JP6872689B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6872689B2
JP6872689B2 JP2017229818A JP2017229818A JP6872689B2 JP 6872689 B2 JP6872689 B2 JP 6872689B2 JP 2017229818 A JP2017229818 A JP 2017229818A JP 2017229818 A JP2017229818 A JP 2017229818A JP 6872689 B2 JP6872689 B2 JP 6872689B2
Authority
JP
Japan
Prior art keywords
evaporator
temperature
compressor
refrigerator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229818A
Other languages
Japanese (ja)
Other versions
JP2019100585A (en
Inventor
堀尾 好正
好正 堀尾
境 寿和
寿和 境
克則 堀井
克則 堀井
文宣 高見
文宣 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017229818A priority Critical patent/JP6872689B2/en
Priority to PCT/JP2018/040791 priority patent/WO2019107066A1/en
Publication of JP2019100585A publication Critical patent/JP2019100585A/en
Application granted granted Critical
Publication of JP6872689B2 publication Critical patent/JP6872689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、除霜用ヒータの出力を削減する冷蔵庫に関するものである。 The present invention relates to a refrigerator that reduces the output of a defrost heater.

省エネルギーの観点から、家庭用冷蔵庫においては、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入して蒸発器を加温するエネルギーを利用して、除霜用電気ヒータの出力を削減する冷蔵庫がある。これは、圧縮機が停止した後でも冷凍サイクルの凝縮器内部に貯留する高圧冷媒が外気温度付近に維持される一方、蒸発器が−30〜−20℃の低温状態にあるため、高圧冷媒が圧力差により蒸発器に流入する量を増大させたり、流入する高圧冷媒のエンタルピーを増大させて流入する熱量を増大させることで、除霜用電気ヒータの出力を積極的に削減して省エネルギー化を図るものである。 From the viewpoint of energy saving, in household refrigerators, the high-pressure refrigerant in the refrigeration cycle flows into the evaporator due to the pressure difference and uses the energy to heat the evaporator to reduce the output of the electric heater for defrosting. There is. This is because the high-pressure refrigerant stored inside the condenser in the refrigeration cycle is maintained near the outside air temperature even after the compressor is stopped, while the evaporator is in a low temperature state of -30 to -20 ° C. By increasing the amount of heat flowing into the evaporator due to the pressure difference, or by increasing the enthalpy of the inflowing high-pressure refrigerant to increase the amount of heat flowing in, the output of the defrosting electric heater is positively reduced to save energy. It is intended.

以下、図面を参照しながら従来の冷蔵庫を説明する。 Hereinafter, a conventional refrigerator will be described with reference to the drawings.

図6は従来の冷蔵庫の縦断面図、図7は従来の冷蔵庫の冷凍サイクル構成図、図8は従来の冷蔵庫の除霜時の制御を示した図である。 FIG. 6 is a vertical cross-sectional view of a conventional refrigerator, FIG. 7 is a refrigerating cycle configuration diagram of the conventional refrigerator, and FIG. 8 is a diagram showing control during defrosting of the conventional refrigerator.

図6および図7において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有している。また、冷凍サイクルを構成する部品として、下部機械室15に収められた圧縮機56、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に収められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、圧縮機56の上部に設置された蒸発皿57、下部機械室15の底板25を有している。 In FIGS. 6 and 7, the refrigerator 11 includes a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided at the bottom of the housing 12, and refrigeration arranged above the housing 12. It has a freezing room 18 arranged at the bottom of the room 17 and the housing 12. Further, as parts constituting the refrigerating cycle, a compressor 56 housed in the lower machine room 15, an evaporator 20 housed on the back side of the freezing room 18, and a main condenser 21 housed in the lower machine room 15 are included. Have. Further, it has a partition wall 22 for partitioning the lower machine room 15, a fan 23 attached to the partition wall 22 for air-cooling the main condenser 21, an evaporating dish 57 installed above the compressor 56, and a bottom plate 25 for the lower machine room 15. There is.

また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と筐体12の上部を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に圧縮機56と蒸発皿57を収めている。 Further, a plurality of intake ports 26 provided on the bottom plate 25, a discharge port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the discharge port 27 of the lower machine room 15 and the upper part of the housing 12 are provided. Have. Here, the lower machine room 15 is divided into two chambers by a partition wall 22, and the main condenser 21 is housed on the leeward side of the fan 23, and the compressor 56 and the evaporating dish 57 are housed on the leeward side.

また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ60、防露パイプ60の下流側に位置し、循環する冷媒を乾燥するドライヤ137、ドライヤ137と蒸発器20を結合し、循環する冷媒を減圧する絞り45を有している。そして、蒸発器20を除霜する際に、防露パイプ60の出口を閉塞する二方弁61、蒸発器20を加熱する除霜ヒータ(図示せず)を有する。 Further, as a component constituting the refrigeration cycle, the dew-proof pipe 60 and the dew-proof pipe 60 located on the downstream side of the main condenser 21 and thermally coupled to the outer surface of the housing 12 around the opening of the freezing chamber 18 It is located on the downstream side and has a dryer 137 that dries the circulating refrigerant, and a throttle 45 that combines the dryer 137 and the evaporator 20 to reduce the pressure of the circulating refrigerant. Then, when the evaporator 20 is defrosted, it has a two-way valve 61 that closes the outlet of the dew-proof pipe 60, and a defrost heater (not shown) that heats the evaporator 20.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50、冷凍室18に供給される冷気を遮断する冷凍室ダンパー51、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー52、冷蔵室17に冷気を供給するダクト53、冷凍室18の温度を検知するFCC温度センサ54、冷蔵室17の温度を検知するPCC温度センサ55、蒸発器20の温度を検知するDEF温度センサ58を有している。 Further, the evaporator fan 50 that supplies the cold air generated by the evaporator 20 to the refrigerating chamber 17 and the freezing chamber 18, the freezing chamber damper 51 that shuts off the cold air supplied to the freezing chamber 18, and the cold air supplied to the refrigerating chamber 17 The temperature of the refrigerating chamber damper 52 that shuts off, the duct 53 that supplies cold air to the refrigerating chamber 17, the FCC temperature sensor 54 that detects the temperature of the refrigerating chamber 18, the PCC temperature sensor 55 that detects the temperature of the refrigerating chamber 17, and the temperature of the evaporator 20. It has a DEF temperature sensor 58 to detect.

以上のように構成された従来の冷蔵庫について以下にその動作を説明する。 The operation of the conventional refrigerator configured as described above will be described below.

ファン23、圧縮機56、蒸発器ファン50をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ54の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ55の検知する温度が所定値のPCC_ON温度まで上昇すると、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として、圧縮機56とファン23、蒸発器ファン50を駆動する(以下、この動作を「PC冷却モード」という)。 In the cooling stop state (hereinafter, this operation is referred to as "OFF mode") in which the fan 23, the compressor 56, and the evaporator fan 50 are all stopped, the temperature detected by the FCC temperature sensor 54 rises to a predetermined value of the FCC_ON temperature. Or, when the temperature detected by the PCC temperature sensor 55 rises to the predetermined PCC_ON temperature, the freezer compartment damper 51 is closed, the refrigerating chamber damper 52 is opened, and the compressor 56, the fan 23, and the evaporator fan 50 are opened. (Hereinafter, this operation is referred to as "PC cooling mode").

PC冷却モードにおいては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、圧縮機56と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。 In the PC cooling mode, by driving the fan 23, the main condenser 21 side of the lower machine room 15 partitioned by the partition wall 22 becomes a negative pressure, and external air is sucked from a plurality of intake ports 26, and the compressor 56 and the evaporating dish are sucked. The pressure on the 57 side becomes positive, and the air in the lower machine room 15 is discharged to the outside from the plurality of discharge ports 27.

一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ60へ供給される。防露パイプ60を通過する冷媒は冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮する。防露パイプ60で凝縮した液冷媒は、二方弁61を通過した後ドライヤ137で水分除去され、絞り45で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する。 On the other hand, the refrigerant discharged from the compressor 56 is condensed by leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then supplied to the dew-proof pipe 60. The refrigerant passing through the dew-proof pipe 60 dissipates heat and condenses through the housing 12 while warming the opening of the freezing chamber 18. After passing through the two-way valve 61, the liquid refrigerant condensed by the dew-proof pipe 60 is water-removed by the dryer 137, depressurized by the throttle 45, and evaporates by the evaporator 20 while exchanging heat with the air inside the refrigerator compartment 17. While cooling the refrigerating chamber 17, it is returned to the compressor 56 as a gaseous refrigerant.

PC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。 During the PC cooling mode, when the temperature detected by the FCC temperature sensor 54 drops and rises to the predetermined value of FCC_OFF temperature and the temperature detected by the PCC temperature sensor 55 drops to the predetermined value of PCC_OFF temperature, the mode shifts to the OFF mode.

また、PC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパー51を開とし、冷蔵室ダンパー52を閉として、圧縮機56とファン23、蒸発器ファン50を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。 Further, during the PC cooling mode, when the temperature detected by the FCC temperature sensor 54 indicates a temperature higher than the predetermined value of the FCC_OFF temperature and the temperature detected by the PCC temperature sensor 55 drops to the predetermined value of the PCC_OFF temperature, the freezer compartment damper 51 is opened, the refrigerator damper 52 is closed, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. Hereinafter, by operating the refrigerating cycle in the same manner as the PC cooling, the refrigerator 20 is cooled by exchanging heat between the air inside the refrigerating chamber 18 and the evaporator 20 (hereinafter, this operation is referred to as “FC cooling mode”). ..

FC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_ON温度以上を示すと、PC冷却モードに遷移する。 During the FC cooling mode, when the temperature detected by the FCC temperature sensor 54 drops to the predetermined value of FCC_OFF temperature and the temperature detected by the PCC temperature sensor 55 indicates the predetermined value of PCC_ON temperature or higher, the mode shifts to the PC cooling mode. ..

また、FC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_ON温度より低い温度を示すと、OFFモードに遷移する。 Further, during the FC cooling mode, when the temperature detected by the FCC temperature sensor 54 drops to the FCC_OFF temperature of a predetermined value and the temperature detected by the PCC temperature sensor 55 indicates a temperature lower than the PCC_ON temperature of the predetermined value, the OFF mode is used. Transition to.

ここで、図8に基づいて従来の冷蔵庫の除霜時の制御について説明する。 Here, the control at the time of defrosting of the conventional refrigerator will be described with reference to FIG.

