WO2019107066A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2019107066A1
WO2019107066A1 PCT/JP2018/040791 JP2018040791W WO2019107066A1 WO 2019107066 A1 WO2019107066 A1 WO 2019107066A1 JP 2018040791 W JP2018040791 W JP 2018040791W WO 2019107066 A1 WO2019107066 A1 WO 2019107066A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
refrigerator
refrigerant
compressor
Prior art date
Application number
PCT/JP2018/040791
Other languages
French (fr)
Japanese (ja)
Inventor
堀尾 好正
境 寿和
克則 堀井
文宣 高見
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019107066A1 publication Critical patent/WO2019107066A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the present invention relates to a refrigerator that reduces the output of a defrost heater.
  • a refrigerator that reduces the output of the defrosting electric heater by using energy that heats the evaporator by the high pressure refrigerant in the refrigeration cycle flowing into the evaporator due to the pressure difference.
  • the high pressure refrigerant stored inside the condenser of the refrigeration cycle is maintained near the outside air temperature.
  • the evaporator is at a low temperature of -30 ° C to -20 ° C, the amount of high pressure refrigerant flowing into the evaporator is increased due to the pressure difference, or the enthalpy of the high pressure refrigerant flowing therein is increased to Increase it.
  • energy saving can be achieved by actively reducing the output of the defrosting electric heater.
  • FIG. 6 is a longitudinal sectional view of a conventional refrigerator.
  • FIG. 7 is a configuration diagram of a refrigeration cycle of a conventional refrigerator.
  • FIG. 8 is a view showing control at the time of defrosting of the conventional refrigerator.
  • the refrigerator 11 includes a housing 12, a door 13, a leg 14 for supporting the housing 12, a lower machine room 15 provided in the lower part of the housing 12, and the housing 12. And a freezer compartment 18 disposed at the lower part of the housing 12. Further, as components constituting the refrigeration cycle, a compressor 56 housed in the lower machine room 15, an evaporator 20 housed on the back side of the freezer room 18, and a main condenser housed in the lower machine room 15 It has 21.
  • the refrigerator 11 includes a main condenser 21 disposed in the lower machine room 15, a partition 22 partitioning the lower machine room 15, a fan 23 attached to the partition 22 to cool the main condenser 21, and a compressor 56.
  • An evaporation pan 57 installed at the top and a bottom plate 25 of the lower machine room 15 are provided.
  • the refrigerator 11 has a plurality of air inlets 26 provided on the bottom plate 25, an outlet 27 provided on the back side of the lower machine room 15, an outlet 27 of the lower machine room 15, and an upper portion of the housing 12.
  • a communicating air passage 28 is provided to connect.
  • the lower machine room 15 is divided into two rooms by the partition wall 22, and the main condenser 21 is accommodated on the windward side of the fan 23, and the compressor 56 and the evaporation plate 57 are accommodated on the windward side.
  • the refrigerator 11 is a dew protection pipe 60 located downstream of the main condenser 21 and thermally coupled to the outer surface of the housing 12 around the opening of the freezing chamber 18 as a component constituting a refrigeration cycle, A dryer 137 located on the downstream side of the dewproof pipe 60 for drying the circulating refrigerant, and a throttle 45 for connecting the dryer 137 and the evaporator 20 and reducing the pressure of the circulating refrigerant are provided. Furthermore, the refrigerator 11 includes a two-way valve 61 for closing the outlet of the dew protection pipe 60, which operates when defrosting the evaporator 20, and a defrost heater (not shown) for heating the evaporator 20. There is.
  • the refrigerator 11 includes an evaporator fan 50 for supplying cold air generated by the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer compartment damper 51 for shutting off the cold air supplied to the freezer compartment 18, and a refrigerator compartment 17 And a duct 53 for supplying cold air to the cold storage room 17. Furthermore, the refrigerator 11 includes an FCC temperature sensor 54 that detects the temperature of the freezing chamber 18, a PCC temperature sensor 55 that detects the temperature of the refrigerating chamber 17, and a DEF temperature sensor 58 that detects the temperature of the evaporator 20. .
  • the refrigerator 11 is in the cooling stop state (hereinafter, this operation is referred to as the “OFF mode”) in which the fan 23, the compressor 56, and the evaporator fan 50 are all stopped.
  • the OFF mode when the temperature detected by the FCC temperature sensor 54 is lower than the predetermined value FCC_ON temperature, and the temperature detected by the PCC temperature sensor 55 rises to the predetermined value PCC_ON temperature, the following operation is performed. That is, the freezer compartment damper 51 is closed, the refrigerator compartment damper 52 is opened, and the compressor 56, the fan 23, and the evaporator fan 50 are driven (hereinafter, this operation is referred to as "PC cooling mode").
  • the main condenser 21 side of the lower machine room 15 partitioned by the partition 22 is negative pressure driven by the fan 23 and the external air is sucked from the plurality of intake ports 26 formed in the bottom plate 25.
  • the pressure on the side of the compressor 56 and the evaporation plate 57 becomes positive, and the air in the lower machine room 15 is discharged to the outside from the plurality of discharge ports 27.
  • the refrigerant discharged from the compressor 56 is supplied to the anti-dew pipe 60 after condensing while leaving part of the gas in the main condenser 21 while exchanging heat with the outside air.
  • the refrigerant passing through the dew protection pipe 60 radiates heat through the housing 12 and condenses while warming the opening of the freezing chamber 18.
  • the liquid refrigerant condensed by the dewproof pipe 60 passes through the two-way valve 61, then the water is removed by the dryer 137, the pressure is reduced by the throttle 45, and it exchanges heat with the air in the refrigerator compartment 17 while evaporating by the evaporator 20. Then, while cooling the refrigerating chamber 17, the refrigerant is returned to the compressor 56 as a gaseous refrigerant.
  • the mode is shifted to the OFF mode.
  • the freezer compartment damper 51 is opened, the refrigerator compartment damper 52 is closed, and the compressor 56, the fan 23, and the evaporator fan 50 are driven.
  • the freezer compartment 18 is cooled by heat exchange between the air in the freezer compartment 18 and the evaporator 20 by operating the refrigeration cycle in the same manner as PC cooling (hereinafter, this operation is referred to as “FC cooling mode”) .
  • the PC cooling mode is set. Transition.
  • the mode shifts to a defrost mode in which the frost attached to the evaporator 20 is heated and melted.
  • the section p of the defrosting mode first, in order to suppress the temperature rise of the freezing room 18, the freezing room 18 is cooled for a predetermined time as in the FC cooling mode.
  • the section q by closing the two-way valve 61 while operating the compressor 56, the refrigerant remaining in the dryer 137 and the evaporator 20 is recovered to the main condenser 21 and the dew proof pipe 60.
  • the main condenser 21 and the dew proof pipe 60 are connected to the main condenser 21 and the dew proof pipe 60 via a seal portion such as a valve (not shown) that divides the high pressure side and the low pressure side inside the compressor 56 by stopping the compressor 56
  • a seal portion such as a valve (not shown) that divides the high pressure side and the low pressure side inside the compressor 56 by stopping the compressor 56
  • the evaporator 20 is heated using the high pressure refrigerant further heated by the waste heat of the compressor 56.
  • the defrost heater (not shown) attached to the evaporator 20 is energized to complete defrosting when the DEF temperature sensor 58 reaches a predetermined temperature.
  • the two-way valve 61 is opened to equalize the inside of the refrigeration cycle, and the normal operation is resumed from the section u.
  • the heat protection with the periphery of the opening of the freezer compartment 18 is prevented.
  • the high pressure refrigerant in the main condenser 21 maintained at almost the outside air temperature condenses inside the dew protection pipe 60.
  • the high pressure decreases and the amount of refrigerant flowing from the dew protection pipe 60 into the evaporator 20 decreases, which causes the power consumption of the defrost heater not to be sufficiently reduced.
  • the amount of high-pressure refrigerant flowing into the evaporator 20 is small, and the temperature rise of the evaporator 20 is small, and the electric power of the defrost heater is sufficient It was a problem that it could not be reduced.
  • the temperature around the evaporator 20 is low even if the time for recovering the refrigerant is extended, so the refrigerant is inside the evaporator 20. It tends to stay and the recovery time of the staying refrigerant becomes long.
  • the fact that the recovery time of the staying refrigerant is long means that the whole defrosting time for energizing the heater for raising the temperature of the evaporator 20 to a predetermined temperature is longer, that is, the inside of the cold room 17 and the freezing room 18.
  • the internal temperature of the refrigerator tends to rise because the non-cooling time of Therefore, not only the cooling operation time after defrosting becomes long, but there is also a problem that the temperature of the stored food also rises and the freshness maintenance property is deteriorated.
  • the present invention when utilizing the recovered high-pressure refrigerant for defrosting of the evaporator, shortens the recovery time of the staying refrigerant while suppressing an excessive decrease in the evaporator temperature, and saves energy by shortening the defrosting time.
  • the refrigerator according to the present invention comprises a refrigeration cycle having at least a compressor, an evaporator, a main condenser, and a dew proof pipe, and a flow path switching valve connected to the downstream side of the main condenser; A dew protection pipe connected downstream, and a bypass path connected in parallel to the dew protection pipe and having a heat exchange portion that thermally couples a part with the compressor.
  • the refrigerator of the present invention is provided with a freezer compartment damper and a refrigerator compartment damper which respectively control cold air supplied to the freezer compartment and the refrigerator compartment which are sectioned by the heat insulation wall.
  • the refrigerator When defrosting the evaporator, the refrigerator according to the present invention fully closes the flow path switching valve and opens the refrigerator compartment damper during operation of the evaporator fan and compressor provided in the vicinity of the evaporator, and the freezer compartment damper Is closed, the stagnant refrigerant in the evaporator and the dew protection pipe is recovered. Thereafter, the compressor is stopped and the flow path switching valve is opened to the bypass path side to supply the recovered high pressure refrigerant to the evaporator. After the predetermined time, the defrost heater provided in the vicinity of the evaporator is energized.
  • the high pressure refrigerant when used for defrosting of the evaporator, the high pressure refrigerant is supplied to the evaporator via the bypass path, and the bypass path and the compressor are thermally coupled.
  • the amount of electric power of the defrost heater can be further reduced.
  • the refrigerator according to the present invention can stably reduce the amount of power of the defrost heater by recovering the refrigerant in the refrigeration cycle to the main condenser and using it for heating the evaporator, thereby saving energy in the refrigerator.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to a first embodiment of the present invention.
  • FIG. 2 is a cycle configuration diagram of the refrigerator in the first embodiment of the present invention.
  • FIG. 3A is an enlarged schematic view of a main part of a heat exchange unit with the compressor of the refrigerator according to the first embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view of main parts of a heat exchange unit with a compressor of the refrigerator according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a cooling chamber of the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing control at the time of defrosting of the refrigerator in the first embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view of a conventional refrigerator.
  • FIG. 7 is a block diagram of a conventional refrigerator.
  • FIG. 8 is a diagram showing control at the time of defrosting of the conventional refrigerator.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to a first embodiment of the present invention.
  • FIG. 2 is a cycle configuration diagram of the refrigerator in the first embodiment of the present invention.
  • FIG. 3A is an enlarged schematic view of a main part of a heat exchange unit with a compressor of the refrigerator according to the first embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view of main parts of a heat exchange unit with a compressor of the refrigerator according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a cooling chamber of the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing control at the time of defrosting of the refrigerator in the first embodiment of the present invention.
  • the refrigerator 11 includes a housing 12, a door 13, a leg 14 for supporting the housing 12, a lower machine room 15 provided at the lower part of the housing 12, and a housing An upper machine room 16 provided at the upper part of the body 12, a refrigerating room 17 arranged at the upper part of the housing 12, and a freezing room 18 arranged at the lower part of the housing 12. Further, as a component constituting the refrigeration cycle, the refrigerator 11 is housed in the compressor 19 housed in the upper machine room 16, the evaporator 20 housed on the rear side of the freezer room 18, and the lower machine room 15. A main condenser 21 is provided.
  • the refrigerator 11 has a partition 22 for dividing the lower machine room 15, a fan 23 attached to the partition 22 for air cooling the main condenser 21, an evaporation tray 24 installed on the downwind side of the partition 22, and a bottom plate of the lower machine room 15. It has 25.
  • the compressor 19 is a variable speed compressor, and uses six revolutions selected from 20 rps to 80 rps. This is to adjust the refrigeration capacity by switching the number of rotations of the compressor 19 from low speed to high speed in six stages while avoiding resonance of piping and the like.
  • the compressor 19 operates at a low speed at start-up, and accelerates as the operation time for cooling the refrigerating chamber 17 or the freezing chamber 18 becomes longer. This is mainly to use the most efficient low speed, and to use a relatively high rotational speed appropriate to the increase in the load of the refrigerator compartment 17 or the freezer compartment 18 due to the high outside air temperature, the opening and closing of the door 13, etc. It is.
  • the rotational speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11, the rotational speed at the start of the PC cooling mode having a high evaporation temperature and a relatively large refrigeration capacity is You may set it lower than time.
  • the refrigeration capacity may be adjusted while decelerating the compressor 19.
  • the refrigerator 11 also includes a plurality of intake ports 26 provided in the bottom plate 25, a discharge port 27 provided on the back side of the lower machine room 15, and a series connecting the upper machine room 16 with the discharge port 27 of the lower machine room 15.
  • the lower machine room 15 is divided into two rooms by the partition wall 22, and the main condenser 21 is accommodated on the windward side of the fan 23, and the evaporation pan 24 is accommodated on the windward side.
  • the refrigerator 11 is located in the downstream of the main condenser 21, and the dryer 38 which dries the refrigerant
  • the refrigerator 11 connects the downstream side of the flow path switching valve 40 and the evaporator 20 in parallel with the dew protection pipe 41 and the throttle 42 connecting the dew protection pipe 41 and the evaporator 20 as parts constituting a refrigeration cycle And a heat exchange portion 44 thermally coupled to the compressor 19 in the path of the bypass path 43.
  • the heat exchange portion 44 of the bypass passage 43 thermally coupled to the compressor 19 is installed on the surface of the closed container 70 forming the outer shell of the compressor 19 and thermally conductive to thermally couple the bypass passage 43 and the closed container 70.
  • the thermally conductive butyl rubber 71 has a thermal conductivity of 2.1 W / mK and a thickness of 1 mm and a width of 10 mm, and is installed so as to sandwich a bypass path 43 which makes one round around the upper and lower center of the closed container 70. .
  • the closed container 70 has a mass ratio of about 40% of the compressor 19, and it is estimated that the compressor 19 holds about 40% of the waste heat stored in the sensible heat, and the refrigerant in the compressor 19
  • the heat exchange portion 44 is formed on the surface of the sealed container 70 because it is thermally coupled to the waste heat stored in the mechanical components inside the compressor 19 and the like via a refrigerator oil (not shown) and a refrigerator oil (not shown). For example, the waste heat that the compressor 19 stores sensible heat can be effectively used.
  • the heat exchange unit 44 thermally coupled to the compressor 19 is provided outside the compressor 19, but may be thermally coupled to the inside of the compressor.
  • the compressor 19 is installed inside the hermetic container 70 and is used to lubricate the compression mechanism, a piston that forms the compression mechanism, a cylinder, a shaft, a motor unit that drives the compression mechanism via the shaft, and the compression mechanism. Equipped with refrigeration oil.
  • a part of the bypass path 43 penetrates the closed container 70 and is installed in the refrigeration oil staying in the lower part of the closed container 70. Form a heat exchange portion to be coupled.
  • the bypass path 43 uses a copper pipe having an outer diameter of 2 mm and an inner diameter of 1 mm, which is smaller than the diameter of the main condenser 21 and the pipe on the upstream side of 4 mm.
  • the inner diameter of the bypass path 43 may be ⁇ 0.5 to ⁇ 3 in consideration of workability.
  • the efficiency of heat exchange is improved by the diameter of the bypass passage 43.
  • a restriction adjustment mechanism such as an expansion valve is provided between the heat exchange unit 44 thermally coupled to the compressor 19 and the main condenser 21. Even the same effect can be obtained.
  • the flow path switching valve 40 can control the flow of the refrigerant independently of the dew proof pipe 41 and the bypass path 43. Normally, the flow path switching valve 40 keeps the flow path from the main condenser 21 to the dew proof pipe 41 open and keeps the flow path from the main condenser 21 to the bypass path 43 closed. The flow path is opened and closed only at the time of defrosting, which will be described later.
  • the evaporator 20 is disposed in the cooling chamber 73, and the evaporator 20 has an evaporation fan 30. It is covered with a vessel cover (not shown). The cold air generated in the evaporator 20 is blown into the refrigerating chamber 17 and the freezing chamber 18 by the evaporator fan 30 in the vicinity of the evaporator.
  • Cold air is blown through the evaporator cover into the inside of the freezer compartment 18 to circulate and cool the inside of the freezer compartment 18, and the circulation-cooled cold air is provided in the lower part of the evaporator cover (refrigeration room return port (illustrated Return to the cooling chamber 73).
  • the freezer compartment damper 31 which shuts off the flow of the freezer compartment cold air is arranged.
  • an FCC temperature sensor 34 for detecting the temperature of the freezing chamber 18 is disposed in the freezing chamber 18.
