WO2018147113A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018147113A1
WO2018147113A1 PCT/JP2018/002740 JP2018002740W WO2018147113A1 WO 2018147113 A1 WO2018147113 A1 WO 2018147113A1 JP 2018002740 W JP2018002740 W JP 2018002740W WO 2018147113 A1 WO2018147113 A1 WO 2018147113A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerator
stage condenser
compressor
heating path
Prior art date
Application number
PCT/JP2018/002740
Other languages
French (fr)
Japanese (ja)
Inventor
境 寿和
克則 堀井
堀尾 好正
文宣 高見
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018567371A priority Critical patent/JPWO2018147113A1/en
Priority to CN201880010170.4A priority patent/CN110249192A/en
Publication of WO2018147113A1 publication Critical patent/WO2018147113A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Definitions

  • This disclosure relates to a refrigerator that reduces the output of an electric heater for defrosting.
  • the flow of the refrigeration cycle is switched while the compressor is operated, and the output of the electric heater for defrosting is increased by supplying high pressure refrigerant to the evaporator and heating it. There is a refrigerator to reduce.
  • FIG. 4 is a longitudinal sectional view of a conventional refrigerator
  • FIG. 5 is a configuration diagram of a refrigeration cycle of the conventional refrigerator
  • FIG. 6 is a diagram illustrating operation control during defrosting of the conventional refrigerator.
  • the conventional refrigerator 51 has a partition wall 52, a freezer compartment 53, and a refrigerator compartment 54.
  • a cooler chamber 56 is provided between the freezer compartment bottom surface 55 that forms the bottom surface of the freezer compartment 53 and the partition wall 52.
  • a main evaporator 57 is disposed in the cooler chamber 56.
  • the cooling fan 58 is driven to supply the cold air generated in the main evaporator 57 to the freezer compartment 53 and to the refrigerator compartment 54 intermittently via the duct 59 and the damper 60. As shown in FIG.
  • the refrigerator 51 includes a compressor 61, a condenser 62, an auxiliary cooler 63, a two-way valve 64, a three-way valve 65, a capillary tube 66, and a capillary tube 67 as components constituting a refrigeration cycle. , Capillary tube 68, capillary tube 69, dryer 70, and defrosting pipe 71.
  • the defrosting pipe 71 is a refrigerant pipe that is thermally coupled to the main evaporator 57 and used to defrost the main evaporator 57.
  • the defrosting pipe 71 is independent of the refrigerant pipe in the main evaporator 57 used when performing the cooling operation.
  • the cooling operation is performed by switching the flow path of the three-way valve 65 while operating the compressor 61 and supplying the high-pressure refrigerant compressed by the compressor 61 to the condenser 62.
  • the refrigerant radiated by the condenser 62 is dried by the dryer 70, depressurized by the capillary tube 69 and the capillary tube 68, supplied to the main evaporator 57, evaporates, and then returns to the compressor 61.
  • the two-way valve 64 can be closed to supply all the refrigerant to the main evaporator 57.
  • the refrigerant can be distributed to both the main evaporator 57 and the auxiliary evaporator 63 by opening the two-way valve 64. Thereby, the refrigerating capacity at the time of cooling operation can be adjusted.
  • the state “open” of the two-way valve 64 means that the flow path from the capillary tube 69 to the capillary tube 66 is opened.
  • the state “blocking” of the two-way valve 64 means blocking the flow path from the capillary tube 69 to the capillary tube 66.
  • the state “defrost” of the three-way valve 65 means that the flow path from the compressor 61 to the condenser 62 is closed and the flow path from the compressor 61 to the defrost pipe 71 is opened.
  • the state “cooling” of the three-way valve 65 means that the flow path from the compressor 61 to the condenser 62 is opened and the flow path from the compressor 61 to the defrosting pipe 71 is closed.
  • a cooling operation is performed in which the refrigerant flows through both the main evaporator 57 and the auxiliary evaporator 63.
  • a cooling operation is performed in which the refrigerant flows only to the main evaporator 57.
  • the operation shifts to a defrosting operation in which the frost on the main evaporator 57 is heated and melted.
  • the flow path of the three-way valve 65 is switched to supply the high-pressure refrigerant compressed by the compressor 61 to the defrosting pipe 71.
  • the main evaporator 57 is heated, and the refrigerant dissipated by the main evaporator 57 is decompressed by the capillary tube 67, supplied to the auxiliary evaporator 63 and evaporated, and then returned to the compressor 61. .
  • heating of the main evaporator 57 can be assisted using an electric heater (not shown).
  • the cooling operation is restarted by switching the flow path of the three-way valve 65 and supplying the high-pressure refrigerant compressed by the compressor 61 to the condenser 62. In the section s in FIG.
  • a cooling operation is performed in which the refrigerant is allowed to flow only to the main evaporator 57.
  • a cooling operation is performed in which the refrigerant flows through both the main evaporator 57 and the auxiliary evaporator 63.
  • the main evaporator 57 is heated using the high-pressure refrigerant of the refrigeration cycle, so that the electric energy of the defrost heater can be reduced, and the energy saving of the refrigerator 51 can be achieved. .
  • the temperature of the freezer compartment 53 can be suppressed by supplying the auxiliary evaporator 63 with the refrigerant.
  • the cooling operation and the defrosting operation are switched using the three-way valve 65 provided between the compressor 61 and the condenser 62.
  • the flow velocity of the refrigerant passing through the three-way valve 65 is fast, which causes the refrigerant flow noise to be generated.
  • the present disclosure has been made in view of the above-described conventional problems, and provides a refrigerator that realizes an efficient defrosting operation while suppressing generation of refrigerant flow noise.
  • a refrigerator includes at least a compressor, an evaporator, an auxiliary cooler, a pre-stage condenser, a post-stage condenser, and a refrigeration cycle having a heating path.
  • the refrigerator according to an example of the embodiment of the present disclosure includes a flow path switching valve connected to the downstream side of the pre-stage condenser. The flow path switching valve switches the flow path of the high-pressure refrigerant from the front stage condenser to a rear stage condenser and a heating path connected in parallel with the rear stage condenser.
  • the evaporator is thermally coupled to the heating path.
  • the flow path of the high-pressure refrigerant is switched to the heating path by the flow path switching valve, and the compressor is compressed by the compressor.
  • the high-pressure refrigerant is supplied to the heating path, the evaporator is heated, and the heat dissipated in the heating path is evaporated by the auxiliary cooler connected to the downstream side of the heating path.
  • the refrigerator according to an example of the embodiment of the present disclosure may include a heat exchange unit that thermally couples a part of the heating path and the compressor. Further, the refrigerator according to an example of the embodiment of the present disclosure is configured such that when the flow path switching valve is opened to the heating path side and the evaporator is defrosted, the evaporator is heated using waste heat of the compressor. It may be configured to be heated.
  • the waste heat of the compressor can be used to increase the enthalpy of the high-pressure refrigerant so that it can be heated more efficiently, and energy saving of the refrigerator can be achieved. Can do.
  • the refrigerator according to an example of the embodiment of the present disclosure is cooled in advance until immediately before the evaporator is defrosted, and the flow path of the high-pressure refrigerant is condensed by the flow path switching valve without stopping the compressor.
  • the evaporator may be defrosted by switching from the evaporator to the heating path.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to an example of an embodiment of the present disclosure.
  • FIG. 2 is a cycle configuration diagram of a refrigerator according to an example of the embodiment of the present disclosure.
  • Drawing 3 is a figure showing control at the time of defrosting of a refrigerator by an example of an embodiment of this indication.
  • FIG. 4 is a longitudinal sectional view of a conventional refrigerator.
  • FIG. 5 is a cycle configuration diagram of a conventional refrigerator.
  • FIG. 6 is a diagram illustrating the operation of a flow path switching valve of a conventional refrigerator.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to an example of an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a cycle configuration of a refrigerator according to an example of the embodiment of the present disclosure.
  • Drawing 3 is a figure showing control at the time of defrosting of a refrigerator by an example of an embodiment of this indication.
  • the refrigerator 11 is provided with a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided at the lower portion of the housing 12, and an upper portion of the housing 12. And a freezer compartment 18 disposed at the lower part of the casing 12.
  • the refrigerator 11 is housed in a compressor 19 housed in the upper machine room 16, an evaporator 20 housed on the back side of the freezer room 18, and a lower machine room 15 as components constituting the refrigeration cycle.
  • the former stage condenser 21 is provided.
  • the refrigerator 11 is attached to the partition wall 22 that partitions the lower machine room 15, the fan 23 that air-cools the upstream condenser 21, the evaporating dish 24 installed on the leeward side of the partition wall 22, and the lower machine room 15
  • the bottom plate 25 is provided.
  • the compressor 19 is a variable speed compressor, and is configured to use a six-stage rotational speed selected from 20 to 80 rps. This is because the refrigerating capacity is adjusted by switching the rotational speed of the compressor 19 to six stages from low speed to high speed while avoiding resonance of piping and the like. Further, the compressor 19 is configured to operate at a low speed at the time of start-up, and to increase the speed as the operation time for cooling the refrigerator compartment 17 or the freezer compartment 18 becomes longer. This is because the most efficient low speed is mainly used, and an appropriate relatively high rotational speed is used against an increase in the load of the refrigerator compartment 17 or the freezer compartment 18 due to high outside air temperature and door opening / closing. .
  • the rotation speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11.
  • the rotation speed at the time of starting the refrigeration cooling mode with a high evaporation temperature and a relatively large refrigerating capacity may be set lower than in the refrigeration cooling mode.
  • the refrigerator 11 may be configured to adjust the refrigeration capacity by decelerating the compressor 19 as the temperature of the refrigerator compartment 17 or the freezer compartment 18 decreases.
  • a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper machine room 16 are provided.
  • the lower machine chamber 15 is divided into two chambers by a partition wall 22, a pre-stage condenser 21 is disposed on the windward side of the fan 23, and an evaporating dish 24 is disposed on the leeward side.
  • the refrigerator 11 includes a dryer 38, a flow path switching valve 40, a rear condenser 41, a throttle 42, a heating path 43, a heat exchange unit 44, a heating side throttle 45, and an auxiliary cooler as components constituting a refrigeration cycle. 46 and a heating side suction pipe 47.