圧縮機56の積算運転時間が所定時間に達すると、蒸発器20に付着した霜を加温して融解する除霜モードに移行する。除霜モードの区間pにおいて、まず、冷凍室18の温度上昇を抑制するために、FC冷却モードと同様に冷凍室18を所定時間冷却する。次に、区間qにおいて、圧縮機56を運転しながら二方弁61を閉塞することによって、ドライヤ137及び蒸発器20に滞留する冷媒を主凝縮器21と防露パイプ60へ回収する。そして、区間rにおいて、圧縮機56を停止することで圧縮機56内部の高圧側と低圧側を仕切るバルブ(図示せず)などのシール部を介して、主凝縮器21と防露パイプ60に回収された高圧冷媒を蒸発器20に逆流させることで、圧縮機56の廃熱でさらに加熱された高圧冷媒を利用して蒸発器20を加温する。その後、区間sにおいて、蒸発器20に取り付けられた除霜ヒータ(図示せず)に通電してDEF温度センサ58が所定の温度となると除霜を完了する。そして、区間tにおいて、二方弁61を開放して冷凍サイクル内を均圧して、区間uから通常運転を再開する。 When the cumulative operating time of the compressor 56 reaches a predetermined time, the mode shifts to the defrosting mode in which the frost adhering to the evaporator 20 is heated and melted. In the defrosting mode section p, first, in order to suppress the temperature rise of the freezing chamber 18, the freezing chamber 18 is cooled for a predetermined time in the same manner as in the FC cooling mode. Next, in the section q, the refrigerant staying in the dryer 137 and the evaporator 20 is recovered to the main condenser 21 and the dew-proof pipe 60 by closing the two-way valve 61 while operating the compressor 56. Then, in the section r, the main condenser 21 and the dew-proof pipe 60 are connected to the main condenser 21 and the dew-proof pipe 60 via a seal portion such as a valve (not shown) that separates the high-pressure side and the low-pressure side inside the compressor 56 by stopping the compressor 56. By flowing the recovered high-pressure refrigerant back into the evaporator 20, the evaporator 20 is heated by using the high-pressure refrigerant further heated by the waste heat of the compressor 56. Then, in the section s, the defrost heater (not shown) attached to the evaporator 20 is energized to complete the defrosting when the DEF temperature sensor 58 reaches a predetermined temperature. Then, in the section t, the two-way valve 61 is opened to equalize the pressure in the refrigeration cycle, and the normal operation is restarted from the section u.

以上のように説明した動作によって、冷凍サイクルの高圧冷媒及び圧縮機の廃熱を利用して蒸発器を加温することにより、除霜ヒータの電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。 By the operation described above, the electric power of the defrost heater can be reduced by heating the evaporator by using the high-pressure refrigerant of the refrigeration cycle and the waste heat of the compressor, and the energy saving of the refrigerator can be achieved. Can be planned.

特開平4−194564号公報Japanese Unexamined Patent Publication No. 4-194564

しかしながら、従来の冷蔵庫の構成では、主凝縮器21と防露パイプ60に回収された高圧冷媒を蒸発器20の除霜に利用する際に、冷凍室18の開口部周辺と熱結合された防露パイプ60の温度が低下して、ほぼ外気温度で維持される主凝縮器21内の高圧冷媒が防露パイプ60内部で凝縮する。この結果、高圧圧力が低下して蒸発器20に流入する冷媒量が減少し、除霜ヒータの電力量を十分削減することができない原因となる。 However, in the conventional refrigerator configuration, when the high-pressure refrigerant recovered in the main condenser 21 and the dew-proof pipe 60 is used for defrosting the evaporator 20, the prevention is thermally coupled to the periphery of the opening of the freezer chamber 18. The temperature of the dew pipe 60 drops, and the high-pressure refrigerant in the main condenser 21 maintained at substantially the outside air temperature condenses inside the dew pipe 60. As a result, the high-pressure pressure drops and the amount of refrigerant flowing into the evaporator 20 decreases, which causes the power amount of the defrost heater to be unable to be sufficiently reduced.

従って、回収された高圧冷媒を蒸発器20の除霜に利用する際に、高圧圧力を維持することが課題であった。 Therefore, it has been a problem to maintain the high pressure when the recovered high pressure refrigerant is used for defrosting the evaporator 20.

また、従来の冷蔵庫の構成では、冷媒を回収する際に圧縮機56を運転するも蒸発器温度が下がりすぎるため十分な冷媒回収を行うことができなかった。 Further, in the conventional refrigerator configuration, even if the compressor 56 is operated when recovering the refrigerant, the temperature of the evaporator is too low, so that sufficient refrigerant recovery cannot be performed.

従って、回収された高圧冷媒を蒸発器20の除霜に利用する際に、蒸発器20に流入する高圧冷媒の量が少なく蒸発器20の温度上昇が小さくなり、除霜ヒータの電力量を十分削減することができないことが課題であった。 Therefore, when the recovered high-pressure refrigerant is used for defrosting the evaporator 20, the amount of the high-pressure refrigerant flowing into the evaporator 20 is small and the temperature rise of the evaporator 20 is small, so that the electric energy of the defrost heater is sufficient. The problem was that it could not be reduced.

また、蒸発器20に流入する高圧冷媒の量をできるだけ多くするため、冷媒回収の時間を長くとろうとしても蒸発器周囲の温度は低い状態であるため、蒸発器内に冷媒は滞留し易く回収時間が長くなる。回収時間が長くなるということは、蒸発器温度を所定の温度まで上げるためのヒータ通電する除霜時間全体が長くなり、即ち庫内の非冷却時間が長くなるため、庫内温度が上昇しやすい。そのため、除霜後の冷却運転時間も長くなるだけでなく、保存されている食品温度も上昇し保鮮性が劣化する課題があった。 Further, in order to increase the amount of the high-pressure refrigerant flowing into the evaporator 20 as much as possible, the temperature around the evaporator is low even if the refrigerant recovery time is lengthened, so that the refrigerant easily stays in the evaporator and is recovered. The time will be longer. The longer recovery time means that the entire defrosting time for energizing the heater to raise the evaporator temperature to a predetermined temperature becomes longer, that is, the non-cooling time inside the refrigerator becomes longer, so the temperature inside the refrigerator tends to rise. .. Therefore, there is a problem that not only the cooling operation time after defrosting is long, but also the temperature of the stored food rises and the freshness deteriorates.

本発明は、従来の課題を解決するもので、回収された高圧冷媒を蒸発器の除霜に利用する際に、蒸発器温度の過度な低下を抑制しつつ冷媒の回収時間を短縮すると共に、除霜時間の短縮による省エネ性と庫内温度上昇抑制による食品保鮮性の向上を目的とする。 The present invention solves the conventional problems, and when the recovered high-pressure refrigerant is used for defrosting the evaporator, the recovery time of the refrigerant is shortened while suppressing an excessive decrease in the evaporator temperature, and the recovery time of the refrigerant is shortened. The purpose is to improve energy saving by shortening the defrosting time and improve food retention by suppressing the temperature rise inside the refrigerator.

従来の課題を解決するために、本発明の冷蔵庫は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、前記主凝縮器の下流側に接続した流路切換バルブと、前記流路切換バルブの下流側に接続した防露パイプと、前記防露パイプと並列に接続し一部を圧縮機と熱結合する熱交換部を有したバイパス経路とを有し、断熱壁で区画形成された冷凍室および冷蔵室に供給する冷気をそれぞれ制御する冷凍室ダンパーおよび冷蔵室ダンパーとを備えた冷蔵庫において、前記蒸発器を除霜する際に、前記蒸発器の近傍に設けた蒸発器ファンおよび前記圧縮機を運転中に前記流路切換バルブを全閉するとともに前記冷蔵室ダンパーを開き前記冷凍室ダンパーを閉じる動作により、前記蒸発器および前記防露パイプ内の滞留冷媒の回収動作後、前記圧縮機を停止するとともに前記流路切換バルブを前記バイパス経路側に開放することにより、回収した高圧冷媒を前記蒸発器に供給し、所定時間後、前記蒸発器の近傍に設けた除霜ヒータに通電するものである。 In order to solve the conventional problems, the refrigerator of the present invention includes a refrigerating cycle having at least a compressor, an evaporator, a main condenser, and a dew-proof pipe, and a flow path switching valve connected to the downstream side of the main condenser. And a dew-proof pipe connected to the downstream side of the flow path switching valve, and a bypass path having a heat exchange portion connected in parallel with the dew-proof pipe and partially thermally coupled to the compressor to insulate. In a refrigerator equipped with a freezer compartment damper and a refrigerating chamber damper that control the cold air supplied to the freezer compartment and the refrigerator compartment formed by walls, respectively, when the evaporator is defrosted, it is provided in the vicinity of the evaporator. While the evaporator fan and the compressor are in operation, the flow path switching valve is fully closed, the refrigerator compartment damper is opened, and the freezer compartment damper is closed. After the recovery operation, the compressor is stopped and the flow path switching valve is opened to the bypass path side to supply the recovered high-pressure refrigerant to the evaporator, and after a predetermined time, it is provided in the vicinity of the evaporator. It energizes the defrost heater.

これによって、冷媒回収時に蒸発器温度が下がりすぎることなく十分な冷媒量を回収できるとともに、回収時間も短くすることができるため、除霜時間全体即ち非冷却時間が短くなり消費電力量低減だけでなく、庫内に保存されている食品自身の温度上昇も軽減される。更に回収された高圧冷媒を蒸発器の除霜に利用する際に、高圧圧力の変動を抑制することで、除霜ヒータの電力量を安定して削減することができる。 As a result, a sufficient amount of refrigerant can be recovered without the evaporator temperature dropping too much at the time of refrigerant recovery, and the recovery time can be shortened. Therefore, the entire defrosting time, that is, the non-cooling time is shortened, and only the power consumption is reduced. However, the temperature rise of the food itself stored in the refrigerator is also reduced. Further, when the recovered high-pressure refrigerant is used for defrosting the evaporator, the amount of electric power of the defrost heater can be stably reduced by suppressing the fluctuation of the high-pressure pressure.

また、回収された高圧冷媒を蒸発器の除霜に利用する際に、バイパス経路を介して蒸発器に供給するとともに、バイパス経路と圧縮機を熱結合しているため、高圧冷媒を蒸発器に供給する際に圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができる。 In addition, when the recovered high-pressure refrigerant is used for defrosting the evaporator, it is supplied to the evaporator via the bypass path, and the bypass path and the compressor are thermally coupled, so that the high-pressure refrigerant is used in the evaporator. By recovering the waste heat of the compressor at the time of supply and using it for heating the evaporator, the electric energy of the defrost heater can be further reduced.

本発明の冷蔵庫は、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。 In the refrigerator of the present invention, the amount of power of the defrost heater can be stably reduced by collecting the refrigerant in the refrigeration cycle in the main condenser and using it for heating the evaporator, which saves energy in the refrigerator. Can be planned.

本発明の実施の形態1における冷蔵庫の縦断面図Longitudinal sectional view of the refrigerator according to the first embodiment of the present invention. 本発明の実施の形態1における冷蔵庫のサイクル構成図Cycle configuration diagram of the refrigerator according to the first embodiment of the present invention (a)本発明の実施の形態1における冷蔵庫の圧縮機との熱交換部の要部拡大模式図(b)同要部断面模式図(A) Enlarged schematic view of the main part of the heat exchange part with the compressor of the refrigerator in the first embodiment of the present invention (b) Schematic diagram of the cross section of the main part. 本発明の実施の形態1における冷蔵庫の冷却室内構成図Configuration diagram of the cooling chamber of the refrigerator according to the first embodiment of the present invention. 本発明の実施の形態1における冷蔵庫の除霜時の制御を示した図The figure which showed the control at the time of defrosting of the refrigerator in Embodiment 1 of this invention. 従来の冷蔵庫の縦断面図Longitudinal section of a conventional refrigerator 従来の冷蔵庫のサイクル構成図Cycle configuration diagram of a conventional refrigerator 従来の冷蔵庫の除霜時の制御を示した図The figure which showed the control at the time of defrosting of the conventional refrigerator

第1の発明は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、前記主凝縮器の下流側に接続した流路切換バルブと、前記流路切換バルブの下流側に接続した防露パイプと、前記防露パイプと並列に接続し一部を圧縮機と熱結合する熱交換部を有したバイパス経路とを有し、断熱壁で区画形成された冷凍室および冷蔵室に供給する冷気をそれぞれ制御する冷凍室ダンパーおよび冷蔵室ダンパーとを備えた冷蔵庫において、前記蒸発器を除霜する際に、前記蒸発器の近傍に設けた蒸発器ファンおよび前記圧縮機を運転中に前記流路切換バルブを全閉するとともに前記冷蔵室ダンパーを開き前記冷凍室ダンパーを閉じる動作により、前記蒸発器および前記防露パイプ内の滞留冷媒の回収動作後、前記圧縮機を停止するとともに前記流路切換バルブを前記バイパス経路側に開放することにより、回収した高圧冷媒を前記蒸発器に供給し、所定時間後、前記蒸発器の近傍に設けた除霜ヒータに通電するものである。 The first invention comprises a refrigerating cycle having at least a compressor, an evaporator, a main condenser, and a dew-proof pipe, and a flow path switching valve connected to the downstream side of the main condenser and a flow path switching valve downstream of the flow path switching valve. A freezer compartment having a dew-proof pipe connected to the side and a bypass path having a heat exchange part connected in parallel with the dew-proof pipe and partially thermally coupled with a compressor, and a freezer compartment formed by a heat insulating wall. In a refrigerator equipped with a freezer compartment damper and a refrigerator compartment damper that control the cold air supplied to the refrigerator compartment, when defrosting the evaporator, an evaporator fan and a compressor provided in the vicinity of the evaporator are used. During operation, the flow path switching valve is fully closed, the refrigerator compartment damper is opened, and the freezer compartment damper is closed, so that the compressor is stopped after the operation of recovering the accumulated refrigerant in the evaporator and the dew-proof pipe. At the same time, by opening the flow path switching valve to the bypass path side, the recovered high-pressure refrigerant is supplied to the evaporator, and after a predetermined time, the defrost heater provided in the vicinity of the evaporator is energized. is there.

