JPS63169457A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS63169457A
JPS63169457A JP122487A JP122487A JPS63169457A JP S63169457 A JPS63169457 A JP S63169457A JP 122487 A JP122487 A JP 122487A JP 122487 A JP122487 A JP 122487A JP S63169457 A JPS63169457 A JP S63169457A
Authority
JP
Japan
Prior art keywords
heat
compressor
refrigerant
heat exchanger
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP122487A
Other languages
Japanese (ja)
Inventor
宏治 室園
寿夫 若林
秀夫 平野
育雄 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP122487A priority Critical patent/JPS63169457A/en
Publication of JPS63169457A publication Critical patent/JPS63169457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蓄熱を利用したヒートポンプ式空気調和機に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner that utilizes heat storage.

従来の技術 従来、空気熱源ヒートポンプ式空気調和機の室外熱交換
器の除霜方法は、大半が四方弁を切換えて冷房サイクル
とし、室外熱交換器を凝縮器、室内熱交換器を蒸発器と
する逆サイクル除霜方式で、この時コールドドラフト防
止のために室内ファンを停止していた。この方式では、
基本的に冷凍サイクル中の冷媒循環量が少なく圧縮機入
力の増大がそれほど期待できないので、除霜時間が長く
なること、並びに除霜中の数分間は室内ファンが停止す
るので暖房感が欠如し快適性が損なわれること、さらに
は除霜運転終了後、四方弁を切換えて暖房運転に復帰し
てからも室内熱交換器の温度が上昇するまでに時間を要
するなど使用者からすれば満足できるものではなかった
Conventional technology Conventionally, most defrosting methods for outdoor heat exchangers in air source heat pump air conditioners have been to switch a four-way valve to create a cooling cycle, with the outdoor heat exchanger serving as a condenser and the indoor heat exchanger serving as an evaporator. At this time, the indoor fan was stopped to prevent cold drafts. In this method,
Basically, the amount of refrigerant circulating during the refrigeration cycle is small and it is not expected that the compressor input will increase much, so the defrosting time will be longer and the indoor fan will stop for several minutes during defrosting, resulting in a lack of heating sensation. Users are not satisfied with the fact that comfort is impaired, and that it takes time for the temperature of the indoor heat exchanger to rise even after switching the four-way valve and returning to heating operation after defrosting operation is completed. It wasn't something.

近年、このような欠点を有する逆サイクル除霜方式にか
わって、バイパス回路等を設けることで、除霜運転時に
も四方弁を暖房サイクルのままとし、室内熱交換器およ
び室外熱交換器の両方を凝縮器として作用させ、若干の
暖房能力を維持しながら除霜を行なう暖房継続除霜方法
が提案されている(例えば実開昭60−59042号公
報)。
In recent years, instead of the reverse cycle defrosting system which has such drawbacks, by providing a bypass circuit etc., the four-way valve remains in the heating cycle even during defrosting operation, and both the indoor heat exchanger and outdoor heat exchanger are operated. A continuous heating defrosting method has been proposed in which defrosting is carried out while maintaining a certain heating capacity by using a compressor as a condenser (for example, Japanese Utility Model Application No. 60-59042).

以下、図面を参照しながら上記従来のヒートボンプ式空
気調和機について説明する。
The conventional heat pump type air conditioner will be described below with reference to the drawings.

第4図は、従来のヒートポンプ式空気調和機の第1の例
における冷凍サイクル図を示すものである。同図におい
て、1は容量制御可能な周波数可変圧縮機(以下単に圧
縮機と称す)、2は四方弁、3は室内熱交換器、4はキ
ャピラリ、5は室外熱交換器、6はホットガスバイパス
回路、7は二方弁、8はバイパスキャピラリである。ま
た、9は室外熱交換器温度センサ、1oはこのセンサ9
からの信号を受けて圧縮機1、二方弁7、室内外ファン
(図示せず)等を制御して室外熱交換器5の除霜運転を
行なう除霜制御コントローラである。
FIG. 4 shows a refrigeration cycle diagram in a first example of a conventional heat pump type air conditioner. In the figure, 1 is a capacity-controllable frequency variable compressor (hereinafter simply referred to as a compressor), 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a capillary, 5 is an outdoor heat exchanger, and 6 is a hot gas In the bypass circuit, 7 is a two-way valve, and 8 is a bypass capillary. In addition, 9 is an outdoor heat exchanger temperature sensor, and 1o is this sensor 9.
This is a defrosting control controller that defrosts the outdoor heat exchanger 5 by controlling the compressor 1, two-way valve 7, indoor/outdoor fan (not shown), etc. in response to signals from the controller.