  • the dryer 38 is located on the downstream side of the pre-stage condenser 21 and dries the circulating refrigerant.
  • the flow path switching valve 40 is located on the downstream side of the dryer 38 and controls the flow of the refrigerant.
  • the rear-stage condenser 41 is located downstream of the flow path switching valve 40 and is thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18.
  • the throttle 42 connects the post-stage condenser 41 and the evaporator 20.
  • the heating path 43 is connected to the downstream side of the flow path switching valve 40 in parallel with the post-stage condenser 41.
  • the heat exchange unit 44 is thermally coupled to the compressor 19 in the heating path 43.
  • the heating side throttle 45, the auxiliary cooler 46, and the heating side suction pipe 47 are connected to the downstream side of the heating path 43.
  • a part of the heating path 43 between the heat exchanging unit 44 and the heating side throttle 45 is thermally coupled to the evaporator 20.
  • a part of the heating path 43 between the heat exchanging portion 44 and the heating side throttle 45 is independent of the refrigerant pipe that supplies the refrigerant from the throttle 42 to the evaporator 20.
  • the refrigerant supplied from the throttle 42 to the evaporator 20 returns to the compressor 19 via the suction pipe 48, while the refrigerant supplied from the heating side throttle 45 to the auxiliary cooler 46 is heated to the suction side. It returns to the compressor 19 via the pipe 47.
  • the flow path switching valve 40 can control the opening and closing of the single refrigerant flow in each of the post-stage condenser 41 and the heating path 43.
  • the flow path switching valve 40 maintains the flow path from the pre-stage condenser 21 to the post-stage condenser 41 in an open state and maintains the flow path from the pre-stage condenser 21 to the heating path 43 in a closed state. ing.
  • the flow path switching valve 40 opens and closes the flow path only during defrosting described later.
  • the refrigerator 11 has an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, and a freezer that blocks cold air supplied to the freezer compartment 18. It has a room damper 31, a refrigerator compartment damper 32 that blocks cold air supplied to the refrigerator compartment 17, and a duct 33 that supplies cold air to the refrigerator compartment 17.
  • the refrigerator 11 includes a freezer temperature sensor 34 that detects the temperature of the freezer 18, a refrigerator temperature sensor 35 that detects the temperature of the refrigerator 17, and a defrost temperature sensor 36 that detects the temperature of the evaporator 20.
  • the duct 33 is formed along the wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other. A part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment 17. Most of the cool air passing through the duct 33 is discharged from the upper part of the refrigerator compartment 17 after the upper machine room 16 passes while cooling the adjacent wall surface.
  • the temperature detected by the freezer temperature sensor 34 is a predetermined value.
  • the freezer damper 31 is closed and the cold room damper 32 is opened. 19.
  • the fan 23 and the evaporator fan 30 are driven (hereinafter, this operation is referred to as “refrigeration cooling mode”).
  • the fan 23 In the refrigerated cooling mode, the fan 23 is driven, the front condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 becomes negative pressure, external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side is positive pressure. Thus, the air in the lower machine chamber 15 is discharged to the outside from the plurality of discharge ports 27.
  • the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the pre-stage condenser 21, and then moisture is removed by the dryer 38, via the flow path switching valve 40. It is supplied to the latter stage condenser 41 (see FIG. 2).
  • the refrigerant that has passed through the rear-stage condenser 41 is condensed by radiating heat through the housing 12 while warming the opening of the freezer compartment 18, then depressurized by the throttle 42, evaporated by the evaporator 20, and then stored in the refrigerator compartment 17. While refrigerating the refrigeration chamber 17 by exchanging heat with the internal air, the refrigerant is returned to the compressor 19 as a gaseous refrigerant through the suction pipe 48.
  • the mode changes to the OFF mode. .
  • the freezer temperature sensor 34 when the temperature detected by the freezer temperature sensor 34 is higher than a predetermined FCC_OFF temperature and the temperature detected by the refrigerator temperature sensor 35 falls to a predetermined PCC_OFF temperature during the refrigerating / cooling mode, the freezer The compressor 19, the fan 23, and the evaporator fan 30 are driven with the chamber damper 31 open and the refrigerator compartment damper 32 closed.
  • the freezing chamber 18 is cooled by exchanging heat between the inside air of the freezing chamber 18 and the evaporator 20 (hereinafter, this operation is referred to as “refrigeration cooling mode”).
  • the refrigerating / cooling mode is entered. Transition.
  • the state “open / close” of the flow path switching valve 40 opens the flow path from the pre-stage condenser 21 to the post-stage condenser 41 and closes the flow path from the pre-stage condenser 21 to the heating path 43.
  • the state “closed / opened” of the flow path switching valve 40 is to close the flow path from the pre-stage condenser 21 to the post-stage condenser 41 and open the flow path from the pre-stage condenser 21 to the heating path 43.
  • the state “closed / closed” of the flow path switching valve 40 means that the flow path from the pre-stage condenser 21 to the post-stage condenser 41 is closed and the flow path from the pre-stage condenser 21 to the heating path 43 is closed. To do.
  • the operation proceeds to a defrosting mode in which the frost on the evaporator 20 is heated and melted.
  • the freezer compartment 18 is cooled for a predetermined time in the same manner as in the freezer cooling mode in order to suppress the temperature rise of the freezer compartment 18.
  • the section b by closing the flow path switching valve 40 while operating the compressor 19, the flow path from the front stage condenser 21 to the rear stage condenser 41 and the heating path 43 is closed.
  • the refrigerant that stays in the rear-stage condenser 41, the evaporator 20, and the heating path 43 is collected in the front-stage condenser 21.
  • the flow path switching valve 40 is switched while the operation of the compressor 19 is continued, and the flow path from the pre-stage condenser 21 to the heating path 43 is opened.
  • the high-pressure refrigerant recovered in the pre-stage condenser 21 is supplied to the evaporator 20.
  • the high-pressure refrigerant is heated by the waste heat of the compressor 19 during operation in the heat exchanging unit 44 provided in the heating path 43, and the dryness increases. Therefore, compared with the case where the high-pressure refrigerant is supplied to the evaporator 20 without being heated in the heat exchanging unit 44 in the section c, the high-pressure refrigerant having increased enthalpy and the evaporator 20 can be heat-exchanged.
  • a quantity of heat can be added to the evaporator 20. Then, the refrigerant condensed by heat exchange with the evaporator 20 at the end of the heating path 43 is depressurized by the heating side throttle 45 and then evaporated by the auxiliary cooler 46, and the air in the freezer compartment 18. While cooling the freezer compartment 18 through heat exchange, the refrigerant is returned to the compressor 19 as a gaseous refrigerant through the heating side suction pipe 47.
  • the defrosting heater (not shown) attached to the evaporator 20 is energized to complete the defrosting. Completion of defrosting is determined when the defrosting temperature sensor 36 reaches a predetermined temperature.
  • the flow path switching valve 40 is switched to close the flow path from the pre-stage condenser 21 to the heating path 43, and the flow path from the pre-stage condenser 21 to the post-stage condenser 41 is opened. Normal operation is resumed.
  • the flow path switching valve 40 is disposed between the front-stage condenser 21 and the rear-stage condenser 41, and the path through which the refrigerant in the two-phase region flows is provided. It is comprised so that it can branch and can switch a cooling operation and a defrost operation.
  • the defrosting operation when performing the defrosting operation, it is possible to efficiently heat using the condensation latent heat of the high-pressure refrigerant, and it is possible to suppress the flow rate of the refrigerant passing through the branch path and suppress the generation of refrigerant flow noise. . Further, with such a configuration, switching from the cooling operation to the defrosting operation can be performed quickly.
  • the auxiliary cooler 46 showed the aspect directly heat-exchanged with the air in the freezer compartment 18, the cool storage agent thermally couple
  • the cooling heat generated in the auxiliary cooler 46 during the defrosting operation is temporarily stored in the regenerator, it can be used little by little for cooling the air in the freezer compartment 18, and the auxiliary cooler 46 and the freezer compartment 18 can be used. It is possible to reduce the size by reducing the surface area for heat exchange with the air inside.
  • the refrigerator 11 includes a heat exchange unit 44 that thermally couples a part of the heating path 43 and the compressor 19.
  • a heat exchange unit 44 that thermally couples a part of the heating path 43 and the compressor 19.
  • the refrigerant temperature of the heat exchanging unit 44 and the refrigerant temperature of the pre-stage condenser 21 are substantially the same, but the channel resistance in the heating path 43 on the upstream side of the heat exchanging unit 44. May be provided to lower the refrigerant temperature in the heat exchanging section 44 than the pre-stage condenser 21. Thereby, the heat exchange efficiency with the compressor 19 can be improved.
  • the refrigerator according to the present embodiment performs a cooling operation in advance until immediately before the evaporator 20 is defrosted, and the flow path of the high-pressure refrigerant from the rear-stage condenser 41 by the flow path switching valve 40 without stopping the compressor 19.
  • the evaporator 20 is defrosted, so that an increase in the internal temperature of the refrigerator compartment 17 and the freezer compartment 18 during the defrosting can be suppressed.
  • the heat exchange efficiency with the compressor 19 can be improved by raising the temperature of the compressor 19 during the cooling operation performed in advance.
  • the refrigerator 11 of this Embodiment is comprised so that the evaporator fan 30 may be stopped during the defrost operation of the area c and the area d, and the evaporator 20 may not be cooled with the cold air in the freezer compartment 18. .
  • the evaporator fan 30 may be driven for a predetermined time to exchange heat between the cold air in the refrigerator compartment 17 or the freezer compartment 18 and the evaporator 20.
  • the refrigerant stored in the rear condenser 41 is supplied to the evaporator 20 and the evaporator 20 is cooled, so that the inside of the refrigerator compartment 17 or the freezer compartment 18 is cooled.
  • the evaporator 20 can be heated by exchanging heat between the cold air and the evaporator 20.
  • the present disclosure can reduce the output of the electric heater for defrosting by heating the high-pressure refrigerant in the refrigeration cycle to the evaporator by using the waste heat of the compressor.
  • the present invention can be applied to refrigerators for home use and commercial use, and other frozen and refrigerated products.