これによって、冷凍サイクル内の冷媒を主凝縮器に回収する際に、蒸発器温度の過度の低下を抑制しつつ、冷媒回収をし易くすると共に回収時間も短縮できるため、蒸発器の加温に利用する際に、十分な冷媒量を供給できる。また蒸発器温度の低下を抑制するため圧縮機の品質向上も図ることができる。故に、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。 As a result, when the refrigerant in the refrigeration cycle is recovered in the main condenser, the refrigerant can be easily recovered and the recovery time can be shortened while suppressing an excessive decrease in the evaporator temperature, so that the evaporator can be heated. When used, a sufficient amount of refrigerant can be supplied. In addition, the quality of the compressor can be improved in order to suppress the decrease in the evaporator temperature. Therefore, the electric power of the defrost heater can be stably reduced, and the energy saving of the refrigerator can be achieved.

第2の発明は、第1の発明において、蒸発器の出口近傍に温度センサを備え、前記蒸発器の近傍に設けた蒸発器ファンおよび前記圧縮機を運転中に前記流路切換バルブを全閉するとともに前記冷蔵室ダンパーを開き前記冷凍室ダンパーを閉じ、前記蒸発器および前記防露パイプ内の滞留冷媒を回収する冷媒回収動作時に前記温度センサの温度が所定の温度となった時点で前記冷媒回収動作を終了するものである。 The second invention is the first invention, in which the temperature sensor is provided near the outlet of the evaporator, and the flow path switching valve is fully closed while the evaporator fan and the compressor provided in the vicinity of the evaporator are being operated. the refrigerating chamber to open the damper to close the freezer compartment damper, the refrigerant when the temperature of the temperature sensor in the evaporator and a refrigerant recovery operation for recovering the residence refrigerant of the anti-condensation in the pipe reaches a predetermined temperature while This is to end the collection operation.

これによって、冷凍サイクル内の冷媒が主凝縮器に回収される際に、蒸発器の温度は蒸発器入口側から上昇しはじめ、蒸発器の出口側が遅れて上昇するが、蒸発器の出口近傍の温度を検知することで冷媒回収を確実に行うことができる。故に加温に利用する際の冷媒を安定的に確保することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。 As a result, when the refrigerant in the refrigeration cycle is recovered to the main condenser, the temperature of the evaporator starts to rise from the inlet side of the evaporator, and the outlet side of the evaporator rises with a delay, but near the outlet of the evaporator. By detecting the temperature, the refrigerant can be reliably recovered. Therefore, by stably securing the refrigerant for heating, the amount of electric power of the defrost heater can be stably reduced, and the energy saving of the refrigerator can be achieved.

第3の発明は、第2の発明において、温度センサの温度が最下点から所定値温度上昇した時点で前記冷媒回収動作を終了するものである。 In the third invention, in the second invention , the refrigerant recovery operation is terminated when the temperature of the temperature sensor rises from the lowest point to a predetermined value.

これによって冷凍サイクル内の冷媒を主凝縮器に回収することが確実に行えると共に、最適な冷媒回収時間で終了することができる。故に、除霜動作としては時間が短縮されるため、除霜にかかる時間即ち庫内を冷却しない非冷却時間が短縮され冷蔵庫の省エネルギー化になると共に庫内温度の上昇も抑制され食品の品質劣化を抑制することができる。また、除霜にかかる時間が短縮され庫内温度が上昇しにくくなるということは、除霜後の冷却時間も短縮できるため除霜ヒータが通電された熱負荷も考慮して全体として、冷蔵庫の省エネルギー化を図ることができる。 As a result, the refrigerant in the refrigeration cycle can be reliably recovered in the main condenser, and the refrigerant recovery time can be optimized. Therefore, since the time required for the defrosting operation is shortened, the time required for defrosting, that is, the non-cooling time for not cooling the inside of the refrigerator is shortened, energy saving of the refrigerator is achieved, and the temperature rise inside the refrigerator is suppressed, resulting in deterioration of food quality. Can be suppressed. In addition, the time required for defrosting is shortened and the temperature inside the refrigerator is less likely to rise, which means that the cooling time after defrosting can also be shortened. Energy saving can be achieved.

第4の発明は、第1から第3のいずれか一つの発明において、蒸発器にバイパス経路の入り口側接続部を設け、前記バイパス経路の出口を前記蒸発器の前記入り口側接続部と接続したものである。 In the fourth aspect of the invention, in any one of the first to third inventions, the evaporator is provided with an inlet-side connection portion of a bypass path, and the outlet of the bypass path is connected to the inlet-side connection portion of the evaporator. It is a thing.

冷蔵庫の冷凍サイクルにおいて、絞り出口部即ち蒸発器入口部は除霜時に温度上昇しにくいために温度を検知するセンサを配設し、センサが所定の温度を検知することで除霜終了の判定を行っているが、バイパス経路の出口を蒸発器入口側と接続することによって、温度上昇を既配設の温度センサを用いて検知することができるため、コストアップの必要が無くコストパフォーマンスが高い。さらに、温度上昇しにくい入口部分から高圧冷媒を供給するため所定時間後に除霜ヒータを通電したときに蒸発器温度上昇を無駄なく均一に行うことができるため、さらに冷蔵庫の省エネルギー化を図ることができる。 In the refrigeration cycle of the refrigerator, the throttle outlet, that is, the evaporator inlet, is provided with a sensor that detects the temperature because the temperature does not easily rise during defrosting, and the sensor detects the predetermined temperature to determine the end of defrosting. However, by connecting the outlet of the bypass path to the inlet side of the evaporator, the temperature rise can be detected by using the temperature sensor already arranged, so that there is no need to increase the cost and the cost performance is high. Furthermore, since the high-pressure refrigerant is supplied from the inlet portion where the temperature does not easily rise, the temperature of the evaporator can be raised uniformly without waste when the defrost heater is energized after a predetermined time, so that the energy saving of the refrigerator can be further improved. it can.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same configurations as those of the conventional example will be designated by the same reference numerals, and detailed description thereof will be omitted. The present invention is not limited to this embodiment.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は本発明の実施の形態1における冷蔵庫のサイクル構成図、図3は本発明の実施の形態1における冷蔵庫の圧縮機との熱交換部の模式図、図4は本発明の実施の形態1における冷蔵庫の冷却室内構成図、図5は本発明の実施の形態1における冷蔵庫の除霜時の制御を示した図である。
(Embodiment 1)
FIG. 1 is a vertical sectional view of the refrigerator according to the first embodiment of the present invention, FIG. 2 is a cycle configuration diagram of the refrigerator according to the first embodiment of the present invention, and FIG. 3 is a compressor of the refrigerator according to the first embodiment of the present invention. FIG. 4 is a schematic view of the heat exchange unit of the above, FIG. 4 is a configuration diagram of a refrigerator cooling chamber according to the first embodiment of the present invention, and FIG. 5 is a diagram showing control of the refrigerator during defrosting according to the first embodiment of the present invention. ..

図1から図3において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有する。また、冷凍サイクルを構成する部品として、上部機械室16に収められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に収められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、下部機械室15の底板25を有している。 1 to 3, the refrigerator 11 includes a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided at the lower part of the housing 12, and an upper portion provided at the upper part of the housing 12. It has a machine room 16, a refrigerating room 17 arranged in the upper part of the housing 12, and a freezing room 18 arranged in the lower part of the housing 12. Further, as parts constituting the refrigerating cycle, a compressor 19 housed in the upper machine room 16, an evaporator 20 housed on the back side of the freezing room 18, and a main condenser 21 housed in the lower machine room 15 are included. Have. Further, it has a partition wall 22 for partitioning the lower machine room 15, a fan 23 attached to the partition wall 22 for air-cooling the main condenser 21, an evaporating dish 24 installed on the leeward side of the partition wall 22, and a bottom plate 25 for the lower machine room 15. There is.

ここで、圧縮機19は可変速圧縮機であり、20〜80rpsから選択された6段階の回転数を使用する。これは、配管などの共振を避けながら、圧縮機19の回転数を低速〜高速の6段階に切り換えて冷凍能力を調整するためである。圧縮機19は、起動時は低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速する。これは、最も高効率な低速を主として使用するとともに、高外気温や扉開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。このとき、冷蔵庫11の冷却運転モードとは独立に、圧縮機19の回転数を制御するが、蒸発温度が高く比較的冷凍能力が大きいPC冷却モードの起動時の回転数をFC冷却モードよりも低く設定してもよい。また、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速しながら冷凍能力を調整してもよい。 Here, the compressor 19 is a variable speed compressor, and uses six rotation speeds selected from 20 to 80 rps. This is to adjust the refrigerating capacity by switching the rotation speed of the compressor 19 in six stages from low speed to high speed while avoiding resonance of piping and the like. The compressor 19 operates at a low speed at the time of starting, and increases in speed as the operation time for cooling the refrigerating chamber 17 or the freezing chamber 18 becomes longer. This is because the most efficient low speed is mainly used, and a relatively high rotation speed suitable for an increase in the load of the refrigerating chamber 17 or the freezing chamber 18 due to a high outside temperature or opening / closing of a door is used. .. At this time, the rotation speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11, but the rotation speed at the time of starting the PC cooling mode having a high evaporation temperature and a relatively large refrigerating capacity is higher than that of the FC cooling mode. It may be set low. Further, the refrigerating capacity may be adjusted while decelerating the compressor 19 as the temperature of the refrigerating chamber 17 or the freezing chamber 18 decreases.

また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。 Further, it has a plurality of intake ports 26 provided on the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the discharge port 27 of the lower machine room 15 and the upper machine room 16. doing. Here, the lower machine room 15 is divided into two chambers by a partition wall 22, and the main condenser 21 is housed on the leeward side of the fan 23 and the evaporating dish 24 is housed on the leeward side.