  • the flow of cold air blown toward the refrigerator compartment 17 is controlled by opening and closing of the refrigerator compartment damper 32 for blocking the cold air supplied to the refrigerator compartment 17.
  • the cold air flowing into the refrigerator compartment 17 is controlled while the refrigerator compartment damper 32 is opened and closed so that the refrigerator compartment temperature detected by the PCC temperature sensor 35 becomes equal to the target compartment temperature.
  • Cold air having passed through the refrigerator compartment damper 32 is blown into the refrigerator compartment 17 through the duct 33 for supplying cold air to the refrigerator compartment 17 and is circulated in the refrigerator compartment 17 and then evaporated as shown in FIG. It returns to the cooling chamber 73 through the refrigerator compartment return duct 102 which passes the side of the vessel 20.
  • the duct 33 is formed along the wall surface where the cold storage room 17 and the upper machine room 16 are adjacent, and discharges a part of the cold air passing through the duct 33 from near the center of the cold room, and the upper machine room 16 After passing while cooling adjacent wall surfaces, the air is discharged into the refrigerator compartment 17 from the outlet of the duct 33 provided at the upper part of the refrigerator compartment 17.
  • a cooling chamber 73 is provided on the back of the refrigerator main body 11, and an evaporator 20 for generating cold air of fin and tube type as a representative is disposed on the back of the freezing chamber 18 in the cooling chamber 73. .
  • an evaporator cover (not shown) is disposed which covers the evaporator 20 having a freezer compartment cold air return port for the cold air that has cooled the freezer compartment 18 to return to the evaporator 20.
  • aluminum or copper is used as a material of the evaporator 20.
  • the evaporator cover is composed of an evaporator front side cover inside the storage and an evaporator rear side cover on the evaporator side, and on the evaporator side of the evaporator rear side cover, a metal heat transfer promotion member (shown in the figure) ) Is placed.
  • a metal heat transfer promotion member shown in the figure
  • the upper and lower dimensions of the aluminum foil are from the lower end to the upper end of the evaporator 20, and the left and right dimensions are larger from the end of the fin of the evaporator 20 to about +15 mm.
  • An evaporator fan 30 for blowing cold air generated by the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18 by forced convection is arranged in the vicinity of the evaporator 20 (for example, the upper space), and cooling is performed below the evaporator 20
  • a glass tube heater made of glass tube is provided as a defrost heater 37 for defrosting the frost adhering to the evaporator 20 and the evaporator fan 30 sometimes.
  • a cover (not shown) covering the glass tube heater 37 is disposed above the glass tube heater 37.
  • the cover covering the defrosting heater 37 prevents evaporation noise such as juice which may be generated when water droplets dropped from the evaporator 20 at the time of defrosting fall directly on the surface of the glass tube which has become hot due to defrosting.
  • the dimensions and dimensions are equal to or greater than the glass tube diameter and width.
  • the evaporation dish 24 which receives the defrost water which the frost adhering to the evaporator 20 melt
  • the right side surface of the evaporator 20 is provided with a cold storage room return duct 102 in which cold air obtained by cooling the cold storage room 17 is returned to the evaporator 20, and cold air introduced by the cold storage room return duct 102 is At the lower part of the evaporator 20, it joins with the freezer compartment cold air from the freezer compartment return port, and flows to the evaporator 20 to exchange heat again.
  • isobutane which is a flammable refrigerant having a small global warming potential is used from the viewpoint of global environmental protection.
  • This hydrocarbon, isobutane has a specific gravity about twice that of air at room temperature and atmospheric pressure (at 2.04 and 300 K).
  • isobutane is used as the refrigerant
  • the maximum temperature of the surface of the glass tube which is an outer shell of the defrost heater 37 at the time of defrosting, is regulated as an explosion proof. Therefore, in order to reduce the temperature of the surface of the glass tube, a double glass tube heater in which the glass tube is formed in double is adopted.
  • a member with high heat dissipation for example, aluminum fins
  • the outer dimensions of the defrost heater 37 can be reduced by making the glass tube single-layered.
  • adhered to the evaporator 20 as a structure which improves the efficiency at the time of a defrost.
  • defrosting of the evaporator 20 is efficiently performed by direct heat transfer from the pipe heater, and the frost adhering to the evaporating dish 24 and the evaporator fan 30 around the evaporator 20 is removed by the defrosting heater 37 Since the melting can be performed, the defrosting time can be shortened, and the energy saving and the rise in the temperature in the refrigerator during the defrosting time can be suppressed.
  • the evaporator 20 in the present embodiment is a typical fin-and-tube evaporator 20 as in the commonly used evaporator 20, and the refrigerant pipe having fins is vertically Is stacked on.
  • the evaporator 20 has a configuration in which 30 refrigerant pipes are provided by arranging 10 stages of refrigerant pipes generally in the vertical direction and arranging 3 rows of refrigerant pipes in the front-rear direction.
  • the refrigerant pipe in the evaporator 20 in the present embodiment has a configuration in which the width dimension of the lower portion is shorter than that of the upper portion.
  • the outlet of the throttle 42 and the outlet of the bypass passage 43 are connected by joining a Y-shaped joint pipe
  • the evaporator outlet of the evaporator 20 is connected to a pipe leading to the compressor 19.
  • the evaporator 20 has a DEF temperature sensor 36 for detecting the temperature of the evaporator 20 as shown in FIG. 1, and the DEF temperature sensor 36 is disposed at the inlet pipe portion of the evaporator 20.
  • the temperature detected by the FCC temperature sensor 34 is lower than the predetermined value of the FCC_ON temperature in the cooling stop state where the air cooling fan 23, the compressor 19, and the evaporator fan 30 are all stopped (hereinafter, this operation is referred to as "OFF mode").
  • OFF mode the predetermined value of the FCC_ON temperature in the cooling stop state where the air cooling fan 23, the compressor 19, and the evaporator fan 30 are all stopped.
  • the main condenser 21 side of the lower machine room 15 partitioned by the partition wall 22 becomes negative pressure by the driving of the air cooling fan 23, and external air is sucked from the plurality of intake ports 26.
  • the evaporation dish 24 side becomes positive pressure, and the air in the lower machine room 15 is discharged to the outside from the plurality of discharge ports 27.
  • the refrigerant discharged from the compressor 19 is condensed while leaving part of the gas in the main condenser 21 while exchanging heat with the outside air, and then the water is removed by the dryer 38.
  • the dew pipe 41 is supplied.
  • the refrigerant having passed through the anti-dew pipe 41 dissipates heat through the casing 12 while warming the opening of the freezing chamber 18 and then condenses, and then the pressure is reduced by the throttle 42 and evaporated in the evaporator 20. While exchanging heat with the internal air to cool the refrigerating chamber 17, the refrigerant is returned to the compressor 19 as a gaseous refrigerant.
  • the freezer compartment damper 31 is opened, the refrigerator compartment damper 32 is closed, and the compressor 19, the air cooling fan 23, and the evaporator fan 30 are driven.
  • the freezer compartment 18 is cooled by heat exchange between the air in the freezer compartment 18 and the evaporator 20 by operating the refrigeration cycle in the same manner as PC cooling (hereinafter, this operation is referred to as “FC cooling mode”) .
  • the PC cooling mode when the temperature detected by the FCC temperature sensor 34 falls to the FCC_OFF temperature of the predetermined value and the temperature detected by the PCC temperature sensor 35 indicates the PCC_ON temperature or more of the predetermined value, the PC cooling mode is set. Transition.
  • the temperature detected by the FCC temperature sensor 34 indicates a temperature higher than the predetermined value FCC_ON temperature due to the opening / closing of the door 13 of the freezer compartment 18 or the like, or the refrigerator compartment 17 in the FC cooling mode.
  • the temperature detected by the PCC temperature sensor 35 indicates a temperature higher than the PCC_ON temperature of the predetermined value due to the opening and closing of the door 13, the freezer compartment damper 31 is opened and the refrigerator compartment damper 32 is also opened.
  • the freezer compartment can be cooled (hereinafter, this operation is referred to as “PC + FC cooling mode”).
  • the state “open / close” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew proof pipe 41 is opened and the flow path from the main condenser 21 to the bypass path 43 is blocked.
  • the state “closed and open” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew proof pipe 41 is closed and the flow path from the main condenser 21 to the bypass path 43 is opened.
  • the state “closed / closed” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew proof pipe 41 is closed and the flow path from the main condenser 21 to the bypass path 43 is closed.
  • the time chart of FIG. 5 shows control at the time of defrosting of this embodiment.
  • the mode shifts to a defrost mode in which the frost on the evaporator 20 is heated and melted.
  • the defrosting mode section a first, in order to suppress the temperature rise of the refrigerator compartment 17, the refrigerator compartment 17 and the freezer compartment 18 are cooled for a predetermined time as in the PC + FC cooling mode. Then, in order to suppress the temperature rise of the freezer compartment 18 which is easily affected by the temperature rise at the time of defrosting, the freezer compartment 18 is cooled for a predetermined time as in the FC cooling mode.
  • the PC + FC cooling mode may be omitted and only the FC cooling mode may be set.
  • the flow from the main condenser 21 to the dewproof pipe 41 and the bypass path 43 is achieved by setting the flow passage switching valve 40 to be fully closed while the flow passage switching valve 40 is fully closed while operating the compressor 19.
  • the passages are closed together, and the refrigerant remaining in the dewproof pipe 41 and the evaporator 20 and the bypass passage 43 is recovered to the main condenser 21.
  • section c the compressor 19 is stopped, and the flow path switching valve 40 is switched to open the flow path from the main condenser 21 to the bypass path 43, thereby bypassing the bypass path 43.
  • the high pressure refrigerant collected in the main condenser 21 is supplied to the evaporator 20 via the.
  • the high-pressure refrigerant is heated by the waste heat of the stopped compressor 19 in the heat exchange unit 44 provided in the bypass path 43, and the dryness is increased. This is because when the high pressure refrigerant is recovered by the main condenser 21 in the section b, the heat is dissipated to the outside air and most of the refrigerant condenses.
  • the heat due to the latent heat of condensation is evaporated in comparison with the case where the high pressure refrigerant is supplied to the evaporator 20 without being heated by the heat exchange unit 44 in section c. Can be added to the vessel 20.
  • the defrost heater 37 attached to the evaporator 20 is energized to complete the defrosting.
  • the completion of the defrosting is judged by the DEF temperature sensor 36 reaching a predetermined temperature.
  • the flow path switching valve 40 is switched to close the flow path from the main condenser 21 to the bypass path 43, and the flow path from the main condenser 21 to the dewproof pipe 41 To equalize the inside of the refrigeration cycle, and resume normal operation from section f.
  • the evaporator fan 30 is also operating while the compressor 19 is operating.
  • the quality of the compressor can be improved by suppressing an excessive temperature drop of the evaporator 20, and the time for collecting the staying refrigerant can be shortened, so that the time can be shortened.
  • the temperature raising effect in the evaporator 20 is enhanced, and the defrosting in the section c Energy saving can be achieved by shortening the defrosting time by the heater 37. If the defrosting time is short, the non-cooling time for stopping the compressor 19 is also short, so that the temperature rise of the food itself can be suppressed. This is also a favorable condition for food storability that is degraded by temperature fluctuations.
  • the temperature of the evaporator itself is also raised by the return air that has passed through the refrigerator compartment return duct 102 from the refrigerator compartment 17 by the operation of the evaporator fan 30, so that the start temperature at the time of heater defrosting in section c also becomes high. It also saves energy and saves time.
  • the second DFC temperature sensor 110 is provided near the evaporator outlet of the evaporator 20, and the temperature of the second DFC temperature sensor 110 is a predetermined temperature during the refrigerant recovery operation to the main condenser 21 in section b.
  • the refrigerant recovery operation may be ended when In this case, when the refrigerant in the refrigeration cycle is recovered to the main condenser 21, the temperature of the evaporator 20 starts to rise from the evaporator inlet side, and the temperature on the outlet side of the evaporator 20 rises with a delay.
  • the power amount of the defrost heater 37 in the section d can be stably reduced by stably securing the supplied refrigerant when using for heating in the section c, and energy saving in the refrigerator can be achieved. .
  • the end of the refrigerant recovery operation in the section b is ended when the temperature detected by the DFC temperature sensor 36 or the second DFC temperature sensor 110 shown in FIG.
  • the refrigerant in the refrigeration cycle including the evaporator 20 can be reliably recovered to the main condenser 21.
  • the second DFC temperature sensor 110 disposed at the evaporator outlet of the evaporator 20 it is possible to detect an outlet side temperature at which the temperature rise is slow because there is an accumulator at the time of refrigerant recovery. . Furthermore, it is possible to finish in the optimal refrigerant recovery time.
  • the time for the defrosting operation is shortened, the time required for defrosting, that is, the non-cooling time for not cooling the interior is shortened, energy saving in the refrigerator is achieved, and the rise in the interior temperature is also suppressed. Can be suppressed.
  • the time taken for defrosting is shortened and the internal temperature is less likely to rise, so that the cooling time after defrosting can be shortened, and the heat load to which defrost heater 37 is energized is also taken into consideration as a whole. Energy saving in
  • the outlet of the bypass path 43 is connected to the inlet side of the evaporator 20.
  • the outlet of the throttle 42 that is, the inlet of the evaporator 20 is not likely to rise in temperature during defrosting, and a DFC temperature sensor 36 for detecting the temperature is disposed. It is judged that the defrosting is completed by detecting the temperature of. Then, the temperature of the inlet of the evaporator 20 is raised in advance by connecting the outlet of the bypass passage 43 so as to supply the high-pressure refrigerant from the inlet side of the evaporator 20 where the temperature does not easily rise. Is promoting.
  • the temperature rise can be detected using the DFC temperature sensor 36 already provided. This makes it possible to provide a refrigerator with high cost performance without the need for cost increase.
  • section d may be started before the end of the section c.
  • the compressor 19 is stopped, the flow path switching valve 40 is switched, and the flow path from the main condenser 21 to the bypass path 43 is opened, whereby the high pressure refrigerant recovered in the main condenser 21 Is supplied to the evaporator 20, and the refrigerant supplied inside the evaporator 20 is condensed to increase the evaporator temperature due to the heat of condensation.
  • a temperature drop loss after exceeding the maximum temperature in the section c occurs.
  • the temperature of the evaporator 20 can be effectively raised.
  • the temperature of the evaporator 20 in the section c is detected by the DFC temperature sensor 36.
  • a method of detecting the temperature of the evaporator 20 by the second DFC temperature sensor 110 may be used. It is good also as time control to decide. Alternatively, switching control may be performed by both temperature and time. In this case, even if the amount of frost adhering to the evaporator 20 changes due to, for example, the opening and closing of the door 13, the heat loss to be supplied at the time of defrosting due to the section switching does not occur.
  • the state of the refrigerant in section c is grasped by detecting the temperature of the evaporator 20 using the DFC temperature sensor 36 which is a temperature sensor, and thereafter the defrost heater 37 is energized in the section d.
  • the temperature sensor instead of the temperature sensor, a pressure sensor may be used to shift to section d when the high pressure and the low pressure in the evaporator 20 are balanced and balanced.
  • the main condenser 21 is a forced air-cooling type condenser, but a second dew protection pipe thermally coupled to the side surface or the back surface of the housing 12 may be used.
  • the second dew protection pipe thermally coupled to the side surface and the back surface of the housing 12 has an outside air temperature even while the compressor 19 is stopped. The same effect can be expected even when used as the main condenser 21 since it is maintained in the vicinity.
  • a flow path resistance for adjusting the flow rate may be connected in series with the bypass path 43.
  • the high pressure refrigerant when the compressor 19 is stopped, the high pressure refrigerant is directly supplied to the evaporator 20 without passing through the dew protection pipe 41 and the throttle 42 at the time of defrosting. It prevented that the temperature of the high pressure refrigerant decreased due to the influence of the dew protection pipe 41 which is lower in temperature than that of the refrigerant. However, if the temperature of the evaporator 20 becomes higher than the dew proof pipe 41 due to the progress of the defrosting, the high pressure refrigerant may flow back from the evaporator 20 to the dew proof pipe 41 through the throttle 42. A non-return valve or a two-way valve may be provided to prevent backflow from the outlet 41 into the path of the inlet of the evaporator 20.
  • a glass tube heater is used as the defrost heater 37 at the time of defrosting, but in the case where a pipe heater is combined with the glass tube heater, glass is optimized by optimizing the respective heater capacities. It is possible to reduce the capacity of the tube heater. Since the outer temperature of the glass tube heater at the time of defrosting can also be lowered when the heater capacity is lowered, red heat at the time of defrosting can also be suppressed.
  • the ability to reduce the input time of the glass tube heater at the time of defrosting means that the temperature rise is suppressed by shortening the non-cooling operation time, and the temperature rise is suppressed due to the heat generation of the glass tube heater itself.
  • Frozen food stored in the refrigerator may be frost-burned due to temperature rise during non-cooling operation time during defrosting, heat transfer from the temperature of the glass tube heater itself, inflow of warm air during defrosting, etc. Although it will deteriorate due to the influence of heat fluctuation, in the present embodiment, the deterioration of the food can be suppressed even when stored for a long time.