Abstract

This refrigerator includes a refrigeration cycle which has at least a compressor (19), an evaporator (20), an auxiliary cooler (46), a pre-stage condenser (21), a post-stage condenser (41), and a heating path (43). Also, the refrigerator has a flow passage-switching valve (40) connected to the downstream side of the pre-stage condenser (21). The flow passage-switching valve (40) switches a flow passage of a refrigerant toward the post-stage condenser (41) or the heating path (43). The refrigerator is configured such that when defrosting the evaporator (20), a high pressure refrigerant is supplied to the heating path (43) by switching the flow passage of the refrigerant toward the heating path (43), the evaporator (20) thermally connected to the heating path (43) is heated, and at the same time, the refrigerant that has dissipated heat in the heating path (43) is evaporated with the auxiliary cooler (46) connected to the downstream side of the heating path (43).

Description

冷蔵庫refrigerator
 本開示は、除霜用電気ヒータの出力を削減する冷蔵庫に関する。 This disclosure relates to a refrigerator that reduces the output of an electric heater for defrosting.
 省エネルギの観点から、家庭用冷蔵庫においては、圧縮機を運転させながら冷凍サイクルの流路を切換えて、高圧冷媒を蒸発器に供給して加温することにより、除霜用電気ヒータの出力を削減する冷蔵庫がある。 From the standpoint of energy saving, in household refrigerators, the flow of the refrigeration cycle is switched while the compressor is operated, and the output of the electric heater for defrosting is increased by supplying high pressure refrigerant to the evaporator and heating it. There is a refrigerator to reduce.
 以下、図面を参照しながら従来の冷蔵庫を説明する。 Hereinafter, a conventional refrigerator will be described with reference to the drawings.
 図4は、従来の冷蔵庫の縦断面図、図5は、従来の冷蔵庫の冷凍サイクル構成図、および、図6は、従来の冷蔵庫の除霜時の運転制御を示した図である。 FIG. 4 is a longitudinal sectional view of a conventional refrigerator, FIG. 5 is a configuration diagram of a refrigeration cycle of the conventional refrigerator, and FIG. 6 is a diagram illustrating operation control during defrosting of the conventional refrigerator.
 図4に示すように、従来の冷蔵庫51は、仕切り壁52、冷凍室53、及び、冷蔵室54を有する。冷凍室53の底面を形成する冷凍室底面55と仕切り壁52との間には、冷却器室56が設けられている。冷却器室56には、主蒸発器57が配置されている。冷蔵庫51では、冷却ファン58を駆動させて、主蒸発器57で発生する冷気を、冷凍室53へ供給するとともに、ダクト59及びダンパ60を介して、間欠的に冷蔵室54に供給する。また、冷蔵庫51は、図5に示すように、冷凍サイクルを構成する部品として、圧縮機61、凝縮器62、補助冷却器63、二方弁64、三方弁65、キャピラリチューブ66、キャピラリチューブ67、キャピラリチューブ68、キャピラリチューブ69、ドライヤ70、及び、除霜配管71を有している。ここで、除霜配管71は、主蒸発器57と熱結合し、主蒸発器57を除霜する際に使用される冷媒配管である。除霜配管71は、冷却運転する際に使用される主蒸発器57内の冷媒配管とは独立している。 As shown in FIG. 4, the conventional refrigerator 51 has a partition wall 52, a freezer compartment 53, and a refrigerator compartment 54. A cooler chamber 56 is provided between the freezer compartment bottom surface 55 that forms the bottom surface of the freezer compartment 53 and the partition wall 52. A main evaporator 57 is disposed in the cooler chamber 56. In the refrigerator 51, the cooling fan 58 is driven to supply the cold air generated in the main evaporator 57 to the freezer compartment 53 and to the refrigerator compartment 54 intermittently via the duct 59 and the damper 60. As shown in FIG. 5, the refrigerator 51 includes a compressor 61, a condenser 62, an auxiliary cooler 63, a two-way valve 64, a three-way valve 65, a capillary tube 66, and a capillary tube 67 as components constituting a refrigeration cycle. , Capillary tube 68, capillary tube 69, dryer 70, and defrosting pipe 71. Here, the defrosting pipe 71 is a refrigerant pipe that is thermally coupled to the main evaporator 57 and used to defrost the main evaporator 57. The defrosting pipe 71 is independent of the refrigerant pipe in the main evaporator 57 used when performing the cooling operation.
 以上のように構成された従来の冷蔵庫51について、以下にその動作を説明する。 About the conventional refrigerator 51 comprised as mentioned above, the operation | movement is demonstrated below.
 冷蔵庫51においては、圧縮機61を運転させながら三方弁65の流路を切換えて、圧縮機61で圧縮された高圧冷媒を凝縮器62へ供給することで冷却運転が行われる。凝縮器62で放熱した冷媒は、ドライヤ70で乾燥された後、キャピラリチューブ69及びキャピラリチューブ68で減圧されて、主蒸発器57に供給されて蒸発した後、圧縮機61へ還流する。このとき、二方弁64を閉じて主蒸発器57に全ての冷媒を供給することができる。或いは、二方弁64を開けて主蒸発器57と補助蒸発器63の両方に冷媒を分配することができる。これによって、冷却運転時の冷凍能力を調整することができる。 In the refrigerator 51, the cooling operation is performed by switching the flow path of the three-way valve 65 while operating the compressor 61 and supplying the high-pressure refrigerant compressed by the compressor 61 to the condenser 62. The refrigerant radiated by the condenser 62 is dried by the dryer 70, depressurized by the capillary tube 69 and the capillary tube 68, supplied to the main evaporator 57, evaporates, and then returns to the compressor 61. At this time, the two-way valve 64 can be closed to supply all the refrigerant to the main evaporator 57. Alternatively, the refrigerant can be distributed to both the main evaporator 57 and the auxiliary evaporator 63 by opening the two-way valve 64. Thereby, the refrigerating capacity at the time of cooling operation can be adjusted.
 次に、図6を参照して、従来の冷蔵庫51の除霜時の運転制御について説明する。 Next, with reference to FIG. 6, the operation control at the time of defrosting of the conventional refrigerator 51 is demonstrated.
 図6において、二方弁64の状態「開放」は、キャピラリチューブ69からキャピラリチューブ66への流路を開放することを意味する。二方弁64の状態「閉塞」は、キャピラリチューブ69からキャピラリチューブ66への流路を閉塞することを意味する。また、三方弁65の状態「除霜」は、圧縮機61から凝縮器62への流路を閉塞して、圧縮機61から除霜配管71への流路を開放することを意味する。三方弁65の状態「冷却」は、圧縮機61から凝縮器62への流路を開放して、圧縮機61から除霜配管71への流路を閉塞することを意味する。 6, the state “open” of the two-way valve 64 means that the flow path from the capillary tube 69 to the capillary tube 66 is opened. The state “blocking” of the two-way valve 64 means blocking the flow path from the capillary tube 69 to the capillary tube 66. The state “defrost” of the three-way valve 65 means that the flow path from the compressor 61 to the condenser 62 is closed and the flow path from the compressor 61 to the defrost pipe 71 is opened. The state “cooling” of the three-way valve 65 means that the flow path from the compressor 61 to the condenser 62 is opened and the flow path from the compressor 61 to the defrosting pipe 71 is closed.
 図6における区間pは、主蒸発器57および補助蒸発器63の両方に冷媒を流す冷却運転が行われる。区間qは、主蒸発器57だけに冷媒を流す冷却運転が行われる。圧縮機61の積算運転時間が所定時間に達すると、主蒸発器57の着霜を加温して融解する除霜運転に移行する。区間rにおいて、三方弁65の流路を切換えて、圧縮機61で圧縮された高圧冷媒を除霜配管71へ供給する。このとき、主蒸発器57が加温されるとともに、主蒸発器57で放熱した冷媒は、キャピラリチューブ67で減圧されて、補助蒸発器63に供給されて蒸発した後、圧縮機61へ還流する。なお、除霜運転する際に、電気ヒータ(図示せず)を用いて、主蒸発器57の加温を補助することができる。主蒸発器57の除霜が完了した後、三方弁65の流路を切換えて、圧縮機61で圧縮された高圧冷媒を、凝縮器62へ供給することで、冷却運転が再開される。図6における区間sは、主蒸発器57だけに冷媒を流す冷却運転が行われる。区間tは、主蒸発器57及び補助蒸発器63の両方に冷媒を流す冷却運転が行われる。 In the section p in FIG. 6, a cooling operation is performed in which the refrigerant flows through both the main evaporator 57 and the auxiliary evaporator 63. In the section q, a cooling operation is performed in which the refrigerant flows only to the main evaporator 57. When the accumulated operation time of the compressor 61 reaches a predetermined time, the operation shifts to a defrosting operation in which the frost on the main evaporator 57 is heated and melted. In the section r, the flow path of the three-way valve 65 is switched to supply the high-pressure refrigerant compressed by the compressor 61 to the defrosting pipe 71. At this time, the main evaporator 57 is heated, and the refrigerant dissipated by the main evaporator 57 is decompressed by the capillary tube 67, supplied to the auxiliary evaporator 63 and evaporated, and then returned to the compressor 61. . Note that, during the defrosting operation, heating of the main evaporator 57 can be assisted using an electric heater (not shown). After the defrosting of the main evaporator 57 is completed, the cooling operation is restarted by switching the flow path of the three-way valve 65 and supplying the high-pressure refrigerant compressed by the compressor 61 to the condenser 62. In the section s in FIG. 6, a cooling operation is performed in which the refrigerant is allowed to flow only to the main evaporator 57. In the section t, a cooling operation is performed in which the refrigerant flows through both the main evaporator 57 and the auxiliary evaporator 63.
 以上説明した動作によって、冷凍サイクルの高圧冷媒を利用して主蒸発器57を加温することにより、除霜ヒータの電力量を削減することができ、冷蔵庫51の省エネルギ化を図ることができる。 By the operation described above, the main evaporator 57 is heated using the high-pressure refrigerant of the refrigeration cycle, so that the electric energy of the defrost heater can be reduced, and the energy saving of the refrigerator 51 can be achieved. .
 さらに、冷凍サイクルの高圧冷媒を利用して主蒸発器57を加温する際に、補助蒸発器63に冷媒を供給することにより、冷凍室53の昇温を抑制することができる。 Furthermore, when the main evaporator 57 is heated using the high-pressure refrigerant of the refrigeration cycle, the temperature of the freezer compartment 53 can be suppressed by supplying the auxiliary evaporator 63 with the refrigerant.
 しかしながら、従来の冷蔵庫51のような構成では、圧縮機61と凝縮器62との間に設けられた三方弁65を用いて、冷却運転と除霜運転とが切換えられる。このため、三方弁65を通過する冷媒流速が早く、冷媒流音が発生する原因となる。これは、除霜運転する際に、高圧冷媒の凝縮潜熱を利用して効率よく加温するために、凝縮器62の上流側に三方弁65を設けた結果、除霜運転時だけでなく、冷却運転時も、密度の低い過熱蒸気が、三方弁65を通過することによるものである。また、冷却運転から除霜運転に切換えられた直後は、凝縮器62に大量の液冷媒が滞留している。このため、除霜運転の立上りが遅く、十分な加温能力が得られないとともに、三方弁65の下流側の圧力が上流側の圧力よりも高くなる逆圧が発生して、三方弁65の耐久性が低下する要因となる。 However, in the configuration like the conventional refrigerator 51, the cooling operation and the defrosting operation are switched using the three-way valve 65 provided between the compressor 61 and the condenser 62. For this reason, the flow velocity of the refrigerant passing through the three-way valve 65 is fast, which causes the refrigerant flow noise to be generated. This is because, as a result of providing the three-way valve 65 on the upstream side of the condenser 62 in order to efficiently heat using the latent heat of condensation of the high-pressure refrigerant during the defrosting operation, not only during the defrosting operation, This is because the superheated steam having a low density passes through the three-way valve 65 even during the cooling operation. Further, immediately after switching from the cooling operation to the defrosting operation, a large amount of liquid refrigerant remains in the condenser 62. For this reason, the start-up of the defrosting operation is slow, a sufficient heating capacity cannot be obtained, and a reverse pressure is generated in which the pressure on the downstream side of the three-way valve 65 is higher than the pressure on the upstream side. It becomes a factor that durability decreases.