また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ40、流路切換バルブ40の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、防露パイプ41と蒸発器20を接続する絞り42、防露パイプ41と並列に流路切換バルブ40の下流側と蒸発器20を接続するバイパス経路43、バイパス経路43の経路内で圧縮機19と熱結合する熱交換部44を有している。 Further, as a component constituting the refrigeration cycle, a flow path switching valve 40 located on the downstream side of the main condenser 21 and drying the circulating refrigerant, and on the downstream side of the dryer 38 to control the flow of the refrigerant. , A dew-proof pipe 41 that is located on the downstream side of the flow path switching valve 40 and is thermally coupled to the outer surface of the housing 12 around the opening of the freezer chamber 18, and a throttle 42 that connects the dew-proof pipe 41 and the evaporator 20. It has a bypass path 43 that connects the downstream side of the flow path switching valve 40 and the evaporator 20 in parallel with the dew-proof pipe 41, and a heat exchange unit 44 that thermally couples with the compressor 19 in the path of the bypass path 43. ..

ここで、圧縮機19と熱結合する熱交換部44は圧縮機19の外郭を形成する密閉容器70の表面に設置され、バイパス経路43と密閉容器70を熱結合する熱伝導性ブチルゴム71、密閉容器70に固定するアルミ箔テープ72からなる。熱伝導性ブチルゴム71は熱伝導率2.1W/mK厚さ1mm幅10mmであり、密閉容器70の上下中央付近をほぼ一周するバイパス経路43を挟むように設置される。これによって、バイパス経路43と密閉容器70の熱交換量を十分確保することができ、バイパス経路43内部を通過する高圧冷媒が熱交換部44で加温されて、ほぼ気体の状態とすることができる。なお、熱伝導性ブチルゴム71に替えて、ハンダやロー材などの熱伝導率の高い金属を用いてバイパス経路43と密閉容器70を熱結合しても同様の効果が期待できるが、密閉容器70及び熱結合部の防錆処理が必要となる。熱伝導性ブチルゴム71を用いた場合は、密閉容器70に防錆塗装をした上に使用できる利点があるとともに、圧縮機19の振動がバイパス経路43に伝達することを抑制する効果も期待できる。また、密閉容器70は圧縮機19の40%程度の質量割合があり、圧縮機19が顕熱蓄熱する廃熱の40%程度を保持していると推定されるとともに、圧縮機19内部の冷媒(図示せず)や冷凍機油(図示せず)を介して、圧縮機19内部の機構部品などが蓄える廃熱と熱結合されているので、熱交換部44を密閉容器70の表面に形成すれば圧縮機19が顕熱蓄熱する廃熱を有効利用することができる。 Here, the heat exchange unit 44 that heat-bonds to the compressor 19 is installed on the surface of the airtight container 70 that forms the outer shell of the compressor 19, and the heat conductive butyl rubber 71 that heat-bonds the bypass path 43 and the airtight container 70 is hermetically sealed. It is composed of an aluminum foil tape 72 fixed to the container 70. The thermally conductive butyl rubber 71 has a thermal conductivity of 2.1 W / mK, a thickness of 1 mm, and a width of 10 mm, and is installed so as to sandwich a bypass path 43 that substantially goes around the center of the upper and lower sides of the closed container 70. As a result, a sufficient amount of heat exchange between the bypass path 43 and the closed container 70 can be secured, and the high-pressure refrigerant passing through the inside of the bypass path 43 is heated by the heat exchange unit 44 to be in a substantially gaseous state. it can. The same effect can be expected by thermally coupling the bypass path 43 and the closed container 70 with a metal having high thermal conductivity such as solder or brazing material instead of the heat conductive butyl rubber 71, but the closed container 70 And rust prevention treatment of the thermal coupling part is required. When the thermally conductive butyl rubber 71 is used, there is an advantage that the closed container 70 can be used after being coated with rust preventive coating, and an effect of suppressing the vibration of the compressor 19 from being transmitted to the bypass path 43 can be expected. Further, the closed container 70 has a mass ratio of about 40% of that of the compressor 19, and it is estimated that the compressor 19 holds about 40% of the waste heat that stores sensible heat, and the refrigerant inside the compressor 19 Since it is thermally coupled to the waste heat stored in the mechanical parts inside the compressor 19 via (not shown) or refrigerating machine oil (not shown), the heat exchange portion 44 should be formed on the surface of the closed container 70. For example, the waste heat stored in the sensible heat of the compressor 19 can be effectively used.

なお、本実施の形態では圧縮機19と熱結合する熱交換部を圧縮機19の外郭で行ったが、圧縮機内部と熱結合しても良い。圧縮機19は、外郭を形成する密閉容器70、密閉容器70の内部に設置され、圧縮機構を形成するピストン91、シリンダ92とシャフト93、シャフト93を介して圧縮機構を駆動するモータ部94、圧縮機構の潤滑に利用される冷凍機油95からなる。ここで、圧縮機19の内部で熱交換するためにバイパス経路43の一部は密閉容器70を貫通するとともに、密閉容器70の下部に滞留する冷凍機油95内に設置されて、圧縮機19と熱結合する熱交換部96を形成する。これによって、バイパス経路43と密閉容器70の熱交換量を十分確保することができ、バイパス経路43内部を通過する高圧冷媒が熱交換部96で加温されて、ほぼ気体の状態とすることができる。また、密閉容器70の表面からの放熱を損なうことなく、バイパス経路43と密閉容器70の熱交結合を実現したので、通常冷却運転時に圧縮機19の放熱が損なわれて温度上昇し、圧縮機19の効率低下を招くことがない。 In the present embodiment, the heat exchange portion that thermally couples with the compressor 19 is performed on the outer shell of the compressor 19, but it may be thermally coupled to the inside of the compressor 19. The compressor 19 is a closed container 70 that forms an outer shell, a piston 91 that is installed inside the closed container 70 and forms a compression mechanism, a cylinder 92 and a shaft 93, and a motor unit 94 that drives the compression mechanism via the shaft 93. It consists of a refrigerating machine oil 95 used for lubricating a compression mechanism. Here, in order to exchange heat inside the compressor 19, a part of the bypass path 43 penetrates the closed container 70 and is installed in the refrigerating machine oil 95 staying in the lower part of the closed container 70 to be installed with the compressor 19. A heat exchange unit 96 that heat-bonds is formed. As a result, the amount of heat exchange between the bypass path 43 and the closed container 70 can be sufficiently secured, and the high-pressure refrigerant passing through the inside of the bypass path 43 is heated by the heat exchange unit 96 to be in a substantially gaseous state. it can. Further, since the heat exchange coupling between the bypass path 43 and the closed container 70 is realized without impairing the heat dissipation from the surface of the closed container 70, the heat radiation of the compressor 19 is impaired during the normal cooling operation and the temperature rises, so that the compressor It does not cause a decrease in efficiency of 19.

これによって、密閉容器70の表面からの放熱を損なうことなく、バイパス経路43と密閉容器70の熱交換量を十分確保することができ、さらに冷蔵庫の省エネルギー化を図ることができる。 As a result, it is possible to secure a sufficient amount of heat exchange between the bypass path 43 and the closed container 70 without impairing heat dissipation from the surface of the closed container 70, and further to save energy in the refrigerator.

なお、本実施の形態でバイパス経路43は外形φ2mm、内径φ1mmの銅管を用いており、主凝縮器21や上流側のパイプの寸法であるφ4mmよりも小さい。これにより、バイパス経路43の経路内で圧縮機19と熱結合する熱交換部44では、主凝縮器21から圧力が若干下がった状態となり、熱交換部44では熱交換しやすくなる。なお、バイパス経路43の内径は、作業性も考慮し、φ0.5〜φ3とすると良い。本実施の形態ではバイパス経路43の径で熱交換の効率を向上させたが、圧縮機19と熱結合する熱交換部44と主凝縮器21の間に膨張弁のような絞り調節機構を設けても同様の効果を得ることができる。 In the present embodiment, the bypass path 43 uses a copper tube having an outer diameter of φ2 mm and an inner diameter of φ1 mm, which is smaller than the dimensions of the main condenser 21 and the upstream pipe of φ4 mm. As a result, in the heat exchange section 44 that thermally couples with the compressor 19 in the path of the bypass path 43, the pressure is slightly lowered from the main condenser 21, and the heat exchange section 44 facilitates heat exchange. The inner diameter of the bypass path 43 is preferably φ0.5 to φ3 in consideration of workability. In the present embodiment, the efficiency of heat exchange is improved by the diameter of the bypass path 43, but a throttle adjusting mechanism such as an expansion valve is provided between the heat exchange unit 44 that thermally couples with the compressor 19 and the main condenser 21. However, the same effect can be obtained.

また、流路切換バルブ40は、防露パイプ41とバイパス経路43それぞれ単独の冷媒の流れを開閉制御することができる。通常、流路切換バルブ40は主凝縮器21から防露パイプ41への流路を開、主凝縮器21からバイパス経路43への流路を閉の状態を維持しており、後に説明する除霜時のみ流路の開閉を行う。 Further, the flow path switching valve 40 can control the opening and closing of the flow of the refrigerant independently of the dew-proof pipe 41 and the bypass path 43. Normally, the flow path switching valve 40 opens the flow path from the main condenser 21 to the dew-proof pipe 41 and keeps the flow path from the main condenser 21 to the bypass path 43 closed. The flow path is opened and closed only during frost.

本実施の形態での風路構成としては、冷凍室18の背面に冷却室73があり、冷却室73には蒸発器20が配設され、蒸発器ファン30を有した蒸発器カバー(図示せず)覆われている。蒸発器20で生成された冷気は蒸発器近傍の蒸発器ファン30により、冷蔵室17と冷凍室18に冷気が送風される。 As the air passage configuration in the present embodiment, there is a cooling chamber 73 on the back surface of the freezing chamber 18, an evaporator 20 is arranged in the cooling chamber 73, and an evaporator cover having an evaporator fan 30 (shown in the figure). It is covered. The cold air generated by the evaporator 20 is blown to the refrigerating chamber 17 and the freezing chamber 18 by the evaporator fan 30 near the evaporator.

冷凍室18には蒸発器カバーを介して送風された冷気が冷凍室庫内を循環冷却し、蒸発器カバー下部に設けた冷凍室冷気戻り口(図示せず)から冷却室73に冷気が戻る。この間、冷凍室冷気の流れを遮断する冷凍室ダンパー31が配設されている。また、冷凍室18には冷凍室18の温度を検知するFCC温度センサ34が配置してある。 The cold air blown through the evaporator cover circulates and cools the inside of the freezing chamber 18, and the cold air returns to the cooling chamber 73 from the freezing chamber cold air return port (not shown) provided under the evaporator cover. .. During this time, a freezing chamber damper 31 that blocks the flow of cold air in the freezing chamber is provided. Further, an FCC temperature sensor 34 for detecting the temperature of the freezing chamber 18 is arranged in the freezing chamber 18.

一方、冷蔵室17に向かって送風された冷気は、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17の温度を検知するPCC温度センサ35によって、狙いとなる庫内温度に同等となるようにダンパーを開閉しながら制御される。冷蔵室ダンパー32を通過後、冷気は、冷蔵室17に冷気を供給するダクト33を介して冷蔵室17に送風され、冷蔵室庫内を冷却循環した後、蒸発器20側面を通過する冷蔵室戻りダクト102を通って冷却室73に戻る。ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。 On the other hand, the cold air blown toward the refrigerating chamber 17 is the target internal temperature by the refrigerating chamber damper 32 that shuts off the cold air supplied to the refrigerating chamber 17 and the PCC temperature sensor 35 that detects the temperature of the refrigerating chamber 17. It is controlled while opening and closing the damper so that it becomes equivalent to. After passing through the refrigerating chamber damper 32, the cold air is blown to the refrigerating chamber 17 through the duct 33 that supplies the cold air to the refrigerating chamber 17, cools and circulates in the refrigerating chamber, and then passes through the side surface of the evaporator 20. It returns to the cooling chamber 73 through the return duct 102. The duct 33 is formed along the wall surface where the refrigerating chamber 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerating room. After passing through the adjacent wall surface while cooling, it is discharged from the upper part of the refrigerating room 17.

