JP2842471B2 - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JP2842471B2
JP2842471B2 JP6182277A JP18227794A JP2842471B2 JP 2842471 B2 JP2842471 B2 JP 2842471B2 JP 6182277 A JP6182277 A JP 6182277A JP 18227794 A JP18227794 A JP 18227794A JP 2842471 B2 JP2842471 B2 JP 2842471B2
Authority
JP
Japan
Prior art keywords
defrosting operation
refrigerant
heat exchanger
valve
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6182277A
Other languages
Japanese (ja)
Other versions
JPH0849935A (en
Inventor
繁男 青山
和彦 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP6182277A priority Critical patent/JP2842471B2/en
Publication of JPH0849935A publication Critical patent/JPH0849935A/en
Application granted granted Critical
Publication of JP2842471B2 publication Critical patent/JP2842471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、夜間電力を利用するた
めの蓄熱・放熱機能、及びその制御機能を備えた空気熱
源ヒートポンプ式蓄熱式空気調和機の冬季除霜運転に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a winter defrosting operation of an air heat source heat pump type regenerative air conditioner having a heat storage / radiation function for utilizing nighttime electric power and a control function thereof.

【0002】[0002]

【従来の技術】蓄熱式空気調和機については、既にさま
ざまな開発がなされており、例えば、特開平4−145
346号公報に示されているような蓄熱式空気調和機が
ある。
2. Description of the Related Art Various types of regenerative air conditioners have already been developed.
There is a regenerative air conditioner as disclosed in JP-A-346.

【0003】その基本的な技術について述べると、従来
の蓄熱式空気調和機は図3、及び図4に示すように、室
外ユニット11、蓄熱槽STR、室内ユニット12、及
びポンプユニットPUから構成されている。
[0003] As to the basic technology, a conventional regenerative air conditioner comprises an outdoor unit 11, a heat storage tank STR, an indoor unit 12, and a pump unit PU, as shown in Figs. ing.

【0004】室外ユニット11では、圧縮機2,四方弁
3,室外側熱交換器4,室外側膨張弁5を直列に接続
し、かつ冷媒対冷媒熱交換器HEXの1次側熱交換部1
4aと蓄熱槽STRの1次側熱交換部13aを並列に接
続して1次側サイクルを形成している。
In the outdoor unit 11, the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, and the outdoor expansion valve 5 are connected in series, and the primary heat exchanger 1 of the refrigerant-to-refrigerant heat exchanger HEX is connected.
4a and the primary heat exchange section 13a of the heat storage tank STR are connected in parallel to form a primary cycle.

【0005】一方、蓄熱槽STRの2次側熱交換部13
b,冷媒対冷媒熱交換器の2次側熱交換部14b,冷媒
搬送ポンプPM,室内側熱交換器17を環状に順次接続
して2次側サイクルを形成している。
On the other hand, the secondary heat exchange section 13 of the heat storage tank STR
b, the secondary heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger, the refrigerant transport pump PM, and the indoor heat exchanger 17 are sequentially connected in a ring to form a secondary cycle.

【0006】この蓄熱式空気調和機において夜間運転
は、1次側サイクルにおける四方弁3によって製氷/冷
房運転、及び蓄熱/暖房運転に切り替えられる。
In this regenerative air conditioner, the night operation is switched between an ice making / cooling operation and a heat storage / heating operation by the four-way valve 3 in the primary cycle.

【0007】特に、冬季の蓄熱/暖房運転に限って、以
下述べていくと、夜間における蓄熱運転は1次側サイク
ルにて、図3中の黒矢印方向に冷媒が流れて暖房サイク
ルが形成され、蓄熱槽STR内に温水として蓄熱され
る。この場合、冷媒対冷媒熱交換器HEXは使用されな
い。
[0007] In particular, only the heat storage / heating operation in winter will be described below. In the heat storage operation at night, the refrigerant flows in the direction of the black arrow in FIG. 3 in the primary cycle to form a heating cycle. Is stored as warm water in the heat storage tank STR. In this case, the refrigerant-to-refrigerant heat exchanger HEX is not used.

【0008】そして、夜間における室外側熱交換器4の
除霜運転は1次側サイクルにて、図3中の白矢印方向に
冷媒が流れて除霜サイクルが形成され、蓄熱槽STRの
1次側熱交換部13aを介して蓄熱槽STR内の温水よ
り吸熱して室外側熱交換器4の除霜が行われる。
In the defrosting operation of the outdoor heat exchanger 4 at night, the refrigerant flows in the white arrow direction in FIG. 3 to form a defrost cycle in the primary side cycle, and the primary heat storage tank STR is defrosted. The outdoor heat exchanger 4 is defrosted by absorbing heat from the warm water in the heat storage tank STR via the side heat exchange unit 13a.

【0009】一方、昼間運転は、暖房能力を高めるべ
く、1次側サイクルを暖房サイクルとして運転して、冷
媒対冷媒熱交換器HEXと蓄熱槽STRを直列に回路を
構成し、2次側サイクルにおいて図4中の黒矢印方向に
冷媒が流れ、2つの熱交換器で冷媒を加熱する。
On the other hand, in the daytime operation, in order to increase the heating capacity, the primary cycle is operated as a heating cycle, and a circuit is formed in series with the refrigerant-to-refrigerant heat exchanger HEX and the heat storage tank STR. In FIG. 4, the refrigerant flows in the direction of the black arrow in FIG. 4, and the refrigerant is heated by the two heat exchangers.

【0010】そして、昼間における室外側熱交換器4の
除霜運転は、図4中の白矢印方向に冷媒が流れて除霜サ
イクルが形成され、冷媒対冷媒熱交換器HEXを介して
2次側サイクルにおける蓄熱槽STRの温水、及び室内
空気より吸熱して室外側熱交換器4の除霜が行われる。
In the defrosting operation of the outdoor heat exchanger 4 in the daytime, the refrigerant flows in the direction of the white arrow in FIG. 4 to form a defrost cycle, and the secondary operation is performed via the refrigerant-to-refrigerant heat exchanger HEX. The defrost of the outdoor heat exchanger 4 is performed by absorbing heat from the warm water in the heat storage tank STR and the indoor air in the side cycle.