 従って、除霜運転する際に、高圧冷媒の凝縮潜熱を利用して効率よく加温するとともに、三方弁65を通過する冷媒流速を抑えて、冷媒流音の発生を抑制するとともに、冷却運転から除霜運転への切換えを速やかに行うことが課題となっている。 Therefore, when performing the defrosting operation, it efficiently heats using the latent heat of condensation of the high-pressure refrigerant, suppresses the flow rate of the refrigerant passing through the three-way valve 65, suppresses the generation of refrigerant flow noise, and starts from the cooling operation. It has been a challenge to quickly switch to defrosting operation.
特開昭58-024774号公報JP-A-58-024774
 本開示は、上記のような従来の課題に鑑みてなされたもので、冷媒流音の発生を抑制しながら、効率のよい除霜運転を実現する冷蔵庫を提供する。 The present disclosure has been made in view of the above-described conventional problems, and provides a refrigerator that realizes an efficient defrosting operation while suppressing generation of refrigerant flow noise.
 具体的には、本開示の実施の形態の一例による冷蔵庫は、少なくとも圧縮機、蒸発器、補助冷却器、前段凝縮器、後段凝縮器、及び、加温経路を有する冷凍サイクルを備える。また、本開示の実施の形態の一例による冷蔵庫は、前段凝縮器の下流側に接続された流路切換バルブを有する。流路切換バルブは、前段凝縮器からの高圧冷媒の流路を、後段凝縮器と、後段凝縮器と並列に接続された加温経路とに切り換える。蒸発器は、加温経路と熱結合している。本開示の実施の形態の一例による冷蔵庫は、蒸発器を除霜する際に、流路切換バルブにより高圧冷媒の流路が加温経路に切換えられて、圧縮機で圧縮された前段凝縮器からの高圧冷媒が加温経路に供給されて、蒸発器が加温されるとともに、加温経路内で放熱した冷媒が、加温経路の下流側に接続された補助冷却器で蒸発されるよう構成されている。 Specifically, a refrigerator according to an example of the embodiment of the present disclosure includes at least a compressor, an evaporator, an auxiliary cooler, a pre-stage condenser, a post-stage condenser, and a refrigeration cycle having a heating path. In addition, the refrigerator according to an example of the embodiment of the present disclosure includes a flow path switching valve connected to the downstream side of the pre-stage condenser. The flow path switching valve switches the flow path of the high-pressure refrigerant from the front stage condenser to a rear stage condenser and a heating path connected in parallel with the rear stage condenser. The evaporator is thermally coupled to the heating path. In the refrigerator according to an example of the embodiment of the present disclosure, when the evaporator is defrosted, the flow path of the high-pressure refrigerant is switched to the heating path by the flow path switching valve, and the compressor is compressed by the compressor. The high-pressure refrigerant is supplied to the heating path, the evaporator is heated, and the heat dissipated in the heating path is evaporated by the auxiliary cooler connected to the downstream side of the heating path. Has been.
 このような構成により、除霜運転する際に、高圧冷媒の凝縮潜熱を利用して効率よく加温することができるとともに、分岐経路を通過する冷媒流速を抑えて冷媒流音の発生を抑制できる。さらに、このような構成により、冷却運転から除霜運転への切換えを速やかに行うことができる。よって、このような構成により、冷蔵庫の省エネルギ化を図ることができる。 With such a configuration, when performing the defrosting operation, it is possible to efficiently heat using the latent heat of condensation of the high-pressure refrigerant, and it is possible to suppress the flow rate of the refrigerant passing through the branch path and suppress the generation of refrigerant flow noise. . Furthermore, with such a configuration, switching from the cooling operation to the defrosting operation can be performed quickly. Therefore, energy saving of the refrigerator can be achieved with such a configuration.
 また、本開示の実施の形態の一例による冷蔵庫は、加温経路の一部と圧縮機とを熱結合する熱交換部を有していてもよい。また、本開示の実施の形態の一例による冷蔵庫は、流路切換バルブが加温経路側に開放されて、蒸発器を除霜する際に、圧縮機の廃熱を利用して蒸発器が加温されるよう構成されていてもよい。 Moreover, the refrigerator according to an example of the embodiment of the present disclosure may include a heat exchange unit that thermally couples a part of the heating path and the compressor. Further, the refrigerator according to an example of the embodiment of the present disclosure is configured such that when the flow path switching valve is opened to the heating path side and the evaporator is defrosted, the evaporator is heated using waste heat of the compressor. It may be configured to be heated.
 このような構成により、除霜運転する際に、圧縮機の廃熱を利用して、高圧冷媒のエンタルピを増大させて、さらに効率よく加温することができ、冷蔵庫の省エネルギ化を図ることができる。 With such a configuration, when performing the defrosting operation, the waste heat of the compressor can be used to increase the enthalpy of the high-pressure refrigerant so that it can be heated more efficiently, and energy saving of the refrigerator can be achieved. Can do.
 また、本開示の実施の形態の一例による冷蔵庫は、蒸発器を除霜する直前まで予め冷却運転が行われ、圧縮機を停止せずに、流路切換バルブにより高圧冷媒の流路が後段凝縮器から加温経路に切換えられることにより、蒸発器を除霜するよう構成されていてもよい。 Further, the refrigerator according to an example of the embodiment of the present disclosure is cooled in advance until immediately before the evaporator is defrosted, and the flow path of the high-pressure refrigerant is condensed by the flow path switching valve without stopping the compressor. The evaporator may be defrosted by switching from the evaporator to the heating path.
 このような構成により、除霜中の庫内温度の上昇を抑制するとともに、予め実施する冷却運転中に圧縮機の温度を上昇させることで、圧縮機との熱交換効率を向上することができる。 With such a configuration, it is possible to improve the heat exchange efficiency with the compressor by suppressing an increase in the internal temperature during defrosting and increasing the temperature of the compressor during the cooling operation to be performed in advance. .
図1は、本開示の実施の形態の一例による冷蔵庫の縦断面図である。FIG. 1 is a longitudinal sectional view of a refrigerator according to an example of an embodiment of the present disclosure. 図2は、本開示の実施の形態の一例による冷蔵庫のサイクル構成図である。FIG. 2 is a cycle configuration diagram of a refrigerator according to an example of the embodiment of the present disclosure. 図3は、本開示の実施の形態の一例による冷蔵庫の除霜時の制御を示した図である。Drawing 3 is a figure showing control at the time of defrosting of a refrigerator by an example of an embodiment of this indication. 図4は、従来の冷蔵庫の縦断面図である。FIG. 4 is a longitudinal sectional view of a conventional refrigerator. 図5は、従来の冷蔵庫のサイクル構成図である。FIG. 5 is a cycle configuration diagram of a conventional refrigerator. 図6は、従来の冷蔵庫の流路切換バルブの動作を示した図である。FIG. 6 is a diagram illustrating the operation of a flow path switching valve of a conventional refrigerator.
 以下、本開示の実施の形態の例を、図面を参照しながら説明する。なお、以下の実施の形態によって本開示が限定されるものではない。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the following embodiments.
 (実施の形態)
 図1は、本開示の実施の形態の一例による冷蔵庫の縦断面図である。図2は、本開示の実施の形態の一例による冷蔵庫のサイクル構成を示した図である。図3は、本開示の実施の形態の一例による冷蔵庫の除霜時の制御を示した図である。
(Embodiment)
FIG. 1 is a longitudinal sectional view of a refrigerator according to an example of an embodiment of the present disclosure. FIG. 2 is a diagram illustrating a cycle configuration of a refrigerator according to an example of the embodiment of the present disclosure. Drawing 3 is a figure showing control at the time of defrosting of a refrigerator by an example of an embodiment of this indication.
 図1および図2に示すように、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、及び、筐体12の下部に配置された冷凍室18を有する。また、冷蔵庫11は、冷凍サイクルを構成する部品として、上部機械室16に収められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、及び、下部機械室15内に収められた前段凝縮器21を有している。また、冷蔵庫11は、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ、前段凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、及び、下部機械室15の底板25を有している。 As shown in FIG. 1 and FIG. 2, the refrigerator 11 is provided with a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided at the lower portion of the housing 12, and an upper portion of the housing 12. And a freezer compartment 18 disposed at the lower part of the casing 12. The refrigerator 11 is housed in a compressor 19 housed in the upper machine room 16, an evaporator 20 housed on the back side of the freezer room 18, and a lower machine room 15 as components constituting the refrigeration cycle. The former stage condenser 21 is provided. In addition, the refrigerator 11 is attached to the partition wall 22 that partitions the lower machine room 15, the fan 23 that air-cools the upstream condenser 21, the evaporating dish 24 installed on the leeward side of the partition wall 22, and the lower machine room 15 The bottom plate 25 is provided.
 ここで、圧縮機19は、可変速圧縮機であり、20~80rpsから選択された6段階の回転数が使用されるよう構成されている。これは、配管などの共振を避けながら、圧縮機19の回転数を低速~高速の6段階に切り換えて冷凍能力を調整するためである。また、圧縮機19は、起動時は低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速するよう構成されている。これは、最も高効率な低速を主として使用するとともに、高外気温及び扉開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。このとき、冷蔵庫11の冷却運転モードとは独立に、圧縮機19の回転数が制御される。なお、蒸発温度が高く、比較的冷凍能力が大きい冷蔵冷却モードの起動時の回転数は、冷凍冷却モードよりも低く設定されてもよい。また、冷蔵庫11は、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速させて冷凍能力を調整するよう構成されていてもよい。 Here, the compressor 19 is a variable speed compressor, and is configured to use a six-stage rotational speed selected from 20 to 80 rps. This is because the refrigerating capacity is adjusted by switching the rotational speed of the compressor 19 to six stages from low speed to high speed while avoiding resonance of piping and the like. Further, the compressor 19 is configured to operate at a low speed at the time of start-up, and to increase the speed as the operation time for cooling the refrigerator compartment 17 or the freezer compartment 18 becomes longer. This is because the most efficient low speed is mainly used, and an appropriate relatively high rotational speed is used against an increase in the load of the refrigerator compartment 17 or the freezer compartment 18 due to high outside air temperature and door opening / closing. . At this time, the rotation speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11. In addition, the rotation speed at the time of starting the refrigeration cooling mode with a high evaporation temperature and a relatively large refrigerating capacity may be set lower than in the refrigeration cooling mode. The refrigerator 11 may be configured to adjust the refrigeration capacity by decelerating the compressor 19 as the temperature of the refrigerator compartment 17 or the freezer compartment 18 decreases.
 また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は、隔壁22によって2室に分けられ、ファン23の風上側に前段凝縮器21が配置され、風下側に蒸発皿24が配置されている。 In addition, a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper machine room 16 are provided. is doing. Here, the lower machine chamber 15 is divided into two chambers by a partition wall 22, a pre-stage condenser 21 is disposed on the windward side of the fan 23, and an evaporating dish 24 is disposed on the leeward side.