次に、本実施の形態での蒸発器周囲の構成について説明する。 Next, the configuration around the evaporator in this embodiment will be described.

冷蔵庫本体11の背面には冷却室73が設けられ、冷却室73内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する蒸発器20が冷凍室18の背面に配設されている。冷却室73の前面庫内側には、冷凍室18を冷却した冷気が蒸発器20へ戻るための冷凍室冷気戻り口を備えた蒸発器20を覆う蒸発器カバーが配置されている。また、蒸発器20の材質は、アルミや銅が用いられる。 A cooling chamber 73 is provided on the back surface of the refrigerator main body 11, and a fin-and-tube type evaporator 20 for generating cold air is typically arranged on the back surface of the freezing chamber 18 in the cooling chamber 73. .. Inside the front chamber of the cooling chamber 73, an evaporator cover is arranged to cover the evaporator 20 provided with a freezing chamber cold air return port for the cold air cooling the freezing chamber 18 to return to the evaporator 20. Further, aluminum or copper is used as the material of the evaporator 20.

蒸発器カバーは、庫内側の蒸発器前側カバーと蒸発器側の蒸発器後側カバーで構成されており、蒸発器後側カバーの蒸発器側には、金属製の伝熱促進部材(図示せず)を配置している。本実施の形態では、コストを考慮して除霜時の伝熱促進用としてはt=8μmのアルミ箔を、上下寸法は蒸発器20の下端から上端まで、左右寸法は蒸発器20のフィン間から+15mm程度までの大きめの寸法で貼り付けることで、除霜時の伝熱を促進し除霜効率向上での除霜時間短縮効果を得ている。なお、更なる効果を得るために、蒸発器20の背面側の内箱にアルミ箔を配置しても良い。更には、アルミ箔よりも厚みが大きいアルミプレート板や、アルミよりも熱伝導率の高い材料(例えば銅)で構成すると伝熱促進としての効果を更に発揮する。 The evaporator cover is composed of an evaporator front side cover inside the refrigerator and an evaporator rear side cover on the evaporator side, and a metal heat transfer promoting member (shown) is on the evaporator side of the evaporator rear side cover. ) Is placed. In the present embodiment, in consideration of cost, an aluminum foil having t = 8 μm is used for promoting heat transfer during defrosting, the vertical dimension is from the lower end to the upper end of the evaporator 20, and the left and right dimensions are between the fins of the evaporator 20. By pasting with a large size from to +15 mm, heat transfer during defrosting is promoted and the defrosting time shortening effect is obtained by improving defrosting efficiency. In addition, in order to obtain a further effect, an aluminum foil may be arranged in the inner box on the back side of the evaporator 20. Further, if it is made of an aluminum plate plate having a thickness larger than that of aluminum foil or a material having a higher thermal conductivity than aluminum (for example, copper), the effect of promoting heat transfer is further exhibited.

蒸発器20の近傍(例えば上部空間)には強制対流方式により冷蔵室17、冷凍室18に蒸発器20で生成した冷気を送風する蒸発器ファン30が配置され、蒸発器20の下方には冷却時に蒸発器20や蒸発器ファン30に付着する霜を除霜する除霜ヒータ37としてガラス管製のガラス管ヒータが設けられている。ガラス管ヒータ37の上方には、ガラス管ヒータ37を覆うカバー(図示せず)が配置され、除霜時に蒸発器20から滴下した水滴が除霜によって高温になったガラス管表面に直接落ちることで、ジュージューといった音が発生しないようにガラス管径および幅と同等以上の寸法としている。 An evaporator fan 30 for blowing cold air generated by the evaporator 20 is arranged in the refrigerating chamber 17 and the freezing chamber 18 by a forced convection method in the vicinity of the evaporator 20 (for example, the upper space), and cooling is performed below the evaporator 20. A glass tube heater made of a glass tube is provided as a defrost heater 37 for defrosting the frost that sometimes adheres to the evaporator 20 and the evaporator fan 30. A cover (not shown) that covers the glass tube heater 37 is arranged above the glass tube heater 37, and water droplets dropped from the evaporator 20 during defrosting fall directly onto the surface of the glass tube that has become hot due to defrosting. The dimensions are equal to or larger than the diameter and width of the glass tube so that no sizzling noise is generated.

ガラス管ヒータ37の下方には、蒸発器20に付着した霜が解けて落下する除霜水を受ける蒸発皿24が配置されている。 Below the glass tube heater 37, an evaporating dish 24 that receives the defrosted water from which the frost adhering to the evaporator 20 is thawed and falls is arranged.

蒸発器20の右側面には冷蔵室17を冷却した冷気が蒸発器20へと戻る冷蔵室戻りダクト102があり、冷蔵室戻りダクト102により導かれた冷気は蒸発器20の下部で冷凍室戻り口からの冷凍室冷気と合流し、再び熱交換すべく蒸発器20へと流れる。 On the right side of the evaporator 20, there is a refrigerating chamber return duct 102 in which the cold air that has cooled the refrigerating chamber 17 returns to the evaporator 20, and the cold air guided by the refrigerating chamber returning duct 102 returns to the freezer chamber at the lower part of the evaporator 20. It merges with the freezer cool air from the mouth and flows to the evaporator 20 for heat exchange again.

ここで、近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。これにより従来に比して冷媒充填量を低減でき、低コストであると共に、可燃性冷媒が万が一に漏洩した場合の漏洩量が少なくなり安全性をより向上できる。 Here, as a refrigerant for a refrigeration cycle in recent years, isobutane, which is a flammable refrigerant having a small global warming potential, is used from the viewpoint of global environmental protection. This hydrocarbon, isobutane, has a specific density about twice that of air at room temperature and atmospheric pressure (at 2.04 and 300K). As a result, the amount of refrigerant charged can be reduced as compared with the conventional case, the cost is low, and the amount of leakage in the unlikely event that the flammable refrigerant leaks is reduced, so that safety can be further improved.

本実施の形態では、冷媒にイソブタンを用いており、防爆対応として除霜時のガラス管ヒータ37の外郭であるガラス管表面の最大温度を規制している。そのため、ガラス管表面の温度を低減させるため、ガラス管を2重に形成された2重ガラス管ヒータを採用している。このほか、ガラス管表面の温度を低減させる手段としては、ガラス管表面に放熱性の高い部材(例えばアルミフィン)を巻きつけることもできる。このとき、ガラス管を1重とすることで、ガラス管ヒータ37の外形寸法を小さくできる。 In the present embodiment, isobutane is used as the refrigerant, and the maximum temperature of the glass tube surface which is the outer shell of the glass tube heater 37 at the time of defrosting is regulated as an explosion-proof measure. Therefore, in order to reduce the temperature of the surface of the glass tube, a double glass tube heater in which the glass tube is doubly formed is adopted. In addition, as a means for reducing the temperature of the surface of the glass tube, a member having high heat dissipation (for example, aluminum fin) can be wound around the surface of the glass tube. At this time, the external dimensions of the glass tube heater 37 can be reduced by making the glass tube single.

除霜時の効率を向上させる手段としては、ガラス管ヒータ37に加えて、蒸発器20に密着したパイプヒータを併用しても良い。この場合、パイプヒータからの直接の伝熱によって蒸発器20の除霜は効率的に行われると共に、蒸発器20の周囲の蒸発皿24や蒸発器ファン30に付着した霜をガラス管ヒータ37で溶かすことができるため、除霜時間の短縮が図れ、省エネや除霜時間における庫内温度の上昇を抑制することができる。 As a means for improving the efficiency at the time of defrosting, a pipe heater in close contact with the evaporator 20 may be used in combination with the glass tube heater 37. In this case, the evaporator 20 is efficiently defrosted by direct heat transfer from the pipe heater, and the frost adhering to the evaporating dish 24 and the evaporator fan 30 around the evaporator 20 is removed by the glass tube heater 37. Since it can be melted, the defrosting time can be shortened, energy saving and an increase in the temperature inside the refrigerator during the defrosting time can be suppressed.

その中で、本実施の形態での蒸発器20は、一般的に使用される蒸発器20と同様に、代表的なフィンアンドチューブ式の蒸発器20であり、フィンを有する冷媒管を上下方向に積層した蒸発器20である。蒸発器20は、概ね上下方向に10段の冷媒管と、前後方向に3列の冷媒管からの30本の冷媒管が蒸発器20に配置した構成としており、本実施の形態での蒸発器20での冷媒管は上部より下部の幅寸法を短くした構成としている。 Among them, the evaporator 20 in the present embodiment is a typical fin-and-tube type evaporator 20 like the generally used evaporator 20, and the refrigerant pipe having fins is vertically oriented. It is an evaporator 20 laminated in the above. The evaporator 20 has a configuration in which 10 stages of refrigerant pipes in the vertical direction and 30 refrigerant pipes from 3 rows of refrigerant pipes in the front-rear direction are arranged in the evaporator 20. The refrigerant pipe at No. 20 has a configuration in which the width dimension of the lower part is shorter than that of the upper part.

ここで、本実施の形態における冷凍サイクルの蒸発器周囲の構成として、蒸発器20の入口部は、絞り42とバイパス経路43の出口部がY字のジョイントパイプにて合流し接続されており、蒸発器出口部は圧縮機19へと繋がるパイプに接続されている。蒸発器20には、蒸発器20の温度を検知するDEF温度センサ36を有しており、入口パイプ部分に配設されている。 Here, as a configuration around the evaporator of the refrigeration cycle in the present embodiment, the inlet portion of the evaporator 20 is connected by merging and connecting the throttle 42 and the outlet portion of the bypass path 43 with a Y-shaped joint pipe. The evaporator outlet is connected to a pipe leading to the compressor 19. The evaporator 20 has a DEF temperature sensor 36 that detects the temperature of the evaporator 20 and is arranged at an inlet pipe portion.

空冷ファン23、圧縮機19、蒸発器ファン30をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ35の検知する温度が所定値のPCC_ON温度まで上昇すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。 In the cooling stop state (hereinafter, this operation is referred to as "OFF mode") in which the air cooling fan 23, the compressor 19, and the evaporator fan 30 are all stopped, the temperature detected by the FCC temperature sensor 34 reaches the predetermined FCC_ON temperature. When the temperature rises or the temperature detected by the PCC temperature sensor 35 rises to the predetermined PCC_ON temperature, the freezer compartment damper 31 is closed, the refrigerating chamber damper 32 is opened, and the compressor 19, fan 23, and evaporator fan are closed. 30 is driven (hereinafter, this operation is referred to as "PC cooling mode").

PC冷却モードにおいては、空冷ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。 In the PC cooling mode, by driving the air cooling fan 23, the main condenser 21 side of the lower machine room 15 partitioned by the partition wall 22 becomes a negative pressure, external air is sucked from a plurality of intake ports 26, and the evaporating dish 24 side is positive. It becomes pressure and the air in the lower machine room 15 is discharged to the outside from the plurality of discharge ports 27.

一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ40を介して防露パイプ41へ供給される。防露パイプ41を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮した後、絞り42で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する。 On the other hand, the refrigerant discharged from the compressor 19 is condensed by leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then the moisture is removed by the dryer 38 and prevented via the flow path switching valve 40. It is supplied to the dew pipe 41. The refrigerant that has passed through the dew-proof pipe 41 dissipates heat through the housing 12 while warming the opening of the freezer chamber 18, condenses it, and then decompresses it with the throttle 42 and evaporates it with the evaporator 20 while storing the refrigerator chamber 17. While exchanging heat with the internal air to cool the refrigerating chamber 17, it returns to the compressor 19 as a gaseous refrigerant.