  • the refrigerator in the first disclosure includes a refrigerant switching cycle having at least a compressor, an evaporator, a main condenser, and a dewproof pipe, and a flow path switching valve connected to the downstream side of the main condenser; A dew protection pipe connected to the downstream side of the flow path switching valve, and a bypass path connected in parallel to the dew protection pipe and having a heat exchange portion that thermally couples a part with the compressor.
  • the refrigerator in the first disclosure is provided with a freezer compartment damper and a refrigerator compartment damper which respectively control cold air supplied to a freezer compartment and a refrigerator compartment partitioned by the heat insulation wall.
  • the evaporator fan provided in the vicinity of the evaporator and the flow path switching valve are fully closed during operation of the compressor and the refrigerator compartment damper is opened to open the freezer compartment Close the damper.
  • the compressor is stopped and the flow path switching valve is opened to the bypass path side to supply the collected high pressure refrigerant to the evaporator.
  • the defrost heater provided in the vicinity of the evaporator is energized.
  • the recovery of the refrigerant can be facilitated and the recovery time can be shortened while suppressing an excessive decrease in the evaporator temperature, so that heating of the evaporator can be achieved.
  • a sufficient amount of refrigerant can be supplied.
  • the quality of the compressor can also be improved in order to suppress a drop in the evaporator temperature. Therefore, the electric energy of the defrost heater can be stably reduced, and energy saving can be achieved in the refrigerator.
  • the refrigerator in the second disclosure includes the temperature sensor in the vicinity of the outlet of the evaporator, and the recovery operation of the staying refrigerant is performed when the temperature of the temperature sensor reaches a predetermined temperature during the recovering operation of the staying refrigerant. It may be configured to end.
  • the refrigerator in the third disclosure includes the temperature sensor in the vicinity of the outlet of the evaporator, and the temperature of the temperature sensor rises from the lowest point by a predetermined value at the time of recovery operation of the staying refrigerant. It is good also as composition which ends operation of recovery.
  • the refrigerant in the refrigeration cycle can be reliably recovered to the main condenser, and the refrigerant recovery operation can be completed in an optimal refrigerant recovery time. Therefore, the time for defrosting operation is shortened, the time required for defrosting, that is, the non-cooling time for not cooling the inside of the refrigerator is shortened, energy saving in the refrigerator is achieved, and the temperature rise in the refrigerator is suppressed, and the quality deterioration of food is suppressed. can do.
  • the cooling time after defrosting can be shortened, and the heat load to which the defrost heater is energized is also taken into consideration in the refrigerator as a whole. Energy saving can be achieved.
  • the refrigerator in the fourth disclosure may be configured to connect the outlet of the bypass path to the evaporator inlet side.
  • the throttle outlet that is, the evaporator inlet
  • the evaporator inlet has a sensor that detects the temperature because temperature increase is difficult during defrosting, and the sensor detects a predetermined temperature to determine the end of defrosting.
  • the sensor detects a predetermined temperature to determine the end of defrosting.
  • the refrigerator in the fifth disclosure may be configured to connect the outlet of the bypass path to the evaporator inlet side in any one of the second disclosure and the third disclosure.
  • the refrigerator according to the present invention recovers the refrigerant remaining in the evaporator and the dew protection pipe in the main condenser, and the high-pressure refrigerant in the refrigeration cycle flows into the evaporator due to the pressure difference to add the evaporator. Since the output of the electric heater for defrosting can be reduced using the energy to warm, it is applicable also to other refrigeration application goods, such as a commercial refrigerator.
  • refrigerator housing 13 door 14 legs 15 lower machine room 16 upper machine room 17 cold room 18 freezer room 19 compressor 20 evaporator 21 main condenser 22 partition 23 fan (air cooling fan) 24 evaporation dish 25 bottom plate 26 air intake 27 exhaust 28 communication air passage 30 evaporator fan 31 freezer compartment damper 32 cold storage room damper 33 duct 34 FCC temperature sensor 35 PCC temperature sensor 36 DEF temperature sensor 37 defrost heater (glass tube heater) Reference Signs List 38 dryer 40 flow path switching valve 41 dew protection pipe 42 throttle 43 bypass path 44 heat exchange unit 70 closed container 71 heat conductive butyl rubber 72 aluminum foil tape 73 cooling chamber 102 refrigerating chamber return duct 110 temperature sensor (second DFC temperature sensor )

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The present invention has: a flow channel switching valve (40) connected to a downstream side of a main condenser (21); a dew-proofing pipe (41) connected to a downstream side of the flow channel switching valve (40); and a bypass passage (43) connected in parallel to the dew-proofing pipe (41). When an evaporator (20) is defrosted, residual refrigerant in the evaporator (20) and the dew-proofing pipe (41) is collected through an operation of closing a freezing chamber damper, by fully closing the flow channel switching valve (40) and opening a refrigeration chamber damper at the same time during the operations of a compressor (19) and an evaporator fan (30). Thereafter, the collectged high-pressure refrigerant is supplied to the evaporator (20) by stopping the compressor (19) and opening the flow channel switching valve (40) toward the bypass passage (43). After a predetermined period of time, a defrosting heater is electrically energized.

Description

冷蔵庫refrigerator
 本発明は、除霜用ヒータの出力を削減する冷蔵庫に関するものである。 The present invention relates to a refrigerator that reduces the output of a defrost heater.
 省エネルギーの観点から、家庭用冷蔵庫においては、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入して蒸発器を加温するエネルギーを利用して、除霜用電気ヒータの出力を削減する冷蔵庫がある。このような冷蔵庫では、圧縮機が停止した後でも冷凍サイクルの凝縮器内部に貯留する高圧冷媒が外気温度付近に維持される。一方、蒸発器が-30℃~-20℃の低温状態にあるため、高圧冷媒が圧力差により蒸発器に流入する量を増大させたり、流入する高圧冷媒のエンタルピーを増大させて流入する熱量を増大させたりする。このような構成により、このような冷蔵庫では、除霜用電気ヒータの出力を積極的に削減して省エネルギーを図ることができる。 From the viewpoint of energy saving, in a household refrigerator, a refrigerator that reduces the output of the defrosting electric heater by using energy that heats the evaporator by the high pressure refrigerant in the refrigeration cycle flowing into the evaporator due to the pressure difference. There is. In such a refrigerator, even after the compressor is stopped, the high pressure refrigerant stored inside the condenser of the refrigeration cycle is maintained near the outside air temperature. On the other hand, since the evaporator is at a low temperature of -30 ° C to -20 ° C, the amount of high pressure refrigerant flowing into the evaporator is increased due to the pressure difference, or the enthalpy of the high pressure refrigerant flowing therein is increased to Increase it. With such a configuration, in such a refrigerator, energy saving can be achieved by actively reducing the output of the defrosting electric heater.
 以下、図面を参照しながら従来の冷蔵庫を説明する。 Hereinafter, a conventional refrigerator will be described with reference to the drawings.
 図6は従来の冷蔵庫の縦断面図である。図7は従来の冷蔵庫の冷凍サイクル構成図である。図8は従来の冷蔵庫の除霜時の制御を示した図である。 FIG. 6 is a longitudinal sectional view of a conventional refrigerator. FIG. 7 is a configuration diagram of a refrigeration cycle of a conventional refrigerator. FIG. 8 is a view showing control at the time of defrosting of the conventional refrigerator.
 図6および図7に示すように、冷蔵庫11は、筐体12と、扉13と、筐体12を支える脚14と、筐体12の下部に設けられた下部機械室15と、筐体12の上部に配置された冷蔵室17と、筐体12の下部に配置された冷凍室18を備えている。また、冷凍サイクルを構成する部品として、下部機械室15に収められた圧縮機56と、冷凍室18の背面側に収められた蒸発器20と、下部機械室15内に収められた主凝縮器21を備えている。また、冷蔵庫11は、下部機械室15に配置された主凝縮器21と、下部機械室15を仕切る隔壁22と、隔壁22に取り付けられ主凝縮器21を空冷するファン23と、圧縮機56の上部に設置された蒸発皿57と、下部機械室15の底板25を備えている。 As shown in FIGS. 6 and 7, the refrigerator 11 includes a housing 12, a door 13, a leg 14 for supporting the housing 12, a lower machine room 15 provided in the lower part of the housing 12, and the housing 12. And a freezer compartment 18 disposed at the lower part of the housing 12. Further, as components constituting the refrigeration cycle, a compressor 56 housed in the lower machine room 15, an evaporator 20 housed on the back side of the freezer room 18, and a main condenser housed in the lower machine room 15 It has 21. The refrigerator 11 includes a main condenser 21 disposed in the lower machine room 15, a partition 22 partitioning the lower machine room 15, a fan 23 attached to the partition 22 to cool the main condenser 21, and a compressor 56. An evaporation pan 57 installed at the top and a bottom plate 25 of the lower machine room 15 are provided.
 また、冷蔵庫11は、底板25に設けられた複数の吸気口26と、下部機械室15の背面側に設けられた排出口27と、下部機械室15の排出口27と筐体12の上部を繋ぐ連通風路28を備えている。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21を収め、風下側に圧縮機56と蒸発皿57を収めている。 Further, the refrigerator 11 has a plurality of air inlets 26 provided on the bottom plate 25, an outlet 27 provided on the back side of the lower machine room 15, an outlet 27 of the lower machine room 15, and an upper portion of the housing 12. A communicating air passage 28 is provided to connect. Here, the lower machine room 15 is divided into two rooms by the partition wall 22, and the main condenser 21 is accommodated on the windward side of the fan 23, and the compressor 56 and the evaporation plate 57 are accommodated on the windward side.
 また、冷蔵庫11は、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ60と、防露パイプ60の下流側に位置し、循環する冷媒を乾燥するドライヤ137と、ドライヤ137と蒸発器20を結合し、循環する冷媒を減圧する絞り45を備えている。さらに、冷蔵庫11は、蒸発器20を除霜する際に動作する、防露パイプ60の出口を閉塞する二方弁61と、蒸発器20を加熱する除霜ヒータ(図示せず)を備えている。 Moreover, the refrigerator 11 is a dew protection pipe 60 located downstream of the main condenser 21 and thermally coupled to the outer surface of the housing 12 around the opening of the freezing chamber 18 as a component constituting a refrigeration cycle, A dryer 137 located on the downstream side of the dewproof pipe 60 for drying the circulating refrigerant, and a throttle 45 for connecting the dryer 137 and the evaporator 20 and reducing the pressure of the circulating refrigerant are provided. Furthermore, the refrigerator 11 includes a two-way valve 61 for closing the outlet of the dew protection pipe 60, which operates when defrosting the evaporator 20, and a defrost heater (not shown) for heating the evaporator 20. There is.
 また、冷蔵庫11は、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50と、冷凍室18に供給される冷気を遮断する冷凍室ダンパー51と、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー52と、冷蔵室17に冷気を供給するダクト53を備えている。さらに、冷蔵庫11は、冷凍室18の温度を検知するFCC温度センサ54と、冷蔵室17の温度を検知するPCC温度センサ55と、蒸発器20の温度を検知するDEF温度センサ58を備えている。 Further, the refrigerator 11 includes an evaporator fan 50 for supplying cold air generated by the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer compartment damper 51 for shutting off the cold air supplied to the freezer compartment 18, and a refrigerator compartment 17 And a duct 53 for supplying cold air to the cold storage room 17. Furthermore, the refrigerator 11 includes an FCC temperature sensor 54 that detects the temperature of the freezing chamber 18, a PCC temperature sensor 55 that detects the temperature of the refrigerating chamber 17, and a DEF temperature sensor 58 that detects the temperature of the evaporator 20. .
 以上のように構成された従来の冷蔵庫11について以下にその動作を説明する。 The operation of the conventional refrigerator 11 configured as described above will be described below.
 まず、冷蔵庫11は、ファン23、圧縮機56、および蒸発器ファン50がともに停止している冷却停止状態(以下、この動作を「OFFモード」という)となっている。このOFFモードにおいて、FCC温度センサ54の検知する温度が所定値のFCC_ON温度より低い温度であり、PCC温度センサ55の検知する温度が所定値のPCC_ON温度まで上昇すると、次の動作を行う。すなわち、冷凍室ダンパー51を閉じ、冷蔵室ダンパー52を開き、圧縮機56と、ファン23および蒸発器ファン50を駆動する(以下、この動作を「PC冷却モード」という)。 First, the refrigerator 11 is in the cooling stop state (hereinafter, this operation is referred to as the “OFF mode”) in which the fan 23, the compressor 56, and the evaporator fan 50 are all stopped. In this OFF mode, when the temperature detected by the FCC temperature sensor 54 is lower than the predetermined value FCC_ON temperature, and the temperature detected by the PCC temperature sensor 55 rises to the predetermined value PCC_ON temperature, the following operation is performed. That is, the freezer compartment damper 51 is closed, the refrigerator compartment damper 52 is opened, and the compressor 56, the fan 23, and the evaporator fan 50 are driven (hereinafter, this operation is referred to as "PC cooling mode").
 このPC冷却モードにおいては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり底板25に形成された複数の吸気口26から外部の空気を吸引し、圧縮機56と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。 In the PC cooling mode, the main condenser 21 side of the lower machine room 15 partitioned by the partition 22 is negative pressure driven by the fan 23 and the external air is sucked from the plurality of intake ports 26 formed in the bottom plate 25. The pressure on the side of the compressor 56 and the evaporation plate 57 becomes positive, and the air in the lower machine room 15 is discharged to the outside from the plurality of discharge ports 27.
 一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ60へ供給される。防露パイプ60を通過する冷媒は冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮する。防露パイプ60で凝縮した液冷媒は、二方弁61を通過した後、ドライヤ137で水分除去され、絞り45で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する。 On the other hand, the refrigerant discharged from the compressor 56 is supplied to the anti-dew pipe 60 after condensing while leaving part of the gas in the main condenser 21 while exchanging heat with the outside air. The refrigerant passing through the dew protection pipe 60 radiates heat through the housing 12 and condenses while warming the opening of the freezing chamber 18. The liquid refrigerant condensed by the dewproof pipe 60 passes through the two-way valve 61, then the water is removed by the dryer 137, the pressure is reduced by the throttle 45, and it exchanges heat with the air in the refrigerator compartment 17 while evaporating by the evaporator 20. Then, while cooling the refrigerating chamber 17, the refrigerant is returned to the compressor 56 as a gaseous refrigerant.
 PC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。 When the temperature detected by the FCC temperature sensor 54 falls to the predetermined value FCC_OFF temperature and the temperature detected by the PCC temperature sensor 55 falls to the predetermined value PCC_OFF temperature during the PC cooling mode, the mode is shifted to the OFF mode.
 また、PC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_ON温度まで上昇し、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降すると、次の動作を行う。すなわち、冷凍室ダンパー51を開き、冷蔵室ダンパー52を閉じ、圧縮機56とファン23、および蒸発器ファン50を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。 When the temperature detected by the FCC temperature sensor 54 rises to the predetermined value FCC_ON temperature and the temperature detected by the PCC temperature sensor 55 falls to the predetermined value PCC_OFF temperature in the PC cooling mode, the following operation is performed. That is, the freezer compartment damper 51 is opened, the refrigerator compartment damper 52 is closed, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. Hereinafter, the freezer compartment 18 is cooled by heat exchange between the air in the freezer compartment 18 and the evaporator 20 by operating the refrigeration cycle in the same manner as PC cooling (hereinafter, this operation is referred to as “FC cooling mode”) .
 FC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。 When the temperature detected by the FCC temperature sensor 54 falls to the predetermined value FCC_OFF temperature and the temperature detected by the PCC temperature sensor 55 falls to the predetermined value PCC_OFF temperature during the FC cooling mode, the mode transitions to the OFF mode.
 また、FC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_ON温度以上に上昇すると、PC冷却モードに遷移する。 When the temperature detected by the FCC temperature sensor 54 falls to the FCC_OFF temperature of the predetermined value and the temperature detected by the PCC temperature sensor 55 rises to the PCC_ON temperature of the predetermined value or higher during the FC cooling mode, the PC cooling mode is set. Transition.
 ここで、図8に基づいて従来の冷蔵庫の除霜時の制御について説明する。 Here, the control at the time of defrosting of the conventional refrigerator will be described based on FIG.