 また、冷蔵庫11は、冷凍サイクルを構成する部品として、ドライヤ38、流路切換バルブ40、後段凝縮器41、絞り42、加温経路43、熱交換部44、加温側絞り45、補助冷却器46、及び、加温側吸入管47を有している。ドライヤ38は、前段凝縮器21の下流側に位置し、循環する冷媒を乾燥させる。流路切換バルブ40は、ドライヤ38の下流側に位置し、冷媒の流れを制御する。後段凝縮器41は、流路切換バルブ40の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合されている。絞り42は、後段凝縮器41と蒸発器20とを接続している。加温経路43は、後段凝縮器41と並列に流路切換バルブ40の下流側に接続されている。熱交換部44は、加温経路43の経路内で圧縮機19と熱結合している。加温側絞り45、補助冷却器46、及び加温側吸入管47は、加温経路43の下流側に接続されている。ここで、加温経路43の熱交換部44と加温側絞り45との間の一部は、蒸発器20と熱結合している。また、加温経路43の熱交換部44と加温側絞り45との間の一部は、絞り42から蒸発器20へ冷媒を供給する冷媒配管と独立している。また、絞り42から蒸発器20へ供給された冷媒は、吸入管48を介して圧縮機19へ還流する一方、加温側絞り45から補助冷却器46へ供給された冷媒は、加温側吸入管47を介して圧縮機19へ還流する。 The refrigerator 11 includes a dryer 38, a flow path switching valve 40, a rear condenser 41, a throttle 42, a heating path 43, a heat exchange unit 44, a heating side throttle 45, and an auxiliary cooler as components constituting a refrigeration cycle. 46 and a heating side suction pipe 47. The dryer 38 is located on the downstream side of the pre-stage condenser 21 and dries the circulating refrigerant. The flow path switching valve 40 is located on the downstream side of the dryer 38 and controls the flow of the refrigerant. The rear-stage condenser 41 is located downstream of the flow path switching valve 40 and is thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18. The throttle 42 connects the post-stage condenser 41 and the evaporator 20. The heating path 43 is connected to the downstream side of the flow path switching valve 40 in parallel with the post-stage condenser 41. The heat exchange unit 44 is thermally coupled to the compressor 19 in the heating path 43. The heating side throttle 45, the auxiliary cooler 46, and the heating side suction pipe 47 are connected to the downstream side of the heating path 43. Here, a part of the heating path 43 between the heat exchanging unit 44 and the heating side throttle 45 is thermally coupled to the evaporator 20. Further, a part of the heating path 43 between the heat exchanging portion 44 and the heating side throttle 45 is independent of the refrigerant pipe that supplies the refrigerant from the throttle 42 to the evaporator 20. Further, the refrigerant supplied from the throttle 42 to the evaporator 20 returns to the compressor 19 via the suction pipe 48, while the refrigerant supplied from the heating side throttle 45 to the auxiliary cooler 46 is heated to the suction side. It returns to the compressor 19 via the pipe 47.
 また、流路切換バルブ40は、後段凝縮器41及び加温経路43それぞれ単独の冷媒の流れを開閉制御することができる。通常、流路切換バルブ40は、前段凝縮器21から後段凝縮器41への流路を開の状態で維持し、前段凝縮器21から加温経路43への流路を閉の状態で維持している。流路切換バルブ40は、後に説明する除霜時のみ、流路の開閉を行う。 Moreover, the flow path switching valve 40 can control the opening and closing of the single refrigerant flow in each of the post-stage condenser 41 and the heating path 43. Usually, the flow path switching valve 40 maintains the flow path from the pre-stage condenser 21 to the post-stage condenser 41 in an open state and maintains the flow path from the pre-stage condenser 21 to the heating path 43 in a closed state. ing. The flow path switching valve 40 opens and closes the flow path only during defrosting described later.
 また、冷蔵庫11は、図1に示すように、蒸発器20で発生する冷気を、冷蔵室17と冷凍室18とに供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパ31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパ32、及び、冷蔵室17に冷気を供給するダクト33を有する。また、冷蔵庫11は、冷凍室18の温度を検知する冷凍室温度センサ34、冷蔵室17の温度を検知する冷蔵室温度センサ35、及び、蒸発器20の温度を検知する除霜温度センサ36を有している。ここで、ダクト33は、冷蔵室17と上部機械室16とが隣接する壁面に沿って形成されている。ダクト33を通過する冷気の一部は、冷蔵室17の中央付近から排出される。ダクト33を通過する冷気の多くは、上部機械室16が隣接する壁面を冷却しながら通過した後に、冷蔵室17の上部から排出される。 Further, as shown in FIG. 1, the refrigerator 11 has an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, and a freezer that blocks cold air supplied to the freezer compartment 18. It has a room damper 31, a refrigerator compartment damper 32 that blocks cold air supplied to the refrigerator compartment 17, and a duct 33 that supplies cold air to the refrigerator compartment 17. In addition, the refrigerator 11 includes a freezer temperature sensor 34 that detects the temperature of the freezer 18, a refrigerator temperature sensor 35 that detects the temperature of the refrigerator 17, and a defrost temperature sensor 36 that detects the temperature of the evaporator 20. Have. Here, the duct 33 is formed along the wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other. A part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment 17. Most of the cool air passing through the duct 33 is discharged from the upper part of the refrigerator compartment 17 after the upper machine room 16 passes while cooling the adjacent wall surface.
 以上のように構成された本実施の形態の冷蔵庫11について、以下にその動作を説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。 The operation of the refrigerator 11 of the present embodiment configured as described above will be described below, but the same components as those in the conventional example are denoted by the same reference numerals, and detailed description thereof will be omitted.
 ファン23、圧縮機19、及び、蒸発器ファン30がともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、冷凍室温度センサ34の検知する温度が、所定値のFCC_ON温度まで上昇するか、あるいは、冷蔵室温度センサ35の検知する温度が所定値のPCC_ON温度まで上昇すると、冷凍室ダンパ31を閉の状態とし、冷蔵室ダンパ32を開の状態として、圧縮機19、ファン23、及び、蒸発器ファン30を駆動させる(以下、この動作を「冷蔵冷却モード」という)。 In the cooling stop state in which the fan 23, the compressor 19 and the evaporator fan 30 are all stopped (hereinafter, this operation is referred to as "OFF mode"), the temperature detected by the freezer temperature sensor 34 is a predetermined value. When the temperature rises to the FCC_ON temperature or the temperature detected by the cold room temperature sensor 35 rises to a predetermined PCC_ON temperature, the freezer damper 31 is closed and the cold room damper 32 is opened. 19. The fan 23 and the evaporator fan 30 are driven (hereinafter, this operation is referred to as “refrigeration cooling mode”).
 冷蔵冷却モードにおいては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の前段凝縮器21側が負圧となり複数の吸気口26から外部の空気が吸引され、蒸発皿24側が正圧となり、下部機械室15内の空気が複数の排出口27から外部へ排出される。 In the refrigerated cooling mode, the fan 23 is driven, the front condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 becomes negative pressure, external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side is positive pressure. Thus, the air in the lower machine chamber 15 is discharged to the outside from the plurality of discharge ports 27.
 一方、圧縮機19から吐出された冷媒は、前段凝縮器21で外気と熱交換しながら一部の気体を残して凝縮された後、ドライヤ38で水分除去され、流路切換バルブ40を介して後段凝縮器41へ供給される(図2参照)。後段凝縮器41を通過した冷媒は、冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮された後、絞り42で減圧されて蒸発器20で蒸発し、冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、吸入管48を介して気体冷媒として圧縮機19に還流する。 On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the pre-stage condenser 21, and then moisture is removed by the dryer 38, via the flow path switching valve 40. It is supplied to the latter stage condenser 41 (see FIG. 2). The refrigerant that has passed through the rear-stage condenser 41 is condensed by radiating heat through the housing 12 while warming the opening of the freezer compartment 18, then depressurized by the throttle 42, evaporated by the evaporator 20, and then stored in the refrigerator compartment 17. While refrigerating the refrigeration chamber 17 by exchanging heat with the internal air, the refrigerant is returned to the compressor 19 as a gaseous refrigerant through the suction pipe 48.
 冷蔵冷却モード中に、冷凍室温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、冷蔵室温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。 During the refrigeration cooling mode, when the temperature detected by the freezer temperature sensor 34 falls to a predetermined FCC_OFF temperature and the temperature detected by the refrigerator temperature sensor 35 falls to a predetermined PCC_OFF temperature, the mode changes to the OFF mode. .
 また、冷蔵冷却モード中に、冷凍室温度センサ34の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、冷蔵室温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパ31を開の状態とし、冷蔵室ダンパ32を閉の状態として、圧縮機19、ファン23、及び、蒸発器ファン30を駆動させる。以下、冷蔵冷却モードと同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「冷凍冷却モード」という)。 In addition, when the temperature detected by the freezer temperature sensor 34 is higher than a predetermined FCC_OFF temperature and the temperature detected by the refrigerator temperature sensor 35 falls to a predetermined PCC_OFF temperature during the refrigerating / cooling mode, the freezer The compressor 19, the fan 23, and the evaporator fan 30 are driven with the chamber damper 31 open and the refrigerator compartment damper 32 closed. Hereinafter, by operating the refrigeration cycle in the same manner as in the refrigeration cooling mode, the freezing chamber 18 is cooled by exchanging heat between the inside air of the freezing chamber 18 and the evaporator 20 (hereinafter, this operation is referred to as “refrigeration cooling mode”). ).
 冷凍冷却モード中に、冷凍室温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、冷蔵室温度センサ35の検知する温度が所定値のPCC_ON温度以上を示すと、冷蔵冷却モードに遷移する。 If the temperature detected by the freezer temperature sensor 34 falls to a predetermined FCC_OFF temperature and the temperature detected by the refrigerator temperature sensor 35 indicates the predetermined value or more of the PCC_ON temperature during the freezing / cooling mode, the refrigerating / cooling mode is entered. Transition.
 また、冷凍冷却モード中に、冷凍室温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、冷蔵室温度センサ35の検知する温度が所定値のPCC_ON温度より低い温度を示すと、OFFモードに遷移する。 In addition, when the temperature detected by the freezer temperature sensor 34 falls to a predetermined FCC_OFF temperature and the temperature detected by the refrigerator temperature sensor 35 is lower than the predetermined PCC_ON temperature during the freezing / cooling mode, Transition to OFF mode.
 ここで、本実施の形態の冷蔵庫11の除霜時の制御について説明する。 Here, the control at the time of defrosting of the refrigerator 11 of this Embodiment is demonstrated.
 図3において、流路切換バルブ40の状態「開閉」は、前段凝縮器21から後段凝縮器41への流路を開放して、前段凝縮器21から加温経路43への流路を閉塞することを意味する。また、流路切換バルブ40の状態「閉開」は、前段凝縮器21から後段凝縮器41への流路を閉塞して、前段凝縮器21から加温経路43への流路を開放することを意味する。流路切換バルブ40の状態「閉閉」は、前段凝縮器21から後段凝縮器41への流路を閉塞して、前段凝縮器21から加温経路43への流路を閉塞することを意味する。 In FIG. 3, the state “open / close” of the flow path switching valve 40 opens the flow path from the pre-stage condenser 21 to the post-stage condenser 41 and closes the flow path from the pre-stage condenser 21 to the heating path 43. Means that. Further, the state “closed / opened” of the flow path switching valve 40 is to close the flow path from the pre-stage condenser 21 to the post-stage condenser 41 and open the flow path from the pre-stage condenser 21 to the heating path 43. Means. The state “closed / closed” of the flow path switching valve 40 means that the flow path from the pre-stage condenser 21 to the post-stage condenser 41 is closed and the flow path from the pre-stage condenser 21 to the heating path 43 is closed. To do.