PC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。 During the PC cooling mode, when the temperature detected by the FCC temperature sensor 34 drops and rises to the predetermined value of FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 drops to the predetermined value of PCC_OFF temperature, the mode shifts to the OFF mode.

また、PC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパー31を開とし、冷蔵室ダンパー32を閉として、圧縮機19と空冷ファン23、蒸発器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。 Further, during the PC cooling mode, when the temperature detected by the FCC temperature sensor 34 indicates a temperature higher than the predetermined value of the FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 drops to the predetermined value of the PCC_OFF temperature, the freezer compartment damper 31 is opened, the refrigerator damper 32 is closed, and the compressor 19, the air cooling fan 23, and the evaporator fan 30 are driven. Hereinafter, by operating the refrigerating cycle in the same manner as the PC cooling, the refrigerator 20 is cooled by exchanging heat between the air inside the refrigerating chamber 18 and the evaporator 20 (hereinafter, this operation is referred to as “FC cooling mode”). ..

FC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度以上を示すと、PC冷却モードに遷移する。 During the FC cooling mode, when the temperature detected by the FCC temperature sensor 34 drops to the predetermined value of FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 indicates the predetermined value of PCC_ON temperature or higher, the mode shifts to the PC cooling mode. ..

また、FC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度より低い温度を示すと、OFFモードに遷移する。 Further, during the FC cooling mode, when the temperature detected by the FCC temperature sensor 34 drops to the FCC_OFF temperature of a predetermined value and the temperature detected by the PCC temperature sensor 35 indicates a temperature lower than the PCC_ON temperature of the predetermined value, the OFF mode is used. Transition to.

また、PC冷却モード中に、冷凍室の扉開閉等でFCC温度センサ34の検知する温度が所定値のFCC_ON温度より高い温度を示した場合や、FC冷却モード中に、冷蔵室の扉開閉等でPCC温度センサ35の検知する温度が所定値のPCC_ON温度より高い温度を示した場合は、冷凍室ダンパー31を開とし、冷蔵室ダンパー32も開として、冷蔵室と冷凍室を冷却することもできる(以下、この動作を「PC+FC冷却モード」という)。 Further, when the temperature detected by the FCC temperature sensor 34 indicates a temperature higher than the predetermined FCC_ON temperature by opening / closing the door of the freezing room during the PC cooling mode, or opening / closing the door of the refrigerating room during the FC cooling mode, etc. When the temperature detected by the PCC temperature sensor 35 indicates a temperature higher than the predetermined value of the PCC_ON temperature, the freezer compartment damper 31 may be opened, the refrigerating chamber damper 32 may also be opened, and the refrigerating chamber and the freezing chamber may be cooled. (Hereinafter, this operation is referred to as "PC + FC cooling mode").

ここで、本実施の形態の冷蔵庫の除霜時の運転動作について説明する。 Here, the operation operation at the time of defrosting the refrigerator of the present embodiment will be described.

図5において、流路切換バルブ40の状態「開閉」は、主凝縮器21から防露パイプ41への流路を開放して、主凝縮器21からバイパス経路43への流路を閉塞することを意味する。また、流路切換バルブ40の状態「閉開」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス経路43への流路を開放することを意味する。流路切換バルブ40の状態「閉閉」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス経路43への流路を閉塞することを意味する。 In FIG. 5, the state “opening / closing” of the flow path switching valve 40 is to open the flow path from the main condenser 21 to the dew-proof pipe 41 and block the flow path from the main condenser 21 to the bypass path 43. Means. Further, the state "closed / opened" of the flow path switching valve 40 blocks the flow path from the main condenser 21 to the dew-proof pipe 41 and opens the flow path from the main condenser 21 to the bypass path 43. means. The state "closed" of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew-proof pipe 41 is closed and the flow path from the main condenser 21 to the bypass path 43 is closed. ..

図5のタイムチャートは本実施の形態の除霜時の制御を示している。 The time chart of FIG. 5 shows the control at the time of defrosting of the present embodiment.

圧縮機19の積算運転時間または、前回除霜動作後から経過した時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。 When the integrated operation time of the compressor 19 or the time elapsed since the previous defrosting operation reaches a predetermined time, the mode shifts to the defrosting mode in which the frost formation of the evaporator 20 is heated and melted.

除霜モードの区間aにおいて、まず、冷蔵室17の温度上昇を抑制するために、PC+FC冷却モードと同様に冷蔵室17と冷凍室18を所定時間冷却し、その後、除霜時の温度上昇の影響を受けやすい冷凍室18の温度上昇を抑制するために、FC冷却モードと同様に冷凍室18を所定時間冷却する。なお、冷蔵室17の庫内温度が0℃以下になると保存している食品が凍結する恐れがあるため、場合によってはPC+FC冷却モードを省略しFC冷却モードのみとすることもできる。次に、区間bにおいて、圧縮機19を運転しながら流路切換バルブ40を全閉となる閉閉状態とすることによって、主凝縮器21から防露パイプ41とバイパス経路43への流路を共に閉塞して防露パイプ41と蒸発器20、及びバイパス経路43に滞留する冷媒を主凝縮器21へ回収する。そして、区間cにおいて、圧縮機19を停止するとともに、流路切換バルブ40を切換えて主凝縮器21からバイパス経路43への流路を開放することで、バイパス経路43を介して主凝縮器21に回収された高圧冷媒を蒸発器20に供給する。このとき、バイパス経路43に設けられた熱交換部44で高圧冷媒が停止中の圧縮機19の廃熱によって加温されて、乾き度が増大する。これは、区間bにおいて高圧冷媒が主凝縮器21に回収される際に外気に放熱して大部分が凝縮するためである。従って、区間cにおいて高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、外気温度に維持された高圧冷媒の顕熱に加えて凝縮潜熱による熱量を蒸発器20に加えることができる。次に、区間dにおいて、蒸発器20に取り付けられた除霜ヒータ37に通電して除霜を完了する。除霜の完了はDEF温度センサ36が所定温度に達したことで判断する。そして、区間eにおいて、流路切換バルブ40を切換えて主凝縮器21からバイパス経路43への流路を閉塞するとともに、主凝縮器21から防露パイプ41への流路を開放して冷凍サイクル内を均圧し、区間fから通常運転を再開する。 In the defrosting mode section a, first, in order to suppress the temperature rise of the refrigerating chamber 17, the refrigerating chamber 17 and the freezing chamber 18 are cooled for a predetermined time in the same manner as in the PC + FC cooling mode, and then the temperature at the time of defrosting. In order to suppress the temperature rise of the freezing chamber 18 which is easily affected by the rise, the freezing chamber 18 is cooled for a predetermined time in the same manner as in the FC cooling mode. If the temperature inside the refrigerator compartment 17 becomes 0 ° C. or lower, the stored food may freeze. Therefore, in some cases, the PC + FC cooling mode may be omitted and only the FC cooling mode may be used. Next, in the section b, the flow path from the main condenser 21 to the dew-proof pipe 41 and the bypass path 43 is opened by setting the flow path switching valve 40 to a fully closed state while operating the compressor 19. The refrigerant that is blocked together and stays in the dew-proof pipe 41, the evaporator 20, and the bypass path 43 is collected in the main condenser 21. Then, in the section c, the compressor 19 is stopped and the flow path switching valve 40 is switched to open the flow path from the main condenser 21 to the bypass path 43, so that the main condenser 21 is passed through the bypass path 43. The high-pressure refrigerant recovered in the above is supplied to the evaporator 20. At this time, the high-pressure refrigerant is heated by the waste heat of the compressor 19 which is stopped in the heat exchange unit 44 provided in the bypass path 43, and the dryness is increased. This is because when the high-pressure refrigerant is recovered in the main condenser 21 in the section b, it dissipates heat to the outside air and most of it condenses. Therefore, as compared with the case where the high-pressure refrigerant is supplied to the evaporator 20 without being heated by the heat exchange unit 44 in the section c, the amount of heat due to the latent heat of condensation is evaporated in addition to the sensible heat of the high-pressure refrigerant maintained at the outside air temperature. It can be added to the vessel 20. Next, in section d, the defrost heater 37 attached to the evaporator 20 is energized to complete defrosting. The completion of defrosting is determined when the DEF temperature sensor 36 reaches a predetermined temperature. Then, in the section e, the flow path switching valve 40 is switched to block the flow path from the main condenser 21 to the bypass path 43, and the flow path from the main condenser 21 to the dew-proof pipe 41 is opened to perform the refrigeration cycle. The pressure inside is equalized, and normal operation is restarted from the section f.

この一連の動作において、区間bでは更に、圧縮機19の運転中に蒸発器ファン30も運転している。これにより、蒸発器20の過度な温度低下を抑制することでの圧縮機品質の向上と共に、冷媒の回収時間も早くなるため時間短縮が図れる。更に後の区間cにおいて主凝縮器21から蒸発器20へ冷媒を供給する際に十分な冷媒量を供給できるため蒸発器20での温度昇温効果を高め、区間cにおける除霜ヒータ37による除霜時間の短縮を図ることで省エネとなる。除霜時間が短くなれば、圧縮機19を停止している非冷却時間も短くなるため食品自身の昇温も抑えられる。これは温度変動によって劣化する食品保存性に対しても好条件となる。 In this series of operations, the evaporator fan 30 is also operated during the operation of the compressor 19 in the section b. As a result, the quality of the compressor is improved by suppressing an excessive temperature drop of the evaporator 20, and the recovery time of the refrigerant is shortened, so that the time can be shortened. Further, in the later section c, a sufficient amount of refrigerant can be supplied when the refrigerant is supplied from the main condenser 21 to the evaporator 20, so that the temperature raising effect in the evaporator 20 is enhanced, and the defrost heater 37 in the section c removes the refrigerant. Savings can be achieved by shortening the frost time. If the defrosting time is shortened, the non-cooling time during which the compressor 19 is stopped is also shortened, so that the temperature rise of the food itself can be suppressed. This is also a favorable condition for food preservation that deteriorates due to temperature fluctuations.

なお、区間bで蒸発器ファン30を運転することは蒸発器20において冷媒が相変化する顕熱変化及び潜熱変化の熱の利用が可能であり、冷蔵室ダンパー32を開し冷凍室ダンパー31を閉する動作をすることで、蒸発器ファン30の運転による蒸発器20の温度上昇の影響で各室に送風される冷気も昇温するが、冷凍室ダンパー31を閉しているため冷凍室18に送風されず、冷蔵室17にのみ送風できることから冷蔵室17のみを冷却することができるため、除霜中の圧縮機停止による冷蔵室17内の温度上昇を抑制することができ、庫内に保存されている食品の劣化を抑制できる。また、蒸発器ファン30の運転で冷蔵室17から冷蔵室戻りダクト102を通過した戻り空気により蒸発器自身も温度昇温することで、区間cにおけるヒータ除霜時の開始温度も高くなりヒータ通電時間短縮もでき省エネとなる。 By operating the evaporator fan 30 in the section b, it is possible to utilize the heat of the sensible heat change and the latent heat change in which the refrigerant changes phase in the evaporator 20, and the refrigerating chamber damper 32 is opened to open the freezing chamber damper 31. By closing the refrigerator, the temperature of the cold air blown to each chamber rises due to the effect of the temperature rise of the evaporator 20 due to the operation of the evaporator fan 30, but the freezer chamber 18 is closed because the freezer damper 31 is closed. Since only the refrigerating chamber 17 can be cooled because the air is not blown to the refrigerator and only the refrigerating chamber 17 can be blown, the temperature rise in the refrigerating chamber 17 due to the shutdown of the compressor during defrosting can be suppressed. Deterioration of stored food can be suppressed. Further, when the evaporator fan 30 is operated, the temperature of the evaporator itself is raised by the return air that has passed from the refrigerating chamber 17 to the refrigerating chamber return duct 102, so that the starting temperature at the time of defrosting the heater in the section c is also raised and the heater is energized. Time can be shortened and energy can be saved.

また、蒸発器20の蒸発器出口近傍に第二のDFC温度センサ110を備え、区間bの主凝縮器21への冷媒回収動作時において、第二のDFC温度センサ110の温度が所定の温度となった時点で冷媒回収動作を終了してもよい。この場合、冷凍サイクル内の冷媒が主凝縮器21に回収される際に、蒸発器20の温度は蒸発器入口側から上昇しはじめ、蒸発器20の出口側が遅れて上昇するが、蒸発器20の出口近傍の温度を検知することで蒸発器20内に残留する冷媒を確実に回収することができる。故に区間cで加温に利用する際の供給冷媒を安定的に確保することで、区間dにおける除霜ヒータ37の電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。 Further, a second DFC temperature sensor 110 is provided in the vicinity of the evaporator outlet of the evaporator 20, and the temperature of the second DFC temperature sensor 110 is set to a predetermined temperature during the refrigerant recovery operation to the main condenser 21 in the section b. The refrigerant recovery operation may be terminated at that time. In this case, when the refrigerant in the refrigeration cycle is recovered in the main condenser 21, the temperature of the evaporator 20 starts to rise from the inlet side of the evaporator, and the outlet side of the evaporator 20 rises with a delay, but the evaporator 20 By detecting the temperature in the vicinity of the outlet of the above, the refrigerant remaining in the evaporator 20 can be reliably recovered. Therefore, by stably securing the supplied refrigerant for heating in the section c, the electric power amount of the defrost heater 37 in the section d can be stably reduced, and the energy saving of the refrigerator can be achieved. it can.

また、区間bにおける冷媒回収動作の終了を、DFC温度センサ36もしくは第二のDFC温度センサ110が温度最下点から所定値温度上昇した時点で終了することで、蒸発器含めた冷凍サイクル内の冷媒を主凝縮器21に回収することが確実に行えることができる。更に蒸発器出口に配設してある第二のDFC温度センサ110を用いることで、冷媒回収時にアキュムレータがあり温度昇温が遅い出口側の温度を検知できるため、なお良い。更に、最適な冷媒回収時間で終了することができる。故に、除霜動作としての時間が短縮されるため、除霜にかかる時間即ち庫内を冷却しない非冷却時間が短縮され冷蔵庫の省エネルギー化になると共に庫内温度の上昇も抑制され食品の品質劣化を抑制することができる。また、除霜にかかる時間が短縮され庫内温度が上昇しにくくなるということは、除霜後の冷却時間も短縮できるため除霜ヒータ37が通電された熱負荷も考慮して全体として、冷蔵庫の省エネルギー化を図ることができる。 Further, by ending the refrigerant recovery operation in the section b when the DFC temperature sensor 36 or the second DFC temperature sensor 110 rises in a predetermined value temperature from the lowest temperature point, the refrigerating cycle including the evaporator is completed. The refrigerant can be reliably recovered in the main condenser 21. Further, by using the second DFC temperature sensor 110 arranged at the outlet of the evaporator, it is more preferable because the temperature on the outlet side where the temperature rise is slow due to the accumulator at the time of recovering the refrigerant can be detected. Further, it can be completed in the optimum refrigerant recovery time. Therefore, since the time for the defrosting operation is shortened, the time required for defrosting, that is, the non-cooling time for not cooling the inside of the refrigerator is shortened, the energy of the refrigerator is saved, the temperature inside the refrigerator is suppressed, and the quality of food deteriorates. Can be suppressed. In addition, the time required for defrosting is shortened and the temperature inside the refrigerator is less likely to rise, which means that the cooling time after defrosting can also be shortened. Therefore, considering the heat load on which the defrosting heater 37 is energized, the refrigerator as a whole Energy saving can be achieved.

また、本実施の形態では、バイパス経路43の出口を蒸発器入口側と接続している。これにより、冷蔵庫の冷凍サイクルにおいて、絞り42の出口部即ち蒸発器入口部は除霜時に温度上昇しにくいために温度を検知するDFC温度センサ36を配設し、センサが所定の温度を検知することで除霜終了の判定を行っているが、バイパス経路43の出口を温度上昇しにくい蒸発器入口側から高圧冷媒を供給するべく接続することで、予め蒸発器入口の温度を上昇させて、区間dでの温度上昇を促進している。 Further, in the present embodiment, the outlet of the bypass path 43 is connected to the evaporator inlet side. As a result, in the refrigerating cycle of the refrigerator, the outlet portion of the throttle 42, that is, the inlet portion of the evaporator is provided with a DFC temperature sensor 36 that detects the temperature because the temperature does not easily rise during defrosting, and the sensor detects a predetermined temperature. Although the end of defrosting is determined by this, the temperature of the evaporator inlet is raised in advance by connecting the outlet of the bypass path 43 to supply the high-pressure refrigerant from the evaporator inlet side where the temperature does not easily rise. It promotes the temperature rise in the section d.

なお、バイパス経路43の出口を蒸発器入口側と接続しているため、温度上昇を既配設のDFC温度センサ36を用いて検知することができる。これによりコストアップの必要が無くコストパフォーマンスが高い冷蔵庫を提供できる。 Since the outlet of the bypass path 43 is connected to the inlet side of the evaporator, the temperature rise can be detected by using the DFC temperature sensor 36 already arranged. As a result, it is possible to provide a refrigerator with high cost performance without the need for cost increase.

なお、区間cの終了前に区間dの開始を行ってもよい。この場合、区間cで、圧縮機19を停止し、流路切換バルブ40を切換えて主凝縮器21からバイパス経路43への流路を開放することで、主凝縮器21に回収された高圧冷媒が蒸発器20に供給され、蒸発器20の内部で供給された冷媒が凝縮することで凝縮熱により蒸発器温度が上昇していくが、このとき、蒸発器温度が最高温度に達する前に区間dに移行し除霜ヒータ37の通電を開始することで、区間cでの最高温度を越えた後の温度低下ロスを発生することなく効果的に蒸発器20の温度を上昇させることができる。本実施の形態では、区間cでの蒸発器温度をDFC温度センサ36によって検知した方法としたが、第二のDFC温度センサ110を用いても良いし、区間毎の時間を決めて時間制御としても良い。また、温度と時間の両方による切替制御としてもよい。この場合は、例えば扉開閉等で蒸発器に付着する霜の量が変化した場合でも、区間切替による除霜時の供給する熱ロスを発生することはない。 The section d may be started before the end of the section c. In this case, the high-pressure refrigerant recovered in the main condenser 21 by stopping the compressor 19 and switching the flow path switching valve 40 to open the flow path from the main condenser 21 to the bypass path 43 in the section c. Is supplied to the evaporator 20, and the refrigerant supplied inside the evaporator 20 condenses, so that the temperature of the evaporator rises due to the heat of condensation. By shifting to d and starting energization of the defrost heater 37, the temperature of the evaporator 20 can be effectively raised without causing a temperature drop loss after the maximum temperature in the section c is exceeded. In the present embodiment, the evaporator temperature in the section c is detected by the DFC temperature sensor 36, but the second DFC temperature sensor 110 may be used, or the time for each section is determined to control the time. Is also good. Further, switching control may be performed by both temperature and time. In this case, even if the amount of frost adhering to the evaporator changes due to, for example, opening and closing the door, heat loss to be supplied at the time of defrosting by section switching does not occur.

また、本実施の形態では、温度センサを用いて蒸発器温度を検知することで区間cでの冷媒状態を把握し、その後区間dにて除霜ヒータ37を通電しているが、圧力センサを用いて高圧圧力と蒸発器での低圧圧力が平衡しバランスした時点で区間dへと移行しても良い。 Further, in the present embodiment, the refrigerant state in the section c is grasped by detecting the evaporator temperature using the temperature sensor, and then the defrost heater 37 is energized in the section d, but the pressure sensor is used. It may be used to shift to the section d when the high pressure and the low pressure in the evaporator are balanced and balanced.

なお、本実施の形態では、主凝縮器21は強制空冷タイプの凝縮器としたが、筐体12の側面や背面に熱結合される第二の防露パイプを用いてもよい。冷蔵室17や冷凍室18の開口部周辺と熱結合される防露パイプ41と異なり、筐体12の側面や背面に熱結合される第二の防露パイプは圧縮機19が停止中でも外気温度近傍に維持されるので、主凝縮器21として利用しても同様の効果が期待できる。 In the present embodiment, the main condenser 21 is a forced air-cooled type condenser, but a second dew-proof pipe that is thermally coupled to the side surface or the back surface of the housing 12 may be used. Unlike the dew-proof pipe 41 that is thermally coupled to the periphery of the openings of the refrigerating chamber 17 and the freezing chamber 18, the second dew-proof pipe that is thermally coupled to the side surface and the back surface of the housing 12 has the outside air temperature even when the compressor 19 is stopped. Since it is maintained in the vicinity, the same effect can be expected even if it is used as the main condenser 21.

なお、本実施の形態では、流路切換バルブ40と蒸発器20をバイパス経路43で接続したが、除霜の際に蒸発器20へ供給する高圧冷媒の流速が早すぎて流動音が発生する場合、流速を調整するための流路抵抗をバイパス経路43と直列に接続してもよい。 In the present embodiment, the flow path switching valve 40 and the evaporator 20 are connected by a bypass path 43, but the flow velocity of the high-pressure refrigerant supplied to the evaporator 20 at the time of defrosting is too fast to generate a flow noise. In this case, the flow path resistance for adjusting the flow velocity may be connected in series with the bypass path 43.

なお、本実施の形態では、除霜の際に高圧冷媒を防露パイプ41と絞り42を経由せずに蒸発器20へ直接供給することで、圧縮機19が停止した際に主凝縮器21よりも低温となる防露パイプ41の影響で高圧冷媒の温度が低下することを回避したが、除霜の進行により蒸発器20の温度が防露パイプ41よりも高くなると、絞り42を介して高圧冷媒が蒸発器20から防露パイプ41へ逆流する可能性があるので、防露パイプ41の出口から蒸発器20の入口の経路内に逆流を防止する逆止弁や二方弁を設けてもよい。 In the present embodiment, the high-pressure refrigerant is directly supplied to the evaporator 20 without passing through the dew-proof pipe 41 and the throttle 42 during defrosting, so that the main condenser 21 is stopped when the compressor 19 is stopped. Although it was avoided that the temperature of the high-pressure refrigerant was lowered due to the influence of the dew-proof pipe 41 which became lower than the dew-proof pipe 41, when the temperature of the evaporator 20 became higher than that of the dew-proof pipe 41 due to the progress of defrosting, the temperature of the evaporator 20 became higher than that of the dew-proof pipe 41. Since the high-pressure refrigerant may flow back from the evaporator 20 to the dew-proof pipe 41, a check valve or a two-way valve for preventing backflow is provided in the path from the outlet of the dew-proof pipe 41 to the inlet of the evaporator 20. May be good.

なお、本実施の形態では、除霜の際の除霜ヒータ37としてガラス管ヒータを用いたが、ガラス管ヒータに加えパイプヒータを組み合わせた場合、お互いのヒータ容量を適正化することで、ガラス管ヒータの容量を低くすることが可能となる。ヒータ容量を低くすると除霜時のガラス管ヒータの外郭の温度も低くすることができるため、除霜時の赤熱も抑制できる。 In the present embodiment, a glass tube heater is used as the defrost heater 37 at the time of defrosting, but when a pipe heater is combined with the glass tube heater, the glass can be optimized by optimizing each other's heater capacities. It is possible to reduce the capacity of the tube heater. By lowering the heater capacity, the temperature of the outer shell of the glass tube heater during defrosting can also be lowered, so that red heat during defrosting can also be suppressed.

更に、除霜時におけるガラス管ヒータの入力時間を低減できるということは、非冷却運転時間短縮での温度上昇抑制や、ガラス管ヒータ自身の発熱による温度上昇抑制となることが、庫内で保存されている食品にも該当する。庫内に保存されている冷凍食品は、除霜時の非冷却運転時間での温度上昇やガラス管ヒータ自身の温度からの伝熱、及び除霜時の暖気の庫内流入等により、霜焼けや熱の変動による影響で劣化していくが、本実施の形態において、長期間保存した場合でも食品の劣化を抑えることができる。 Furthermore, the fact that the input time of the glass tube heater during defrosting can be reduced means that the temperature rise can be suppressed by shortening the non-cooling operation time and the temperature rise due to the heat generated by the glass tube heater itself can be suppressed. It also applies to foods that are used. Frozen foods stored in the refrigerator are frosted due to temperature rise during the non-cooling operation time during defrosting, heat transfer from the temperature of the glass tube heater itself, and inflow of warm air into the refrigerator during defrosting. Although it deteriorates due to the influence of heat fluctuation, in the present embodiment, deterioration of food can be suppressed even when it is stored for a long period of time.

以上のように、本発明にかかる冷蔵庫は、蒸発器及び防露パイプに滞留する冷媒を主凝縮器に回収し、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入して蒸発器を加温するエネルギーを利用して、除霜用電気ヒータの出力を削減することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。 As described above, in the refrigerator according to the present invention, the refrigerant staying in the evaporator and the dew-proof pipe is collected in the main condenser, and the high-pressure refrigerant in the refrigeration cycle flows into the evaporator due to the pressure difference to add the evaporator. Since the output of the electric heater for defrosting can be reduced by using the heating energy, it can be applied to other refrigerating and refrigerating applied products such as commercial refrigerators.

11 冷蔵庫
12 筐体
13 扉
14 脚
15 下部機械室
16 上部機械室
17 冷蔵室
18 冷凍室
19 圧縮機
20 蒸発器
21 主凝縮器
22 隔壁
23 ファン(空冷ファン)
24 蒸発皿
25 底板
26 吸気口
27 排出口
28 連通風路
30 蒸発器ファン
31 冷凍室ダンパー
32 冷蔵室ダンパー
33 ダクト
34 FCC温度センサ
35 PCC温度センサ
36 DEF温度センサ
37 除霜ヒータ(ガラス管ヒータ)
38 ドライヤ
40 流路切換バルブ
41 防露パイプ
42 絞り
43 バイパス経路
44 熱交換部
70 密閉容器
71 熱伝導性ブチルゴム
72 アルミ箔テープ
73 冷却室
102 冷蔵室戻りダクト
110 温度センサ(第二のDFC温度センサ)
11 Refrigerator 12 Housing 13 Door 14 Leg 15 Lower machine room 16 Upper machine room 17 Refrigerator room 18 Freezer room 19 Compressor 20 Evaporator 21 Main condenser 22 Partition 23 Fan (air cooling fan)
24 Evaporating dish 25 Bottom plate 26 Intake port 27 Outlet port 28 Communication air passage 30 Evaporator fan 31 Refrigerator room damper 32 Refrigerator room damper 33 Duct 34 FCC temperature sensor 35 PCC temperature sensor 36 DEF temperature sensor 37 Defrost heater (glass tube heater)
38 Dryer 40 Flow path switching valve 41 Dew-proof pipe 42 Squeezing 43 Bypass path 44 Heat exchange part 70 Sealed container 71 Thermally conductive butyl rubber 72 Aluminum foil tape 73 Cooling chamber 102 Refrigerating chamber return duct 110 Temperature sensor (second DFC temperature sensor) )

Claims (4)

少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、前記主凝縮器の下流側に接続した流路切換バルブと、前記流路切換バルブの下流側に接続した防露パイプと、前記防露パイプと並列に接続し一部を圧縮機と熱結合する熱交換部を有したバイパス経路とを有し、断熱壁で区画形成された冷凍室および冷蔵室に供給する冷気をそれぞれ制御する冷凍室ダンパーおよび冷蔵室ダンパーとを備えた冷蔵庫において、前記蒸発器を除霜する際に、前記蒸発器の近傍に設けた蒸発器ファンおよび前記圧縮機を運転中に前記流路切換バルブを全閉するとともに前記冷蔵室ダンパーを開き前記冷凍室ダンパーを閉じる動作により、前記蒸発器および前記防露パイプ内の滞留冷媒の回収動作後、前記圧縮機を停止するとともに前記流路切換バルブを前記バイパス経路側に開放することにより、回収した高圧冷媒を前記蒸発器に供給し、所定時間後、前記蒸発器の近傍に設けた除霜ヒータに通電することを特徴とする冷蔵庫。 A refrigerating cycle having at least a compressor, an evaporator, a main condenser, and a dew-proof pipe is provided, and a flow path switching valve connected to the downstream side of the main condenser and dew-proof connected to the downstream side of the flow path switching valve. It has a pipe and a bypass path having a heat exchange portion that is connected in parallel with the dew-proof pipe and partially heat-bonds to a compressor, and supplies cold air to a freezer compartment and a refrigerator compartment formed by a heat insulating wall. In a refrigerator equipped with a freezer compartment damper and a refrigerating chamber damper, respectively, when defrosting the evaporator, the flow path of the evaporator fan and the compressor provided in the vicinity of the evaporator are being operated. By fully closing the switching valve, opening the refrigerating chamber damper, and closing the refrigerating chamber damper, after the recovery operation of the accumulated refrigerant in the evaporator and the dew-proof pipe, the compressor is stopped and the flow path is switched. A refrigerator characterized in that the recovered high-pressure refrigerant is supplied to the evaporator by opening the valve to the bypass path side, and after a predetermined time, a defrost heater provided in the vicinity of the compressor is energized. 前記蒸発器の出口近傍に温度センサを備え、前記蒸発器の近傍に設けた蒸発器ファンおよび前記圧縮機を運転中に前記流路切換バルブを全閉するとともに前記冷蔵室ダンパーを開き前記冷凍室ダンパーを閉じ、前記蒸発器および前記防露パイプ内の滞留冷媒を回収する冷媒回収動作時に前記温度センサの温度が所定の温度となった時点で前記冷媒回収動作を終了することを特徴とする請求項1に記載の冷蔵庫。 A temperature sensor is provided in the vicinity of the outlet of the evaporator, and the flow path switching valve is fully closed and the refrigerating chamber damper is opened while the evaporator fan and the compressor provided in the vicinity of the evaporator are being operated. The claim is characterized in that the refrigerant recovery operation is terminated when the temperature of the temperature sensor reaches a predetermined temperature during the refrigerant recovery operation of closing the damper and recovering the accumulated refrigerant in the evaporator and the dew-proof pipe. Item 1. The refrigerator according to item 1. 前記温度センサの温度が最下点から所定温度上昇した時点で前記冷媒回収動作を終了することを特徴とする請求項2に記載の冷蔵庫。 The refrigerator according to claim 2 , wherein the refrigerant recovery operation is terminated when the temperature of the temperature sensor rises from the lowest point to a predetermined temperature. 前記蒸発器に前記バイパス経路の入り口側接続部を設け、前記バイパス経路の出口を前記蒸発器の前記入り口側接続部と接続したことを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 The invention according to any one of claims 1 to 3, wherein the evaporator is provided with an inlet-side connection portion of the bypass path, and the outlet of the bypass path is connected to the inlet-side connection portion of the evaporator. Refrigerator.
JP2017229818A 2017-11-30 2017-11-30 refrigerator Active JP6872689B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017229818A JP6872689B2 (en) 2017-11-30 2017-11-30 refrigerator
PCT/JP2018/040791 WO2019107066A1 (en) 2017-11-30 2018-11-02 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229818A JP6872689B2 (en) 2017-11-30 2017-11-30 refrigerator

Publications (2)

Publication Number Publication Date
JP2019100585A JP2019100585A (en) 2019-06-24
JP6872689B2 true JP6872689B2 (en) 2021-05-19

Family

ID=66664886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229818A Active JP6872689B2 (en) 2017-11-30 2017-11-30 refrigerator

Country Status (2)

Country Link
JP (1) JP6872689B2 (en)
WO (1) WO2019107066A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887313A (en) * 2019-10-17 2020-03-17 合肥华凌股份有限公司 Dew removal pipe temperature control method for refrigerator, electronic device and medium
CN110645760A (en) * 2019-10-30 2020-01-03 福建工程学院 Energy storage type air-cooled frost-free refrigerator and defrosting method thereof
CN111720953A (en) * 2020-06-05 2020-09-29 海信(山东)空调有限公司 Air conditioner and control method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169457A (en) * 1987-01-07 1988-07-13 松下電器産業株式会社 Heat pump type air conditioner
JP3443785B2 (en) * 1996-06-07 2003-09-08 株式会社日立製作所 refrigerator
JP4310947B2 (en) * 2001-09-06 2009-08-12 三菱電機株式会社 Control device for refrigerator
JP2003322454A (en) * 2002-04-26 2003-11-14 Hitachi Home & Life Solutions Inc Refrigerator
EP2711654A4 (en) * 2011-05-18 2015-08-12 Panasonic Corp Refrigerator
US9625442B2 (en) * 2012-04-19 2017-04-18 Panasonic Healthcare Holdings Co., Ltd. Biological information measurement device, and biological information measurement method using same
JP5992076B1 (en) * 2015-07-23 2016-09-14 三菱電機株式会社 Refrigeration cycle apparatus, refrigerator equipped with the refrigeration cycle apparatus, and defrosting method for refrigeration cycle apparatus
KR20170029346A (en) * 2015-09-07 2017-03-15 엘지전자 주식회사 Control method of refrigerator
CN108603712B (en) * 2016-04-13 2020-07-28 松下知识产权经营株式会社 Refrigerator and cooling system

Also Published As

Publication number Publication date
JP2019100585A (en) 2019-06-24
WO2019107066A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6934603B2 (en) Refrigerator and cooling system
US10495368B2 (en) Refrigerator and operation method of the same
JP6074596B2 (en) refrigerator
WO2012157263A1 (en) Refrigerator
JP2005249254A (en) Refrigerator-freezer
JP5178771B2 (en) Freezer refrigerator
JP5261066B2 (en) Refrigerator and refrigerator
JP6872689B2 (en) refrigerator
JP6709363B2 (en) refrigerator
JP2009092371A (en) Chiller
JP6101926B2 (en) refrigerator
JP5031045B2 (en) Freezer refrigerator
JP5879501B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP6846599B2 (en) refrigerator
JP5916174B2 (en) refrigerator
JP6940424B2 (en) refrigerator
JP3404313B2 (en) refrigerator
WO2018147113A1 (en) Refrigerator
JP5870237B2 (en) refrigerator
JP2017026210A (en) refrigerator
CN111435047A (en) Defrosting system and refrigerator
JP2019027649A (en) refrigerator
JP2012087952A (en) Refrigerator freezer
JP2013122328A (en) Refrigeration device for container

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6872689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151