【0011】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、冬季は朝の暖房立上げ
時、または昼間の暖房に夜間電力を利用することによ
り、室内の快適性の向上が可能である。
As described above, by converting surplus power energy at night into heat and storing the heat, and using the night power for heating up in the morning or during the daytime in winter, the indoor comfort can be improved. Can be improved.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、夜間蓄熱運転中で、かつ蓄熱槽STR内の
水温が高い時に除霜運転の必要性が生じた場合、蓄熱槽
STRを蒸発器、室外側熱交換器4を凝縮器として作用
させることにより、蓄熱槽STR内の温水からの吸熱量
が急増するため、即ち蒸発圧力が急上昇するため、圧縮
機2の吐出圧力も急上昇し、ついには安全確保のために
圧縮機2が保護停止するという欠点を有していた。
However, in the above-mentioned conventional example, if the need for the defrosting operation occurs during the nighttime heat storage operation and when the water temperature in the heat storage tank STR is high, the heat storage tank STR is removed from the evaporator. By operating the outdoor heat exchanger 4 as a condenser, the amount of heat absorbed from the hot water in the heat storage tank STR increases sharply, that is, the evaporation pressure sharply increases, so that the discharge pressure of the compressor 2 also sharply increases. Has the disadvantage that the compressor 2 is stopped for protection to ensure safety.

【0013】そこで、本発明は、冬季夜間の除霜運転が
安全に、かつ高効率に行える蓄熱式空気調和機を提供す
ることを目的とするものである。
Accordingly, an object of the present invention is to provide a regenerative air conditioner that can safely and efficiently perform a defrosting operation at night in winter.

【0014】[0014]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、圧縮機と、第1四方弁と、室外側熱
交換器とを直列に接続し、かつ1次側熱交換部と2次側
熱交換部とからなる冷媒対冷媒熱交換器の1次側熱交換
部と第1膨張弁、及び1次側熱交換部と2次側熱交換部
と蓄熱材とからなる蓄熱槽の1次側熱交換部と第2膨張
弁とを並列に接続してなる1次側冷凍サイクルと、冷媒
搬送ポンプと第2四方弁とからなるポンプユニットと、
複数の室内ユニットとを接続し、かつ冷媒対冷媒熱交換
器の2次側熱交換部と第1流量弁、及び蓄熱槽内の2次
側熱交換部と第2流量弁を並列に接続してなる2次側冷
凍サイクルとからなり、前記1次側冷凍サイクル内の圧
縮機の吐出側と吸入側とをバイパス弁、及びバイパス減
圧装置を介して連通するバイパス回路と、前記室外側熱
交換器の除霜運転の開始/終了を検知する除霜運転検知
/判定装置と、前記除霜運転検知/判定装置からの除霜
運転開始指示を検知している間は、バイパス弁:開、第
1膨張弁:開、第2膨張弁:閉とする除霜運転駆動装置
とを設置したものである。
The technical solution of the present invention for solving the above problems is to connect a compressor, a first four-way valve, and an outdoor heat exchanger in series, and to perform primary heat exchange. The primary heat exchange part and the first expansion valve of the refrigerant-to-refrigerant heat exchanger composed of a part and a secondary heat exchange part, and the primary heat exchange part, the secondary heat exchange part, and the heat storage material A primary-side refrigeration cycle in which a primary-side heat exchange section of a heat storage tank and a second expansion valve are connected in parallel, a pump unit including a refrigerant transport pump and a second four-way valve,
A plurality of indoor units are connected, and a secondary-side heat exchange part of the refrigerant-to-refrigerant heat exchanger and the first flow valve, and a secondary-side heat exchange part in the heat storage tank and the second flow valve are connected in parallel. A bypass circuit that communicates a discharge side and a suction side of a compressor in the primary side refrigeration cycle through a bypass valve and a bypass pressure reducing device; Defrosting operation detection / determination device for detecting start / end of the defrosting operation of the defroster, and a bypass valve: open while the defrosting operation start instruction from the defrosting operation detection / determination device is detected. The first decompression valve is opened and the second decompression valve is closed.

【0015】また、除霜運転検知/判定装置からの除霜
運転開始指示を検知している間は、バイパス弁:開、第
1膨張弁:閉、第2膨張弁:開とする除霜運転駆動装置
を設置したものである。
While the defrosting operation start instruction from the defrosting operation detecting / determining device is being detected, the defrosting operation in which the bypass valve is opened, the first expansion valve is closed, and the second expansion valve is opened. A drive device is installed.

【0016】[0016]

【作用】この技術的手段による作用は次のようになる。
但し、冬季の夜間蓄熱運転以外については従来と同様で
あるため割愛する。
The operation of this technical means is as follows.
However, except for the nighttime thermal storage operation in winter, the operation is the same as the conventional operation, and thus will not be described.

【0017】まず、冬季の夜間蓄熱運転について説明す
る。蓄熱式空気調和機の、圧縮機、第1四方弁、室外側
熱交換器、第2膨張弁、蓄熱槽内の1次側熱交換部とを
連通した1次側冷凍サイクルにおいて、夜間に冷媒対冷
媒熱交換器を使用しない状態で、第2膨張弁の開度制御
により、蓄熱槽内の1次側熱交換部を介して蓄熱材であ
る水を温水にする蓄熱運転(通常蓄熱運転モード)を行
う。この時、バイパス弁は閉とする。
First, the nighttime heat storage operation in winter will be described. In the primary refrigerating cycle of the regenerative air conditioner, which communicates with the compressor, the first four-way valve, the outdoor heat exchanger, the second expansion valve, and the primary heat exchange unit in the heat storage tank, the refrigerant is stored at night. In a state in which the refrigerant heat exchanger is not used, the heat storage operation (normal heat storage operation mode) in which the water as the heat storage material is heated through the primary heat exchange unit in the heat storage tank by controlling the opening degree of the second expansion valve. )I do. At this time, the bypass valve is closed.