 圧縮機19の積算運転時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。除霜モードの区間aにおいて、まず、冷凍室18の温度上昇を抑制するために、冷凍冷却モードと同様に冷凍室18を所定時間冷却する。次に、区間bにおいて、圧縮機19を運転しながら流路切換バルブ40を全閉することによって、前段凝縮器21から後段凝縮器41と加温経路43への流路を共に閉塞して、後段凝縮器41、蒸発器20、及び加温経路43に滞留する冷媒を前段凝縮器21に回収する。 When the accumulated operation time of the compressor 19 reaches a predetermined time, the operation proceeds to a defrosting mode in which the frost on the evaporator 20 is heated and melted. In the section “a” of the defrost mode, first, the freezer compartment 18 is cooled for a predetermined time in the same manner as in the freezer cooling mode in order to suppress the temperature rise of the freezer compartment 18. Next, in the section b, by closing the flow path switching valve 40 while operating the compressor 19, the flow path from the front stage condenser 21 to the rear stage condenser 41 and the heating path 43 is closed. The refrigerant that stays in the rear-stage condenser 41, the evaporator 20, and the heating path 43 is collected in the front-stage condenser 21.
 区間cにおいて、圧縮機19の運転を継続しながら流路切換バルブ40が切換えられて、前段凝縮器21から加温経路43への流路が開放されることで、加温経路43を介して前段凝縮器21に回収された高圧冷媒が蒸発器20に供給される。このとき、加温経路43に設けられた熱交換部44で高圧冷媒が運転中の圧縮機19の廃熱によって加温されて、乾き度が増大する。従って、区間cにおいて高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、エンタルピが増大した高圧冷媒と蒸発器20を熱交換することができ、より大きな熱量を蒸発器20に加えることができる。そして、加温経路43の終端で蒸発器20と熱交換して凝縮された冷媒は、加温側絞り45で減圧された後、補助冷却器46で蒸発し、冷凍室18の庫内空気と熱交換して冷凍室18を冷却しながら、加温側吸入管47を介して気体冷媒として圧縮機19に還流する。 In the section c, the flow path switching valve 40 is switched while the operation of the compressor 19 is continued, and the flow path from the pre-stage condenser 21 to the heating path 43 is opened. The high-pressure refrigerant recovered in the pre-stage condenser 21 is supplied to the evaporator 20. At this time, the high-pressure refrigerant is heated by the waste heat of the compressor 19 during operation in the heat exchanging unit 44 provided in the heating path 43, and the dryness increases. Therefore, compared with the case where the high-pressure refrigerant is supplied to the evaporator 20 without being heated in the heat exchanging unit 44 in the section c, the high-pressure refrigerant having increased enthalpy and the evaporator 20 can be heat-exchanged. A quantity of heat can be added to the evaporator 20. Then, the refrigerant condensed by heat exchange with the evaporator 20 at the end of the heating path 43 is depressurized by the heating side throttle 45 and then evaporated by the auxiliary cooler 46, and the air in the freezer compartment 18. While cooling the freezer compartment 18 through heat exchange, the refrigerant is returned to the compressor 19 as a gaseous refrigerant through the heating side suction pipe 47.
 次に、区間dにおいて、蒸発器20に取り付けられた除霜ヒータ(図示せず)に通電して除霜を完了する。除霜の完了は、除霜温度センサ36が所定温度に達したことで判断される。区間eにおいて、流路切換バルブ40が切換えられて前段凝縮器21から加温経路43への流路が閉塞されるとともに、前段凝縮器21から後段凝縮器41への流路が開放されて、通常運転が再開される。 Next, in the section d, the defrosting heater (not shown) attached to the evaporator 20 is energized to complete the defrosting. Completion of defrosting is determined when the defrosting temperature sensor 36 reaches a predetermined temperature. In section e, the flow path switching valve 40 is switched to close the flow path from the pre-stage condenser 21 to the heating path 43, and the flow path from the pre-stage condenser 21 to the post-stage condenser 41 is opened. Normal operation is resumed.
 以上のように、本開示の実施の形態の一例による冷蔵庫11は、前段凝縮器21と後段凝縮器41との間に流路切換バルブ40が配置され、二相域の冷媒が流通する経路を分岐させて、冷却運転と除霜運転とを切換えることができるように構成されている。このような構成により、除霜運転する際に、高圧冷媒の凝縮潜熱を利用して効率よく加温するとともに、分岐経路を通過する冷媒流速を抑えて冷媒流音の発生を抑制することができる。また、このような構成により、冷却運転から除霜運転への切換えが速やかに行われることができる。 As described above, in the refrigerator 11 according to an example of the embodiment of the present disclosure, the flow path switching valve 40 is disposed between the front-stage condenser 21 and the rear-stage condenser 41, and the path through which the refrigerant in the two-phase region flows is provided. It is comprised so that it can branch and can switch a cooling operation and a defrost operation. With such a configuration, when performing the defrosting operation, it is possible to efficiently heat using the condensation latent heat of the high-pressure refrigerant, and it is possible to suppress the flow rate of the refrigerant passing through the branch path and suppress the generation of refrigerant flow noise. . Further, with such a configuration, switching from the cooling operation to the defrosting operation can be performed quickly.
 なお、本実施の形態では、補助冷却器46は、冷凍室18内の空気と直接熱交換する態様を示したが、補助冷却器46と熱結合する蓄冷剤が設けられてもよい。これによって、除霜運転時に補助冷却器46で発生する冷却熱を蓄冷剤に一旦貯留した後に、少しずつ冷凍室18内の空気の冷却に利用することができ、補助冷却器46と冷凍室18内の空気とが熱交換する表面積を小さくして小型化を図ることができる。 In addition, in this Embodiment, although the auxiliary cooler 46 showed the aspect directly heat-exchanged with the air in the freezer compartment 18, the cool storage agent thermally couple | bonded with the auxiliary cooler 46 may be provided. Thus, after the cooling heat generated in the auxiliary cooler 46 during the defrosting operation is temporarily stored in the regenerator, it can be used little by little for cooling the air in the freezer compartment 18, and the auxiliary cooler 46 and the freezer compartment 18 can be used. It is possible to reduce the size by reducing the surface area for heat exchange with the air inside.
 さらに、本実施の形態の冷蔵庫11は、加温経路43の一部と圧縮機19とを熱結合する熱交換部44を有する。このような構成により、流路切換バルブ40を加温経路43側に開放させて蒸発器20を除霜する際に、圧縮機19の廃熱を利用して前段凝縮器21で一部が凝縮された高圧冷媒の乾き度を向上させた後に、蒸発器20を加温することによって、除霜運転する際に圧縮機19の廃熱を利用して高圧冷媒のエンタルピを増大させて、さらに効率よく加温することができる。これにより、冷蔵庫の省エネルギ化を図ることができる。 Furthermore, the refrigerator 11 according to the present embodiment includes a heat exchange unit 44 that thermally couples a part of the heating path 43 and the compressor 19. With this configuration, when the flow path switching valve 40 is opened to the heating path 43 side and the evaporator 20 is defrosted, a part of the precondenser 21 is condensed using the waste heat of the compressor 19. After improving the dryness of the high-pressure refrigerant, the evaporator 20 is heated to increase the enthalpy of the high-pressure refrigerant using the waste heat of the compressor 19 during the defrosting operation, thereby further improving the efficiency. Can warm well. Thereby, energy saving of a refrigerator can be achieved.
 なお、本実施の形態では、熱交換部44の冷媒温度と、前段凝縮器21の冷媒温度とは、略同等であるが、熱交換部44より上流側の加温経路43内に流路抵抗を設けて、熱交換部44内の冷媒温度を前段凝縮器21よりも低下させてもよい。これによって、圧縮機19との熱交換効率を向上させることができる。 In the present embodiment, the refrigerant temperature of the heat exchanging unit 44 and the refrigerant temperature of the pre-stage condenser 21 are substantially the same, but the channel resistance in the heating path 43 on the upstream side of the heat exchanging unit 44. May be provided to lower the refrigerant temperature in the heat exchanging section 44 than the pre-stage condenser 21. Thereby, the heat exchange efficiency with the compressor 19 can be improved.
 さらに、本実施の形態の冷蔵庫は、蒸発器20を除霜する直前まで予め冷却運転を行い、圧縮機19を停止せずに流路切換バルブ40により高圧冷媒の流路を後段凝縮器41から加温経路43に切換えることにより、蒸発器20を除霜することによって、除霜中の冷蔵室17及び冷凍室18の庫内温度の上昇を抑制することが可能となる。また、予め実施する冷却運転中に圧縮機19の温度を上昇させることで、圧縮機19との熱交換効率を向上させることができる。 Furthermore, the refrigerator according to the present embodiment performs a cooling operation in advance until immediately before the evaporator 20 is defrosted, and the flow path of the high-pressure refrigerant from the rear-stage condenser 41 by the flow path switching valve 40 without stopping the compressor 19. By switching to the heating path 43, the evaporator 20 is defrosted, so that an increase in the internal temperature of the refrigerator compartment 17 and the freezer compartment 18 during the defrosting can be suppressed. Moreover, the heat exchange efficiency with the compressor 19 can be improved by raising the temperature of the compressor 19 during the cooling operation performed in advance.
 なお、本実施の形態の冷蔵庫11は、区間c及び区間dの除霜運転中に、蒸発器ファン30を停止させて、冷凍室18内の冷気で蒸発器20が冷却されないよう構成されている。しかし、除霜運転に切換えられた直後から、所定時間の間、蒸発器ファン30を駆動させて、冷蔵室17あるいは冷凍室18内の冷気と蒸発器20とを熱交換させてもよい。これによって、除霜運転に切換えられた直後は、後段凝縮器41に貯留されていた冷媒が蒸発器20に供給されて、蒸発器20が冷却されるので、冷蔵室17あるいは冷凍室18内の冷気と蒸発器20を熱交換することにより蒸発器20を加温することができる。 In addition, the refrigerator 11 of this Embodiment is comprised so that the evaporator fan 30 may be stopped during the defrost operation of the area c and the area d, and the evaporator 20 may not be cooled with the cold air in the freezer compartment 18. . However, immediately after switching to the defrosting operation, the evaporator fan 30 may be driven for a predetermined time to exchange heat between the cold air in the refrigerator compartment 17 or the freezer compartment 18 and the evaporator 20. As a result, immediately after switching to the defrosting operation, the refrigerant stored in the rear condenser 41 is supplied to the evaporator 20 and the evaporator 20 is cooled, so that the inside of the refrigerator compartment 17 or the freezer compartment 18 is cooled. The evaporator 20 can be heated by exchanging heat between the cold air and the evaporator 20.
 以上のように、本開示は、圧縮機の廃熱を利用して冷凍サイクル内の高圧冷媒を蒸発器に供給して加温することにより、除霜用電気ヒータの出力を削減することができる冷蔵庫を提供する。よって、家庭用及び業務用の冷蔵庫、並びに他の冷凍冷蔵応用商品等にも適用できる。 As described above, the present disclosure can reduce the output of the electric heater for defrosting by heating the high-pressure refrigerant in the refrigeration cycle to the evaporator by using the waste heat of the compressor. Provide a refrigerator. Therefore, the present invention can be applied to refrigerators for home use and commercial use, and other frozen and refrigerated products.
 11  冷蔵庫
 12  筐体
 13  扉
 14  脚
 15  下部機械室
 16  上部機械室
 17  冷蔵室
 18  冷凍室
 19  圧縮機
 20  蒸発器
 21  前段凝縮器
 22  隔壁
 23  ファン
 24  蒸発皿
 25  底板
 26  吸気口
 27  排出口
 28  連通風路
 30  蒸発器ファン
 31  冷凍室ダンパ
 32  冷蔵室ダンパ
 33  ダクト
 34  冷凍室温度センサ
 35  冷蔵室温度センサ
 36  除霜温度センサ
 40  流路切換バルブ
 41  後段凝縮器
 42  絞り
 43  加温経路
 44  熱交換部
 45  加温側絞り
 46  補助冷却器
 47  加温側吸入管
 48  吸入管
DESCRIPTION OF SYMBOLS 11 Refrigerator 12 Case 13 Door 14 Leg 15 Lower machine room 16 Upper machine room 17 Refrigeration room 18 Freezing room 19 Compressor 20 Evaporator 21 Pre-stage condenser 22 Bulkhead 23 Fan 24 Evaporating dish 25 Bottom plate 26 Inlet 27 Outlet 28 Ventilation path 30 Evaporator fan 31 Freezer compartment damper 32 Refrigeration compartment damper 33 Duct 34 Freezer compartment temperature sensor 35 Refrigerator compartment temperature sensor 36 Defrost temperature sensor 40 Flow path switching valve 41 Rear stage condenser 42 Restriction 43 Heating path 44 Heat exchange section 45 Heating side throttle 46 Auxiliary cooler 47 Heating side suction pipe 48 Suction pipe