 圧縮機56の積算運転時間が所定時間に達すると、蒸発器20に付着した霜を加温して融解する除霜モードに移行する。除霜モードの区間pにおいて、まず、冷凍室18の温度上昇を抑制するために、FC冷却モードと同様に冷凍室18を所定時間冷却する。次に、区間qにおいて、圧縮機56を運転しながら二方弁61を閉塞することによって、ドライヤ137及び蒸発器20に滞留する冷媒を主凝縮器21と防露パイプ60へ回収する。そして、区間rにおいて、圧縮機56を停止することで圧縮機56内部の高圧側と低圧側を仕切るバルブ(図示せず)などのシール部を介して、主凝縮器21と防露パイプ60に回収された高圧冷媒を蒸発器20に逆流させることで、圧縮機56の廃熱でさらに加熱された高圧冷媒を利用して蒸発器20を加温する。その後、区間sにおいて、蒸発器20に取り付けられた除霜ヒータ(図示せず)に通電してDEF温度センサ58が所定の温度となると除霜を完了する。そして、区間tにおいて、二方弁61を開放して冷凍サイクル内を均圧して、区間uから通常運転を再開する。 When the integrated operation time of the compressor 56 reaches a predetermined time, the mode shifts to a defrost mode in which the frost attached to the evaporator 20 is heated and melted. In the section p of the defrosting mode, first, in order to suppress the temperature rise of the freezing room 18, the freezing room 18 is cooled for a predetermined time as in the FC cooling mode. Next, in the section q, by closing the two-way valve 61 while operating the compressor 56, the refrigerant remaining in the dryer 137 and the evaporator 20 is recovered to the main condenser 21 and the dew proof pipe 60. Then, in section r, the main condenser 21 and the dew proof pipe 60 are connected to the main condenser 21 and the dew proof pipe 60 via a seal portion such as a valve (not shown) that divides the high pressure side and the low pressure side inside the compressor 56 by stopping the compressor 56 By making the recovered high pressure refrigerant flow back to the evaporator 20, the evaporator 20 is heated using the high pressure refrigerant further heated by the waste heat of the compressor 56. Thereafter, in the section s, the defrost heater (not shown) attached to the evaporator 20 is energized to complete defrosting when the DEF temperature sensor 58 reaches a predetermined temperature. Then, in the section t, the two-way valve 61 is opened to equalize the inside of the refrigeration cycle, and the normal operation is resumed from the section u.
 以上のように説明した動作によって、冷凍サイクルの高圧冷媒及び圧縮機の廃熱を利用して蒸発器を加温することにより、除霜ヒータの電力量を削減することができ、冷蔵庫における省エネルギーを図ることができる。 By heating the evaporator using the high pressure refrigerant of the refrigeration cycle and the waste heat of the compressor by the operation described above, the electric energy of the defrost heater can be reduced, and energy saving in the refrigerator can be achieved. Can be
特開平4-194564号公報Unexamined-Japanese-Patent No. 4-194564
 しかしながら、従来の冷蔵庫の構成では、主凝縮器21と防露パイプ60に回収された高圧冷媒を蒸発器20の除霜に利用する際に、冷凍室18の開口部周辺と熱結合された防露パイプ60の温度が低下して、ほぼ外気温度で維持される主凝縮器21内の高圧冷媒が防露パイプ60内部で凝縮する。この結果、高圧圧力が低下して防露パイプ60から蒸発器20に流入する冷媒量が減少し、除霜ヒータの電力量を十分削減することができない原因となる。 However, in the conventional refrigerator configuration, when using the high pressure refrigerant collected in the main condenser 21 and the dew proof pipe 60 for defrosting of the evaporator 20, the heat protection with the periphery of the opening of the freezer compartment 18 is prevented. As the temperature of the dew pipe 60 decreases, the high pressure refrigerant in the main condenser 21 maintained at almost the outside air temperature condenses inside the dew protection pipe 60. As a result, the high pressure decreases and the amount of refrigerant flowing from the dew protection pipe 60 into the evaporator 20 decreases, which causes the power consumption of the defrost heater not to be sufficiently reduced.
 従って、回収された高圧冷媒を蒸発器20の除霜に利用する際に、高圧圧力を維持することが問題であった。 Therefore, when using the recovered high pressure refrigerant for defrosting of the evaporator 20, it has been a problem to maintain a high pressure.
 また、従来の冷蔵庫の構成では、冷媒を回収する際に圧縮機56を運転するが、圧縮機56の運転に伴い蒸発器20の温度が下がりすぎるため十分な冷媒回収を行うことができなかった。 Moreover, in the conventional refrigerator configuration, although the compressor 56 is operated when recovering the refrigerant, the temperature of the evaporator 20 is excessively lowered due to the operation of the compressor 56, so that sufficient refrigerant recovery can not be performed. .
 従って、回収された高圧冷媒を蒸発器20の除霜に利用する際に、蒸発器20に流入する高圧冷媒の量が少なく蒸発器20の温度上昇が小さくなり、除霜ヒータの電力量を十分削減することができないことが問題であった。 Therefore, when using the recovered high-pressure refrigerant for defrosting of the evaporator 20, the amount of high-pressure refrigerant flowing into the evaporator 20 is small, and the temperature rise of the evaporator 20 is small, and the electric power of the defrost heater is sufficient It was a problem that it could not be reduced.
 また、蒸発器20に流入する高圧冷媒の量をできるだけ多くするため、冷媒回収の時間を長く取ろうとしても蒸発器20の周囲の温度は低い状態であるため、蒸発器20の内部に冷媒が滞留し易く、滞留冷媒の回収時間が長くなる。滞留冷媒の回収時間が長くなるということは、蒸発器20の温度を所定の温度まで上げるためのヒータ通電する除霜時間全体が長くなり、即ち冷蔵室17、冷凍室18の室内である庫内の非冷却時間が長くなるため、庫内温度が上昇しやすい。そのため、除霜後の冷却運転時間も長くなるだけでなく、保存されている食品温度も上昇し保鮮性が劣化するという問題があった。 Further, in order to increase the amount of high-pressure refrigerant flowing into the evaporator 20 as much as possible, the temperature around the evaporator 20 is low even if the time for recovering the refrigerant is extended, so the refrigerant is inside the evaporator 20. It tends to stay and the recovery time of the staying refrigerant becomes long. The fact that the recovery time of the staying refrigerant is long means that the whole defrosting time for energizing the heater for raising the temperature of the evaporator 20 to a predetermined temperature is longer, that is, the inside of the cold room 17 and the freezing room 18. The internal temperature of the refrigerator tends to rise because the non-cooling time of Therefore, not only the cooling operation time after defrosting becomes long, but there is also a problem that the temperature of the stored food also rises and the freshness maintenance property is deteriorated.
 本発明は、回収された高圧冷媒を蒸発器の除霜に利用する際に、蒸発器温度の過度な低下を抑制しつつ滞留冷媒の回収時間を短縮すると共に、除霜時間の短縮による省エネルギーを図るとともに、庫内温度上昇抑制による食品保鮮性の向上を図ることができる冷蔵庫を提供する。 The present invention, when utilizing the recovered high-pressure refrigerant for defrosting of the evaporator, shortens the recovery time of the staying refrigerant while suppressing an excessive decrease in the evaporator temperature, and saves energy by shortening the defrosting time. To provide a refrigerator capable of improving food preservation by suppressing the temperature rise inside the storage unit.
 本発明の冷蔵庫は、少なくとも圧縮機と、蒸発器と、主凝縮器と、防露パイプを有する冷凍サイクルを備え、主凝縮器の下流側に接続した流路切換バルブと、流路切換バルブの下流側に接続した防露パイプと、防露パイプと並列に接続し一部を圧縮機と熱結合する熱交換部を有したバイパス経路を備える。加えて、本発明の冷蔵庫は、断熱壁で区画形成された冷凍室および冷蔵室に供給する冷気をそれぞれ制御する冷凍室ダンパーおよび冷蔵室ダンパーを備える。本発明の冷蔵庫は、蒸発器を除霜する際に、蒸発器の近傍に設けた蒸発器ファンおよび圧縮機の運転中に流路切換バルブを全閉するとともに冷蔵室ダンパーを開き、冷凍室ダンパーを閉じる動作により、蒸発器および防露パイプ内の滞留冷媒を回収する。その後、圧縮機を停止するとともに流路切換バルブをバイパス経路側に開放して回収した高圧冷媒を蒸発器に供給する。その所定時間後、蒸発器の近傍に設けた除霜ヒータに通電する。 The refrigerator according to the present invention comprises a refrigeration cycle having at least a compressor, an evaporator, a main condenser, and a dew proof pipe, and a flow path switching valve connected to the downstream side of the main condenser; A dew protection pipe connected downstream, and a bypass path connected in parallel to the dew protection pipe and having a heat exchange portion that thermally couples a part with the compressor. In addition, the refrigerator of the present invention is provided with a freezer compartment damper and a refrigerator compartment damper which respectively control cold air supplied to the freezer compartment and the refrigerator compartment which are sectioned by the heat insulation wall. When defrosting the evaporator, the refrigerator according to the present invention fully closes the flow path switching valve and opens the refrigerator compartment damper during operation of the evaporator fan and compressor provided in the vicinity of the evaporator, and the freezer compartment damper Is closed, the stagnant refrigerant in the evaporator and the dew protection pipe is recovered. Thereafter, the compressor is stopped and the flow path switching valve is opened to the bypass path side to supply the recovered high pressure refrigerant to the evaporator. After the predetermined time, the defrost heater provided in the vicinity of the evaporator is energized.
 この構成により、冷媒回収時に蒸発器温度が下がり過ぎることなく十分な冷媒量を回収できるとともに、回収時間も短くすることができるため、除霜時間全体即ち非冷却時間が短くなり消費電力量低減だけでなく、庫内に保存されている食品自身の温度上昇も軽減される。更に回収された高圧冷媒を蒸発器の除霜に利用する際に、圧力の変動を抑制することで、除霜ヒータの電力量を安定して削減することができる。 With this configuration, it is possible to recover a sufficient amount of refrigerant without excessively lowering the evaporator temperature at the time of refrigerant recovery, and also shorten the recovery time, so the whole defrosting time, that is, the non-cooling time is shortened and only power consumption is reduced. Not only that, the temperature rise of the food itself stored in the refrigerator is also mitigated. Furthermore, when utilizing the recovered high pressure refrigerant for defrosting of the evaporator, the power amount of the defrost heater can be stably reduced by suppressing the fluctuation of the pressure.
 また、回収された高圧冷媒を蒸発器の除霜に利用する際に、バイパス経路を介して蒸発器に供給するとともに、バイパス経路と圧縮機を熱結合しているため、高圧冷媒を蒸発器に供給する際に圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができる。 In addition, when the recovered high pressure refrigerant is used for defrosting of the evaporator, the high pressure refrigerant is supplied to the evaporator via the bypass path, and the bypass path and the compressor are thermally coupled. By collecting the waste heat of the compressor at the time of supply and using it for heating the evaporator, the amount of electric power of the defrost heater can be further reduced.
 本発明の冷蔵庫は、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫における省エネルギーを図ることができる。 The refrigerator according to the present invention can stably reduce the amount of power of the defrost heater by recovering the refrigerant in the refrigeration cycle to the main condenser and using it for heating the evaporator, thereby saving energy in the refrigerator. Can be
図1は、本発明の第1の実施の形態における冷蔵庫の縦断面図である。FIG. 1 is a longitudinal sectional view of a refrigerator according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態における冷蔵庫のサイクル構成図である。FIG. 2 is a cycle configuration diagram of the refrigerator in the first embodiment of the present invention. 図3Aは、本発明の第1の実施の形態における冷蔵庫の圧縮機との熱交換部の要部拡大模式図である。FIG. 3A is an enlarged schematic view of a main part of a heat exchange unit with the compressor of the refrigerator according to the first embodiment of the present invention. 図3Bは、本発明の第1の実施の形態における冷蔵庫の圧縮機との熱交換部の要部断面模式図である。FIG. 3B is a schematic cross-sectional view of main parts of a heat exchange unit with a compressor of the refrigerator according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態における冷蔵庫の冷却室内を示す構成図である。FIG. 4 is a configuration diagram showing a cooling chamber of the refrigerator in the first embodiment of the present invention. 図5は、本発明の第1の実施の形態における冷蔵庫の除霜時の制御を示した図である。FIG. 5 is a diagram showing control at the time of defrosting of the refrigerator in the first embodiment of the present invention. 図6は、従来の冷蔵庫の縦断面図である。FIG. 6 is a longitudinal sectional view of a conventional refrigerator. 図7は、従来の冷蔵庫のサイクル構成図である。FIG. 7 is a block diagram of a conventional refrigerator. 図8は、従来の冷蔵庫の除霜時の制御を示した図である。FIG. 8 is a diagram showing control at the time of defrosting of the conventional refrigerator.
 以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same components as those of the conventional example, and the detailed description thereof will be omitted. The present invention is not limited by the embodiment.
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態における冷蔵庫の縦断面図である。図2は、本発明の第1の実施の形態における冷蔵庫のサイクル構成図である。図3Aは本発明の第1の実施の形態における冷蔵庫の圧縮機との熱交換部の要部拡大模式図である。図3Bは、本発明の第1の実施の形態における冷蔵庫の圧縮機との熱交換部の要部断面模式図である。図4は、本発明の第1の実施の形態における冷蔵庫の冷却室内を示す構成図である。図5は、本発明の第1の実施の形態における冷蔵庫の除霜時の制御を示した図である。
First Embodiment
FIG. 1 is a longitudinal sectional view of a refrigerator according to a first embodiment of the present invention. FIG. 2 is a cycle configuration diagram of the refrigerator in the first embodiment of the present invention. FIG. 3A is an enlarged schematic view of a main part of a heat exchange unit with a compressor of the refrigerator according to the first embodiment of the present invention. FIG. 3B is a schematic cross-sectional view of main parts of a heat exchange unit with a compressor of the refrigerator according to the first embodiment of the present invention. FIG. 4 is a configuration diagram showing a cooling chamber of the refrigerator in the first embodiment of the present invention. FIG. 5 is a diagram showing control at the time of defrosting of the refrigerator in the first embodiment of the present invention.
 図1、図2および図3A、図3Bに示すように、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、および筐体12の下部に配置された冷凍室18を備える。また、冷凍サイクルを構成する部品として、冷蔵庫11は、上部機械室16に収められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、および下部機械室15内に収められた主凝縮器21を備えている。また、冷蔵庫11は、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、および下部機械室15の底板25を有している。 As shown in FIGS. 1, 2 and 3A, 3B, the refrigerator 11 includes a housing 12, a door 13, a leg 14 for supporting the housing 12, a lower machine room 15 provided at the lower part of the housing 12, and a housing An upper machine room 16 provided at the upper part of the body 12, a refrigerating room 17 arranged at the upper part of the housing 12, and a freezing room 18 arranged at the lower part of the housing 12. Further, as a component constituting the refrigeration cycle, the refrigerator 11 is housed in the compressor 19 housed in the upper machine room 16, the evaporator 20 housed on the rear side of the freezer room 18, and the lower machine room 15. A main condenser 21 is provided. Further, the refrigerator 11 has a partition 22 for dividing the lower machine room 15, a fan 23 attached to the partition 22 for air cooling the main condenser 21, an evaporation tray 24 installed on the downwind side of the partition 22, and a bottom plate of the lower machine room 15. It has 25.
 ここで、圧縮機19は可変速圧縮機であり、20rps~80rpsから選択された6段階の回転数を使用する。これは、配管などの共振を避けながら、圧縮機19の回転数を低速~高速の6段階に切り換えて冷凍能力を調整するためである。圧縮機19は、起動時は低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速する。これは、最も高効率な低速を主として使用するとともに、高外気温や扉13の開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。このとき、冷蔵庫11の冷却運転モードとは独立して、圧縮機19の回転数を制御するが、蒸発温度が高く比較的冷凍能力が大きいPC冷却モードの起動時の回転数をFC冷却モードのときよりも低く設定してもよい。また、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速しながら冷凍能力を調整してもよい。 Here, the compressor 19 is a variable speed compressor, and uses six revolutions selected from 20 rps to 80 rps. This is to adjust the refrigeration capacity by switching the number of rotations of the compressor 19 from low speed to high speed in six stages while avoiding resonance of piping and the like. The compressor 19 operates at a low speed at start-up, and accelerates as the operation time for cooling the refrigerating chamber 17 or the freezing chamber 18 becomes longer. This is mainly to use the most efficient low speed, and to use a relatively high rotational speed appropriate to the increase in the load of the refrigerator compartment 17 or the freezer compartment 18 due to the high outside air temperature, the opening and closing of the door 13, etc. It is. At this time, although the rotational speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11, the rotational speed at the start of the PC cooling mode having a high evaporation temperature and a relatively large refrigeration capacity is You may set it lower than time. In addition, as the temperature of the refrigerator compartment 17 or the freezer compartment 18 decreases, the refrigeration capacity may be adjusted while decelerating the compressor 19.
 また、冷蔵庫11は、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、および下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21を収め、風下側に蒸発皿24を収めている。 The refrigerator 11 also includes a plurality of intake ports 26 provided in the bottom plate 25, a discharge port 27 provided on the back side of the lower machine room 15, and a series connecting the upper machine room 16 with the discharge port 27 of the lower machine room 15. There is a ventilation passage 28. Here, the lower machine room 15 is divided into two rooms by the partition wall 22, and the main condenser 21 is accommodated on the windward side of the fan 23, and the evaporation pan 24 is accommodated on the windward side.
 また、冷凍サイクルを構成する部品として、冷蔵庫11は、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38と、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ40と、流路切換バルブ40の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41を備えている。さらに、冷蔵庫11は、冷凍サイクルを構成する部品として、防露パイプ41と蒸発器20を接続する絞り42と、防露パイプ41と並列に流路切換バルブ40の下流側と蒸発器20を接続するバイパス経路43と、バイパス経路43の経路内で圧縮機19と熱結合する熱交換部44を備えている。 Moreover, as a component which comprises a refrigerating cycle, the refrigerator 11 is located in the downstream of the main condenser 21, and the dryer 38 which dries the refrigerant | coolant which circulates is located in the downstream of the dryer 38, and controls the flow of a refrigerant | coolant A flow path switching valve 40 and a dew protection pipe 41 located downstream of the flow path switching valve 40 and thermally coupled to the outer surface of the housing 12 around the opening of the freezing chamber 18 are provided. Furthermore, the refrigerator 11 connects the downstream side of the flow path switching valve 40 and the evaporator 20 in parallel with the dew protection pipe 41 and the throttle 42 connecting the dew protection pipe 41 and the evaporator 20 as parts constituting a refrigeration cycle And a heat exchange portion 44 thermally coupled to the compressor 19 in the path of the bypass path 43.