【0018】次に、低外気温時の蓄熱運転中において、
室外側熱交換器に着霜現象が生じて除霜運転の必要性が
生じると、除霜運転検知/判定装置により除霜運転開始
信号が出力され、それが除霜運転駆動装置に入力され
て、第1四方弁は維持された状態で、前記バイパス回路
のバイパス弁:開、第1膨張弁:所定開度、第2膨張
弁:全閉となる除霜運転モードに移行する。
Next, during the heat storage operation at a low outside air temperature,
When the defrosting operation occurs in the outdoor heat exchanger and the necessity of the defrosting operation is generated, a defrosting operation start signal is output by the defrosting operation detecting / determining device, and the signal is input to the defrosting operation driving device. While the first four-way valve is maintained, the mode shifts to the defrosting operation mode in which the bypass valve of the bypass circuit is open, the first expansion valve is at a predetermined opening, and the second expansion valve is fully closed.

【0019】この時、圧縮機を吐出した高温高圧のガス
冷媒は第1四方弁へ流れ出す冷媒とバイパス回路に流れ
出す冷媒とに分岐される。
At this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor is branched into a refrigerant flowing to the first four-way valve and a refrigerant flowing to the bypass circuit.

【0020】第1四方弁へ流れ出した冷媒は、冷媒冷媒
熱交換器の1次側熱交換部へ流入するが、この場合、2
次側サイクルは休止中であるため熱交換することなく、
第1膨張弁にて減圧されて高温低圧のガス冷媒となった
後、室外側熱交換器へ流入して放熱することにより室外
側熱交換器表面に付着した霜を融解し、冷媒自身は凝縮
して液成分を含んだ二相冷媒となり、圧縮機吸入側へ戻
ってくる。
The refrigerant flowing out to the first four-way valve flows into the primary heat exchange section of the refrigerant-refrigerant heat exchanger.
Since the next cycle is at rest, there is no heat exchange,
After being decompressed by the first expansion valve to become a high-temperature low-pressure gas refrigerant, the refrigerant flows into the outdoor heat exchanger and dissipates heat, thereby melting the frost attached to the outdoor heat exchanger surface and condensing the refrigerant itself. Then, it becomes a two-phase refrigerant containing a liquid component, and returns to the compressor suction side.

【0021】一方、バイパス回路に流れ出した高温高圧
のガス冷媒はバイパス減圧装置により高温低圧のガス冷
媒となって圧縮機吸入側へ至り、そこで室外側熱交換器
にて凝縮された二相冷媒と合流、混合され、冷媒自身は
液成分の少ない高乾き度の冷媒となって圧縮機へ吸入さ
れる。
On the other hand, the high-temperature and high-pressure gas refrigerant flowing into the bypass circuit is turned into a high-temperature and low-pressure gas refrigerant by the bypass decompression device and reaches the compressor suction side, where the two-phase refrigerant condensed in the outdoor heat exchanger is removed. The refrigerant is mixed and mixed, and the refrigerant itself becomes a high-dryness refrigerant having a small liquid component and is sucked into the compressor.

【0022】従って、除霜運転中の冷凍サイクルが異常
な圧力状態になることなく、かつ圧縮機内において液圧
縮現象が起こることなく、高速で室外側熱交換器の除霜
を行うことが可能となる。
Therefore, it is possible to perform high-speed defrosting of the outdoor heat exchanger without causing the refrigeration cycle to be in an abnormal pressure state during the defrosting operation and without causing a liquid compression phenomenon in the compressor. Become.

【0023】その後、除霜運転の必要性がなくなると、
除霜運転検知/判定装置から除霜運転終了信号が出力さ
れ、それが除霜運転駆動装置に入力されて、除霜運転モ
ードから通常蓄熱運転モードに復帰する。
Thereafter, when the necessity of the defrosting operation is eliminated,
The defrosting operation detection / determination device outputs a defrosting operation end signal, which is input to the defrosting operation driving device, and returns from the defrosting operation mode to the normal heat storage operation mode.

【0024】次に、第2の作用について説明する。この
場合も冬季の夜間運転についてのみ説明するが、通常蓄
熱運転モードについては前記と同様であるため割愛す
る。
Next, the second operation will be described. In this case as well, only the nighttime operation in winter will be described, but the normal heat storage operation mode is the same as described above, and will not be described.

【0025】低外気温時の蓄熱運転中において、室外側
熱交換器に着霜現象が生じて除霜運転の必要性が生じる
と、除霜運転検知/判定装置により除霜運転開始信号が
出力され、それが除霜運転駆動装置に入力されて、第1
四方弁は維持された状態で、前記バイパス回路のバイパ
ス弁:開、第1膨張弁:全閉、第2膨張弁:所定開度と
なる除霜運転モードに移行する。
During the heat storage operation at a low outside air temperature, if a frosting phenomenon occurs in the outdoor heat exchanger and necessity of the defrosting operation arises, a defrosting operation start signal is output by the defrosting operation detecting / determining device. Is input to the defrosting operation driving device, and the first
With the four-way valve maintained, the bypass circuit of the bypass circuit shifts to a defrosting operation mode in which the bypass valve is open, the first expansion valve is fully closed, and the second expansion valve is a predetermined opening degree.

【0026】この時も、圧縮機を吐出した高温高圧のガ
ス冷媒は第1四方弁へ流れ出す冷媒とバイパス回路に流
れ出す冷媒とに分岐される。
Also at this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor is branched into a refrigerant flowing to the first four-way valve and a refrigerant flowing to the bypass circuit.

【0027】第1四方弁へ流れ出した冷媒は、蓄熱槽の
1次側熱交換部へ流入して蓄熱槽内の温水を加熱し、自
身は凝縮しながら、第2膨張弁に至り、第2膨張弁にて
僅かに減圧されて中温低圧の二相冷媒となった後、室外
側熱交換器へ流入して放熱することにより室外側熱交換
器表面に付着した霜を融解し、冷媒自身は凝縮して液成
分を含んだ二相冷媒となり、圧縮機吸入側へ戻ってく
る。
The refrigerant flowing out to the first four-way valve flows into the primary heat exchange section of the heat storage tank and heats the hot water in the heat storage tank. The refrigerant itself condenses and reaches the second expansion valve. After being slightly depressurized by the expansion valve to become a medium-temperature low-pressure two-phase refrigerant, it flows into the outdoor heat exchanger and dissipates heat to melt the frost attached to the outdoor heat exchanger surface, and the refrigerant itself becomes It condenses into a two-phase refrigerant containing a liquid component and returns to the compressor suction side.