Claims (3)

  1. 少なくとも圧縮機、蒸発器、補助冷却器、前段凝縮器、後段凝縮器、及び、加温経路を有する冷凍サイクルを備え、
    前記前段凝縮器の下流側に接続され、前記前段凝縮器からの高圧冷媒を前記後段凝縮器と、前記後段凝縮器と並列に接続された前記加温経路とに流路を切り換える流路切換バルブを有し、
    前記蒸発器は前記加温経路と熱結合しており、
    前記蒸発器を除霜する際には、前記流路切換バルブが、前記加温経路に切換えられ、前記圧縮機で圧縮された前記前段凝縮器からの高圧冷媒が前記加温経路に供給され、前記蒸発器を加温するとともに、
    前記加温経路内で放熱した冷媒を、前記加温経路の下流側に接続された前記補助冷却器で蒸発させるよう構成された冷蔵庫。
    At least a compressor, an evaporator, an auxiliary cooler, a pre-stage condenser, a post-stage condenser, and a refrigeration cycle having a heating path,
    A flow path switching valve which is connected to the downstream side of the front stage condenser and switches the flow path of the high-pressure refrigerant from the front stage condenser to the rear stage condenser and the heating path connected in parallel with the rear stage condenser. Have
    The evaporator is thermally coupled to the heating path;
    When defrosting the evaporator, the flow path switching valve is switched to the heating path, and the high-pressure refrigerant from the pre-stage condenser compressed by the compressor is supplied to the heating path, While warming the evaporator,
    The refrigerator comprised so that the refrigerant | coolant thermally radiated in the said heating path | route may be evaporated with the said auxiliary cooler connected to the downstream of the said heating path | route.
  2. 前記加温経路の一部と前記圧縮機とを熱結合する熱交換部を有し、前記流路切換バルブを前記加温経路側に開放して前記蒸発器を除霜する際に、前記圧縮機の廃熱を利用して前記蒸発器が加温されるよう構成された
    請求項1に記載の冷蔵庫。
    A heat exchanging unit that thermally couples a part of the heating path and the compressor, and opens the flow path switching valve to the heating path side to defrost the evaporator. The refrigerator according to claim 1, wherein the evaporator is heated using waste heat of the machine.
  3. 前記蒸発器を除霜する直前まで予め冷却運転が行われ、前記流路切換バルブは、前記圧縮機を停止せずに前記後段凝縮器から前記加温経路に切換えられて、前記蒸発器を除霜するよう構成された
    請求項2に記載の冷蔵庫。
    The cooling operation is performed in advance until immediately before the evaporator is defrosted, and the flow path switching valve is switched from the subsequent condenser to the heating path without stopping the compressor to remove the evaporator. The refrigerator according to claim 2 configured to be frosted.
PCT/JP2018/002740 2017-02-07 2018-01-29 Refrigerator WO2018147113A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018567371A JPWO2018147113A1 (en) 2017-02-07 2018-01-29 refrigerator
CN201880010170.4A CN110249192A (en) 2017-02-07 2018-01-29 Freezer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020020 2017-02-07
JP2017-020020 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147113A1 true WO2018147113A1 (en) 2018-08-16