 ここで、圧縮機19と熱結合するバイパス経路43の熱交換部44は、圧縮機19の外郭を形成する密閉容器70の表面に設置され、バイパス経路43と密閉容器70を熱結合する熱伝導性ブチルゴム71と、密閉容器70に熱伝導性ブチルゴム71を固定するアルミ箔テープ72からなる。図3Bに示すように、熱伝導性ブチルゴム71は熱伝導率2.1W/mK厚さ1mm幅10mmであり、密閉容器70の上下中央付近をほぼ一周するバイパス経路43を挟むように設置される。これによって、バイパス経路43と圧縮機19の密閉容器70との熱交換量を十分確保することができ、バイパス経路43内部を通過する高圧冷媒が熱交換部44で加温されて、ほぼ気体の状態とすることができる。なお、熱伝導性ブチルゴム71に替えて、ハンダやロー材などの熱伝導率の高い金属を用いてバイパス経路43と密閉容器70を熱結合しても同様の効果が期待できるが、密閉容器70及び熱結合部の防錆処理が必要となる。熱伝導性ブチルゴム71を用いた場合は、密閉容器70に防錆塗装をした上に使用できる利点があるとともに、圧縮機19の振動がバイパス経路43に伝達することを抑制する効果も期待できる。また、密閉容器70は圧縮機19の40%程度の質量割合があり、圧縮機19が顕熱蓄熱する廃熱の40%程度を保持していると推定されるとともに、圧縮機19内部の冷媒(図示せず)や冷凍機油(図示せず)を介して、圧縮機19内部の機構部品などが蓄える廃熱と熱結合されているので、熱交換部44を密閉容器70の表面に形成すれば圧縮機19が顕熱蓄熱する廃熱を有効利用することができる。 Here, the heat exchange portion 44 of the bypass passage 43 thermally coupled to the compressor 19 is installed on the surface of the closed container 70 forming the outer shell of the compressor 19 and thermally conductive to thermally couple the bypass passage 43 and the closed container 70. Butyl rubber 71 and an aluminum foil tape 72 for fixing the heat conductive butyl rubber 71 to the closed container 70. As shown in FIG. 3B, the thermally conductive butyl rubber 71 has a thermal conductivity of 2.1 W / mK and a thickness of 1 mm and a width of 10 mm, and is installed so as to sandwich a bypass path 43 which makes one round around the upper and lower center of the closed container 70. . As a result, a sufficient amount of heat exchange between the bypass passage 43 and the closed container 70 of the compressor 19 can be secured, and the high pressure refrigerant passing through the bypass passage 43 is heated by the heat exchange unit 44 to be substantially gaseous. It can be in the state. The same effect can be expected even if the bypass path 43 and the sealed container 70 are thermally coupled using a metal having a high thermal conductivity, such as solder or brazing material, instead of the thermally conductive butyl rubber 71. And the rustproofing treatment of the thermal joint is required. When the heat conductive butyl rubber 71 is used, there is an advantage that it can be used after rustproof coating is applied to the closed container 70, and an effect of suppressing transmission of the vibration of the compressor 19 to the bypass path 43 can also be expected. The closed container 70 has a mass ratio of about 40% of the compressor 19, and it is estimated that the compressor 19 holds about 40% of the waste heat stored in the sensible heat, and the refrigerant in the compressor 19 The heat exchange portion 44 is formed on the surface of the sealed container 70 because it is thermally coupled to the waste heat stored in the mechanical components inside the compressor 19 and the like via a refrigerator oil (not shown) and a refrigerator oil (not shown). For example, the waste heat that the compressor 19 stores sensible heat can be effectively used.
 なお、本実施の形態では圧縮機19と熱結合する熱交換部44を圧縮機19の外郭で行ったが、圧縮機内部と熱結合しても良い。図示しないが、圧縮機19は、密閉容器70の内部に設置され、圧縮機構を形成するピストン、シリンダ、シャフト、シャフトを介して圧縮機構を駆動するモータ部、および圧縮機構の潤滑に利用される冷凍機油を備える。ここで、圧縮機19の内部で熱交換するためにバイパス経路43の一部が密閉容器70を貫通するとともに、密閉容器70の下部に滞留する冷凍機油内に設置されて、圧縮機19と熱結合する熱交換部を形成する。この構成により、バイパス経路43と密閉容器70の熱交換量を十分確保することができ、バイパス経路43内部を通過する高圧冷媒が圧縮機19の内部の熱交換部で加温されて、ほぼ気体の状態とすることができる。また、密閉容器70の表面からの放熱を損なうことなく、バイパス経路43と密閉容器70の熱交結合を実現したので、通常の冷却運転時に圧縮機19の放熱が損なわれて温度上昇し、圧縮機19の効率低下を招くことがない。 In the present embodiment, the heat exchange unit 44 thermally coupled to the compressor 19 is provided outside the compressor 19, but may be thermally coupled to the inside of the compressor. Although not shown, the compressor 19 is installed inside the hermetic container 70 and is used to lubricate the compression mechanism, a piston that forms the compression mechanism, a cylinder, a shaft, a motor unit that drives the compression mechanism via the shaft, and the compression mechanism. Equipped with refrigeration oil. Here, in order to exchange heat inside the compressor 19, a part of the bypass path 43 penetrates the closed container 70 and is installed in the refrigeration oil staying in the lower part of the closed container 70. Form a heat exchange portion to be coupled. With this configuration, a sufficient amount of heat exchange between the bypass passage 43 and the sealed container 70 can be secured, and the high-pressure refrigerant passing through the bypass passage 43 is heated by the heat exchange unit inside the compressor 19 It can be in the state of In addition, since the heat exchange coupling between the bypass passage 43 and the closed container 70 is realized without impairing the heat release from the surface of the closed container 70, the heat release of the compressor 19 is lost during normal cooling operation and the temperature rises. The efficiency of the machine 19 does not decrease.
 この構成により、密閉容器70の表面からの放熱を損なうことなく、バイパス経路43と圧縮機19の密閉容器70との熱交換量を十分確保することができ、さらに冷蔵庫における省エネルギーを図ることができる。 With this configuration, it is possible to secure a sufficient amount of heat exchange between the bypass passage 43 and the closed container 70 of the compressor 19 without impairing the heat radiation from the surface of the closed container 70, and further achieve energy saving in the refrigerator. .
 なお、本実施の形態でバイパス経路43は外形φ2mm、内径φ1mmの銅管を用いており、主凝縮器21や上流側のパイプの寸法であるφ4mmよりも小さい。これにより、バイパス経路43の経路内で圧縮機19と熱結合する熱交換部44では、主凝縮器21から圧力が若干下がった状態となり、熱交換部44での熱交換がしやすくなる。なお、バイパス経路43の内径は、作業性も考慮し、φ0.5~φ3とすると良い。本実施の形態ではバイパス経路43の径で熱交換の効率を向上させたが、圧縮機19と熱結合する熱交換部44と主凝縮器21の間に膨張弁のような絞り調節機構を設けても同様の効果を得ることができる。 In the present embodiment, the bypass path 43 uses a copper pipe having an outer diameter of 2 mm and an inner diameter of 1 mm, which is smaller than the diameter of the main condenser 21 and the pipe on the upstream side of 4 mm. As a result, in the heat exchange section 44 thermally coupled to the compressor 19 in the path of the bypass path 43, the pressure is slightly reduced from the main condenser 21, and heat exchange in the heat exchange section 44 is facilitated. The inner diameter of the bypass path 43 may be φ0.5 to φ3 in consideration of workability. In the present embodiment, the efficiency of heat exchange is improved by the diameter of the bypass passage 43. However, a restriction adjustment mechanism such as an expansion valve is provided between the heat exchange unit 44 thermally coupled to the compressor 19 and the main condenser 21. Even the same effect can be obtained.
 また、図2に示すように、流路切換バルブ40は、防露パイプ41とバイパス経路43それぞれ単独の冷媒の流れを開閉制御することができる。通常、流路切換バルブ40は主凝縮器21から防露パイプ41への流路を開いた状態で維持し、主凝縮器21からバイパス経路43への流路を閉じた状態で維持しており、後に説明する除霜時のみ流路の開閉を行う。 Further, as shown in FIG. 2, the flow path switching valve 40 can control the flow of the refrigerant independently of the dew proof pipe 41 and the bypass path 43. Normally, the flow path switching valve 40 keeps the flow path from the main condenser 21 to the dew proof pipe 41 open and keeps the flow path from the main condenser 21 to the bypass path 43 closed. The flow path is opened and closed only at the time of defrosting, which will be described later.
 本実施の形態での風路構成としては、冷凍室18の背面に冷却室73があり、冷却室73には蒸発器20が配設され、蒸発器20は、蒸発器ファン30を有した蒸発器カバー(図示せず)で覆われている。蒸発器20で生成された冷気は蒸発器近傍の蒸発器ファン30により、冷蔵室17と冷凍室18に冷気が送風される。 As an air path configuration in the present embodiment, there is a cooling chamber 73 on the back of the freezing chamber 18, the evaporator 20 is disposed in the cooling chamber 73, and the evaporator 20 has an evaporation fan 30. It is covered with a vessel cover (not shown). The cold air generated in the evaporator 20 is blown into the refrigerating chamber 17 and the freezing chamber 18 by the evaporator fan 30 in the vicinity of the evaporator.
 冷凍室18の庫内には蒸発器カバーを介して冷気が送風されて冷凍室18の庫内を循環冷却し、循環冷却した冷気は蒸発器カバー下部に設けた冷凍室冷気戻り口(図示せず)から冷却室73に戻る。この間、冷凍室冷気の流れを遮断する冷凍室ダンパー31が配設されている。また、冷凍室18には冷凍室18の温度を検知するFCC温度センサ34が配置してある。 Cold air is blown through the evaporator cover into the inside of the freezer compartment 18 to circulate and cool the inside of the freezer compartment 18, and the circulation-cooled cold air is provided in the lower part of the evaporator cover (refrigeration room return port (illustrated Return to the cooling chamber 73). During this time, the freezer compartment damper 31 which shuts off the flow of the freezer compartment cold air is arranged. Further, an FCC temperature sensor 34 for detecting the temperature of the freezing chamber 18 is disposed in the freezing chamber 18.
 一方、冷蔵室17に向かって送風された冷気は、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32の開閉によって流れが制御される。PCC温度センサ35によって検知される冷蔵室17が狙いとなる庫内温度に同等となるように、冷蔵室ダンパー32を開閉しながら冷蔵室17に流れる冷気を制御する。冷蔵室ダンパー32を通過した冷気は、冷蔵室17に冷気を供給するダクト33を介して冷蔵室17に送風され、冷蔵室17の庫内を冷却循環した後、図4に示すように、蒸発器20の側面を通過する冷蔵室戻りダクト102を通って冷却室73に戻る。ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部設けられたダクト33の排出口から冷蔵室17内に排出する。 On the other hand, the flow of cold air blown toward the refrigerator compartment 17 is controlled by opening and closing of the refrigerator compartment damper 32 for blocking the cold air supplied to the refrigerator compartment 17. The cold air flowing into the refrigerator compartment 17 is controlled while the refrigerator compartment damper 32 is opened and closed so that the refrigerator compartment temperature detected by the PCC temperature sensor 35 becomes equal to the target compartment temperature. Cold air having passed through the refrigerator compartment damper 32 is blown into the refrigerator compartment 17 through the duct 33 for supplying cold air to the refrigerator compartment 17 and is circulated in the refrigerator compartment 17 and then evaporated as shown in FIG. It returns to the cooling chamber 73 through the refrigerator compartment return duct 102 which passes the side of the vessel 20. The duct 33 is formed along the wall surface where the cold storage room 17 and the upper machine room 16 are adjacent, and discharges a part of the cold air passing through the duct 33 from near the center of the cold room, and the upper machine room 16 After passing while cooling adjacent wall surfaces, the air is discharged into the refrigerator compartment 17 from the outlet of the duct 33 provided at the upper part of the refrigerator compartment 17.
 次に、本実施の形態での蒸発器周囲の構成について説明する。 Next, the configuration around the evaporator in the present embodiment will be described.
 冷蔵庫本体11の背面には冷却室73が設けられ、冷却室73内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する蒸発器20が冷凍室18の背面に配設されている。冷却室73の前面庫内側には、冷凍室18を冷却した冷気が蒸発器20へ戻るための冷凍室冷気戻り口を備えた蒸発器20を覆う蒸発器カバー(図示せず)が配置されている。また、蒸発器20の材質は、アルミや銅が用いられる。 A cooling chamber 73 is provided on the back of the refrigerator main body 11, and an evaporator 20 for generating cold air of fin and tube type as a representative is disposed on the back of the freezing chamber 18 in the cooling chamber 73. . Inside the front storage of the cooling chamber 73, an evaporator cover (not shown) is disposed which covers the evaporator 20 having a freezer compartment cold air return port for the cold air that has cooled the freezer compartment 18 to return to the evaporator 20. There is. Moreover, aluminum or copper is used as a material of the evaporator 20.
 蒸発器カバーは、庫内側の蒸発器前側カバーと蒸発器側の蒸発器後側カバーで構成されており、蒸発器後側カバーの蒸発器側には、金属製の伝熱促進部材(図示せず)を配置している。本実施の形態では、コストを考慮して除霜時の伝熱促進用としてはt=8μmのアルミ箔を貼り付けている。そのアルミ箔の上下寸法は蒸発器20の下端から上端までであり、左右寸法は蒸発器20のフィンの端から+15mm程度までの大きめの寸法である。このアルミ箔を貼り付けることで、除霜時の伝熱を促進し除霜効率向上での除霜時間の短縮効果を得ている。なお、更なる効果を得るために、蒸発器20の背面側の内箱にアルミ箔を配置しても良い。更には、アルミ箔よりも厚みが大きいアルミプレート板や、アルミよりも熱伝導率の高い材料(例えば銅)で構成すると伝熱促進としての効果を更に発揮する。 The evaporator cover is composed of an evaporator front side cover inside the storage and an evaporator rear side cover on the evaporator side, and on the evaporator side of the evaporator rear side cover, a metal heat transfer promotion member (shown in the figure) ) Is placed. In the present embodiment, an aluminum foil of t = 8 μm is attached for promoting heat transfer at the time of defrosting in consideration of the cost. The upper and lower dimensions of the aluminum foil are from the lower end to the upper end of the evaporator 20, and the left and right dimensions are larger from the end of the fin of the evaporator 20 to about +15 mm. By sticking this aluminum foil, heat transfer at the time of defrosting is promoted, and the shortening effect of defrosting time by defrosting efficiency improvement is acquired. In addition, you may arrange | position aluminum foil in the inner box of the back side of the evaporator 20, in order to acquire the further effect. Furthermore, when it comprises an aluminum plate plate having a thickness larger than that of aluminum foil, or a material having a thermal conductivity higher than that of aluminum (for example, copper), the effect of promoting heat transfer is further exhibited.
 蒸発器20の近傍(例えば上部空間)には強制対流方式により蒸発器20で生成した冷気を冷蔵室17および冷凍室18に送風する蒸発器ファン30が配置され、蒸発器20の下方には冷却時に蒸発器20や蒸発器ファン30に付着する霜を除霜する除霜ヒータ37としてガラス管製のガラス管ヒータが設けられている。ガラス管ヒータ37の上方には、ガラス管ヒータ37を覆うカバー(図示せず)が配置されている。この除霜ヒータ37を覆うカバーは、除霜時に蒸発器20から滴下した水滴が除霜によって高温になったガラス管表面に直接落ちることで発生する可能性のあるジュージューといった蒸発音を防止するために、ガラス管径および幅と同等以上の寸法としている。 An evaporator fan 30 for blowing cold air generated by the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18 by forced convection is arranged in the vicinity of the evaporator 20 (for example, the upper space), and cooling is performed below the evaporator 20 A glass tube heater made of glass tube is provided as a defrost heater 37 for defrosting the frost adhering to the evaporator 20 and the evaporator fan 30 sometimes. A cover (not shown) covering the glass tube heater 37 is disposed above the glass tube heater 37. The cover covering the defrosting heater 37 prevents evaporation noise such as juice which may be generated when water droplets dropped from the evaporator 20 at the time of defrosting fall directly on the surface of the glass tube which has become hot due to defrosting. In addition, the dimensions and dimensions are equal to or greater than the glass tube diameter and width.
 除霜ヒータ37の下方には、蒸発器20に付着した霜が解けて落下する除霜水を受ける蒸発皿24が配置されている。 Below the defrost heater 37, the evaporation dish 24 which receives the defrost water which the frost adhering to the evaporator 20 melt | dissolves and falls falls is arrange | positioned.