【0028】一方、バイパス回路に流れ出した高温高圧
のガス冷媒はバイパス減圧装置により高温低圧のガス冷
媒となって圧縮機吸入側へ至り、そこで室外側熱交換器
にて凝縮された二相冷媒と合流、混合され、冷媒自身は
液成分の少ない高乾き度の冷媒となって圧縮機へ吸入さ
れる。
On the other hand, the high-temperature and high-pressure gas refrigerant flowing into the bypass circuit is turned into a high-temperature and low-pressure gas refrigerant by the bypass pressure reducing device and reaches the compressor suction side, where the two-phase refrigerant condensed in the outdoor heat exchanger is removed. The refrigerant is mixed and mixed, and the refrigerant itself becomes a high-dryness refrigerant having a small liquid component and is sucked into the compressor.

【0029】従って、蓄熱運転を継続しながら、除霜運
転中の冷凍サイクルが異常な圧力状態になることなく、
かつ圧縮機内において液圧縮現象が起こることなく、高
速で室外側熱交換器の除霜を行うことが可能となる。
Therefore, the refrigeration cycle during the defrosting operation does not reach an abnormal pressure state while the heat storage operation is continued.
In addition, the outdoor heat exchanger can be defrosted at a high speed without causing a liquid compression phenomenon in the compressor.

【0030】その後、除霜運転の必要性がなくなると、
除霜運転検知/判定装置から除霜運転終了信号が出力さ
れ、それが除霜運転駆動装置に入力されて、除霜運転モ
ードから通常蓄熱運転モードに復帰する。
After that, when the necessity of the defrosting operation disappears,
The defrosting operation detection / determination device outputs a defrosting operation end signal, which is input to the defrosting operation driving device, and returns from the defrosting operation mode to the normal heat storage operation mode.

【0031】[0031]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明を行うが、従来と同一構成については同一符号を
付し、その詳細な説明を省略する。また、冬季の夜間蓄
熱運転以外については従来と同様であるため割愛する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. The same components as those of the prior art are denoted by the same reference numerals, and detailed description thereof will be omitted. Except for the nighttime heat storage operation in winter, the operation is the same as the conventional operation, and thus will not be described.

【0032】図1は本発明の一実施例の蓄熱式空気調和
機の冷凍サイクル図(冬季夜間運転)である。
FIG. 1 is a refrigeration cycle diagram (nighttime operation in winter) of the regenerative air conditioner according to one embodiment of the present invention.

【0033】蓄熱式空気調和機は室外ユニット1と、蓄
熱槽STRと、ポンプユニットPU’’と、室内ユニッ
ト12とから構成されている。
The regenerative air conditioner comprises an outdoor unit 1, a heat storage tank STR, a pump unit PU '', and an indoor unit 12.

【0034】室外ユニット1は、圧縮機2、第1四方弁
3a、室外側熱交換器4、第1膨張弁5a、第2膨張弁
5b、1次側熱交換部14aと2次側熱交換部14bと
からなる冷媒対冷媒熱交換器HEX、2次側熱交換部1
4b用の第1流量弁RV1、蓄熱槽STRの2次側熱交
換器13b用の第2流量弁RV2、及びバイパス流量弁
BVから構成されている。
The outdoor unit 1 includes a compressor 2, a first four-way valve 3a, an outdoor heat exchanger 4, a first expansion valve 5a, a second expansion valve 5b, a primary heat exchange section 14a and a secondary heat exchange section. -To-refrigerant heat exchanger HEX composed of the section 14b and the secondary side heat exchange section 1
4b, a second flow valve RV2 for the secondary heat exchanger 13b of the heat storage tank STR, and a bypass flow valve BV.

【0035】この場合、バイパス流量弁BVは、バイパ
ス回路の開閉の作用、及び減圧の作用の両方を兼ね備え
ている。
In this case, the bypass flow valve BV has both the operation of opening and closing the bypass circuit and the operation of reducing the pressure.

【0036】蓄熱槽STRは、蓄熱材である水16と1
次側熱交換部13a、2次側熱交換部13bからなり、
ポンプユニットPU’は第2四方弁3b、及び冷媒搬送
ポンプPMとから構成されている。
The heat storage tank STR contains water 16 and 1 as heat storage materials.
A secondary heat exchange section 13a, a secondary heat exchange section 13b,
The pump unit PU 'includes a second four-way valve 3b and a refrigerant transport pump PM.

【0037】上記構成において、1次側冷凍サイクル
は、圧縮機2と、第1四方弁3aと、室外側熱交換器4
とを直列に接続し、かつ冷媒対冷媒熱交換器HEXの1
次側熱交換部14aと第1膨張弁5a、及び蓄熱槽ST
Rの1次側熱交換部13aと第2膨張弁5aとを並列に
接続してなる。
In the above configuration, the primary refrigeration cycle includes the compressor 2, the first four-way valve 3a, the outdoor heat exchanger 4
And a refrigerant-to-refrigerant heat exchanger HEX 1
Secondary heat exchange section 14a, first expansion valve 5a, and heat storage tank ST
The primary heat exchange part 13a of R and the 2nd expansion valve 5a are connected in parallel.

【0038】また、圧縮機2の吐出側と吸入側とをバイ
パス流量弁BVを介して連通するバイパス回路を設置し
ている。
Further, a bypass circuit is provided for connecting the discharge side and the suction side of the compressor 2 via a bypass flow valve BV.