ホットガスバイパス回路6は、圧縮機1の吐出管り8を
備えて構成されている。
The hot gas bypass circuit 6 includes a discharge pipe 8 of the compressor 1.

通常の暖房運転時には二方弁7は閉の状態で暖房サイク
ルを形成するが、低外気温時に室外熱交換器温度センサ
9からの信号により室外熱交換器5の着霜を検知すると
、除霜制御コントローラ10より指令を発して圧縮機1
の周波数を高め、圧縮機1の本体温度を上昇させて蓄熱
する。そして、所定時間経過後、除霜制御コントローラ
10より指令を発して、圧縮機1を最大周波数とし、二
方弁7を開いて高温の吐出ガスの大部分をホットガスバ
イパス回路6を経て室外熱交換器5の入口側へ導く。同
時に高温の吐出ガスの残りを暖房運転時と同様に四方弁
2、室内熱交換器3、キャピラリ4と流して若干の暖房
運転を継続して行ない、室外熱交換器5の入口でホット
ガスバイパス回路6を通過した冷媒と合流させる。この
合流後の冷媒は、自身のもつ凝縮熱で室外熱交換器5を
除霜した後、四方弁2を経て圧縮機1に戻り、除霜サイ
クルを完結する。
During normal heating operation, the two-way valve 7 is closed to form a heating cycle, but when frost formation on the outdoor heat exchanger 5 is detected by a signal from the outdoor heat exchanger temperature sensor 9 at low outside temperatures, the defrosting The compressor 1 is activated by issuing a command from the controller 10.
, the main body temperature of the compressor 1 is increased to store heat. After a predetermined period of time has elapsed, a command is issued from the defrost control controller 10 to set the compressor 1 to the maximum frequency, open the two-way valve 7, and direct most of the high temperature discharged gas through the hot gas bypass circuit 6 to the outdoor heat. It is guided to the inlet side of the exchanger 5. At the same time, the remainder of the high-temperature discharged gas is passed through the four-way valve 2, indoor heat exchanger 3, and capillary 4 in the same way as during heating operation, and a slight heating operation is continued, and hot gas bypass is performed at the inlet of outdoor heat exchanger 5. It is made to merge with the refrigerant that has passed through the circuit 6. After this combined refrigerant defrosts the outdoor heat exchanger 5 with its own heat of condensation, it returns to the compressor 1 via the four-way valve 2 and completes the defrosting cycle.

このように、暖房サイクルのままで除霜を行なうことが
できるので、除霜時の快適性の改善を図ることが可能と
なった。
In this way, defrosting can be performed while the heating cycle is still in progress, making it possible to improve comfort during defrosting.

また、第5図は従来のヒートポンプ式空気調和機の第2
の例における冷凍サイクル図を示す。この例においては
、ホットガスバイパス回路6のかわりにキャピラリ4を
バイパスするバイパス回路11を設けている。そして、
バイパス回路11には二方弁12、逆止弁13を備えて
いる。
Figure 5 shows the second part of a conventional heat pump air conditioner.
The refrigeration cycle diagram in the example is shown. In this example, a bypass circuit 11 that bypasses the capillary 4 is provided in place of the hot gas bypass circuit 6. and,
The bypass circuit 11 is equipped with a two-way valve 12 and a check valve 13.

除霜時には、二方弁12を開いてほとんどの冷媒をバイ
パス回路11を通過させるこ゛とで、室外熱交換器5の
冷媒圧力を上昇させ、室内熱交換器3および室外熱交換
器5の両方を凝縮器として作用させることで、第1の例
で説明した効果と同様熱交換的に接続し、暖房運転時に
蓄熱槽に熱を蓄え、除霜運転時にその熱を利用して短時
間で霜を融かすことができる方式も提案されている(例
えば特公昭54−38737号公報)。
During defrosting, the two-way valve 12 is opened to allow most of the refrigerant to pass through the bypass circuit 11, thereby increasing the refrigerant pressure in the outdoor heat exchanger 5 and reducing both the indoor heat exchanger 3 and the outdoor heat exchanger 5. By acting as a condenser, it is connected in a heat exchange manner similar to the effect explained in the first example, storing heat in the heat storage tank during heating operation, and using that heat during defrosting operation to quickly eliminate frost. A method capable of melting has also been proposed (for example, Japanese Patent Publication No. 54-38737).