 図4に示すように、蒸発器20の右側面には冷蔵室17を冷却した冷気が蒸発器20へと戻る冷蔵室戻りダクト102が設けてあり、冷蔵室戻りダクト102により導かれた冷気は蒸発器20の下部で冷凍室戻り口からの冷凍室冷気と合流し、再び熱交換すべく蒸発器20へと流れる。 As shown in FIG. 4, the right side surface of the evaporator 20 is provided with a cold storage room return duct 102 in which cold air obtained by cooling the cold storage room 17 is returned to the evaporator 20, and cold air introduced by the cold storage room return duct 102 is At the lower part of the evaporator 20, it joins with the freezer compartment cold air from the freezer compartment return port, and flows to the evaporator 20 to exchange heat again.
 ここで、近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。これにより従来に比して冷媒充填量を低減でき、低コストであると共に、可燃性冷媒が万が一に漏洩した場合の漏洩量が少なくなり安全性をより向上することができる。 Here, as a refrigerant of the recent refrigeration cycle, isobutane which is a flammable refrigerant having a small global warming potential is used from the viewpoint of global environmental protection. This hydrocarbon, isobutane, has a specific gravity about twice that of air at room temperature and atmospheric pressure (at 2.04 and 300 K). As a result, the amount of refrigerant charged can be reduced as compared with the prior art, and at the same time the cost is low, the amount of leakage when the flammable refrigerant should leak by any chance is reduced, and safety can be further improved.
 本実施の形態では、冷媒にイソブタンを用いており、防爆対応として除霜時の除霜ヒータ37の外郭であるガラス管表面の最大温度を規制している。そのため、ガラス管表面の温度を低減させるため、ガラス管を2重に形成された2重ガラス管ヒータを採用している。このほか、ガラス管表面の温度を低減させる構成としては、ガラス管表面に放熱性の高い部材(例えばアルミフィン)を巻きつけることもできる。このとき、ガラス管を1重とすることで、除霜ヒータ37の外形寸法を小さくできる。 In the present embodiment, isobutane is used as the refrigerant, and the maximum temperature of the surface of the glass tube, which is an outer shell of the defrost heater 37 at the time of defrosting, is regulated as an explosion proof. Therefore, in order to reduce the temperature of the surface of the glass tube, a double glass tube heater in which the glass tube is formed in double is adopted. Besides, as a configuration for reducing the temperature of the surface of the glass tube, a member with high heat dissipation (for example, aluminum fins) can be wound around the surface of the glass tube. At this time, the outer dimensions of the defrost heater 37 can be reduced by making the glass tube single-layered.
 除霜時の効率を向上させる構成としては、除霜ヒータ37に加えて、蒸発器20に密着したパイプヒータを併用しても良い。この場合、パイプヒータからの直接の伝熱によって蒸発器20の除霜は効率的に行われると共に、蒸発器20の周囲の蒸発皿24や蒸発器ファン30に付着した霜を除霜ヒータ37で溶かすことができるため、除霜時間の短縮が図れ、省エネルギーや除霜時間における庫内温度の上昇を抑制することができる。 In addition to the defrost heater 37, you may use together the pipe heater closely_contact | adhered to the evaporator 20 as a structure which improves the efficiency at the time of a defrost. In this case, defrosting of the evaporator 20 is efficiently performed by direct heat transfer from the pipe heater, and the frost adhering to the evaporating dish 24 and the evaporator fan 30 around the evaporator 20 is removed by the defrosting heater 37 Since the melting can be performed, the defrosting time can be shortened, and the energy saving and the rise in the temperature in the refrigerator during the defrosting time can be suppressed.
 その中で、本実施の形態での蒸発器20は、一般的に使用される蒸発器20と同様に、代表的なフィンアンドチューブ式の蒸発器20であり、フィンを有する冷媒管を上下方向に積層している。蒸発器20は、概ね上下方向に10段の冷媒管を配置し、前後方向に3列の冷媒管を配置することによって、30本の冷媒管を設けた構成としている。なお、本実施の形態での蒸発器20での冷媒管は上部より下部の幅寸法を短くした構成としている。 Among them, the evaporator 20 in the present embodiment is a typical fin-and-tube evaporator 20 as in the commonly used evaporator 20, and the refrigerant pipe having fins is vertically Is stacked on. The evaporator 20 has a configuration in which 30 refrigerant pipes are provided by arranging 10 stages of refrigerant pipes generally in the vertical direction and arranging 3 rows of refrigerant pipes in the front-rear direction. In addition, the refrigerant pipe in the evaporator 20 in the present embodiment has a configuration in which the width dimension of the lower portion is shorter than that of the upper portion.
 ここで、本実施の形態における冷凍サイクルの蒸発器周囲の構成として、蒸発器20の入口は、絞り42の出口とバイパス経路43の出口がY字のジョイントパイプにて合流し接続されており、蒸発器20の蒸発器出口は圧縮機19へと繋がるパイプに接続されている。蒸発器20には、図1に示すように蒸発器20の温度を検知するDEF温度センサ36を有しており、DEF温度センサ36は蒸発器20の入口パイプ部分に配設されている。 Here, as the configuration around the evaporator of the refrigeration cycle in the present embodiment, at the inlet of the evaporator 20, the outlet of the throttle 42 and the outlet of the bypass passage 43 are connected by joining a Y-shaped joint pipe, The evaporator outlet of the evaporator 20 is connected to a pipe leading to the compressor 19. The evaporator 20 has a DEF temperature sensor 36 for detecting the temperature of the evaporator 20 as shown in FIG. 1, and the DEF temperature sensor 36 is disposed at the inlet pipe portion of the evaporator 20.
 空冷ファン23、圧縮機19、蒸発器ファン30をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34の検知する温度が所定値のFCC_ON温度より低い温度であり、PCC温度センサ35の検知する温度が所定値のPCC_ON温度まで上昇すると、次の動作を行う。すなわち、冷凍室ダンパー31を閉じ、冷蔵室ダンパー32を開き、空冷ファン23、圧縮機19、蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。 The temperature detected by the FCC temperature sensor 34 is lower than the predetermined value of the FCC_ON temperature in the cooling stop state where the air cooling fan 23, the compressor 19, and the evaporator fan 30 are all stopped (hereinafter, this operation is referred to as "OFF mode"). When the temperature is low and the temperature detected by the PCC temperature sensor 35 rises to the PCC_ON temperature of a predetermined value, the following operation is performed. That is, the freezer compartment damper 31 is closed, the refrigerator compartment damper 32 is opened, and the air cooling fan 23, the compressor 19, and the evaporator fan 30 are driven (hereinafter, this operation is referred to as "PC cooling mode").
 PC冷却モードにおいては、空冷ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、下部機械室15の蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。 In the PC cooling mode, the main condenser 21 side of the lower machine room 15 partitioned by the partition wall 22 becomes negative pressure by the driving of the air cooling fan 23, and external air is sucked from the plurality of intake ports 26. The evaporation dish 24 side becomes positive pressure, and the air in the lower machine room 15 is discharged to the outside from the plurality of discharge ports 27.
 一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ40を介して防露パイプ41へ供給される。防露パイプ41を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮した後、絞り42で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する。 On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving part of the gas in the main condenser 21 while exchanging heat with the outside air, and then the water is removed by the dryer 38. The dew pipe 41 is supplied. The refrigerant having passed through the anti-dew pipe 41 dissipates heat through the casing 12 while warming the opening of the freezing chamber 18 and then condenses, and then the pressure is reduced by the throttle 42 and evaporated in the evaporator 20. While exchanging heat with the internal air to cool the refrigerating chamber 17, the refrigerant is returned to the compressor 19 as a gaseous refrigerant.
 PC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。 When the temperature detected by the FCC temperature sensor 34 falls to the predetermined value FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 falls to the predetermined value PCC_OFF temperature during the PC cooling mode, the mode transitions to the OFF mode.
 また、PC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_ON温度まで上昇し、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、次の動作を行う。すなわち、冷凍室ダンパー31を開き、冷蔵室ダンパー32を閉じ、圧縮機19と空冷ファン23、および蒸発器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。 When the temperature detected by the FCC temperature sensor 34 rises to the predetermined value FCC_ON temperature and the temperature detected by the PCC temperature sensor 35 decreases to the predetermined value PCC_OFF temperature during the PC cooling mode, the following operation is performed. That is, the freezer compartment damper 31 is opened, the refrigerator compartment damper 32 is closed, and the compressor 19, the air cooling fan 23, and the evaporator fan 30 are driven. Hereinafter, the freezer compartment 18 is cooled by heat exchange between the air in the freezer compartment 18 and the evaporator 20 by operating the refrigeration cycle in the same manner as PC cooling (hereinafter, this operation is referred to as “FC cooling mode”) .
 FC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度より低い温度を示すと、OFFモードに遷移する。 When the temperature detected by the FCC temperature sensor 34 falls to the FCC_OFF temperature of the predetermined value and the temperature detected by the PCC temperature sensor 35 indicates a temperature lower than the PCC_ON temperature of the predetermined value during the FC cooling mode, transition to the OFF mode Do.
 また、FC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度以上を示すと、PC冷却モードに遷移する。 In the FC cooling mode, when the temperature detected by the FCC temperature sensor 34 falls to the FCC_OFF temperature of the predetermined value and the temperature detected by the PCC temperature sensor 35 indicates the PCC_ON temperature or more of the predetermined value, the PC cooling mode is set. Transition.
 また、PC冷却モード中に、冷凍室18の扉13の開閉等でFCC温度センサ34の検知する温度が所定値のFCC_ON温度より高い温度を示した場合や、FC冷却モード中に、冷蔵室17の扉13の開閉等でPCC温度センサ35の検知する温度が所定値のPCC_ON温度より高い温度を示した場合は、冷凍室ダンパー31を開くとともに、冷蔵室ダンパー32も開くことにより、冷蔵室と冷凍室を冷却することができる(以下、この動作を「PC+FC冷却モード」という)。 In the PC cooling mode, the temperature detected by the FCC temperature sensor 34 indicates a temperature higher than the predetermined value FCC_ON temperature due to the opening / closing of the door 13 of the freezer compartment 18 or the like, or the refrigerator compartment 17 in the FC cooling mode. When the temperature detected by the PCC temperature sensor 35 indicates a temperature higher than the PCC_ON temperature of the predetermined value due to the opening and closing of the door 13, the freezer compartment damper 31 is opened and the refrigerator compartment damper 32 is also opened. The freezer compartment can be cooled (hereinafter, this operation is referred to as “PC + FC cooling mode”).
 次に、本実施の形態の冷蔵庫の除霜時の運転動作について説明する。 Next, the driving operation at the time of defrosting of the refrigerator of the present embodiment will be described.
 図5に示すように、流路切換バルブ40の状態は「開閉」、「閉開」および「閉閉」の3種類ある。流路切換バルブ40の状態「開閉」は、主凝縮器21から防露パイプ41への流路を開放して、主凝縮器21からバイパス経路43への流路を閉塞することを意味する。流路切換バルブ40の状態「閉開」は、主凝縮器21から防露パイプ41への流路を閉塞し、主凝縮器21からバイパス経路43への流路を開放することを意味する。流路切換バルブ40の状態「閉閉」は、主凝縮器21から防露パイプ41への流路を閉塞するとともに、主凝縮器21からバイパス経路43への流路を閉塞することを意味する。 As shown in FIG. 5, there are three types of states of the flow path switching valve 40: “open / close”, “closed / opened” and “closed / closed”. The state “open / close” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew proof pipe 41 is opened and the flow path from the main condenser 21 to the bypass path 43 is blocked. The state “closed and open” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew proof pipe 41 is closed and the flow path from the main condenser 21 to the bypass path 43 is opened. The state “closed / closed” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew proof pipe 41 is closed and the flow path from the main condenser 21 to the bypass path 43 is closed. .
 図5のタイムチャートは本実施の形態の除霜時の制御を示している。 The time chart of FIG. 5 shows control at the time of defrosting of this embodiment.
 圧縮機19の積算運転時間または、前回除霜動作後から経過した時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。 When the integrated operation time of the compressor 19 or the time elapsed after the previous defrosting operation reaches a predetermined time, the mode shifts to a defrost mode in which the frost on the evaporator 20 is heated and melted.
 除霜モードの区間aにおいて、まず、冷蔵室17の温度上昇を抑制するために、PC+FC冷却モードと同様に冷蔵室17と冷凍室18を所定時間冷却する。その後、除霜時の温度上昇の影響を受けやすい冷凍室18の温度上昇を抑制するために、FC冷却モードと同様に冷凍室18を所定時間冷却する。なお、冷蔵室17の庫内温度が0℃以下になると保存している食品が凍結する恐れがあるため、場合によってはPC+FC冷却モードを省略し、FC冷却モードのみとすることもできる。 In the defrosting mode section a, first, in order to suppress the temperature rise of the refrigerator compartment 17, the refrigerator compartment 17 and the freezer compartment 18 are cooled for a predetermined time as in the PC + FC cooling mode. Then, in order to suppress the temperature rise of the freezer compartment 18 which is easily affected by the temperature rise at the time of defrosting, the freezer compartment 18 is cooled for a predetermined time as in the FC cooling mode. In addition, since there is a possibility that the stored food may freeze when the temperature in the cold storage room 17 becomes 0 ° C. or lower, depending on the case, the PC + FC cooling mode may be omitted and only the FC cooling mode may be set.
 次に、区間bにおいて、圧縮機19を運転しながら流路切換バルブ40が全閉となる状態「閉閉」とすることによって、主凝縮器21から防露パイプ41とバイパス経路43への流路を共に閉塞して防露パイプ41と蒸発器20、及びバイパス経路43に滞留する冷媒を主凝縮器21へ回収する。 Next, in section b, the flow from the main condenser 21 to the dewproof pipe 41 and the bypass path 43 is achieved by setting the flow passage switching valve 40 to be fully closed while the flow passage switching valve 40 is fully closed while operating the compressor 19. The passages are closed together, and the refrigerant remaining in the dewproof pipe 41 and the evaporator 20 and the bypass passage 43 is recovered to the main condenser 21.
 そして、区間cにおいて、圧縮機19を停止するとともに、流路切換バルブ40を切換えて状態「閉開」、すなわち主凝縮器21からバイパス経路43への流路を開放することで、バイパス経路43を介して主凝縮器21に回収された高圧冷媒を蒸発器20に供給する。このとき、バイパス経路43に設けられた熱交換部44で高圧冷媒が停止中の圧縮機19の廃熱によって加温されて、乾き度が増大する。これは、区間bにおいて高圧冷媒が主凝縮器21に回収される際に外気に放熱して大部分が凝縮するためである。従って、区間cにおいて高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、外気温度に維持された高圧冷媒の顕熱に加えて凝縮潜熱による熱量を蒸発器20に加えることができる。 Then, in section c, the compressor 19 is stopped, and the flow path switching valve 40 is switched to open the flow path from the main condenser 21 to the bypass path 43, thereby bypassing the bypass path 43. The high pressure refrigerant collected in the main condenser 21 is supplied to the evaporator 20 via the. At this time, the high-pressure refrigerant is heated by the waste heat of the stopped compressor 19 in the heat exchange unit 44 provided in the bypass path 43, and the dryness is increased. This is because when the high pressure refrigerant is recovered by the main condenser 21 in the section b, the heat is dissipated to the outside air and most of the refrigerant condenses. Therefore, in addition to the sensible heat of the high pressure refrigerant maintained at the outside air temperature, the heat due to the latent heat of condensation is evaporated in comparison with the case where the high pressure refrigerant is supplied to the evaporator 20 without being heated by the heat exchange unit 44 in section c. Can be added to the vessel 20.
 次に、区間dにおいて、蒸発器20に取り付けられた除霜ヒータ37に通電して除霜を完了する。除霜の完了はDEF温度センサ36が所定温度に達したことで判断する。 Next, in the section d, the defrost heater 37 attached to the evaporator 20 is energized to complete the defrosting. The completion of the defrosting is judged by the DEF temperature sensor 36 reaching a predetermined temperature.
 そして、区間eにおいて、流路切換バルブ40を切換えて状態「開閉」、すなわち主凝縮器21からバイパス経路43への流路を閉塞するとともに、主凝縮器21から防露パイプ41への流路を開放して冷凍サイクル内を均圧し、区間fから通常運転を再開する。 Then, in the section e, the flow path switching valve 40 is switched to close the flow path from the main condenser 21 to the bypass path 43, and the flow path from the main condenser 21 to the dewproof pipe 41 To equalize the inside of the refrigeration cycle, and resume normal operation from section f.
 この一連の動作において、区間bでは更に、圧縮機19の運転中に蒸発器ファン30も運転している。これにより、蒸発器20の過度な温度低下を抑制することでの圧縮機品質の向上を図ると共に、滞留冷媒の回収時間も早くなるため時間短縮が図れる。更に区間bの後の区間cにおいて主凝縮器21から蒸発器20へ冷媒を供給する際に十分な冷媒量を供給できるため、蒸発器20での温度昇温効果を高め、区間cにおける除霜ヒータ37による除霜時間の短縮を図ることで省エネルギーとなる。除霜時間が短くなれば、圧縮機19を停止している非冷却時間も短くなるため食品自身の昇温も抑えられる。これは温度変動によって劣化する食品保存性に対しても好条件となる。 In this series of operations, in section b, the evaporator fan 30 is also operating while the compressor 19 is operating. As a result, the quality of the compressor can be improved by suppressing an excessive temperature drop of the evaporator 20, and the time for collecting the staying refrigerant can be shortened, so that the time can be shortened. Furthermore, since a sufficient amount of refrigerant can be supplied when supplying the refrigerant from the main condenser 21 to the evaporator 20 in the section c after the section b, the temperature raising effect in the evaporator 20 is enhanced, and the defrosting in the section c Energy saving can be achieved by shortening the defrosting time by the heater 37. If the defrosting time is short, the non-cooling time for stopping the compressor 19 is also short, so that the temperature rise of the food itself can be suppressed. This is also a favorable condition for food storability that is degraded by temperature fluctuations.