【0039】また、2次側冷凍サイクルは、ポンプユニ
ットPU’と、2台の室内ユニット12a、12bとを
接続し、かつ冷媒対冷媒熱交換器HEXの2次側熱交換
部14bと第1流量弁RV1、及び蓄熱槽STR内の2
次側熱交換部13bと第2流量弁RV2とを並列に接続
してなる。
The secondary refrigeration cycle connects the pump unit PU 'and the two indoor units 12a and 12b, and connects the secondary heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX with the first heat exchange section 14b. Flow valve RV1 and 2 in heat storage tank STR
The secondary heat exchanger 13b and the second flow valve RV2 are connected in parallel.

【0040】そして、除霜運転検知/判定装置CN1
は、室外側熱交換器4の出口側に設置した配管温度セン
サーTS、及び除霜運転判定装置JSとからなり、相互
に信号線で接続されている。
Then, the defrosting operation detecting / judging device CN1
Consists of a pipe temperature sensor TS installed on the outlet side of the outdoor heat exchanger 4 and a defrosting operation determination device JS, and are connected to each other by signal lines.

【0041】除霜運転駆動装置CN2は、第1膨張弁5
a、第2膨張弁5b、及びバイパス流量弁BVからな
り、相互に信号線で接続されている。
The defrosting operation driving device CN2 includes a first expansion valve 5
a, the second expansion valve 5b, and the bypass flow rate valve BV, and are mutually connected by a signal line.

【0042】除霜運転検知/判定装置CN1、及び除霜
運転駆動装置CN2も、相互に信号線で接続されてい
る。
The defrosting operation detecting / judging device CN1 and the defrosting operation driving device CN2 are also connected to each other by signal lines.

【0043】まず、この−実施例の構成における作用
を、2つの場合に分けて説明する。 (1)夜間蓄熱運転 圧縮機2、第1四方弁3a、室外側熱交換器4、第2膨
張弁5b、冷媒対冷媒熱交換器HEXの1次側熱交換部
14a、蓄熱槽STR内の1次側熱交換部13aとを連
通した1次側冷凍サイクルにおいて、第1四方弁3a:
暖房モード、第1膨張弁5a:全閉、第2膨張弁5b:
所定の開度に設定して図1の黒矢印のように冷媒を流す
ことにより、蓄熱槽内の1次側熱交換部13aを介して
蓄熱材である水16を温水にする蓄熱運転を行う。 (2)夜間除霜運転 低外気温時の蓄熱運転において室外側熱交換器4に着霜
現象が生じた場合、即ち室外側熱交換器4の配管温度セ
ンサーTSから除霜運転判定装置JSへ温度信号が出力
され、除霜運転判定装置JSにおいて温度信号が所定の
温度以下を検知すると、除霜運転駆動装置CN2へ除霜
運転開始信号を出力する。
First, the operation of this embodiment will be described in two cases. (1) Night-time heat storage operation The compressor 2, the first four-way valve 3a, the outdoor heat exchanger 4, the second expansion valve 5b, the primary heat exchanger 14a of the refrigerant-to-refrigerant heat exchanger HEX, and the heat storage tank STR In the primary side refrigeration cycle communicating with the primary side heat exchange section 13a, the first four-way valve 3a:
Heating mode, first expansion valve 5a: fully closed, second expansion valve 5b:
By setting the opening degree to a predetermined value and flowing the refrigerant as indicated by the black arrow in FIG. 1, a heat storage operation is performed in which the water 16 as the heat storage material is heated through the primary heat exchange unit 13a in the heat storage tank. . (2) Nighttime defrosting operation When a frosting phenomenon occurs in the outdoor heat exchanger 4 during the heat storage operation at low outside air temperature, that is, from the pipe temperature sensor TS of the outdoor heat exchanger 4 to the defrosting operation determination device JS. When the temperature signal is output and the temperature signal detected by the defrosting operation determination device JS is equal to or lower than a predetermined temperature, a defrosting operation start signal is output to the defrosting operation driving device CN2.

【0044】除霜運転駆動装置CN2への除霜運転開始
信号に従って、バイパス流量弁BV:所定開度、第1膨
張弁5a:所定開度、第2膨張弁5b:全閉と設定し
て、図1中の白矢印のように、圧縮機2を吐出した高温
高圧のガス冷媒は第1四方弁3aへ流れ出す冷媒とバイ
パス回路へ流れ出す冷媒とに分岐される。
In accordance with the defrosting operation start signal to the defrosting operation drive CN2, the bypass flow rate valve BV is set to a predetermined opening, the first expansion valve 5a is set to a predetermined opening, and the second expansion valve 5b is set to fully closed. As shown by a white arrow in FIG. 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is branched into a refrigerant flowing to the first four-way valve 3a and a refrigerant flowing to the bypass circuit.

【0045】第1四方弁3aへ流れ出した冷媒は、冷媒
冷媒熱交換器HEXの1次側熱交換部14aへ流入する
が、この場合、2次側サイクルは休止中であるため熱交
換することなく、第1膨張弁5aにて減圧されて高温低
圧のガス冷媒となった後、室外側熱交換器4へ流入して
放熱することにより室外側熱交換器4の表面に付着した
霜を融解し、冷媒自身は凝縮して液成分を含んだ二相冷
媒となり、圧縮機2の吸入側へ戻ってくる。
The refrigerant that has flowed out to the first four-way valve 3a flows into the primary heat exchange section 14a of the refrigerant refrigerant heat exchanger HEX. Instead, after being decompressed by the first expansion valve 5a to become a high-temperature and low-pressure gas refrigerant, the refrigerant flows into the outdoor heat exchanger 4 and dissipates heat to melt frost adhering to the surface of the outdoor heat exchanger 4. Then, the refrigerant itself condenses into a two-phase refrigerant containing a liquid component, and returns to the suction side of the compressor 2.

【0046】一方、バイパス回路へ流れ出した高温高圧
のガス冷媒はバイパス流量弁BVにより高温低圧のガス
冷媒となって圧縮機2の吸入側へ至り、そこで室外側熱
交換器4にて凝縮された二相冷媒と合流、混合され、冷
媒自身は液成分の少ない高乾き度の冷媒となって圧縮機
2へ吸入される。
On the other hand, the high-temperature and high-pressure gas refrigerant flowing into the bypass circuit is turned into a high-temperature and low-pressure gas refrigerant by the bypass flow valve BV, reaches the suction side of the compressor 2, and is condensed there by the outdoor heat exchanger 4. The refrigerant is merged with and mixed with the two-phase refrigerant, and the refrigerant itself becomes a high-dryness refrigerant having a small liquid component and is sucked into the compressor 2.