発明が解決しようとする問題点 しかしながら、上記方法では以下のような問題点があっ
た。
Problems to be Solved by the Invention However, the above method has the following problems.

第6図は、第4図に示す従来のヒートポンプ式空調機の
第1の例におけるバイパスキャピラリの絞り量と除霜時
間および除霜運転時の暖房能力との関係を示すものであ
る。
FIG. 6 shows the relationship between the amount of restriction of the bypass capillary, the defrosting time, and the heating capacity during defrosting operation in the first example of the conventional heat pump type air conditioner shown in FIG.

同図より明らかなように、バイパスキャピラリ8の絞り
量を大きくすれば、除霜運転時に室内熱交換器3を通過
する冷媒の循環量が増加し、圧力も上昇するので暖房能
力は増加するが、室外熱交換器5を通過する冷媒の圧力
が低下して凝縮能力が減少するので、除霜時間が長くな
ってしまう。
As is clear from the figure, if the amount of restriction of the bypass capillary 8 is increased, the amount of refrigerant circulated through the indoor heat exchanger 3 during defrosting operation will increase, and the pressure will also rise, so the heating capacity will increase. Since the pressure of the refrigerant passing through the outdoor heat exchanger 5 decreases and the condensing capacity decreases, the defrosting time becomes longer.

したがって、短時間に除霜を終えるためには、暖房能力
を大きくすることはできなかった。例えば、1馬力クラ
スのヒートポンプ式空気調和機では、はとんどのメーカ
ーが総合電流を20A以下に押えるような制御装置を設
けており、この場合、圧縮機入力のうち冷媒に与えられ
る熱量は、発明者らの実験の結果、最大でも1300k
cal/hである。
Therefore, in order to finish defrosting in a short time, it was not possible to increase the heating capacity. For example, most manufacturers of 1 horsepower class heat pump air conditioners are equipped with a control device that keeps the total current below 20A, and in this case, the amount of heat given to the refrigerant out of the input to the compressor is: As a result of the inventors' experiments, at most 1300k
Cal/h.

除霜を5分間で終えるとすると、この間圧縮機入力より
冷媒に与えられた熱量は108kcalである。圧縮機
重量がtohg、比熱が0.1で、圧縮機本体温度が除
霜運転中に30℃降下したとすると、30koalの熱
量が冷媒に与えられる。主に、これら2つの熱量の合計
138koalの熱が冷媒に与えられる。これに対して
、着霜量が900gでるとすると、除霜に72kcal
の熱が用いられ、残りの(138−72) kcalの
熱が暖房に利用可能である。これは単位時間当り792
 kcal/hまた、圧縮機本体を蓄熱体として利用し
、乾き度の低い冷媒を吸入して圧縮機本体の熱を奪って
いるため、圧縮機信頼性も低かった。
Assuming that defrosting is completed in 5 minutes, the amount of heat given to the refrigerant from the compressor input during this time is 108 kcal. Assuming that the compressor weight is tohg, the specific heat is 0.1, and the compressor body temperature drops by 30° C. during defrosting operation, a heat amount of 30 koal is given to the refrigerant. Mainly, a total of 138 koal of heat from these two amounts of heat is given to the refrigerant. On the other hand, if the amount of frosting is 900g, defrosting requires 72kcal.
of heat is used and the remaining (138-72) kcal of heat is available for space heating. This is 792 per unit time
kcal/h Furthermore, the reliability of the compressor was also low because the compressor body was used as a heat storage body and the refrigerant with low dryness was sucked in to remove heat from the compressor body.

第5図に示す第2の例の場合も、除霜運転時の暖房能力
は低く、第1の例で示したのと同様の問題点を有してい
た。さらに、第2の例において室内機と室外機とを接続
配管で結ぶセパレートタイプのヒートポンプ式空調機の
場合、圧縮機1の周波数を上昇させて冷媒の循環量を増
加させたり、接続配管を長くしたりすると全冷媒が通過
するため室内熱交換器3の出口とバイパス回路11の入
口とを結ぶ接続配管での圧力損失が増加し、室外熱交換
器5を通過する冷媒の圧力が低下し、凝縮能力が低下し
て除霜時間が長くなってしまったり、あるいは除霜でき
なくなってしまうという問題点があった。
In the case of the second example shown in FIG. 5 as well, the heating capacity during defrosting operation was low and had the same problem as shown in the first example. Furthermore, in the second example, in the case of a separate type heat pump air conditioner that connects the indoor unit and outdoor unit with connecting piping, the frequency of compressor 1 may be increased to increase the amount of refrigerant circulation, or the connecting piping may be made longer. When this happens, all the refrigerant passes through, so the pressure loss in the connecting pipe connecting the outlet of the indoor heat exchanger 3 and the inlet of the bypass circuit 11 increases, and the pressure of the refrigerant passing through the outdoor heat exchanger 5 decreases. There have been problems in that the condensing ability is reduced, resulting in a longer defrosting time or inability to defrost.

て作用させて室内より吸熱するかわりに蓄熱された熱を
取っていた。したがって、この方式では除霜時間の短縮
および除霜運転時の室内への冷風吹出しの防止は可能で
あるが、除霜運転時に室内を暖房することはできず、ま
た蓄熱槽に蓄熱するのに電気ヒータを用いているので、
暖房運転時のエネルギ効率が低下するという問題点があ
った。
Instead of absorbing heat from inside the room, the stored heat was taken. Therefore, with this method, it is possible to shorten the defrosting time and prevent cold air from blowing into the room during defrosting operation, but it is not possible to heat the room during defrosting operation, and it is difficult to store heat in the heat storage tank. Since it uses an electric heater,
There was a problem in that energy efficiency during heating operation decreased.

除霜運転時にこの熱を利用することで、高い暖房能力を
保ちながら除霜を行ない、かつ圧縮機信頼性およびエネ
ルギ効率の高いヒートポンプ式空調機を提供するもので
ある。
By utilizing this heat during defrosting operation, the present invention provides a heat pump type air conditioner that performs defrosting while maintaining high heating capacity, and has high compressor reliability and energy efficiency.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
調機は、圧縮機、四方弁、室外熱交換器、減圧器、室内
熱交換器等を連結して冷媒回路を構交換的に配設し、前
記減圧器をバイパスするバイパス回路を設け、前記減圧
器と前記バイパス回路とを流路切換手段により冷媒流路
を切換可能とし、前記バイパス回路と前記蓄熱槽を熱交
換的に接続したものである。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention has a refrigerant circuit that connects a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, etc. are arranged interchangeably, a bypass circuit that bypasses the pressure reducer is provided, a refrigerant flow path between the pressure reducer and the bypass circuit can be switched by a flow path switching means, and the bypass circuit and the heat storage tank are connected to each other. They are connected for heat exchange.

作  用 本発明は、上記手段により次のような作用を有する。For production The present invention has the following effects through the above means.

すなわち、圧縮機の周囲に蓄熱槽を熱交換的に配設する
ことで、暖房運転時に圧縮機の廃熱を回シ 収して蓄熱槽に蓄熱し、この熱を再び冷媒に与粍ること
ができるので、エネルギ効率を高めることができる。ま
た、減圧器をバイパスし、蓄熱槽と熱交換的に接続した
バイパス回路を設け、除霜運転時にバイパス回路に冷媒
を流して蓄熱槽内の蓄熱材と熱交換を行なうことで、高
い暖房能力を保ちながら除霜運転を行なうことが可能で
あり、かつ圧縮機吸入冷媒の乾き度を高く保つことがで
きるので、圧縮機信頼性も高い。さらに、セパレートタ
イ圧力損失が大きく、室外熱交換器を通過する冷媒の圧
力が低くても、過熱域にある冷媒を利用できるので、除
霜可能である。
In other words, by arranging a heat storage tank around the compressor for heat exchange, waste heat from the compressor can be recovered during heating operation, stored in the heat storage tank, and this heat can be used to feed the refrigerant again. This makes it possible to improve energy efficiency. In addition, a bypass circuit is installed that bypasses the pressure reducer and is connected to the heat storage tank for heat exchange. During defrosting operation, refrigerant flows through the bypass circuit and exchanges heat with the heat storage material in the heat storage tank, resulting in high heating capacity. It is possible to perform defrosting operation while maintaining the temperature of the compressor, and the dryness of the refrigerant sucked into the compressor can be maintained at a high level, so that the reliability of the compressor is also high. Furthermore, even if the separate tie pressure loss is large and the pressure of the refrigerant passing through the outdoor heat exchanger is low, defrosting is possible because the refrigerant in the superheat region can be used.

実施例 以下、本発明をその一実施例を示す添付図面の第1図〜
第3図を参考に説明する。なお、本実施例を説明するに
当り、第4図および第5図に示す従来のものと同一の機
能をもつものには同一の番号を付して説明を省略する。
EXAMPLE Hereinafter, the present invention will be described with reference to FIG. 1 of the accompanying drawings showing an example thereof.
This will be explained with reference to FIG. In describing this embodiment, parts having the same functions as those of the conventional system shown in FIGS. 4 and 5 are given the same numbers and their explanations will be omitted.

に示す圧縮機1の周囲の概略横断面図である。FIG. 2 is a schematic cross-sectional view of the surroundings of the compressor 1 shown in FIG.

同図において14はキャピラリ4をバイパスするバイパ
ス回路であり、このバイパス回路14には二方弁15、
逆止弁16、熱交換器17が備えられている。また、1
8は蓄熱槽で、この蓄熱槽18は圧縮機1の周囲に、熱
交換可能なように接触させて配設され、内部に潜熱蓄熱
材(NaCH3CO0・3H20)19が充填されてお
り、この蓄熱材19と熱交換可能なように前記熱交換器
17が配設されている。そして、さらにその周囲を断熱
材20で囲んでいる。
In the figure, 14 is a bypass circuit that bypasses the capillary 4, and this bypass circuit 14 includes a two-way valve 15,
A check valve 16 and a heat exchanger 17 are provided. Also, 1
8 is a heat storage tank, and this heat storage tank 18 is arranged around the compressor 1 in contact with it so that heat can be exchanged, and the inside is filled with a latent heat storage material (NaCH3CO0.3H20) 19, and this heat storage tank 18 is The heat exchanger 17 is arranged so as to be able to exchange heat with the material 19. Then, it is further surrounded by a heat insulating material 20.

この冷媒匝1路において、暖房運転時には、二方弁15
は閉の状態であり、圧縮機1から吐出された冷媒は、四
方弁2、室内熱交換器3、キャピラリ4、室外熱交換器
5、四方弁2と流れ、圧縮機1に吸入される。この時、
前述の構造により、従来は圧縮機1から外気へ放熱され
ていた熱を蓄熱槽18に蓄えることが可能である。
In this single refrigerant container, during heating operation, the two-way valve 15
is in a closed state, and the refrigerant discharged from the compressor 1 flows through the four-way valve 2, the indoor heat exchanger 3, the capillary 4, the outdoor heat exchanger 5, and the four-way valve 2, and is sucked into the compressor 1. At this time,
With the above-described structure, it is possible to store heat, which was conventionally radiated from the compressor 1 to the outside air, in the heat storage tank 18.

次に、除霜運転時は、二方弁15を開とする。Next, during defrosting operation, the two-way valve 15 is opened.

これにより、圧縮機1から吐出された冷媒は、四方弁2
、室内熱交換器3へと流れ、暖房に利用された後わずか
の冷媒はキャピラリ4を通って室外熱交換器5へと流れ
、残りの大部分の冷媒はバイパス回路14へ流入し、二
方弁15を通って熱交換器17へと流れて蓄熱材19よ
り熱を奪って逆止弁16を通り、キャピラリ4を通過し
た冷媒と合流して室外熱交換器5へと流れる。そして、
ここで除霜に利用された後、四方弁2を通過して圧縮機
1に吸入される。
As a result, the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2.
After being used for heating, a small amount of the refrigerant flows through the capillary 4 to the outdoor heat exchanger 5, and most of the remaining refrigerant flows into the bypass circuit 14 and is used for heating. It flows through the valve 15 to the heat exchanger 17, removes heat from the heat storage material 19, passes through the check valve 16, joins with the refrigerant that has passed through the capillary 4, and flows to the outdoor heat exchanger 5. and,
After being used for defrosting, it passes through a four-way valve 2 and is sucked into the compressor 1.

第3図は、第1図に示したヒートポンプ式空調機の除霜
運転時の冷凍サイクルをモリエル線図上に示した図であ
る。同図におけるgmgの記号は、第1図におけるa 
−gの位置における冷媒の状態を示す。まず、圧縮機1
で圧縮された冷媒は(a−b’)、室内熱交換器3で暖
房に利用されて凝縮しくC→d)、接続配管等を通過の
際の圧力損失で圧力が低下しく d−、)、バイパス回
路14の熱交換器17で蓄熱材19より熱を奪い(、−
f)、室外熱交換器5で除霜に利用されて凝縮しくf−
g)、四方弁2を通過して圧縮機1に吸入される( g
”a )。このように、暖房に用いられて凝縮した冷媒
(d)は、蓄熱材19より熱を奪うことで再び(flま
でエンタルピが引き上げられるので、暖房能力を大きく
とっても短時間に除霜を終えることが可能である。
FIG. 3 is a diagram showing the refrigeration cycle of the heat pump type air conditioner shown in FIG. 1 during defrosting operation on a Mollier diagram. The symbol gmg in the figure is a in Figure 1.
- shows the state of the refrigerant at position g. First, compressor 1
The refrigerant compressed in (a-b') is used for heating in the indoor heat exchanger 3 and condenses (C→d), and the pressure decreases due to pressure loss when passing through connecting pipes, etc. (d-,). , the heat exchanger 17 of the bypass circuit 14 removes heat from the heat storage material 19 (, -
f) is used for defrosting in the outdoor heat exchanger 5 and condenses f-
g), passes through the four-way valve 2 and is sucked into the compressor 1 (g
"a). In this way, the refrigerant (d) that is condensed when used for heating takes heat from the heat storage material 19 and its enthalpy is raised to (fl) again, so even if the heating capacity is large, it can be defrosted in a short time. It is possible to finish.

ここで、発明者らの実験結果の一例を示すと、暖房運転
時の圧縮機入力が1700W(1462keat/h)
の場合、従来方式では1250kcal/hの熱が冷媒
に与えられ、212 keel/hの熱が外気に放熱さ
れていた。これに対して本実施例で示した構造とするこ
とで、212 kaal/hのうちの約70%の150
kcal/hの熱を回収して蓄熱槽18に蓄熱すること
ができた。
Here, to show an example of the inventors' experimental results, the compressor input during heating operation was 1700 W (1462 keat/h).
In this case, in the conventional method, 1250 kcal/h of heat was given to the refrigerant, and 212 kcal/h of heat was radiated to the outside air. On the other hand, by using the structure shown in this example, 150 kaal/h, which is about 70% of the 212 kaal/h
It was possible to recover kcal/h of heat and store it in the heat storage tank 18.

内に2.5J充填しておけば、1時間で150kcal
の熱量を蓄熱することができる。これを全部除霜運転時
に利用できるとすれば、冷媒に与えられる熱量は従来例
で説明した圧縮機入力より与えられる熱量108kca
lに150kcalを加えて258keelとなる。一
方、除霜に用いられる熱量は72kcalであるから残
りの186kcalの熱量が暖房に利用可能である。こ
れは、単位時間当り2232kcal/h  であるの
で、十分に室内の快適性を保つことができる。
If you fill it with 2.5J, it will give you 150kcal in 1 hour.
of heat can be stored. If all of this can be used during defrosting operation, the amount of heat given to the refrigerant is the amount of heat given from the compressor input explained in the conventional example, 108kca.
Add 150 kcal to 1 to get 258 keel. On the other hand, since the amount of heat used for defrosting is 72 kcal, the remaining amount of heat of 186 kcal can be used for heating. Since this is 2232 kcal/h per unit time, sufficient indoor comfort can be maintained.

このように、従来圧縮機から外気に放熱していた熱を回
収して除霜に利用することができるので、エネルギ効率
を高めることができる。また、室外熱交換器5で除霜に
利用される冷媒は、はとんど過熱ガスの状態であるので
(f−”a )、圧縮機周波数を上昇させて冷媒循環量
を増加させたり、接ノに 続配管を長くすることでd−・の圧力損出が増加し、f
 −e Hの冷媒の圧力が低下しても、除霜を行なうこ
とが可能である。さらに、圧縮機吸入冷媒(船の乾き度
を高く保つことができるので、圧縮機信頼性の高い除霜
運転を行なうことができる。
In this way, the heat that was conventionally radiated to the outside air from the compressor can be recovered and used for defrosting, thereby increasing energy efficiency. Furthermore, since the refrigerant used for defrosting in the outdoor heat exchanger 5 is mostly in the state of superheated gas (f-"a), the compressor frequency may be increased to increase the amount of refrigerant circulation. By lengthening the piping connected to the connection, the pressure loss of d-・ increases, and f
-e Even if the pressure of the H refrigerant decreases, defrosting can be performed. Furthermore, since the refrigerant sucked into the compressor (ship) can be kept highly dry, defrosting operation with high reliability of the compressor can be performed.

なお、本実施例において、流路切換手段はニガの回収量
を増加させているが、断熱材を配設しない場合も、回収
量は減少して除霜時間の増加、除霜時の暖房能力の減少
等を招くが、本発明の効果を得ることができる。
In this example, the flow path switching means increases the amount of bittern recovered, but even if no insulation is provided, the amount recovered decreases, the defrosting time increases, and the heating capacity during defrosting decreases. However, the effects of the present invention can be obtained.

また、蓄熱材【さ本実施例で用いたNaCH3COO・
3H20以外のものを用いてもよい。さらに、圧縮機に
能力可変形のものを用いなくても同様の効果を得ること
ができる。
In addition, the heat storage material [NaCH3COO used in this example]
Materials other than 3H20 may be used. Furthermore, the same effect can be obtained without using a variable capacity compressor.

発明の効果 以上のように本発明のヒートポンプ式空気調和機は、圧
縮機周囲に蓄熱槽を熱交換的に配設することで、エネル
ギ効率を高めることができる。また、減圧器をバイパス
し、蓄熱槽と熱交換的に接続したバイパス回路を設け、
除霜運転時にバイパス回路に冷媒を流して蓄熱槽内の蓄
熱材と熱交換を行なうことで、高い暖房能力を保ちなが
ら除霜運転を行なうことが可能であり、圧縮機信頼性も
室外熱交換器を通過する冷媒の圧力が低くても除霜可能
である等の効果を有する。
Effects of the Invention As described above, the heat pump type air conditioner of the present invention can improve energy efficiency by arranging a heat storage tank around the compressor for heat exchange. In addition, a bypass circuit is installed that bypasses the pressure reducer and is connected to the heat storage tank for heat exchange.
During defrosting operation, by flowing refrigerant through the bypass circuit and exchanging heat with the heat storage material in the heat storage tank, defrosting operation can be performed while maintaining high heating capacity, and compressor reliability is also improved by outdoor heat exchange. It has the effect of being able to defrost even if the pressure of the refrigerant passing through the container is low.

【図面の簡単な説明】 第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の冷凍サイクル図、第2図は第1図における圧縮
機周囲の概略横断面図、第3図は同ヒートポンプ式空気
調和機の冷凍サイクルをモリエル線図に示した特性図、
第4図は従来のヒートポンプ式空気調和機の第1の例に
おける冷凍サイクル図、第5図は同ヒートポンプ式空気
調和機り量と除霜時間、暖房能力の関係を示す特性図で
ある。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室内熱交換器、4・・・・・・キャピラリ(減
圧器)、5・・・・・・室外熱交換器、14・・・・・
・バイパス回路、15・・・・・・二方弁(流路切換手
段)、17・・・・・・熱交換器、18・・・・・・蓄
熱槽、19・・・・・・蓄熱材、20・・・・・・断熱
材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
3 図
[Brief Description of the Drawings] Figure 1 is a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention, Figure 2 is a schematic cross-sectional view of the area around the compressor in Figure 1, and Figure 3 is the same diagram. A characteristic diagram showing the refrigeration cycle of a heat pump air conditioner in a Mollier diagram.
FIG. 4 is a refrigeration cycle diagram in a first example of a conventional heat pump type air conditioner, and FIG. 5 is a characteristic diagram showing the relationship between the amount of heat pump type air conditioner, defrosting time, and heating capacity. 1... Compressor, 2... Four-way valve, 3...
...Indoor heat exchanger, 4...Capillary (pressure reducer), 5...Outdoor heat exchanger, 14...
・Bypass circuit, 15... Two-way valve (flow path switching means), 17... Heat exchanger, 18... Heat storage tank, 19... Heat storage Material, 20... Insulation material. Name of agent: Patent attorney Toshio Nakao and one other name
3 diagram

Claims (1)

【特許請求の範囲】 圧縮機、四方弁、室外熱交換器、減圧器、室内熱交換器
等を連結して冷媒回路を構成し、 内部に蓄熱材を充填した蓄熱槽を前記圧縮機の周囲に前
記圧縮機と熱交換的に配設し、前記減圧器をバイパスす
るバイパス回路を設け、前記減圧器と前記バイパス回路
とを流路切換手段により冷媒流路を切換可能とし、前記
バイパス回路と前記蓄熱槽を熱交換的に接続したヒート
ポンプ式空気調和機。
[Claims] A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor. A bypass circuit is provided for heat exchange with the compressor and bypasses the pressure reducer, and a refrigerant flow path between the pressure reducer and the bypass circuit can be switched by a flow path switching means, and the bypass circuit and the bypass circuit A heat pump type air conditioner in which the heat storage tank is connected in a heat exchange manner.
JP122487A 1987-01-07 1987-01-07 Heat pump type air conditioner Pending JPS63169457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP122487A JPS63169457A (en) 1987-01-07 1987-01-07 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP122487A JPS63169457A (en) 1987-01-07 1987-01-07 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS63169457A true JPS63169457A (en) 1988-07-13

Family

ID=11495495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP122487A Pending JPS63169457A (en) 1987-01-07 1987-01-07 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63169457A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306785A (en) * 1988-06-03 1989-12-11 Daikin Ind Ltd Air-conditioner
JPH02251052A (en) * 1989-03-22 1990-10-08 Daikin Ind Ltd Compressor for refrigerator
JPH02128066U (en) * 1989-03-27 1990-10-22
JPH0350461A (en) * 1989-07-18 1991-03-05 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH0375460A (en) * 1989-08-17 1991-03-29 Daikin Ind Ltd Heat pump system and method for controlling its operation
JPH0611202A (en) * 1992-06-26 1994-01-21 Daikin Ind Ltd Air conditioning apparatus
WO2017179500A1 (en) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 Refrigerator and cooling system
WO2018147113A1 (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Refrigerator
JP2018136063A (en) * 2017-02-21 2018-08-30 パナソニック株式会社 Refrigerator and method for operating the same
WO2019107066A1 (en) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Refrigerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208366A (en) * 1983-05-13 1984-11-26 松下電器産業株式会社 Cold and heat accumulation type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208366A (en) * 1983-05-13 1984-11-26 松下電器産業株式会社 Cold and heat accumulation type air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306785A (en) * 1988-06-03 1989-12-11 Daikin Ind Ltd Air-conditioner
JPH02251052A (en) * 1989-03-22 1990-10-08 Daikin Ind Ltd Compressor for refrigerator
JPH02128066U (en) * 1989-03-27 1990-10-22
JPH0350461A (en) * 1989-07-18 1991-03-05 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH0375460A (en) * 1989-08-17 1991-03-29 Daikin Ind Ltd Heat pump system and method for controlling its operation
JPH0611202A (en) * 1992-06-26 1994-01-21 Daikin Ind Ltd Air conditioning apparatus
WO2017179500A1 (en) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 Refrigerator and cooling system
CN108603712A (en) * 2016-04-13 2018-09-28 松下知识产权经营株式会社 Freezer and cooling system
CN108603712B (en) * 2016-04-13 2020-07-28 松下知识产权经营株式会社 Refrigerator and cooling system
WO2018147113A1 (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Refrigerator
CN110249192A (en) * 2017-02-07 2019-09-17 松下知识产权经营株式会社 Freezer
JPWO2018147113A1 (en) * 2017-02-07 2019-11-21 パナソニックIpマネジメント株式会社 refrigerator
JP2018136063A (en) * 2017-02-21 2018-08-30 パナソニック株式会社 Refrigerator and method for operating the same
WO2019107066A1 (en) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 Refrigerator
JP2019100585A (en) * 2017-11-30 2019-06-24 パナソニックIpマネジメント株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP4304832B2 (en) Air conditioner
JPS63169457A (en) Heat pump type air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP2001263848A (en) Air conditioner
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JP2842471B2 (en) Thermal storage type air conditioner
JPS63259342A (en) Multi-room type air conditioner
JPH04203776A (en) Heat pump type air conditioner
JPH08285393A (en) Air conditioner for multi-room
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS63108173A (en) Defrostation method of heat pump type air conditioner
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JPH0233108Y2 (en)
JPS5885047A (en) Ventilation control device for cold insulating type air conditioner
JPS63176971A (en) Heat pump type air conditioner
JPS63150567A (en) Refrigeration cycle device for heat pump type air conditioner
JPS63176970A (en) Heat pump type air conditioner
JPS62158951A (en) Heat pump type air conditioner
JPH05302768A (en) Air conditioning apparatus
JPH07107471B2 (en) Heat pump air conditioner
JP2001330347A (en) Air-conditioner
JPS63108174A (en) Defrostation method of heat pump type air conditioner
JPS6360305B2 (en)
JPH0776646B2 (en) Air conditioner / water heater
JPH0648125B2 (en) Heat pump type air conditioner