 なお、区間bで蒸発器ファン30を運転することは蒸発器20において冷媒が相変化する顕熱変化及び潜熱変化の熱の利用が可能であり、冷蔵室ダンパー32を開放し、冷凍室ダンパー31を閉塞する動作をすることで、蒸発器ファン30の運転による蒸発器20の温度上昇の影響で各室に送風される冷気も昇温する。しかし、冷凍室ダンパー31を閉塞しているため冷凍室18に送風されず、冷蔵室17にのみ送風できることから冷蔵室17のみを冷却することができるため、除霜中の圧縮機停止による冷蔵室17内の温度上昇を抑制することができ、庫内に保存されている食品の劣化を抑制できる。また、蒸発器ファン30の運転で冷蔵室17から冷蔵室戻りダクト102を通過した戻り空気により蒸発器自身も温度昇温することで、区間cにおけるヒータ除霜時の開始温度も高くなりヒータ通電時間短縮もでき省エネルギーとなる。 Note that operating the evaporator fan 30 in section b makes it possible to use heat of sensible heat change and latent heat change in which the refrigerant changes phase in the evaporator 20, and open the refrigerator compartment damper 32, and the freezer compartment damper 31 The cold air blown into each chamber is also heated by the influence of the temperature rise of the evaporator 20 due to the operation of the evaporator fan 30. However, since the freezer compartment damper 31 is closed, air can not be blown to the freezer compartment 18 and only the refrigeration compartment 17 can be cooled because only the refrigerating compartment 17 can be ventilated. The temperature rise in 17 can be suppressed, and the deterioration of the food stored in the refrigerator can be suppressed. Further, the temperature of the evaporator itself is also raised by the return air that has passed through the refrigerator compartment return duct 102 from the refrigerator compartment 17 by the operation of the evaporator fan 30, so that the start temperature at the time of heater defrosting in section c also becomes high. It also saves energy and saves time.
 また、蒸発器20の蒸発器出口近傍に第二のDFC温度センサ110を備え、区間bの主凝縮器21への冷媒回収動作時において、その第二のDFC温度センサ110の温度が所定の温度となった時点で冷媒回収動作を終了してもよい。この場合、冷凍サイクル内の冷媒が主凝縮器21に回収される際に、蒸発器20の温度は蒸発器入口側から上昇しはじめ、蒸発器20の出口側の温度が遅れて上昇するが、蒸発器20の出口近傍の温度を検知することで蒸発器20内に残留する冷媒を確実に回収することができる。故に区間cで加温に利用する際の供給冷媒を安定的に確保することで、区間dにおける除霜ヒータ37の電力量を安定的に削減することができ、冷蔵庫における省エネルギーを図ることができる。 In addition, the second DFC temperature sensor 110 is provided near the evaporator outlet of the evaporator 20, and the temperature of the second DFC temperature sensor 110 is a predetermined temperature during the refrigerant recovery operation to the main condenser 21 in section b. The refrigerant recovery operation may be ended when In this case, when the refrigerant in the refrigeration cycle is recovered to the main condenser 21, the temperature of the evaporator 20 starts to rise from the evaporator inlet side, and the temperature on the outlet side of the evaporator 20 rises with a delay. By detecting the temperature near the outlet of the evaporator 20, the refrigerant remaining in the evaporator 20 can be reliably recovered. Therefore, the power amount of the defrost heater 37 in the section d can be stably reduced by stably securing the supplied refrigerant when using for heating in the section c, and energy saving in the refrigerator can be achieved. .
 また、区間bにおける冷媒回収動作の終了を、DFC温度センサ36もしくは図4に示す第二のDFC温度センサ110の検知する温度が温度最下点から所定値温度上昇した時点で終了することで、蒸発器20を含めた冷凍サイクル内の冷媒を主凝縮器21に回収することが確実に行うことができる。更に蒸発器20の蒸発器出口に配設してある第二のDFC温度センサ110を用いることで、冷媒回収時に、アキュムレータがあって温度昇温が遅い出口側の温度を検知できるため、なお良い。更に、最適な冷媒回収時間で終了することができる。故に、除霜動作としての時間が短縮されるため、除霜にかかる時間即ち庫内を冷却しない非冷却時間が短縮され、冷蔵庫における省エネルギーを図ると共に庫内温度の上昇も抑制され食品の品質劣化を抑制することができる。また、除霜にかかる時間が短縮され庫内温度が上昇しにくくなるということは、除霜後の冷却時間も短縮できるため除霜ヒータ37が通電された熱負荷も考慮して全体として、冷蔵庫における省エネルギーを図ることができる。 Further, the end of the refrigerant recovery operation in the section b is ended when the temperature detected by the DFC temperature sensor 36 or the second DFC temperature sensor 110 shown in FIG. The refrigerant in the refrigeration cycle including the evaporator 20 can be reliably recovered to the main condenser 21. Furthermore, by using the second DFC temperature sensor 110 disposed at the evaporator outlet of the evaporator 20, it is possible to detect an outlet side temperature at which the temperature rise is slow because there is an accumulator at the time of refrigerant recovery. . Furthermore, it is possible to finish in the optimal refrigerant recovery time. Therefore, since the time for the defrosting operation is shortened, the time required for defrosting, that is, the non-cooling time for not cooling the interior is shortened, energy saving in the refrigerator is achieved, and the rise in the interior temperature is also suppressed. Can be suppressed. In addition, the time taken for defrosting is shortened and the internal temperature is less likely to rise, so that the cooling time after defrosting can be shortened, and the heat load to which defrost heater 37 is energized is also taken into consideration as a whole. Energy saving in
 また、本実施の形態では、バイパス経路43の出口を蒸発器20の入口側と接続している。これにより、冷蔵庫の冷凍サイクルにおいて、絞り42の出口、すなわち蒸発器20の入口は除霜時に温度上昇しにくいために温度を検知するDFC温度センサ36を配設し、このDFC温度センサ36が所定の温度を検知することで除霜終了の判定を行っている。そして、バイパス経路43の出口を温度上昇しにくい蒸発器20の入口側から高圧冷媒を供給するべく接続することで、予め蒸発器20の入口の温度を上昇させて、区間dでの温度上昇を促進している。 Further, in the present embodiment, the outlet of the bypass path 43 is connected to the inlet side of the evaporator 20. Thus, in the refrigeration cycle of the refrigerator, the outlet of the throttle 42, that is, the inlet of the evaporator 20 is not likely to rise in temperature during defrosting, and a DFC temperature sensor 36 for detecting the temperature is disposed. It is judged that the defrosting is completed by detecting the temperature of. Then, the temperature of the inlet of the evaporator 20 is raised in advance by connecting the outlet of the bypass passage 43 so as to supply the high-pressure refrigerant from the inlet side of the evaporator 20 where the temperature does not easily rise. Is promoting.
 なお、バイパス経路43の出口を蒸発器20の入口側と接続しているため、温度上昇を既配設のDFC温度センサ36を用いて検知することができる。これによりコストアップの必要が無くコストパフォーマンスが高い冷蔵庫を提供できる。 Since the outlet of the bypass path 43 is connected to the inlet side of the evaporator 20, the temperature rise can be detected using the DFC temperature sensor 36 already provided. This makes it possible to provide a refrigerator with high cost performance without the need for cost increase.
 なお、区間cの終了前に区間dの開始を行ってもよい。この場合、区間cで、圧縮機19を停止し、流路切換バルブ40を切換えて主凝縮器21からバイパス経路43への流路を開放することで、主凝縮器21に回収された高圧冷媒が蒸発器20に供給され、蒸発器20の内部で供給された冷媒が凝縮することで凝縮熱により蒸発器温度が上昇していく。このとき、蒸発器20の温度が最高温度に達する前に区間dに移行し除霜ヒータ37の通電を開始することで、区間cでの最高温度を越えた後の温度低下ロスが発生することなく、効果的に蒸発器20の温度を上昇させることができる。本実施の形態では、区間cでの蒸発器20の温度をDFC温度センサ36によって検知した方法としたが、第二のDFC温度センサ110で検知する方法を用いても良いし、区間毎の時間を決めて時間制御としても良い。また、温度と時間の両方による切替制御としてもよい。この場合は、例えば扉13の開閉等で蒸発器20に付着する霜の量が変化した場合でも、区間切替による除霜時の供給する熱ロスが発生しない。 Note that the section d may be started before the end of the section c. In this case, in section c, the compressor 19 is stopped, the flow path switching valve 40 is switched, and the flow path from the main condenser 21 to the bypass path 43 is opened, whereby the high pressure refrigerant recovered in the main condenser 21 Is supplied to the evaporator 20, and the refrigerant supplied inside the evaporator 20 is condensed to increase the evaporator temperature due to the heat of condensation. At this time, by shifting to section d and starting energization of the defrost heater 37 before the temperature of the evaporator 20 reaches the maximum temperature, a temperature drop loss after exceeding the maximum temperature in the section c occurs. Instead, the temperature of the evaporator 20 can be effectively raised. In the present embodiment, the temperature of the evaporator 20 in the section c is detected by the DFC temperature sensor 36. However, a method of detecting the temperature of the evaporator 20 by the second DFC temperature sensor 110 may be used. It is good also as time control to decide. Alternatively, switching control may be performed by both temperature and time. In this case, even if the amount of frost adhering to the evaporator 20 changes due to, for example, the opening and closing of the door 13, the heat loss to be supplied at the time of defrosting due to the section switching does not occur.
 また、本実施の形態では、温度センサであるDFC温度センサ36を用いて蒸発器20の温度を検知することで区間cでの冷媒状態を把握し、その後区間dにて除霜ヒータ37を通電しているが、温度センサに代えて圧力センサを用いて高圧圧力と、蒸発器20での低圧圧力が平衡しバランスした時点で区間dへと移行しても良い。 Further, in the present embodiment, the state of the refrigerant in section c is grasped by detecting the temperature of the evaporator 20 using the DFC temperature sensor 36 which is a temperature sensor, and thereafter the defrost heater 37 is energized in the section d. However, instead of the temperature sensor, a pressure sensor may be used to shift to section d when the high pressure and the low pressure in the evaporator 20 are balanced and balanced.
 なお、本実施の形態では、主凝縮器21は強制空冷タイプの凝縮器としたが、筐体12の側面や背面に熱結合される第二の防露パイプを用いてもよい。冷蔵室17や冷凍室18の開口部周辺と熱結合される防露パイプ41と異なり、筐体12の側面や背面に熱結合される第二の防露パイプは圧縮機19が停止中でも外気温度近傍に維持されるので、主凝縮器21として利用しても同様の効果が期待できる。 In the present embodiment, the main condenser 21 is a forced air-cooling type condenser, but a second dew protection pipe thermally coupled to the side surface or the back surface of the housing 12 may be used. Unlike the dew protection pipe 41 thermally coupled to the periphery of the opening of the refrigerator compartment 17 and the freezing compartment 18, the second dew protection pipe thermally coupled to the side surface and the back surface of the housing 12 has an outside air temperature even while the compressor 19 is stopped. The same effect can be expected even when used as the main condenser 21 since it is maintained in the vicinity.
 なお、本実施の形態では、流路切換バルブ40と蒸発器20をバイパス経路43で接続したが、除霜の際に蒸発器20へ供給する高圧冷媒の流速が早すぎて流動音が発生する場合、流速を調整するための流路抵抗をバイパス経路43と直列に接続してもよい。 In the present embodiment, although the flow path switching valve 40 and the evaporator 20 are connected by the bypass path 43, the flow velocity of the high pressure refrigerant supplied to the evaporator 20 at the time of defrosting is too fast and the flow noise is generated. In this case, a flow path resistance for adjusting the flow rate may be connected in series with the bypass path 43.
 なお、本実施の形態では、除霜の際に高圧冷媒を防露パイプ41と絞り42を経由せずに蒸発器20へ直接供給することで、圧縮機19が停止した際に主凝縮器21よりも低温となる防露パイプ41の影響で高圧冷媒の温度が低下することを回避した。しかし、除霜の進行により蒸発器20の温度が防露パイプ41よりも高くなると、絞り42を介して高圧冷媒が蒸発器20から防露パイプ41へ逆流する可能性があるので、防露パイプ41の出口から蒸発器20の入口の経路内に逆流を防止する逆止弁や二方弁を設けてもよい。 In the present embodiment, when the compressor 19 is stopped, the high pressure refrigerant is directly supplied to the evaporator 20 without passing through the dew protection pipe 41 and the throttle 42 at the time of defrosting. It prevented that the temperature of the high pressure refrigerant decreased due to the influence of the dew protection pipe 41 which is lower in temperature than that of the refrigerant. However, if the temperature of the evaporator 20 becomes higher than the dew proof pipe 41 due to the progress of the defrosting, the high pressure refrigerant may flow back from the evaporator 20 to the dew proof pipe 41 through the throttle 42. A non-return valve or a two-way valve may be provided to prevent backflow from the outlet 41 into the path of the inlet of the evaporator 20.
 なお、本実施の形態では、除霜の際の除霜ヒータ37としてガラス管ヒータを用いたが、ガラス管ヒータに加えパイプヒータを組み合わせた場合、お互いのヒータ容量を適正化することで、ガラス管ヒータの容量を低くすることが可能となる。ヒータ容量を低くすると除霜時のガラス管ヒータの外郭の温度も低くすることができるため、除霜時の赤熱も抑制できる。 In the present embodiment, a glass tube heater is used as the defrost heater 37 at the time of defrosting, but in the case where a pipe heater is combined with the glass tube heater, glass is optimized by optimizing the respective heater capacities. It is possible to reduce the capacity of the tube heater. Since the outer temperature of the glass tube heater at the time of defrosting can also be lowered when the heater capacity is lowered, red heat at the time of defrosting can also be suppressed.
 更に、除霜時におけるガラス管ヒータの入力時間を低減できるということは、非冷却運転時間短縮での温度上昇抑制や、ガラス管ヒータ自身の発熱による温度上昇抑制となることが、庫内で保存されている食品にも影響がある。庫内に保存されている冷凍食品は、除霜時の非冷却運転時間での温度上昇やガラス管ヒータ自身の温度からの伝熱、及び除霜時の暖気の庫内流入等により、霜焼けや熱の変動による影響で劣化していくが、本実施の形態において、長期間保存した場合でも食品の劣化を抑えることができる。 Furthermore, the ability to reduce the input time of the glass tube heater at the time of defrosting means that the temperature rise is suppressed by shortening the non-cooling operation time, and the temperature rise is suppressed due to the heat generation of the glass tube heater itself. There is also an impact on the food being eaten. Frozen food stored in the refrigerator may be frost-burned due to temperature rise during non-cooling operation time during defrosting, heat transfer from the temperature of the glass tube heater itself, inflow of warm air during defrosting, etc. Although it will deteriorate due to the influence of heat fluctuation, in the present embodiment, the deterioration of the food can be suppressed even when stored for a long time.
 以上説明したように、第1の開示における冷蔵庫は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、主凝縮器の下流側に接続した流路切換バルブと、流路切換バルブの下流側に接続した防露パイプと、防露パイプと並列に接続し一部を圧縮機と熱結合する熱交換部を有したバイパス経路とを備える。第1の開示における冷蔵庫は、断熱壁で区画形成された冷凍室および冷蔵室に供給する冷気をそれぞれ制御する冷凍室ダンパーおよび冷蔵室ダンパーを備える。第1の開示における冷蔵庫は、蒸発器を除霜する際に、蒸発器の近傍に設けた蒸発器ファンおよび圧縮機の運転中に流路切換バルブを全閉するとともに冷蔵室ダンパーを開き冷凍室ダンパーを閉じる。この動作により、蒸発器および防露パイプ内の滞留冷媒の回収動作後、圧縮機を停止するとともに流路切換バルブをバイパス経路側に開放することにより、回収した高圧冷媒を蒸発器に供給し、所定時間後、蒸発器の近傍に設けた除霜ヒータに通電する。 As described above, the refrigerator in the first disclosure includes a refrigerant switching cycle having at least a compressor, an evaporator, a main condenser, and a dewproof pipe, and a flow path switching valve connected to the downstream side of the main condenser; A dew protection pipe connected to the downstream side of the flow path switching valve, and a bypass path connected in parallel to the dew protection pipe and having a heat exchange portion that thermally couples a part with the compressor. The refrigerator in the first disclosure is provided with a freezer compartment damper and a refrigerator compartment damper which respectively control cold air supplied to a freezer compartment and a refrigerator compartment partitioned by the heat insulation wall. In the refrigerator in the first disclosure, when defrosting the evaporator, the evaporator fan provided in the vicinity of the evaporator and the flow path switching valve are fully closed during operation of the compressor and the refrigerator compartment damper is opened to open the freezer compartment Close the damper. By this operation, after the operation of collecting the stagnant refrigerant in the evaporator and the dew proof pipe, the compressor is stopped and the flow path switching valve is opened to the bypass path side to supply the collected high pressure refrigerant to the evaporator. After a predetermined time, the defrost heater provided in the vicinity of the evaporator is energized.