【0047】従って、除霜運転中の冷凍サイクルが異常
な圧力状態になることなく、かつ圧縮機2内において液
圧縮現象が起こることなく、高速で室外側熱交換器4の
除霜を行うことが可能となる。
Therefore, the outdoor heat exchanger 4 can be defrosted at high speed without causing the refrigeration cycle to be in an abnormal pressure state during the defrosting operation and without causing the liquid compression phenomenon in the compressor 2. Becomes possible.

【0048】その後、除霜運転が進行して、室外側熱交
換器4の霜が融解し、室外側熱交換器4の出口配管温度
が上昇して、配管温度センサーTSから除霜運転判定装
置JSへ温度信号が出力され、除霜運転判定装置JSに
おいて温度信号が所定の温度以上を検知すると、除霜運
転駆動装置CN2へ除霜運転終了信号を出力する。
Thereafter, the defrosting operation proceeds, the frost in the outdoor heat exchanger 4 is melted, the temperature of the outlet pipe of the outdoor heat exchanger 4 rises, and the defrosting operation judging device is detected by the pipe temperature sensor TS. When a temperature signal is output to JS, and the temperature signal is detected by the defrosting operation determination device JS to be equal to or higher than a predetermined temperature, a defrosting operation end signal is output to the defrosting operation driving device CN2.

【0049】除霜運転駆動装置CN2への除霜運転開始
信号に従って、バイパス流量弁BV:閉、第1膨張弁5
a:全閉、第2膨張弁5b:所定開度と設定して、図1
中の黒矢印のように冷媒が流れる通常蓄熱運転モードに
復帰する。
In accordance with the defrosting operation start signal to the defrosting operation driving device CN2, the bypass flow rate valve BV: closed, the first expansion valve 5
a: Fully closed, 2nd expansion valve 5b: Set to a predetermined opening, FIG.
The operation returns to the normal heat storage operation mode in which the refrigerant flows as indicated by the black arrow in the middle.

【0050】次に、他の実施例の作用について説明す
る。但し、夜間蓄熱運転については前記実施例と同様で
あるため割愛し、夜間除霜運転についてのみ説明する。
Next, the operation of another embodiment will be described. However, the nighttime heat storage operation is the same as that of the above-described embodiment, and thus will be omitted, and only the nighttime defrosting operation will be described.

【0051】低外気温時の蓄熱運転において室外側熱交
換器4に着霜現象が生じた場合、即ち室外側熱交換器4
の配管温度センサーTSから除霜運転判定装置JSへ温
度信号が出力され、除霜運転判定装置JSにおいて温度
信号が所定の温度以下を検知すると、除霜運転駆動装置
CN2へ除霜運転開始信号を出力する。
When a frosting phenomenon occurs in the outdoor heat exchanger 4 during the heat storage operation at a low outdoor temperature, that is, when the outdoor heat exchanger 4
When a temperature signal is output from the pipe temperature sensor TS to the defrosting operation determining device JS and the temperature signal is detected by the defrosting operation determining device JS to be equal to or lower than a predetermined temperature, a defrosting operation start signal is transmitted to the defrosting operation driving device CN2. Output.

【0052】除霜運転駆動装置CN2への除霜運転開始
信号に従って、バイパス流量弁BV:所定開度、第1膨
張弁5a:所定開度、第2膨張弁5b:全閉と設定し
て、図2中の白矢印のように、圧縮機2を吐出した高温
高圧のガス冷媒は第1四方弁3aへ流れ出す冷媒とバイ
パス回路へ流れ出す冷媒とに分岐される。
In accordance with the defrosting operation start signal to the defrosting operation drive CN2, the bypass flow rate valve BV is set to a predetermined opening, the first expansion valve 5a is set to a predetermined opening, and the second expansion valve 5b is set to fully closed. As shown by a white arrow in FIG. 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is branched into a refrigerant flowing to the first four-way valve 3a and a refrigerant flowing to the bypass circuit.

【0053】第1四方弁3aへ流れ出した冷媒は、蓄熱
槽STRの1次側熱交換部13aへ流入して蓄熱槽ST
R内の温水を加熱し、自身は凝縮しながら、第2膨張弁
5bに至り、第2膨張弁5bにて僅かに減圧されて中温
低圧の二相冷媒となった後、室外側熱交換器4へ流入し
て放熱することにより室外側熱交換器4表面に付着した
霜を融解し、冷媒自身は凝縮して液成分を含んだ二相冷
媒となり、圧縮機2吸入側へ戻ってくる。
The refrigerant flowing out to the first four-way valve 3a flows into the primary heat exchange section 13a of the heat storage tank STR and flows into the heat storage tank ST.
The hot water in R is heated and condensed, and reaches the second expansion valve 5b. The pressure is slightly reduced by the second expansion valve 5b to become a medium-temperature low-pressure two-phase refrigerant. The frost adhering to the surface of the outdoor heat exchanger 4 is melted by flowing into the outdoor heat exchanger 4, and the refrigerant itself condenses into a two-phase refrigerant containing a liquid component, and returns to the suction side of the compressor 2.

【0054】一方、バイパス回路に流れ出した高温高圧
のガス冷媒はバイパス流量弁BVにより高温低圧のガス
冷媒となって圧縮機2吸入側へ至り、そこで室外側熱交
換器4にて凝縮された二相冷媒と合流、混合され、冷媒
自身は液成分の少ない高乾き度の冷媒となって圧縮機2
へ吸入される。
On the other hand, the high-temperature and high-pressure gas refrigerant that has flowed into the bypass circuit is turned into a high-temperature and low-pressure gas refrigerant by the bypass flow valve BV and reaches the compressor 2 suction side, where it is condensed in the outdoor heat exchanger 4. The refrigerant is combined with and mixed with the phase refrigerant, and the refrigerant itself becomes a high-dryness refrigerant having a small amount of liquid components, and becomes a compressor 2
Inhaled to.