Family

ID=63108168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002740 WO2018147113A1 (en) 2017-02-07 2018-01-29 Refrigerator

Country Status (3)

Country Link
JP (1) JPWO2018147113A1 (en)
CN (1) CN110249192A (en)
WO (1) WO2018147113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595087A (en) * 2019-02-20 2020-08-28 松下知识产权经营株式会社 Refrigerator with a door

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4218988Y1 (en) * 1964-08-14 1967-11-02
JPS5070649A (en) * 1973-10-23 1975-06-12
JPS5115840A (en) * 1974-07-30 1976-02-07 Sanyo Electric Co JOSOSOCHI
JPS51139753A (en) * 1975-05-29 1976-12-02 Mitsubishi Electric Corp Mic type osciliator
JPS5414045A (en) * 1977-07-01 1979-02-01 Hitachi Ltd Freezing refrigerator
JPS5824774A (en) * 1981-08-06 1983-02-14 三洋電機株式会社 Refrigerator
JPS63169457A (en) * 1987-01-07 1988-07-13 松下電器産業株式会社 Heat pump type air conditioner
JPH0296585A (en) * 1988-10-01 1990-04-09 Idemitsu Kosan Co Ltd Novel ferrocene derivative, surfactant and production of organic thin film
JP2001263883A (en) * 2000-03-21 2001-09-26 Fukushima Industries Corp Hot gas defrosting type refrigerating/cold storage unit
JP2002181439A (en) * 2000-12-11 2002-06-26 Sanyo Electric Co Ltd Cooler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725096Y2 (en) * 1976-10-18 1982-05-31

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4218988Y1 (en) * 1964-08-14 1967-11-02
JPS5070649A (en) * 1973-10-23 1975-06-12
JPS5115840A (en) * 1974-07-30 1976-02-07 Sanyo Electric Co JOSOSOCHI
JPS51139753A (en) * 1975-05-29 1976-12-02 Mitsubishi Electric Corp Mic type osciliator
JPS5414045A (en) * 1977-07-01 1979-02-01 Hitachi Ltd Freezing refrigerator
JPS5824774A (en) * 1981-08-06 1983-02-14 三洋電機株式会社 Refrigerator
JPS63169457A (en) * 1987-01-07 1988-07-13 松下電器産業株式会社 Heat pump type air conditioner
JPH0296585A (en) * 1988-10-01 1990-04-09 Idemitsu Kosan Co Ltd Novel ferrocene derivative, surfactant and production of organic thin film
JP2001263883A (en) * 2000-03-21 2001-09-26 Fukushima Industries Corp Hot gas defrosting type refrigerating/cold storage unit
JP2002181439A (en) * 2000-12-11 2002-06-26 Sanyo Electric Co Ltd Cooler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595087A (en) * 2019-02-20 2020-08-28 松下知识产权经营株式会社 Refrigerator with a door
JP2020134011A (en) * 2019-02-20 2020-08-31 パナソニックIpマネジメント株式会社 refrigerator
JP7065279B2 (en) 2019-02-20 2022-05-12 パナソニックIpマネジメント株式会社 refrigerator
CN111595087B (en) * 2019-02-20 2023-03-24 松下知识产权经营株式会社 Refrigerator with a door

Also Published As

Publication number Publication date
CN110249192A (en) 2019-09-17
JPWO2018147113A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US10495368B2 (en) Refrigerator and operation method of the same
JP6934603B2 (en) Refrigerator and cooling system
KR100687934B1 (en) Refrigerator and controlling method for the same
JP6074596B2 (en) refrigerator
KR20150068710A (en) Cooling Apparatus
JP3452781B2 (en) refrigerator
WO2019107066A1 (en) Refrigerator
JP2013019598A (en) Refrigerator
JP4654539B2 (en) refrigerator
WO2018147113A1 (en) Refrigerator
JP3049425B2 (en) Refrigerator with two evaporators
JP2004293820A (en) Refrigerator
KR100764267B1 (en) Refrigerator, and method for controlling operation of the same
CN109780776A (en) Refrigerator and its control method
KR100844598B1 (en) Refrigerator
JP6846599B2 (en) refrigerator
JP6197176B2 (en) refrigerator
JP2019074233A (en) refrigerator
CN112856889B (en) Refrigerator and control method thereof
JP2015094536A (en) Refrigerator
CN111435047A (en) Defrosting system and refrigerator
JP6640778B2 (en) Refrigeration cycle and refrigerator having refrigeration cycle
JP4286106B2 (en) Freezer refrigerator
WO2019073749A1 (en) Refrigerator
CN117232199A (en) Refrigerator and defrosting control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18752053

Country of ref document: EP

Kind code of ref document: A1