路であればよい。例えば、三方弁101の下流側に放熱量の少ない第二の結露防止パイプを備え、第二の結露防止パイプの上流側においても第一の冷媒循環流路A側で液冷媒となるとすれば、第二の結露防止パイプの上流側に冷媒流路切換手段を備えてもよい。また、第一の冷媒循環流路A側と第二の冷媒循環流路B側の両方で放熱を行う、冷媒分岐部100よりも上流側の放熱手段として、庫外放熱器41と側面放熱パイプ42を用いたが、これに限定されるものではなく、例えば、冷媒が不足しないようであれば第2実施の形態例の背面放熱パイプ47を冷媒分岐部100よりも上流側に備えて、両冷媒流路において放熱を行う放熱手段として用いてもよい。   Further, in the present embodiment, the three-way valve 101 is provided on the downstream side of the refrigerant flow path of the dew condensation prevention pipe 43 as a place where the refrigerant in the liquid phase region always flows, but the first refrigerant circulation flow path and the Any refrigerant flow path that is in the liquid phase region on both sides of the second refrigerant circulation flow path B may be used. For example, if a second dew condensation prevention pipe with a small amount of heat release is provided on the downstream side of the three-way valve 101, and if it becomes a liquid refrigerant on the first refrigerant circulation channel A side also on the upstream side of the second dew condensation prevention pipe, Refrigerant flow path switching means may be provided upstream of the second dew condensation prevention pipe. Further, as a heat dissipating means upstream of the refrigerant branching portion 100 that dissipates heat on both the first refrigerant circulation flow path A side and the second refrigerant circulation flow path B side, the external radiator 41 and the side heat radiation pipe However, the present invention is not limited to this. For example, if the refrigerant does not run out, the rear heat radiation pipe 47 of the second embodiment is provided upstream of the refrigerant branching portion 100, and both You may use as a thermal radiation means to thermally radiate in a refrigerant flow path.

1 冷蔵庫
2 冷蔵室(貯蔵室)
3 製氷室(貯蔵室)
4 上段冷凍室(貯蔵室)
5 下段冷凍室(貯蔵室)
6 野菜室(貯蔵室)
7 冷却器
8 冷却器収納室
9 庫内ファン
10 断熱箱体
11 冷蔵室ダクト
13 冷凍室ダクト
16 冷蔵室戻りダクト
17 冷凍室戻り口
18 野菜室戻りダクト
19 機械室
24 圧縮機
28 上仕切り壁(仕切部)
29 下仕切り壁(仕切部)
30 冷凍温度帯室仕切り壁(仕切部)
41 庫外放熱器(放熱手段)
41a 庫外ファン
42 側面放熱パイプ(放熱手段)
43 結露防止パイプ
44 ドライヤ
45 キャピラリチューブ(減圧手段)
46 気液分離器
47 背面放熱パイプ(補助放熱手段)
48 熱交換部
50 冷蔵室ダンパ
51 野菜室ダンパ
52 冷凍室ダンパ
60 冷凍温度帯室
61 冷蔵温度帯室
72〜82 接続配管
100 冷媒分岐部(分岐部)
101 三方弁(冷媒流路切換手段)
102 二方弁
110 扉ヒンジカバー
111 外気温度センサ
112 外気湿度センサ
200 冷媒分岐部
201 三方弁
1 Refrigerator 2 Cold room (storage room)
3 Ice making room (storage room)
4 Upper freezer room (storage room)
5 Lower freezer compartment (storage room)
6 Vegetable room (storage room)
7 Cooler 8 Cooler storage chamber 9 Fan 10 Heat insulation box 11 Refrigeration chamber duct 13 Refrigeration chamber duct 16 Refrigeration chamber return duct 17 Freezer chamber return port 18 Vegetable chamber return duct 19 Machine room 24 Compressor 28 Upper partition wall ( Partition)
29 Lower partition wall (partition)
30 Refrigerating temperature zone partition wall (partition)
41 External radiator (heat dissipation means)
41a External fan 42 Side heat radiating pipe (heat radiating means)
43 Condensation prevention pipe 44 Dryer 45 Capillary tube (pressure reduction means)
46 Gas-liquid separator 47 Rear heat radiation pipe (auxiliary heat radiation means)
48 Heat exchange section 50 Refrigeration room damper 51 Vegetable room damper 52 Freezing room damper 60 Refrigeration temperature zone room 61 Refrigeration temperature zone room 72-82 Connection piping 100 Refrigerant branch part (branch part)
101 Three-way valve (refrigerant flow path switching means)
102 Two-way valve 110 Door hinge cover 111 Outside air temperature sensor 112 Outside air humidity sensor 200 Refrigerant branch part 201 Three-way valve

Claims (5)

圧縮機と、減圧手段と、冷却器と、複数の貯蔵室と、該複数の貯蔵室を仕切る仕切部と、該仕切部を加熱する結露防止パイプと、を備えた冷蔵庫において、
前記圧縮機と前記結露防止パイプとの間の冷媒流路中に放熱手段を備え、
前記冷媒を前記圧縮機、前記放熱手段、前記結露防止パイプ、前記減圧手段、前記冷却器、前記圧縮機の順に流す第一の冷媒循環流路と、
前記冷媒を前記圧縮機、前記放熱手段、前記減圧手段、前記冷却器、前記圧縮機の順に流す第二の冷媒循環流路と、を備え、
前記第一の冷媒循環流路及び前記第二の冷媒循環流路をそれぞれ流れる前記冷媒が液相域となる箇所に、前記第一の冷媒循環流路と前記第二の冷媒循環流路を切換える冷媒流路切換手段を設けたことを特徴とする冷蔵庫。
In a refrigerator including a compressor, a decompression unit, a cooler, a plurality of storage chambers, a partition portion that partitions the plurality of storage chambers, and a dew condensation prevention pipe that heats the partition portion,
A heat dissipating means is provided in the refrigerant flow path between the compressor and the dew condensation prevention pipe,
A first refrigerant circulation passage for flowing the refrigerant in the order of the compressor, the heat radiating means, the dew condensation prevention pipe, the pressure reducing means, the cooler, and the compressor;
A second refrigerant circulation passage for flowing the refrigerant in the order of the compressor, the heat dissipation means, the pressure reducing means, the cooler, and the compressor,
The first refrigerant circulation channel and the second refrigerant circulation channel are switched to a location where the refrigerant flowing through the first refrigerant circulation channel and the second refrigerant circulation channel becomes a liquid phase region. A refrigerator provided with a refrigerant flow switching means.
圧縮機と、減圧手段と、冷却器と、複数の貯蔵室と、該複数の貯蔵室を仕切る仕切部と、該仕切部を加熱する結露防止パイプと、を備えた冷蔵庫において、
前記圧縮機と前記結露防止パイプとの間の冷媒流路中に放熱手段を備え、
前記冷媒を前記圧縮機、前記放熱手段、前記結露防止パイプ、前記減圧手段、前記冷却器、前記圧縮機の順に流す第一の冷媒循環流路と、
前記冷媒を前記圧縮機、前記放熱手段、前記減圧手段、前記冷却器、前記圧縮機の順に流す第二の冷媒循環流路と、を備え、
前記第一の冷媒循環流路を用いた際に、前記結露防止パイプと前記減圧手段との間の冷媒流路中に、前記第一の冷媒循環流路と前記第二の冷媒循環流路を切換える冷媒流路切換手段を設けたことを特徴とする冷蔵庫。
In a refrigerator including a compressor, a decompression unit, a cooler, a plurality of storage chambers, a partition portion that partitions the plurality of storage chambers, and a dew condensation prevention pipe that heats the partition portion,
A heat dissipating means is provided in the refrigerant flow path between the compressor and the dew condensation prevention pipe,
A first refrigerant circulation passage for flowing the refrigerant in the order of the compressor, the heat radiating means, the dew condensation prevention pipe, the pressure reducing means, the cooler, and the compressor;
A second refrigerant circulation passage for flowing the refrigerant in the order of the compressor, the heat dissipation means, the pressure reducing means, the cooler, and the compressor,
When the first refrigerant circulation channel is used, the first refrigerant circulation channel and the second refrigerant circulation channel are arranged in the refrigerant channel between the dew condensation prevention pipe and the decompression unit. A refrigerator comprising a refrigerant flow path switching means for switching.
前記冷媒流路切換手段は、前記第一の冷媒循環流路と前記第二の冷媒循環流路を閉塞状態とするモードを有することを特徴とする、請求項1又は2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the refrigerant channel switching means has a mode in which the first refrigerant circulation channel and the second refrigerant circulation channel are closed. 前記放熱手段と前記冷媒流路切換手段との間に、前記結露防止パイプ又は該結露防止パイプをバイパスする前記第二の冷媒循環流路に前記冷媒を分岐させる分岐部を備え、
前記結露防止パイプをバイパスする前記第二の冷媒循環流路の前記分岐部から前記冷媒流路切換手段の間に補助放熱手段を備えたことを特徴とする請求項1又は2に記載の冷蔵庫。
Between the heat radiating means and the refrigerant flow switching means, provided with a branching portion for branching the refrigerant into the dew condensation prevention pipe or the second refrigerant circulation flow path that bypasses the dew condensation prevention pipe,
The refrigerator according to claim 1 or 2, further comprising an auxiliary heat dissipating unit between the branch portion of the second refrigerant circulation channel bypassing the dew condensation prevention pipe and the refrigerant channel switching unit.
前記冷却器と前記圧縮機との間の冷媒流路を構成する接続配管と、前記減圧手段とで熱交換するように構成したことを特徴とする、請求項1又は2に記載の冷蔵庫。   3. The refrigerator according to claim 1, wherein heat is exchanged between a connection pipe constituting a refrigerant flow path between the cooler and the compressor and the decompression unit. 4.
JP2012016048A 2012-01-30 2012-01-30 Refrigerator Pending JP2013155910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016048A JP2013155910A (en) 2012-01-30 2012-01-30 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016048A JP2013155910A (en) 2012-01-30 2012-01-30 Refrigerator

Publications (1)

Publication Number Publication Date
JP2013155910A true JP2013155910A (en) 2013-08-15

Family

ID=49051284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016048A Pending JP2013155910A (en) 2012-01-30 2012-01-30 Refrigerator

Country Status (1)

Country Link
JP (1) JP2013155910A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743139A (en) * 2013-12-30 2014-04-23 合肥晶弘电器有限公司 Refrigerator refrigeration system and refrigerator with same
JP2016136082A (en) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling system
JP2016205669A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 refrigerator
WO2017188147A1 (en) * 2016-04-27 2017-11-02 東芝ライフスタイル株式会社 Refrigerator
JP2017201230A (en) * 2016-04-27 2017-11-09 東芝ライフスタイル株式会社 refrigerator
CN113669938A (en) * 2021-07-27 2021-11-19 澳柯玛股份有限公司 Refrigerator refrigeration and self-cleaning control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743139A (en) * 2013-12-30 2014-04-23 合肥晶弘电器有限公司 Refrigerator refrigeration system and refrigerator with same
CN103743139B (en) * 2013-12-30 2016-08-31 合肥晶弘电器有限公司 A kind of refrigerator refrigeration system and there is the refrigerator of this refrigeration system
JP2016136082A (en) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling system
JP2016205669A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 refrigerator
WO2017188147A1 (en) * 2016-04-27 2017-11-02 東芝ライフスタイル株式会社 Refrigerator
JP2017201230A (en) * 2016-04-27 2017-11-09 東芝ライフスタイル株式会社 refrigerator
CN113669938A (en) * 2021-07-27 2021-11-19 澳柯玛股份有限公司 Refrigerator refrigeration and self-cleaning control method

Similar Documents

Publication Publication Date Title
JP6687384B2 (en) refrigerator
JP4867758B2 (en) refrigerator
JP6177605B2 (en) refrigerator
JP2013155910A (en) Refrigerator
KR20130083871A (en) Refrigerator and freezer
US10465967B2 (en) Refrigerator appliance with a convertible freezer compartment
JP5492845B2 (en) refrigerator
JP5557661B2 (en) refrigerator
JP2012017920A (en) Refrigerator
JP6469966B2 (en) refrigerator
JP2013061083A (en) Refrigerator
JP2021139591A (en) refrigerator
JP2013019598A (en) Refrigerator
JP6101926B2 (en) refrigerator
KR101330936B1 (en) Refrigerator
JP2016205669A (en) refrigerator
JP2011163704A (en) Refrigerator
JP2019138514A (en) refrigerator
JP2017026210A (en) refrigerator
JP6762149B2 (en) refrigerator
JP2017020753A (en) refrigerator
JP6543811B2 (en) refrigerator
JP2017156027A (en) refrigerator
WO2018147113A1 (en) Refrigerator
EP2397797A1 (en) Refrigerator