【0055】従って、蓄熱運転を継続しながら、除霜運
転中の冷凍サイクルが異常な圧力状態になることなく、
かつ圧縮機2内において液圧縮現象が起こることなく、
高速で室外側熱交換器4の除霜を行うことが可能とな
る。
Therefore, the refrigeration cycle during the defrosting operation does not reach an abnormal pressure state while the heat storage operation is continued.
And without the liquid compression phenomenon occurring in the compressor 2,
Defrosting of the outdoor heat exchanger 4 can be performed at high speed.

【0056】その後、除霜運転が進行して、室外側熱交
換器4の霜が融解し、室外側熱交換器4の出口配管温度
が上昇して、配管温度センサーTSから除霜運転判定装
置JSへ温度信号が出力され、除霜運転判定装置JSに
おいて温度信号が所定の温度以上を検知すると、除霜運
転駆動装置CN2へ除霜運転終了信号を出力する。
Thereafter, the defrosting operation proceeds, the frost in the outdoor heat exchanger 4 is melted, the temperature of the outlet pipe of the outdoor heat exchanger 4 rises, and the defrosting operation judging device is detected by the pipe temperature sensor TS. When a temperature signal is output to JS, and the temperature signal is detected by the defrosting operation determination device JS to be equal to or higher than a predetermined temperature, a defrosting operation end signal is output to the defrosting operation driving device CN2.

【0057】除霜運転駆動装置CN2への除霜運転開始
信号に従って、バイパス流量弁BV:閉、第1膨張弁5
a:全閉、第2膨張弁5b:所定開度と設定して、図2
中の黒矢印のように冷媒が流れる通常蓄熱運転モードに
復帰する。
In accordance with the defrosting operation start signal to the defrosting operation driving device CN2, the bypass flow rate valve BV: closed, the first expansion valve 5
a: fully closed, the second expansion valve 5b: set to a predetermined opening, and FIG.
The operation returns to the normal heat storage operation mode in which the refrigerant flows as indicated by the black arrow in the middle.

【0058】[0058]

【発明の効果】以上のように本発明は、1次側冷凍サイ
クル内の圧縮機の吐出側と吸入側とをバイパス弁、及び
バイパス減圧装置を介して連通するバイパス回路と、室
外側熱交換器の除霜運転の開始/終了を検知する除霜運
転検知/判定装置と、除霜検知/判定装置からの除霜運
転開始指示を検知している間は、バイパス弁:開、第1
膨張弁:開、第2膨張弁:閉とする除霜運転駆動装置と
を設置したものである。
As described above, the present invention relates to a bypass circuit for connecting the discharge side and the suction side of a compressor in a primary refrigeration cycle via a bypass valve and a bypass pressure reducing device, and an outdoor heat exchange. Defrosting operation detection / judgment device for detecting the start / end of the defrosting operation of the dehumidifier, and a bypass valve: open while detecting the defrosting operation start instruction from the defrosting detection / judgment device.
A defrosting operation driving device that sets the expansion valve to open and the second expansion valve to close is installed.

【0059】従って、除霜運転中の冷凍サイクルが異常
な圧力状態になることなく、かつ圧縮機内において液圧
縮現象が起こることなく、高速で室外側熱交換器の除霜
を行うことが可能となる。
Therefore, the outdoor heat exchanger can be defrosted at high speed without causing the refrigeration cycle during the defrosting operation to be in an abnormal pressure state and without causing the liquid compression phenomenon in the compressor. Become.

【0060】また、除霜運転検知/判定装置からの除霜
運転開始指示を検知している間は、バイパス弁:開、第
1膨張弁:閉、第2膨張弁:開とする除霜運転駆動装置
を設置することにより、蓄熱運転を継続しながら、除霜
運転中の冷凍サイクルが異常な圧力状態になることな
く、かつ圧縮機内において液圧縮現象が起こることな
く、高速で室外側熱交換器の除霜を行うことが可能とな
る。
While the defrosting operation start instruction from the defrosting operation detection / judgment device is being detected, the defrosting operation in which the bypass valve is open, the first expansion valve is closed, and the second expansion valve is open. By installing the drive unit, outdoor heat exchange can be performed at high speed without refrigeration cycle during defrosting operation becoming abnormal pressure state and without liquid compression phenomenon occurring in the compressor while continuing heat storage operation. It becomes possible to perform defrosting of the vessel.

【0061】その結果、冬季夜間の除霜運転が安全に、
かつ高効率に行える蓄熱式空気調和機を提供することで
きる。
As a result, the defrosting operation in winter night can be safely performed.
A regenerative air conditioner that can be performed with high efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による蓄熱式空気調和機の冬
季夜間運転時の冷凍システム図
FIG. 1 is a refrigeration system diagram of a regenerative air conditioner according to one embodiment of the present invention during nighttime operation in winter.

【図2】本発明の他の実施例による蓄熱式空気調和機の
冬季夜間運転時の冷凍システム図
FIG. 2 is a refrigeration system diagram of a regenerative air conditioner according to another embodiment of the present invention during nighttime operation in winter.

【図3】従来例を示す蓄熱式空気調和機の冬季夜間運転
時の冷凍システム図
FIG. 3 is a refrigeration system diagram showing a conventional example of a regenerative air conditioner during winter nighttime operation.

【図4】従来例を示す蓄熱式空気調和機の冬季夜間運転
時の冷凍システム図
FIG. 4 is a refrigeration system diagram showing a conventional example of a regenerative air conditioner during nighttime operation in winter.