 この構成により、冷凍サイクル内の冷媒を主凝縮器に回収する際に、蒸発器温度の過度の低下を抑制しつつ、冷媒回収をし易くすると共に回収時間も短縮できるため、蒸発器の加温に利用する際に、十分な冷媒量を供給できる。また蒸発器温度の低下を抑制するため圧縮機の品質向上も図ることができる。故に、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫における省エネルギーを図ることができる。 With this configuration, when the refrigerant in the refrigeration cycle is recovered to the main condenser, the recovery of the refrigerant can be facilitated and the recovery time can be shortened while suppressing an excessive decrease in the evaporator temperature, so that heating of the evaporator can be achieved. In the case of using it, a sufficient amount of refrigerant can be supplied. In addition, the quality of the compressor can also be improved in order to suppress a drop in the evaporator temperature. Therefore, the electric energy of the defrost heater can be stably reduced, and energy saving can be achieved in the refrigerator.
 第2の開示における冷蔵庫は、第1の開示において、蒸発器の出口近傍に温度センサを備え、滞留冷媒の回収動作時に温度センサの温度が所定の温度となった時点で滞留冷媒の回収動作を終了する構成としてもよい。 In the first disclosure, the refrigerator in the second disclosure includes the temperature sensor in the vicinity of the outlet of the evaporator, and the recovery operation of the staying refrigerant is performed when the temperature of the temperature sensor reaches a predetermined temperature during the recovering operation of the staying refrigerant. It may be configured to end.
 この構成により、冷凍サイクル内の冷媒が主凝縮器に回収される際に、蒸発器の温度は蒸発器入口側から上昇しはじめ、蒸発器の出口側の温度が遅れて上昇するが、蒸発器の出口近傍の温度を検知することで滞留冷媒の回収を確実に行うことができる。そのため、加温に利用する際の冷媒を安定的に確保することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫における省エネルギーを図ることができる。 With this configuration, when the refrigerant in the refrigeration cycle is recovered to the main condenser, the temperature of the evaporator starts to rise from the evaporator inlet side, and the temperature on the outlet side of the evaporator is delayed and rises, but the evaporator By detecting the temperature in the vicinity of the outlet, it is possible to reliably recover the staying refrigerant. Therefore, the electric energy of a defrost heater can be stably reduced by securing stably the refrigerant at the time of using for heating, and energy saving in a refrigerator can be aimed at.
 第3の開示における冷蔵庫は、第1の開示において、蒸発器の出口近傍に温度センサを備え、滞留冷媒の回収動作時に温度センサの温度が最下点から所定値温度上昇した時点で滞留冷媒の回収の動作を終了する構成としてもよい。 In the first disclosure, the refrigerator in the third disclosure includes the temperature sensor in the vicinity of the outlet of the evaporator, and the temperature of the temperature sensor rises from the lowest point by a predetermined value at the time of recovery operation of the staying refrigerant. It is good also as composition which ends operation of recovery.
 この構成により、冷凍サイクル内の冷媒を主凝縮器に回収することが確実に行えると共に、最適な冷媒回収時間で冷媒回収の動作を終了することができる。そのため、除霜動作としては時間が短縮され、除霜にかかる時間即ち庫内を冷却しない非冷却時間が短縮され、冷蔵庫における省エネルギーを図ると共に庫内温度の上昇も抑制され食品の品質劣化を抑制することができる。また、除霜にかかる時間が短縮されて庫内温度が上昇しにくくなることにより、除霜後の冷却時間も短縮できるため除霜ヒータが通電された熱負荷も考慮して全体として、冷蔵庫における省エネルギーを図ることができる。 According to this configuration, the refrigerant in the refrigeration cycle can be reliably recovered to the main condenser, and the refrigerant recovery operation can be completed in an optimal refrigerant recovery time. Therefore, the time for defrosting operation is shortened, the time required for defrosting, that is, the non-cooling time for not cooling the inside of the refrigerator is shortened, energy saving in the refrigerator is achieved, and the temperature rise in the refrigerator is suppressed, and the quality deterioration of food is suppressed. can do. In addition, since the time required for defrosting is shortened and the temperature in the cold storage is difficult to increase, the cooling time after defrosting can be shortened, and the heat load to which the defrost heater is energized is also taken into consideration in the refrigerator as a whole. Energy saving can be achieved.
 第4の開示における冷蔵庫は、第1の開示において、バイパス経路の出口を蒸発器入口側と接続する構成としてもよい。 In the first disclosure, the refrigerator in the fourth disclosure may be configured to connect the outlet of the bypass path to the evaporator inlet side.
 冷蔵庫の冷凍サイクルにおいて、絞り出口、即ち蒸発器入口は除霜時に温度上昇しにくいために温度を検知するセンサを配設し、センサが所定の温度を検知することで除霜終了の判定を行っている。しかしながら、このようにバイパス経路の出口を蒸発器入口側と接続することによって、温度上昇の検知を既配設の温度センサを用いて行うことができるため、コストアップの必要が無くコストパフォーマンスが高い。さらに、温度上昇しにくい入口部分から高圧冷媒を供給するため、所定時間後に除霜ヒータを通電したときに蒸発器温度上昇を無駄なく均一に行うことができる。そのため、さらに冷蔵庫における省エネルギーを図ることができる。 In the refrigeration cycle of the refrigerator, the throttle outlet, that is, the evaporator inlet, has a sensor that detects the temperature because temperature increase is difficult during defrosting, and the sensor detects a predetermined temperature to determine the end of defrosting. ing. However, by connecting the outlet of the bypass path to the evaporator inlet side in this way, detection of temperature rise can be performed using an existing temperature sensor, so there is no need for cost increase and cost performance is high. . Furthermore, since the high-pressure refrigerant is supplied from the inlet portion where temperature rise is difficult, the evaporator temperature can be uniformly raised without waste when the defrost heater is energized after a predetermined time. Therefore, energy saving can be further achieved in the refrigerator.
 第5の開示における冷蔵庫は、第2の開示または第3の開示のいずれか一つにおいて、バイパス経路の出口を蒸発器入口側と接続する構成としてもよい。 The refrigerator in the fifth disclosure may be configured to connect the outlet of the bypass path to the evaporator inlet side in any one of the second disclosure and the third disclosure.
 この構成により、バイパス経路の出口を蒸発器入口側と接続することによって、温度上昇の検知を既配設の温度センサを用いて行うことができるため、コストアップの必要が無くコストパフォーマンスが高い。さらに、温度上昇しにくい入口部分から高圧冷媒を供給するため、所定時間後に除霜ヒータを通電したときに蒸発器温度上昇を無駄なく均一に行うことができる。そのため、さらに冷蔵庫における省エネルギーを図ることができる。 According to this configuration, by connecting the outlet of the bypass path to the evaporator inlet side, detection of temperature rise can be performed using an existing temperature sensor, so there is no need for cost increase and cost performance is high. Furthermore, since the high-pressure refrigerant is supplied from the inlet portion where temperature rise is difficult, the evaporator temperature can be uniformly raised without waste when the defrost heater is energized after a predetermined time. Therefore, energy saving can be further achieved in the refrigerator.
 以上のように、本発明にかかる冷蔵庫は、蒸発器及び防露パイプに滞留する冷媒を主凝縮器に回収し、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入して蒸発器を加温するエネルギーを利用して、除霜用電気ヒータの出力を削減することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。 As described above, the refrigerator according to the present invention recovers the refrigerant remaining in the evaporator and the dew protection pipe in the main condenser, and the high-pressure refrigerant in the refrigeration cycle flows into the evaporator due to the pressure difference to add the evaporator. Since the output of the electric heater for defrosting can be reduced using the energy to warm, it is applicable also to other refrigeration application goods, such as a commercial refrigerator.
 11 冷蔵庫
 12 筐体
 13 扉
 14 脚
 15 下部機械室
 16 上部機械室
 17 冷蔵室
 18 冷凍室
 19 圧縮機
 20 蒸発器
 21 主凝縮器
 22 隔壁
 23 ファン(空冷ファン)
 24 蒸発皿
 25 底板
 26 吸気口
 27 排出口
 28 連通風路
 30 蒸発器ファン
 31 冷凍室ダンパー
 32 冷蔵室ダンパー
 33 ダクト
 34 FCC温度センサ
 35 PCC温度センサ
 36 DEF温度センサ
 37 除霜ヒータ(ガラス管ヒータ)
 38 ドライヤ
 40 流路切換バルブ
 41 防露パイプ
 42 絞り
 43 バイパス経路
 44 熱交換部
 70 密閉容器
 71 熱伝導性ブチルゴム
 72 アルミ箔テープ
 73 冷却室
 102 冷蔵室戻りダクト
 110 温度センサ(第二のDFC温度センサ)
11 refrigerator 12 housing 13 door 14 legs 15 lower machine room 16 upper machine room 17 cold room 18 freezer room 19 compressor 20 evaporator 21 main condenser 22 partition 23 fan (air cooling fan)
24 evaporation dish 25 bottom plate 26 air intake 27 exhaust 28 communication air passage 30 evaporator fan 31 freezer compartment damper 32 cold storage room damper 33 duct 34 FCC temperature sensor 35 PCC temperature sensor 36 DEF temperature sensor 37 defrost heater (glass tube heater)
Reference Signs List 38 dryer 40 flow path switching valve 41 dew protection pipe 42 throttle 43 bypass path 44 heat exchange unit 70 closed container 71 heat conductive butyl rubber 72 aluminum foil tape 73 cooling chamber 102 refrigerating chamber return duct 110 temperature sensor (second DFC temperature sensor )

Claims (5)

  1. 少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、前記主凝縮器の下流側に接続した流路切換バルブと、前記流路切換バルブの下流側に接続した防露パイプと、前記防露パイプと並列に接続し一部を圧縮機と熱結合する熱交換部を有したバイパス経路とを有し、断熱壁で区画形成された冷凍室および冷蔵室に供給する冷気をそれぞれ制御する冷凍室ダンパーおよび冷蔵室ダンパーとを備えた冷蔵庫において、前記蒸発器を除霜する際に、前記蒸発器の近傍に設けた蒸発器ファンおよび前記圧縮機の運転中に、前記流路切換バルブを全閉するとともに前記冷蔵室ダンパーを開き、前記冷凍室ダンパーを閉じる動作をすることによる、前記蒸発器および前記防露パイプ内の滞留冷媒の回収動作を行った後、前記圧縮機を停止するとともに前記流路切換バルブを前記バイパス経路側に開放することにより、回収した高圧冷媒を前記蒸発器に供給し、その所定時間後、前記蒸発器の近傍に設けた除霜ヒータに通電する冷蔵庫。 A refrigeration cycle comprising at least a compressor, an evaporator, a main condenser, and a dew proof pipe, a flow path switching valve connected to the downstream side of the main condenser, and a dew protection connected to the downstream side of the flow path switching valve Cold air supplied to a freezer compartment and a refrigerator compartment, which has a pipe and a bypass passage connected in parallel with the dewproof pipe and having a heat exchange part thermally coupled to the compressor, and partially separated by a heat insulating wall In a refrigerator having a freezer compartment damper and a refrigerator compartment damper for controlling the air conditioner, when the evaporator is defrosted, the evaporator fan provided in the vicinity of the evaporator and the flow during operation of the compressor The refrigerant stored in the evaporator and the dewproof pipe is recovered by fully closing the passage switching valve and opening the refrigerating chamber damper and closing the freezing chamber damper, and then the compression is performed. The high pressure refrigerant recovered is supplied to the evaporator by stopping the flow path switching valve and opening the flow path switching valve to the bypass path side, and after a predetermined time, the defrost heater provided in the vicinity of the evaporator is energized. Refrigerator to do.
  2. 前記蒸発器の出口近傍に温度センサを備え、前記滞留冷媒の回収動作時に前記温度センサの温度が所定の温度となった時点で前記滞留冷媒の回収動作を終了する請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, further comprising: a temperature sensor in the vicinity of an outlet of the evaporator, wherein the operation of collecting the staying refrigerant ends when the temperature of the temperature sensor reaches a predetermined temperature during the operation of collecting the staying refrigerant.
  3. 前記蒸発器の出口近傍に温度センサを備え、前記滞留冷媒の回収動作時に前記温度センサの温度が最下点から所定温度上昇した時点で前記滞留冷媒の回収動作を終了する請求項1に記載の冷蔵庫。 The temperature sensor is provided in the vicinity of the outlet of the evaporator, and the recovery operation of the staying refrigerant is ended when the temperature of the temperature sensor rises from the lowest point by a predetermined temperature at the time of the recovering operation of the staying refrigerant. refrigerator.
  4. 前記バイパス経路の出口を前記蒸発器入口側と接続した請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein an outlet of the bypass path is connected to the evaporator inlet side.
  5. 前記バイパス経路の出口を前記蒸発器入口側と接続した請求項2または3のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 2 or 3, wherein an outlet of the bypass path is connected to the evaporator inlet side.
PCT/JP2018/040791 2017-11-30 2018-11-02 Refrigerator WO2019107066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017229818A JP6872689B2 (en) 2017-11-30 2017-11-30 refrigerator
JP2017-229818 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107066A1 true WO2019107066A1 (en) 2019-06-06

Family

ID=66664886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040791 WO2019107066A1 (en) 2017-11-30 2018-11-02 Refrigerator

Country Status (2)

Country Link
JP (1) JP6872689B2 (en)
WO (1) WO2019107066A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887313A (en) * 2019-10-17 2020-03-17 合肥华凌股份有限公司 Dew removal pipe temperature control method for refrigerator, electronic device and medium
CN110645760A (en) * 2019-10-30 2020-01-03 福建工程学院 Energy storage type air-cooled frost-free refrigerator and defrosting method thereof
CN111720953A (en) * 2020-06-05 2020-09-29 海信(山东)空调有限公司 Air conditioner and control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169457A (en) * 1987-01-07 1988-07-13 松下電器産業株式会社 Heat pump type air conditioner
JPH09329386A (en) * 1996-06-07 1997-12-22 Hitachi Ltd Refrigerator
JP2003083667A (en) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp Controller for freezer/refrigerator
JP2003322454A (en) * 2002-04-26 2003-11-14 Hitachi Home & Life Solutions Inc Refrigerator
WO2012157263A1 (en) * 2011-05-18 2012-11-22 パナソニック株式会社 Refrigerator
JP2017026236A (en) * 2015-07-23 2017-02-02 三菱電機株式会社 Freeze cycle device, refrigerator having the same, and defrosting method for the same
KR20170029346A (en) * 2015-09-07 2017-03-15 엘지전자 주식회사 Control method of refrigerator
WO2017179500A1 (en) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 Refrigerator and cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157263A1 (en) * 2012-04-19 2013-10-24 パナソニック株式会社 Biological information measurement device, and biological information measurement method using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169457A (en) * 1987-01-07 1988-07-13 松下電器産業株式会社 Heat pump type air conditioner
JPH09329386A (en) * 1996-06-07 1997-12-22 Hitachi Ltd Refrigerator
JP2003083667A (en) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp Controller for freezer/refrigerator
JP2003322454A (en) * 2002-04-26 2003-11-14 Hitachi Home & Life Solutions Inc Refrigerator
WO2012157263A1 (en) * 2011-05-18 2012-11-22 パナソニック株式会社 Refrigerator
JP2017026236A (en) * 2015-07-23 2017-02-02 三菱電機株式会社 Freeze cycle device, refrigerator having the same, and defrosting method for the same
KR20170029346A (en) * 2015-09-07 2017-03-15 엘지전자 주식회사 Control method of refrigerator
WO2017179500A1 (en) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 Refrigerator and cooling system

Also Published As

Publication number Publication date
JP2019100585A (en) 2019-06-24
JP6872689B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
JP6934603B2 (en) Refrigerator and cooling system
US10495368B2 (en) Refrigerator and operation method of the same
JP6074596B2 (en) refrigerator
WO2012157263A1 (en) Refrigerator
JP5178771B2 (en) Freezer refrigerator
WO2019107066A1 (en) Refrigerator
JP3452781B2 (en) refrigerator
JP4872558B2 (en) refrigerator
JP6101926B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP5879501B2 (en) refrigerator
JP5927409B2 (en) refrigerator
KR100764267B1 (en) Refrigerator, and method for controlling operation of the same
KR100844598B1 (en) Refrigerator
JP6846599B2 (en) refrigerator
JP5916174B2 (en) refrigerator
WO2018147113A1 (en) Refrigerator
JP5870237B2 (en) refrigerator
JP2019074233A (en) refrigerator
JP2019027649A (en) refrigerator
JP2013096607A (en) Refrigerator
JP4286106B2 (en) Freezer refrigerator
JP2012087952A (en) Refrigerator freezer
JP2019138516A (en) refrigerator
KR101651329B1 (en) Refrigerator and control method the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883556

Country of ref document: EP

Kind code of ref document: A1