【符号の説明】[Explanation of symbols]

2 圧縮機 3a 第1四方弁 3b 第2四方弁 4 室外側熱交換器 5a 第1膨張弁 5b 第2膨張弁 12 室内ユニット 13a 蓄熱槽の1次側熱交換部 13b 蓄熱槽の2次側熱交換部 14a 冷媒対冷媒熱交換器の1次側熱交換部 14b 冷媒対冷媒熱交換器の2次側熱交換部 STR 蓄熱槽 HEX 冷媒対冷媒熱交換器 PU’ ポンプユニット PM 冷媒搬送ポンプ BV バイパス流量弁 CN1 除霜運転検知/判定装置 CN2 除霜運転駆動装置 2 Compressor 3a First four-way valve 3b Second four-way valve 4 Outdoor heat exchanger 5a First expansion valve 5b Second expansion valve 12 Indoor unit 13a Primary heat exchange part of heat storage tank 13b Secondary heat of heat storage tank Exchange section 14a Primary heat exchange section of refrigerant-to-refrigerant heat exchanger 14b Secondary heat exchange section of refrigerant-to-refrigerant heat exchanger STR Heat storage tank HEX Refrigerant-to-refrigerant heat exchanger PU 'Pump unit PM Refrigerant transport pump BV bypass Flow valve CN1 Defrosting operation detection / judgment device CN2 Defrosting operation drive device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 13/00 F25B 1/00 F25B 47/02──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F25B 13/00 F25B 1/00 F25B 47/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機と、第1四方弁と、室外側熱交換
器とを直列に接続し、かつ1次側熱交換部と2次側熱交
換部とからなる冷媒対冷媒熱交換器の1次側熱交換部と
第1膨張弁、及び1次側熱交換部と2次側熱交換部と蓄
熱材とからなる蓄熱槽の1次側熱交換部と第2膨張弁と
を並列に接続してなる1次側冷凍サイクルと、 冷媒搬送ポンプと第2四方弁とからなるポンプユニット
と、複数の室内ユニットとを接続し、かつ冷媒対冷媒熱
交換器の2次側熱交換部と第1流量弁、及び蓄熱槽内の
2次側熱交換部と第2流量弁を並列に接続してなる2次
側冷凍サイクルとからなり、 前記1次側冷凍サイクル内の圧縮機の吐出側と吸入側と
をバイパス弁、及びバイパス減圧装置を介して連通する
バイパス回路と、 前記室外側熱交換器の除霜運転の開始/終了を検知する
除霜運転検知/判定装置と、 前記除霜運転検知/判定装置からの除霜運転開始指示を
検知している間は、バイパス弁:開、第1膨張弁:開、
第2膨張弁:閉とする除霜運転駆動装置とを備えた蓄熱
式空気調和機。
1. A refrigerant-to-refrigerant heat exchanger comprising a compressor, a first four-way valve, and an outdoor heat exchanger connected in series, and comprising a primary heat exchanger and a secondary heat exchanger. The primary heat exchange part and the first expansion valve, and the primary heat exchange part and the second expansion valve of the heat storage tank composed of the primary heat exchange part, the secondary heat exchange part and the heat storage material are arranged in parallel. A primary-side refrigeration cycle connected to the pump, a pump unit including a refrigerant transfer pump and a second four-way valve, and a plurality of indoor units connected to each other, and a secondary-side heat exchange section of a refrigerant-to-refrigerant heat exchanger And a first flow valve, and a secondary refrigeration cycle in which a secondary heat exchange section in the heat storage tank and a second flow valve are connected in parallel, and discharge of a compressor in the primary refrigeration cycle A bypass circuit connecting the intake side and the intake side via a bypass valve and a bypass pressure reducing device; and opening a defrosting operation of the outdoor heat exchanger. A defrosting operation detection / judgment device for detecting start / end; and a defrosting operation start instruction from the defrosting operation detection / judgment device is detected while a bypass valve: open, a first expansion valve: open,
Second expansion valve: a regenerative air conditioner equipped with a defrosting operation drive device for closing.
【請求項2】 除霜運転検知/判定装置からの除霜運転
開始指示を検知している間は、バイパス弁:開、第1膨
張弁:閉、第2膨張弁:開とする除霜運転駆動装置を備
えた請求項1記載の蓄熱式空気調和機。
2. A defrosting operation in which a bypass valve is opened, a first expansion valve is closed, and a second expansion valve is opened while a defrosting operation start instruction from the defrosting operation detection / determination device is detected. The regenerative air conditioner according to claim 1, further comprising a driving device.
JP6182277A 1994-08-03 1994-08-03 Thermal storage type air conditioner Expired - Fee Related JP2842471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6182277A JP2842471B2 (en) 1994-08-03 1994-08-03 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6182277A JP2842471B2 (en) 1994-08-03 1994-08-03 Thermal storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH0849935A JPH0849935A (en) 1996-02-20
JP2842471B2 true JP2842471B2 (en) 1999-01-06

Family

ID=16115461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6182277A Expired - Fee Related JP2842471B2 (en) 1994-08-03 1994-08-03 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2842471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309199B1 (en) * 2008-10-29 2021-08-18 Mitsubishi Electric Corporation Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309199B1 (en) * 2008-10-29 2021-08-18 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JPH0849935A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
CN102523754B (en) Refrigerating circulatory device
EP2530411B1 (en) Refrigeration cycle equipment
JP4304832B2 (en) Air conditioner
JP2008082589A (en) Air conditioner
WO2000019157A1 (en) Two-refrigerant refrigerating device
JP2011080733A (en) Air conditioner
JP3404133B2 (en) Thermal storage type air conditioner
JP2007255866A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2526716B2 (en) Air conditioner
JP2842471B2 (en) Thermal storage type air conditioner
JP2001263848A (en) Air conditioner
CN110682761A (en) Double-chamber external heat exchanger heat pump system
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP3511161B2 (en) Air conditioner
JP3423031B2 (en) Air conditioner
JP2976431B2 (en) Heat pump type air conditioner
JP4046828B2 (en) Air conditioner
JPH08285393A (en) Air conditioner for multi-room
CN211222955U (en) Double-chamber external heat exchanger heat pump system
JP4186399B2 (en) Heat pump air conditioner
JP2569796B2 (en) Thermal storage type air conditioner
JPH0849924A (en) Heat storage type air-conditioner
JPH0849938A (en) Regenerative air-conditioner
JPH05322389A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees