JP2017026210A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2017026210A
JP2017026210A JP2015144538A JP2015144538A JP2017026210A JP 2017026210 A JP2017026210 A JP 2017026210A JP 2015144538 A JP2015144538 A JP 2015144538A JP 2015144538 A JP2015144538 A JP 2015144538A JP 2017026210 A JP2017026210 A JP 2017026210A
Authority
JP
Japan
Prior art keywords
refrigerator
refrigerant
compressor
temperature
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015144538A
Other languages
Japanese (ja)
Inventor
康仁 福井
Yasuhito Fukui
康仁 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015144538A priority Critical patent/JP2017026210A/en
Publication of JP2017026210A publication Critical patent/JP2017026210A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To control a heating amount from dew condensation prevention piping, a high temperature refrigerant-inflow amount to an evaporator and evaporation pressure to provide a refrigerator with high-energy-saving performance.SOLUTION: In the refrigerator including a refrigerant flow passage for causing a refrigerant discharged from a discharge port of a compressor 24 to flow to heat radiation means 41, the dew condensation prevention piping 43, decompression means 44, the evaporator 7 and a suction port of the compressor 24 in this order, temperature of an opening edge of the refrigerator is controlled by changing a throttle amount of the decompression means 44.SELECTED DRAWING: Figure 8

Description

この発明は、冷蔵庫に関するものである。   The present invention relates to a refrigerator.

本技術分野の背景技術として、例えば特許文献1(特開2015−14373号公報)がある。
特許文献1の要約欄には、「熱箱体10の開口縁を加熱する結露防止配管43を備え、圧縮機24の吐出口から吐出される冷媒を、放熱手段41,42、結露防止配管43、減圧手段44、蒸発器7、圧縮機24の吸込口の順に流す第一の冷媒流路Aと、圧縮機24の吐出口から吐出される冷媒を、放熱手段41,42、減圧手段44、蒸発器7、圧縮機24の吸込口の順に流す第二の冷媒流路Bと、を備え、放熱手段41,42と結露防止配管43の間と、結露防止配管43と蒸発器7の間に、冷媒流路制御手段110,100を備え、該冷媒流路制御手段110,100によって、第一の冷媒流路Aと第二の冷媒流路Bの切換え、減圧手段44の絞りの変更、及び結露防止配管43と蒸発器7との間の冷媒流路の連通と閉塞の切換えを行う。」と記載がある。
As a background art in this technical field, there is, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2015-14373).
In the summary column of Patent Document 1, “the dew condensation prevention pipe 43 that heats the opening edge of the heat box 10 is provided, and the refrigerant discharged from the discharge port of the compressor 24 is replaced with the heat radiation means 41, 42, the dew condensation prevention pipe 43. , The first refrigerant flow path A flowing in the order of the decompression means 44, the evaporator 7, and the suction port of the compressor 24, and the refrigerant discharged from the discharge port of the compressor 24, the heat radiation means 41, 42, the decompression means 44, An evaporator 7 and a second refrigerant flow path B that flows in the order of the suction port of the compressor 24, between the heat radiation means 41, 42 and the dew condensation prevention pipe 43, and between the dew condensation prevention pipe 43 and the evaporator 7. The refrigerant flow path control means 110, 100, and the refrigerant flow path control means 110, 100 switch the first refrigerant flow path A and the second refrigerant flow path B, change the throttle of the decompression means 44, and The refrigerant flow between the dew condensation prevention pipe 43 and the evaporator 7 is switched between communication and blockage. . "And there is a description.

特開2015−14373号公報Japanese Patent Laying-Open No. 2015-14373

一般的に、家庭用冷蔵庫の扉開口部は温度が低下しやすいため、結露防止配管を埋設して管内に高温冷媒を流すことで結露を防止する場合がある。蒸発圧力を制御すると冷媒流量も変化するため、蒸発圧力が変化すると結露防止管内を流れる高温冷媒の流量や、開口部へ与える熱量も影響を受ける。そのため、この結露防止配管を用いる場合、蒸発圧力の変化により加熱量が不足し、結露に至らないよう配慮が必要となる。   Generally, since the temperature of the door opening of a household refrigerator tends to decrease, there is a case where condensation is prevented by burying a dew condensation prevention pipe and flowing a high-temperature refrigerant into the pipe. When the evaporation pressure is controlled, the refrigerant flow rate also changes. Therefore, when the evaporation pressure changes, the flow rate of the high-temperature refrigerant flowing in the dew condensation prevention pipe and the amount of heat given to the opening are also affected. Therefore, when this dew condensation prevention pipe is used, it is necessary to consider that the amount of heating is insufficient due to a change in the evaporation pressure and that dew condensation does not occur.

特許文献1では、運転モードによって減圧量を制御する内容が記載されているが、着霜に関する蒸発圧力変化ついては考慮されていない。   Patent Document 1 describes the content of controlling the pressure reduction amount according to the operation mode, but does not take into account the evaporation pressure change related to frost formation.

そこで本発明は、高温冷媒の流入量、蒸発圧力、及び蒸発器の着霜量を考慮した制御をすることで、省エネルギー性能の高い冷蔵庫を提供することを目的とする。   Therefore, an object of the present invention is to provide a refrigerator with high energy saving performance by performing control in consideration of the inflow amount of high-temperature refrigerant, the evaporation pressure, and the frost formation amount of the evaporator.

この発明は、上記のような課題を解決するためになされたものである。
即ち、前方に開口を形成する開口縁を有する断熱箱体と、前記開口を開閉する扉と、該扉と前記断熱箱体によって形成された貯蔵室と、圧縮機と、該圧縮機の吐出口から吐出される冷媒を、放熱手段、結露防止配管、減圧手段、蒸発器、前記圧縮機の吸込口の順に流す冷媒流路と、備えた冷蔵庫において、前記減圧手段の絞り量の変更によって前記開口縁の温度を制御する。
The present invention has been made to solve the above-described problems.
That is, a heat insulating box having an opening edge that forms an opening in the front, a door that opens and closes the opening, a storage chamber formed by the door and the heat insulating box, a compressor, and a discharge port of the compressor In the refrigerator provided with a refrigerant flow path for flowing the refrigerant discharged from the heat dissipation means, the dew condensation prevention pipe, the decompression means, the evaporator, and the suction port of the compressor in the order, the opening by changing the throttle amount of the decompression means Control edge temperature.

本発明の実施例に関する冷蔵庫の正面図である。It is a front view of the refrigerator regarding the Example of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 本発明の実施例に関する冷凍サイクル(冷媒流路)の構成を説明する図である。It is a figure explaining the structure of the refrigerating cycle (refrigerant flow path) regarding the Example of this invention. 本発明の実施例に関する機械室の内部を背面から見た場合の模式図である。It is a schematic diagram at the time of seeing the inside of the machine room regarding the Example of this invention from the back. 本発明の実施例に関する壁面放熱配管と結露防止配管の配設位置を示す図である。It is a figure which shows the arrangement | positioning position of the wall surface heat radiating piping and the dew condensation prevention piping regarding the Example of this invention. 本発明の実施例に関する冷凍室間仕切り壁の断面拡大図である。It is a cross-sectional enlarged view of the freezer compartment partition wall regarding the Example of this invention. 本発明の実施例に関する熱交換部の概略を示す断面模式図である。It is a cross-sectional schematic diagram which shows the outline of the heat exchange part regarding the Example of this invention. 本発明の実施例に関する冷凍サイクルの各部における冷媒の状態をモリエル線図上に示した図である。It is the figure which showed the state of the refrigerant | coolant in each part of the refrigerating cycle regarding the Example of this invention on the Mollier diagram. 本発明の実施例に関する圧縮機からキャピラリチューブまでの配管内部の冷媒の状態を示した図である。It is the figure which showed the state of the refrigerant | coolant inside piping from the compressor regarding the Example of this invention to a capillary tube. 本発明の実施例に関する蒸発圧力が低下した場合の冷媒の状態をモリエル線図上に示した図である。It is the figure which showed the state of the refrigerant | coolant when the evaporation pressure regarding the Example of this invention fell on the Mollier diagram. 本発明の実施例における冷媒流路の切り替え条件を示した図である。It is the figure which showed the switching conditions of the refrigerant flow path in the Example of this invention.

本発明は、前方に開口を形成する開口縁を有する断熱箱体と、前記開口を開閉する扉と、該扉と前記断熱箱体によって形成された貯蔵室と、圧縮機と、該圧縮機の吐出口から吐出される冷媒を、放熱手段、結露防止配管、減圧手段、蒸発器、前記圧縮機の吸込口の順に流す冷媒流路と、備えた冷蔵庫において、前記減圧手段の絞り量の変更によって前記開口縁の温度を制御する。   The present invention includes a heat insulating box having an opening edge that forms an opening in the front, a door that opens and closes the opening, a storage chamber formed by the door and the heat insulating box, a compressor, and a compressor, In the refrigerator provided with the refrigerant flow path for flowing the refrigerant discharged from the discharge port in the order of the heat radiating means, the dew condensation prevention pipe, the pressure reducing means, the evaporator, and the suction port of the compressor, by changing the throttle amount of the pressure reducing means The temperature of the opening edge is controlled.

また、前記扉の開閉状態を検知する扉開閉センサと、ある時間からの経過時間を計測するタイマと、を備え、前記扉の開放時間に係数を掛けた値と、前記圧縮機の回転数に応じた係数と前記経過時間の積を除霜終了時から積算した値と、の合算値が指定した値に達すると、前記減圧手段による絞り量を減少させる。   A door opening / closing sensor that detects the opening / closing state of the door; and a timer that measures an elapsed time from a certain time; a value obtained by multiplying the opening time of the door by a coefficient; and a rotational speed of the compressor. When the sum of the product of the corresponding coefficient and the elapsed time and the value obtained by integrating from the end of defrosting reaches the specified value, the amount of restriction by the decompression means is decreased.

また、前記冷蔵庫周囲の温度を測定する温度センサと、前記開口縁の温度を測定する温度センサと、を備え、前記開口縁の温度が前記冷蔵庫周囲の温度から予測される前記冷蔵庫周囲の露点温度よりも低い場合、前記減圧手段による絞り量を減少させる。   A temperature sensor that measures the temperature around the refrigerator; and a temperature sensor that measures the temperature at the opening edge, and the temperature at the opening edge is predicted from the temperature around the refrigerator. If lower, the amount of restriction by the pressure reducing means is decreased.

また、前記開口縁の湿度を計測する湿度センサを備え、前記開口縁の湿度が一定以上になった場合、前記減圧手段による絞り量を減少させる。   In addition, a humidity sensor for measuring the humidity of the opening edge is provided, and when the humidity of the opening edge becomes a certain level or more, the amount of restriction by the pressure reducing means is reduced.

以下、本発明の実施例について、図面を参照しながら詳細に説明する。
図1は、本発明の実施例に関する冷蔵庫の正面図である。図2は、図1のA−A断面図である。実施例の冷蔵庫1は、貯蔵室として上方から冷蔵室2、製氷室3と上段冷凍室4、下段冷凍室5、野菜室6を備えている。製氷室3と上段冷凍室4は左右に配置されている。なお製氷室3、上段冷凍室4、下段冷凍室5は冷凍温度帯であるため、合わせて冷凍室60と称する場合がある。冷蔵室2は前面側に左右に分割された観音開きの冷蔵室扉2a、2bを備え、製氷室3と、上段冷凍室4と、下段冷凍室5と、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view of a refrigerator according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG. The refrigerator 1 of an Example is equipped with the refrigerator compartment 2, the ice making room 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 from the upper direction as a storage room. The ice making chamber 3 and the upper freezing chamber 4 are arranged on the left and right. Note that the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are in the freezing temperature zone and may be collectively referred to as the freezing chamber 60. The refrigerating room 2 is provided with doors 2a and 2b that are separated from each other on the front side, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each a drawer type ice making. The room door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are provided.

冷蔵庫1は、開閉状態をそれぞれ検知する扉センサ(図示せず)や、冷蔵室2や野菜室6の温度設定や冷凍室60の温度設定をする温度設定器(図示せず)等を備えている。冷蔵室扉2a、2bを回動可能にするために、冷蔵庫1に固定する扉ヒンジ(図示せず)が冷蔵庫1の本体上部に設けてあり、扉ヒンジは扉ヒンジカバー39で覆われている。扉ヒンジカバー39の内部には貯蔵室外の温度及び湿度を検知する外気温度センサ37、外気湿度センサ38を設けている。   The refrigerator 1 includes a door sensor (not shown) that detects the open / closed state, a temperature setting device (not shown) that sets the temperature of the refrigerator compartment 2 and the vegetable compartment 6, and the temperature of the freezer compartment 60, and the like. Yes. A door hinge (not shown) that is fixed to the refrigerator 1 is provided in the upper part of the main body of the refrigerator 1 so that the refrigerator compartment doors 2 a and 2 b can be rotated, and the door hinge is covered with a door hinge cover 39. . Inside the door hinge cover 39, an outside air temperature sensor 37 and an outside air humidity sensor 38 for detecting the temperature and humidity outside the storage room are provided.

冷蔵庫1の貯蔵室内と貯蔵室外は、外箱1aと内箱1bの間に、一例として発泡ウレタンの発泡断熱材を充填することにより形成された断熱箱体10によって隔てられている。なお、貯蔵室に連通する蒸発器収納室8も内部が外部に対して断熱箱体10によって隔てられている。また、冷蔵庫1の断熱箱体10の内部には真空断熱材26を実装している。   The storage room and the outside of the storage room of the refrigerator 1 are separated by a heat insulating box 10 formed by filling a foam heat insulating material of urethane foam, for example, between the outer box 1a and the inner box 1b. Note that the evaporator storage chamber 8 communicating with the storage chamber is also separated from the outside by a heat insulating box 10. A vacuum heat insulating material 26 is mounted inside the heat insulating box 10 of the refrigerator 1.

冷蔵庫1の各貯蔵室は、冷蔵室−冷凍室仕切り壁28により、冷蔵室2と冷凍室60とが隔てられ、冷凍室−野菜室仕切り壁29により、冷凍室60と野菜室6とが隔てられている。製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室間を隔てる仕切りは設けられていないが、扉3a、4a、5aの隙間から貯蔵室外への冷凍室60内空気の漏れを防止する冷凍室間仕切り壁30が備えられている。これらの仕切り壁28、29、30により形成される冷凍室60の開口縁と、扉3a、4a、5aにより、冷凍室60と貯蔵室外とを隔てている。   In each storage room of the refrigerator 1, the refrigerator compartment 2 and the freezer compartment 60 are separated by the refrigerator compartment-freezer compartment partition wall 28, and the freezer compartment 60 and the vegetable compartment 6 are separated by the refrigerator compartment-vegetable compartment partition wall 29. It has been. There is no partition that separates the storage chambers of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, but leakage of the air in the freezing chamber 60 from the gaps of the doors 3a, 4a, and 5a to the outside of the storage chamber. A freezer compartment partition wall 30 to prevent is provided. The opening edge of the freezer compartment 60 formed by these partition walls 28, 29 and 30 and the doors 3a, 4a and 5a separate the freezer compartment 60 from the outside of the storage compartment.

冷蔵室2には、扉2a、2bの貯蔵室側に設けられた扉ポケット32と、冷蔵室2内を複数の貯蔵空間に区画する棚40を、それぞれ複数備えている。また冷蔵室2の下部には、内部を減圧することにより食品の保存性を高めている減圧貯蔵室20を備えている。   The refrigerator compartment 2 includes a plurality of door pockets 32 provided on the storage compartment side of the doors 2a and 2b and a plurality of shelves 40 that divide the refrigerator compartment 2 into a plurality of storage spaces. In the lower part of the refrigerator compartment 2, there is provided a reduced-pressure storage chamber 20 that enhances the storability of food by reducing the pressure inside.

上段冷凍室4、下段冷凍室5及び野菜室6には、それぞれ各貯蔵室の前方に備えられた扉と一体に引き出される収納容器4b、5b、6bを設けており、各扉の取手部(図示せず)に手を掛けて手前側に引き出すことにより収納容器4b、5b、6bを引き出せるようになっている。製氷室3も同様に、製氷室扉3aと一体に引き出される収納容器3bを設け、製氷室扉3aの取手部(図示せず)に手を掛けて手前側に引き出せるよう になっている。   The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided with storage containers 4b, 5b, 6b that are pulled out integrally with the doors provided in front of the respective storage compartments. The storage containers 4b, 5b, and 6b can be pulled out by placing the hand on (not shown) and pulling it out to the front side. Similarly, the ice making chamber 3 is provided with a storage container 3b that is pulled out integrally with the ice making chamber door 3a so that the handle (not shown) of the ice making chamber door 3a can be pulled out to the front side.

後述する蒸発器7及び各貯蔵室の温度は、蒸発器7の上部に設けた蒸発器温度センサ36、冷蔵室2に設けた冷蔵室温度センサ33、野菜室6に設けた野菜室温度センサ34、下段冷凍室5に設けた冷凍室温度センサ35により検知している。さらに、前述のように、冷蔵庫1は貯蔵室外の温度と湿度を検知する外気温度センサ37と外気湿度センサ38も備えている。   The temperatures of the evaporator 7 and each storage room, which will be described later, are as follows: an evaporator temperature sensor 36 provided at the top of the evaporator 7, a refrigerator temperature sensor 33 provided in the refrigerator room 2, and a vegetable room temperature sensor 34 provided in the vegetable room 6. The temperature is detected by a freezer temperature sensor 35 provided in the lower freezer room 5. Furthermore, as described above, the refrigerator 1 also includes the outside air temperature sensor 37 and the outside air humidity sensor 38 that detect the temperature and humidity outside the storage room.

冷蔵庫1の天井壁面にはCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御装置の一例である制御基板31を配置している。制御基板31は、外気温度センサ37、外気湿度センサ38、蒸発器温度センサ35、冷蔵室温度センサ33、野菜室温度センサ34、冷凍室温度センサ35、各扉の開閉状態をそれぞれ検知する前述した扉センサ(図示せず)等と接続されている。前述のCPUは、これらの出力値と前述のROMに予め記録したプログラムを基に、後述する圧縮機24や貯蔵室内ファン9のON/OFFや回転速度(時間当たりの回転数)等の制御、三方弁(冷媒流路制御手段)112の制御、冷蔵室ダンパ50、野菜室ダンパ(図示せず)、及び冷凍室ダンパ52を個別に開閉させるそれぞれのステッピングモータ(図示せず)の制御等を行っている。   A control board 31, which is an example of a control device on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted, is disposed on the ceiling wall surface of the refrigerator 1. The control board 31 detects the open / closed state of each door, as described above, for the outside air temperature sensor 37, the outside air humidity sensor 38, the evaporator temperature sensor 35, the refrigerating room temperature sensor 33, the vegetable room temperature sensor 34, the freezer room temperature sensor 35, respectively. It is connected to a door sensor (not shown). The aforementioned CPU controls the ON / OFF of the compressor 24 and the storage chamber fan 9, which will be described later, the rotational speed (the number of revolutions per hour), etc., based on these output values and the programs recorded in the ROM. Control of the three-way valve (refrigerant flow path control means) 112, control of each stepping motor (not shown) for individually opening and closing the refrigerator compartment damper 50, the vegetable compartment damper (not shown), and the freezer compartment damper 52, etc. Is going.

冷蔵庫1内の空気を冷却する蒸発器7は、冷凍室60と断熱箱体10の背面壁との間に形成された蒸発器収納室8に備えられている。蒸発器7と熱交換して冷やされた空気は、蒸発器7の上方に設けられた貯蔵室内ファン9により、冷蔵室ダクト11を介して冷蔵室2に送られ、野菜室ダクト(図示せず)を介して野菜室6に送られる。同様に、蒸発器7で冷やされた空気は、冷凍室ダクト13を介して製氷室3と、上段冷凍室4と、下段冷凍室5の各貯蔵室へ送られる。各貯蔵室への送風は、各貯蔵室に設けた温度センサ33、34、35と連動して、冷蔵室ダンパ50、野菜室ダンパ(図示せず)、冷凍室ダンパ52の開閉により制御されている。冷蔵室2、冷凍室60、野菜室6を冷却した空気は、それぞれ冷蔵室戻りダクト(図示せず)、冷凍室戻りダクト17、野菜室戻りダクト18を介して蒸発器収納室8に戻り、再び蒸発器7で冷却される。   The evaporator 7 that cools the air in the refrigerator 1 is provided in an evaporator storage chamber 8 that is formed between the freezer compartment 60 and the back wall of the heat insulating box 10. The air cooled by exchanging heat with the evaporator 7 is sent to the refrigerating room 2 through the refrigerating room duct 11 by the storage room fan 9 provided above the evaporator 7, and the vegetable room duct (not shown). ) To the vegetable compartment 6. Similarly, the air cooled by the evaporator 7 is sent to the storage rooms of the ice making room 3, the upper freezing room 4, and the lower freezing room 5 through the freezing room duct 13. The air blowing to each storage room is controlled by opening and closing the refrigerator compartment damper 50, the vegetable compartment damper (not shown), and the freezer compartment damper 52 in conjunction with the temperature sensors 33, 34, 35 provided in each storage compartment. Yes. The air that has cooled the refrigerator compartment 2, the freezer compartment 60, and the vegetable compartment 6 returns to the evaporator storage compartment 8 via the refrigerator compartment return duct (not shown), the freezer compartment return duct 17, and the vegetable compartment return duct 18, respectively. It is cooled again by the evaporator 7.

また、除霜運転時に蒸発器7に付着した霜を加熱する除霜ヒータ22は、蒸発器7の下方に設置されている。除霜によって生じた除霜水は、蒸発器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して後述する機械室19に配された蒸発皿21に排出される。   In addition, a defrost heater 22 that heats frost attached to the evaporator 7 during the defrosting operation is installed below the evaporator 7. The defrosted water generated by the defrosting flows into the eaves 23 provided in the lower part of the evaporator storage chamber 8 and then is discharged to the evaporating dish 21 disposed in the machine chamber 19 described later via the drain pipe 27. .

図3は実施例に関する冷凍サイクル(冷媒流露)の構成を説明する図である。本実施例の冷蔵庫1では、圧縮機24、冷媒の放熱を行う放熱手段である貯蔵室外放熱機41と壁面放熱配管42、仕切り壁28、29、30の前面部、すなわち開口縁への結露を抑制する結露防止配管43、冷媒を減圧させる減圧手段である第一のキャピラリチューブ44dと第二のキャピラリチューブ44e、冷媒と貯蔵室内の空気を熱交換させて、貯蔵室内の熱を吸熱する蒸発器7とを備え、これらにより貯蔵室内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ45と、液冷媒が圧縮機24に流入するのを防止する気液分離器46を備え、さらに冷媒合流部200と、三方弁112も備えており、これらを接続配管72、73、74、86、87、88、89、80、81、82、83、84によりそれぞれ接続することで、冷凍サイクルを構成している。なお、本実施例の冷蔵庫1は、冷媒にイソブタンを用いている。また、本実施例の圧縮機24はインバータを備えて回転速度を変えることができるが、過度に低速で圧縮機24を駆動させると、圧縮機24内の潤滑油が流れ難くなるので、回転速度には下限を設けている。   FIG. 3 is a diagram for explaining a configuration of a refrigeration cycle (refrigerant flow dew) relating to the embodiment. In the refrigerator 1 of the present embodiment, the compressor 24, the heat radiation means 41 that is a heat radiation means for radiating the refrigerant, the wall surface heat radiation pipe 42, and the condensation on the front surfaces of the partition walls 28, 29, and 30, that is, the opening edge. Condensation prevention piping 43 for suppressing, first capillary tube 44d and second capillary tube 44e which are decompression means for decompressing the refrigerant, and an evaporator for absorbing heat in the storage chamber by exchanging heat between the refrigerant and the air in the storage chamber 7 to cool the storage chamber. In addition, a dryer 45 that removes moisture in the refrigeration cycle, a gas-liquid separator 46 that prevents liquid refrigerant from flowing into the compressor 24, a refrigerant junction 200, and a three-way valve 112 are also provided. These are connected by connecting pipes 72, 73, 74, 86, 87, 88, 89, 80, 81, 82, 83, 84, respectively, thereby constituting a refrigeration cycle. In addition, the refrigerator 1 of a present Example uses isobutane as a refrigerant | coolant. In addition, the compressor 24 of this embodiment includes an inverter and can change the rotation speed. However, if the compressor 24 is driven at an excessively low speed, the lubricating oil in the compressor 24 becomes difficult to flow. Has a lower limit.

本実施例の冷蔵庫1では、減圧手段として、断面積の小さい冷媒流路を通過させることで、冷媒と管内壁との間に生じる摩擦によって冷媒を減圧させる、第一のキャピラリチューブ44dと第二のキャピラリチューブ44eの二つのキャピラリチューブを備えている。なお、これら第一のキャピラリチューブ44dと第二のキャピラリチューブ44eを合わせて、キャピラリチューブ44と称する。第一のキャピラリチューブは熱負荷が小さい状態で適切な絞りの強さとなるように調節されている。ここで、絞りの強さとは、減圧のし易さを示すもので、キャピラリチューブ44では、管の内径が細いほど絞りが強く、また、長さが長いほど絞りが強くなる。第二のキャピラリチューブ44eは熱負荷が大きい状態で適切な絞りの強さとなるように調節されたもので、第一のキャピラリチューブ44dに比べて絞りの強さを弱くしている。   In the refrigerator 1 of the present embodiment, the first capillary tube 44d and the second capillary tube 44d and the second capillary tube depressurize the refrigerant by friction generated between the refrigerant and the inner wall of the pipe by passing through the refrigerant flow path having a small cross-sectional area as the pressure reducing means. The capillary tube 44e is provided with two capillary tubes. The first capillary tube 44d and the second capillary tube 44e are collectively referred to as a capillary tube 44. The first capillary tube is adjusted so as to have an appropriate throttle strength with a small heat load. Here, the strength of the throttling indicates the ease of pressure reduction. In the capillary tube 44, the narrower the inner diameter of the tube, the stronger the throttling, and the longer the length, the stronger the throttling. The second capillary tube 44e is adjusted so as to have an appropriate throttle strength in a state where the heat load is large, and has a narrower throttle strength than the first capillary tube 44d.

冷媒合流部200は、3つの接続配管を接続し、この冷媒合流部に接続された3つの接続配管を常に連通状態とする部材である。冷媒合流部200は接続配管80、81、82を連通状態としている。   The refrigerant junction part 200 is a member that connects three connection pipes, and always connects the three connection pipes connected to the refrigerant junction part. The refrigerant junction 200 is in communication with the connection pipes 80, 81, 82.

三方弁112は、流入口112iと流出口112o_Dとを連通させるDモードと、流入口112iと流出口112o_Eとを連通させるEモードを切り替える。さらに、三方弁112の流出口112o_Dと流出口112o_Eのどちらも閉塞させるXモードの3つのモードを備える。   The three-way valve 112 switches between a D mode for communicating the inlet 112i and the outlet 112o_D and an E mode for communicating the inlet 112i and the outlet 112o_E. In addition, there are three modes of the X mode in which both the outlet 112o_D and the outlet 112o_E of the three-way valve 112 are closed.

圧縮機24により高温高圧となった冷媒は、接続配管72、73を介して、貯蔵室外放熱器41、壁面放熱配管42に流入し、これらにより放熱する。その後、冷媒は接続配管74を介して結露防止管43においても放熱する。この結露防止配管43からの放熱によって、仕切り壁28、29、30の前面部である貯蔵質の開口縁(図2参照)が加熱される。   The refrigerant that has become high-temperature and high-pressure by the compressor 24 flows into the outside-storage-room radiator 41 and the wall surface radiation pipe 42 via the connection pipes 72 and 73 and radiates heat. Thereafter, the refrigerant also radiates heat in the dew condensation prevention pipe 43 via the connection pipe 74. Due to the heat radiation from the dew condensation prevention pipe 43, the opening edge (see FIG. 2) of the storage quality, which is the front surface portion of the partition walls 28, 29, and 30, is heated.

結露防止配管43から流出した冷媒は配管86を介してドライヤ45へ流入し、その後、接続配管87を介して三方弁112へ流入する三方弁201がDモードのときは接続配管88、80と第一のキャピラリチューブ44dを介して冷媒合流部200へ流入し、三方弁201がEモードのときは接続配管89、81と第二のキャピラリチューブ44eを介して冷媒合流部200へ流入する。また、三方弁201がXモードのときは接続配管88、89への冷媒の流入は行われない。   The refrigerant that has flowed out of the dew condensation prevention pipe 43 flows into the dryer 45 via the pipe 86, and then when the three-way valve 201 flowing into the three-way valve 112 via the connection pipe 87 is in the D mode, The refrigerant flows into the refrigerant confluence 200 through the one capillary tube 44d, and flows into the refrigerant confluence 200 through the connection pipes 89 and 81 and the second capillary tube 44e when the three-way valve 201 is in the E mode. Further, when the three-way valve 201 is in the X mode, the refrigerant does not flow into the connection pipes 88 and 89.

冷媒は、このキャピラリチューブ44により減圧されて低圧となり、また低圧となることで、一部の冷媒が蒸発して気化熱が奪われるため低温となる。低温低圧となった冷媒は、冷媒合流部200、接続配管82を介して流入した蒸発器7にて、貯蔵室内の空気から吸熱する。この冷媒の吸熱により、貯蔵室内の空気は冷却され、冷媒はさらに蒸発する。蒸発器7から流出した冷媒は、接続配管83、気液分離器46、接続配管84を介して圧縮機24に戻る。   The refrigerant is depressurized by the capillary tube 44 to become a low pressure, and because the refrigerant becomes a low pressure, a part of the refrigerant evaporates and the heat of vaporization is taken away, resulting in a low temperature. The low-temperature and low-pressure refrigerant absorbs heat from the air in the storage chamber in the evaporator 7 that has flowed in through the refrigerant junction 200 and the connection pipe 82. Due to the heat absorption of the refrigerant, the air in the storage chamber is cooled and the refrigerant further evaporates. The refrigerant that has flowed out of the evaporator 7 returns to the compressor 24 via the connection pipe 83, the gas-liquid separator 46, and the connection pipe 84.

次に、図3で示す冷凍サイクルを構成する各部材の設置箇所について説明する。
図4は、機械室の内部を背面から見た場合の模式図である。冷蔵庫1は、図2に示すように断熱箱体10の外側で、冷蔵庫1の野菜室6背面下部、蒸発器収納室8の下部に機械室19を備えている。機械室19の両側面を構成する冷蔵庫1の壁面に機械室開口部19a、19bを形成しており、機械室19内に設けた貯蔵室外ファン41により、機械室開口部19aから外気が機械室19内に流入し、機械室開口部19bから流出できる構造になっている。機械室19内には、図中の右から順に、機械室開口部19a、貯蔵室外放熱器41、貯蔵室外ファン41a、圧縮機24、三方弁112、機械室開口部19bが配設されている。また、ドライヤ45は三方弁112の上部位置に配設され、蒸発皿21は圧縮機24の上部で排水管27の下部に配設されている。
Next, the installation location of each member constituting the refrigeration cycle shown in FIG. 3 will be described.
FIG. 4 is a schematic diagram when the inside of the machine room is viewed from the back. As shown in FIG. 2, the refrigerator 1 includes a machine room 19 on the outside of the heat insulating box 10, below the back of the vegetable room 6 of the refrigerator 1 and below the evaporator storage room 8. Machine room openings 19 a and 19 b are formed on the wall surface of the refrigerator 1 constituting both sides of the machine room 19, and outside air is transferred from the machine room opening 19 a to the machine room by a fan 41 outside the storage room provided in the machine room 19. It has a structure that can flow into 19 and flow out from the machine room opening 19b. In the machine room 19, a machine room opening 19a, a storage room radiator 41, a storage room fan 41a, a compressor 24, a three-way valve 112, and a machine room opening 19b are arranged in order from the right in the drawing. . The dryer 45 is disposed at the upper position of the three-way valve 112, and the evaporating dish 21 is disposed at the upper portion of the compressor 24 and at the lower portion of the drain pipe 27.

冷却運転時、高温となる圧縮機24及び貯蔵室外放熱器41は、貯蔵室外ファン41aを駆動して機械室開口部19aから取り入れた外気と熱交換して放熱する。そのため、圧縮機24や貯蔵室外放熱器41の放熱量は、貯蔵室外ファン41aの回転速度や貯蔵室外ファン41aのON/OFFを変更することで調整可能である。圧縮機24や貯蔵室外放熱器41からの放熱により昇温された空気は、貯蔵室外ファン41aにより昇圧されているため、機械室開口部19bから、比較的低圧な機械室19の外部に排出される。また、除霜時に生じるドレン水は、排水管27から蒸発皿21に放出され、圧縮機24や貯蔵室外放熱器41からの熱によって蒸発される。   During the cooling operation, the compressor 24 and the outdoor storage room radiator 41 that are at a high temperature drive the external storage room fan 41a to exchange heat with the outside air taken in from the machine room opening 19a to radiate heat. Therefore, the heat radiation amount of the compressor 24 and the outdoor storage room radiator 41 can be adjusted by changing the rotational speed of the external storage room fan 41a and the ON / OFF of the external storage room fan 41a. Since the air heated by the heat radiation from the compressor 24 and the heat radiator 41 outside the storage room is pressurized by the fan 41a outside the storage room, it is discharged from the machine room opening 19b to the outside of the machine room 19 having a relatively low pressure. The Further, drain water generated at the time of defrosting is discharged from the drain pipe 27 to the evaporating dish 21 and evaporated by heat from the compressor 24 and the outdoor radiator 41.

図5は、壁面放熱配管42と結露防止配管43の配設位置を示す図である。図3で示したように、壁面放熱配管42及び結露防止配管43は、高温高圧の冷媒が流れる部材である。   FIG. 5 is a diagram showing the arrangement positions of the wall surface heat radiation pipe 42 and the dew condensation prevention pipe 43. As shown in FIG. 3, the wall surface heat radiation pipe 42 and the dew condensation prevention pipe 43 are members through which a high-temperature and high-pressure refrigerant flows.

壁面放熱配管42は、冷蔵庫1の外箱1aと内箱1bとの間(図2参照)で、外箱1aの外表面に接するように配設されている。外箱1aは鋼板製であり、壁面放熱配管42内の高温冷媒は、外箱1aの外表面を介して貯蔵室外の空気に放熱する。また、結露防止配管43は、冷蔵室−冷凍室仕切り壁28、冷凍室−野菜室仕切り壁29、冷凍室間仕切り壁30の前方に配設されている(図5中の一点鎖線の部分)。各仕切り壁28、29、30の前面部は、図1、2で示したように、製氷室3、上段冷凍室4、下段冷凍室5の開口縁を形成している。   The wall surface heat radiation pipe 42 is disposed between the outer box 1a and the inner box 1b of the refrigerator 1 (see FIG. 2) so as to be in contact with the outer surface of the outer box 1a. The outer box 1a is made of a steel plate, and the high-temperature refrigerant in the wall surface heat radiation pipe 42 radiates heat to the air outside the storage chamber via the outer surface of the outer box 1a. In addition, the dew condensation prevention pipe 43 is disposed in front of the refrigerator compartment / freezer compartment partition wall 28, the freezer compartment / vegetable compartment partition wall 29, and the compartment compartment wall 30 of the freezer compartment (part indicated by a one-dot chain line in FIG. 5). As shown in FIGS. 1 and 2, the front portions of the partition walls 28, 29, and 30 form the opening edges of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5.

次に冷凍室間仕切り壁30を代表に、結露防止配管43近傍の詳細を説明する。
図6は、冷凍室間仕切り壁30の断面拡大図である。冷凍室間仕切り壁30の内部には、圧縮機24で高温高圧となった冷媒が流れる結露防止配管43が設けられている。この結露防止配管43は、冷凍室間仕切り壁30の前面部に設けた仕切りカバー30aの近傍に設けられている。なお、本実施例に関わる冷蔵庫1の仕切りカバー30aは鋼板製であるが、これに限定されず、熱伝導性の高い金属等の材料で構成すればよい。冷凍室間仕切り壁30は、室内を冷凍温度帯(例えば約−18℃)に維持している冷凍室60に隣接しているので、加熱手段を備えていない場合、冷凍室間仕切り壁30は冷凍室60の低温空気により冷やされて、冷蔵庫1周囲の外気よりも低温となる。そのため、冷蔵庫1の周囲の外気が高湿であると、仕切りカバー30aの表面温度が露点温度を下回り易く、仕切りカバー30a近傍の空気中の水分によって仕切りカバー30aの表面に結露が発生することがある。それに対して、図3で示したように、キャピラリチューブ44で減圧される前の高温の冷媒が流れる結露防止配管43を、仕切りカバー30aの近傍に設けることで、図中の熱の流れ91で仕切りカバー30aを冷媒によって加熱して、仕切りカバー30aに発生する結露を抑制している。
Next, details of the vicinity of the dew condensation prevention pipe 43 will be described using the freezer compartment partition wall 30 as a representative.
FIG. 6 is an enlarged cross-sectional view of the freezer compartment partition wall 30. Inside the freezer compartment partition wall 30, a dew condensation prevention pipe 43 through which the refrigerant that has become high temperature and high pressure in the compressor 24 flows is provided. The dew condensation prevention pipe 43 is provided in the vicinity of the partition cover 30 a provided on the front surface portion of the freezer compartment partition wall 30. In addition, although the partition cover 30a of the refrigerator 1 in connection with a present Example is a product made from a steel plate, it is not limited to this, What is necessary is just to comprise with materials, such as a metal with high heat conductivity. Since the freezer compartment partition wall 30 is adjacent to the freezer compartment 60 that keeps the room in a freezing temperature zone (for example, about −18 ° C.), when the heating means is not provided, the freezer compartment partition wall 30 is a freezer compartment. It is cooled by 60 low-temperature air and becomes cooler than the outside air around the refrigerator 1. Therefore, if the outside air around the refrigerator 1 is highly humid, the surface temperature of the partition cover 30a is likely to be lower than the dew point temperature, and condensation may occur on the surface of the partition cover 30a due to moisture in the air near the partition cover 30a. is there. On the other hand, as shown in FIG. 3, by providing a condensation prevention piping 43 in the vicinity of the partition cover 30a through which the high-temperature refrigerant before being depressurized by the capillary tube 44 flows, the heat flow 91 in FIG. The partition cover 30a is heated with a refrigerant to suppress condensation generated on the partition cover 30a.

なお、冷蔵室―冷凍室仕切り壁28、冷凍室―野菜室仕切り壁29の前面部も、冷凍室間仕切り壁30と同様に冷凍室60の開口縁を形成する部材であるので、図6で示した冷凍室間仕切り壁30同様の構成で、各仕切り壁28、29の前面部に設けた仕切りカバー(図示せず)の近傍に結露防止配管43を設けて、この結露防止配管43により仕切りカバーを加熱している。   The front portions of the freezer compartment-freezer compartment partition wall 28 and the freezer compartment-vegetable compartment partition wall 29 are members that form the opening edge of the freezer compartment 60 in the same manner as the freezer compartment partition wall 30 and are shown in FIG. A dew condensation prevention pipe 43 is provided in the vicinity of a partition cover (not shown) provided on the front surface of each partition wall 28, 29 with the same configuration as the freezer compartment partition wall 30. Heating.

図7は、冷蔵庫の熱交換部47の概略を示す断面模式図である。本実施例の冷蔵庫1には、冷媒配管84の近傍に、第一のキャピラリチューブ44dと第二のキャピラリチューブ44eを配設した、熱交換部47を設けている。第一のキャピラリチューブ44dと第二のキャピラリチューブ44eは、冷媒配管84を挟んでそれぞれ反対側に設けられている。なお、熱交換部47は断熱箱体10内部に形成されている。蒸発器7の出口側に接続された冷媒配管84には低温冷媒が流入し、一方、キャピラリチューブ44には放熱側からの高温冷媒が流入する。従って、第一のキャピラリチューブ44dを冷媒が流れる場合、第一のキャピラリチューブ44dから冷媒配管84に向かって熱の流れ93aが発生して熱交換が行なわれる。同様に、第二のキャピラリチューブ44eを冷媒が流れる場合、第二のキャピラリチューブ44eから、冷媒配管84に向かって熱の流れ93bが発生する。   FIG. 7 is a schematic cross-sectional view showing an outline of the heat exchanging portion 47 of the refrigerator. The refrigerator 1 of the present embodiment is provided with a heat exchanging portion 47 in which a first capillary tube 44d and a second capillary tube 44e are disposed in the vicinity of the refrigerant pipe 84. The first capillary tube 44d and the second capillary tube 44e are provided on opposite sides of the refrigerant pipe 84, respectively. The heat exchanging portion 47 is formed inside the heat insulating box 10. Low temperature refrigerant flows into the refrigerant pipe 84 connected to the outlet side of the evaporator 7, while high temperature refrigerant from the heat radiating side flows into the capillary tube 44. Therefore, when the refrigerant flows through the first capillary tube 44d, a heat flow 93a is generated from the first capillary tube 44d toward the refrigerant pipe 84, and heat exchange is performed. Similarly, when the refrigerant flows through the second capillary tube 44e, a heat flow 93b is generated from the second capillary tube 44e toward the refrigerant pipe 84.

次に、この熱交換部47の作用と、圧縮機24からキャピラリチューブ44に至るまでの、放熱側の冷媒の状態変化について図8、図9を用いて説明する。   Next, the action of the heat exchanging portion 47 and the state change of the refrigerant on the heat radiation side from the compressor 24 to the capillary tube 44 will be described with reference to FIGS.

図8は、冷凍サイクルの各部における冷媒の状態をモリエル線図上に示した図である。図9は、圧縮機24からキャピラリチューブ44までの配管内部の冷媒の状態を示した図である。なお、図8、図9では、第一の冷媒流路A側を冷媒が循環している場合である。   FIG. 8 is a diagram showing the state of the refrigerant in each part of the refrigeration cycle on the Mollier diagram. FIG. 9 is a view showing the state of the refrigerant in the piping from the compressor 24 to the capillary tube 44. 8 and 9 show the case where the refrigerant circulates on the first refrigerant flow path A side.

図8の縦軸は冷媒の圧力、横軸は冷媒の比エンタルピーである。図8と図9に示す冷媒の状態BからE及びH、Iは、図8と図9で同一の状態を表す。   In FIG. 8, the vertical axis represents the refrigerant pressure, and the horizontal axis represents the specific enthalpy of the refrigerant. The refrigerant states B to E, H, and I shown in FIGS. 8 and 9 represent the same state in FIGS. 8 and 9.

圧縮機24に流入した状態Aの冷媒は、圧縮機24により圧縮されるので、冷媒の比エンタルピーはh1からh2、圧力はP1からP2に増加する(状態AからB)。圧縮されて高温高圧となった冷媒(状態B)は、貯蔵室外放熱器41(状態BからC)、壁面放熱器42(状態CからD)、結露防止配管43(状態DからE)の順に放熱して、冷媒の比エンタルピーはh2からh3に減少する。状態Eに至った冷媒は、第一のキャピラリチューブ44dを通過する際に減圧されながら、熱交換部47において接続配管84内の冷媒と熱交換するので、比エンタルピーはh3からh4に減少し、冷媒の圧力はP2からP1に減少する(状態EからF)。その後、蒸発器7の入口部の冷媒(状態F)は、貯蔵室内の空気と熱交換することによって吸熱し、冷媒の比エンタルピーはh4からh5に増加する(状態FからG)。蒸発器7の出口部の冷媒(状態G)は、熱交換部47において第一のキャピラリチューブ44dから移動する熱によって冷媒の比エンタルピーがh5からh1に増加した後、再び圧縮機24に戻る(状態GからA)。モリエル線図上に示す、状態A−B−C−D−E−F−Gの循環の間に、冷媒は大きく分けて気相域、気液二相域、液相域の3つの状態に変化する。   Since the refrigerant in the state A flowing into the compressor 24 is compressed by the compressor 24, the specific enthalpy of the refrigerant increases from h1 to h2, and the pressure increases from P1 to P2 (states A to B). The refrigerant (state B) that has been compressed to high temperature and high pressure is in the order of the outdoor radiator 41 (state B to C), the wall surface radiator 42 (state C to D), and the dew condensation prevention pipe 43 (state D to E). As a result of heat dissipation, the specific enthalpy of the refrigerant decreases from h2 to h3. The refrigerant that has reached the state E exchanges heat with the refrigerant in the connection pipe 84 in the heat exchange section 47 while being depressurized when passing through the first capillary tube 44d, so the specific enthalpy decreases from h3 to h4, The refrigerant pressure decreases from P2 to P1 (states E to F). Thereafter, the refrigerant (state F) at the inlet of the evaporator 7 absorbs heat by exchanging heat with the air in the storage chamber, and the specific enthalpy of the refrigerant increases from h4 to h5 (states F to G). The refrigerant (state G) at the outlet of the evaporator 7 returns to the compressor 24 again after the specific enthalpy of the refrigerant increases from h5 to h1 due to the heat moving from the first capillary tube 44d in the heat exchange unit 47 ( State G to A). During the circulation of the state A-B-C-D-E-F-G shown on the Mollier diagram, the refrigerant is roughly divided into three states: a gas phase region, a gas-liquid two-phase region, and a liquid phase region. Change.

ここで、図9を用いて、冷凍サイクルの放熱側となる圧縮機24の流出口(B)から、第一のキャピラリチューブ44dの入口(E)までの冷媒の状態を考える。気相域から気液二相域に変化する点をH、気液二相域から液相域に変化する点をIとし、ガス冷媒を符号94、液冷媒を符号95として、ガス冷媒94のみの気相域は区間BH、ガス冷媒94と液冷媒95が混在する気液二相域は区間HI、液冷媒95のみの液相域は区間IEで表す。   Here, the state of the refrigerant from the outlet (B) of the compressor 24 on the heat radiation side of the refrigeration cycle to the inlet (E) of the first capillary tube 44d will be considered using FIG. The point where the gas phase changes from the gas-liquid two-phase region is H, the point where the gas-liquid two-phase region changes from the liquid-phase region is I, the gas refrigerant is 94, the liquid refrigerant is 95, and the gas refrigerant 94 only. The gas phase region is represented by the section BH, the gas-liquid two-phase region where the gas refrigerant 94 and the liquid refrigerant 95 are mixed is represented by the section HI, and the liquid phase region of the liquid refrigerant 95 alone is represented by the section IE.

図9において、冷媒は記号BからEに向かって流れ、圧縮機24で圧縮されて高温高圧になったガス冷媒94は、貯蔵室外放熱器41、壁面放熱配管42、結露防止配管43の順に貯蔵室外に放熱し、気相域(区間BH)、気液二相域(区間HI)、液相域(区間IE)の順に冷媒の状態が変化する。本実施例の冷蔵庫1では、貯蔵室外放熱器41の途中で気相域から気液二相域に至り、結露防止配管43の途中で液相域に至る。そのため、貯蔵室外放熱器41ではガス冷媒94の割合が多く、結露防止配管43では液冷媒95の割合が多い。液冷媒95はガス冷媒94に比べて密度が高く、例えばイソブタンでは、凝縮温度30℃においてガス冷媒94と液冷媒95の密度の比は約1:50である。そのため、結露防止配管43では液冷媒95の割合が大きいので、配管内容積に対して、結露防止配管43内に含まれる冷媒量は多い。   In FIG. 9, the refrigerant flows from symbol B to E, and the gas refrigerant 94 compressed to the high temperature and high pressure by the compressor 24 is stored in the order of the outdoor heat radiator 41, the wall surface heat radiation pipe 42, and the dew condensation prevention pipe 43. Heat is radiated to the outside, and the state of the refrigerant changes in the order of the gas phase region (section BH), the gas-liquid two-phase region (section HI), and the liquid phase region (section IE). In the refrigerator 1 of the present embodiment, the gas-phase region reaches the gas-liquid two-phase region in the middle of the outdoor storage radiator 41, and reaches the liquid-phase region in the middle of the dew condensation prevention pipe 43. Therefore, the proportion of the gas refrigerant 94 is large in the outdoor radiator 41 and the proportion of the liquid refrigerant 95 is large in the dew condensation prevention pipe 43. The liquid refrigerant 95 has a higher density than the gas refrigerant 94. For example, in isobutane, the density ratio of the gas refrigerant 94 and the liquid refrigerant 95 is about 1:50 at a condensation temperature of 30 ° C. Therefore, since the ratio of the liquid refrigerant 95 is large in the dew condensation prevention pipe 43, the amount of refrigerant contained in the dew condensation prevention pipe 43 is larger than the pipe internal volume.

次に、図3、図7で示した熱交換部47の作用について図8を用いて説明する。蒸発器7の入口部の冷媒(状態F)は、熱交換部47によって比エンタルピーがh3からh4に減少し、蒸発器7での吸熱量(h5−h4)が増加することになる。蒸発器7での吸熱量の増加により、冷却効率(=吸熱量(h5−h4)/消費エネルギー(h2−h1))が向上するので、本実施例の冷蔵庫1では、熱交換部47を設けて省エネルギー性能を向上させている。   Next, the operation of the heat exchange unit 47 shown in FIGS. 3 and 7 will be described with reference to FIG. The specific enthalpy of the refrigerant (state F) at the inlet of the evaporator 7 is reduced from h3 to h4 by the heat exchanging unit 47, and the heat absorption amount (h5-h4) in the evaporator 7 is increased. Since the cooling efficiency (= endothermic amount (h5-h4) / consumed energy (h2-h1)) is improved by increasing the endothermic amount in the evaporator 7, the refrigerator 1 of the present embodiment is provided with a heat exchanging portion 47. Energy saving performance.

次に、蒸発圧力と省エネルギー性能の関係について説明する。
図10に、図8で示した冷凍サイクル(点線)よりも、蒸発圧力が低下した場合の状態をモリエル線図上に実線で示した。蒸発圧力P1がP1´に低下すると、凝縮圧力P2と蒸発圧力P1’の差は、蒸発圧力が低下する前のP2とP1の差に比べて大きくなる。そのため、圧縮機24で消費するエネルギーは(h2−h1)から(h2´−h1)に増加する。そこで、熱負荷が大きい場合(図11b参照)、冷凍サイクルの絞りを弱くすることでP2とP1の差を小さくして、省エネルギー性能の高い運転を行う。
Next, the relationship between the evaporation pressure and the energy saving performance will be described.
In FIG. 10, the state when the evaporation pressure is lower than the refrigeration cycle (dotted line) shown in FIG. 8 is indicated by a solid line on the Mollier diagram. When the evaporation pressure P1 decreases to P1 ′, the difference between the condensation pressure P2 and the evaporation pressure P1 ′ becomes larger than the difference between P2 and P1 before the evaporation pressure decreases. Therefore, the energy consumed by the compressor 24 increases from (h2−h1) to (h2′−h1). Therefore, when the heat load is large (see FIG. 11b), the difference between P2 and P1 is reduced by weakening the throttle of the refrigeration cycle, and the operation with high energy saving performance is performed.

一方、蒸発温度を低くした(蒸発圧力を低くした)冷却運転が必要な場合がある。例えば、食品投入が少ないため熱負荷が小さく、貯蔵室内が十分に低温となっている場合には、貯蔵室内温度の低下に応じて蒸発温度を下げる必要がある。蒸発温度(蒸発圧力)を下げる手段としては、絞りを強くして冷媒の減圧量を大きくすることと、圧縮機24の回転速度を高速にすることが考えられるが、絞りを強くして蒸発圧力を低くすると、圧縮機24を低速で駆動でき、圧縮機24の消費エネルギーを低減できるので、省エネルギー性能の高い運転が行える。   On the other hand, a cooling operation in which the evaporation temperature is lowered (evaporation pressure is lowered) may be necessary. For example, when the food load is small and the heat load is small and the storage chamber is sufficiently cold, it is necessary to lower the evaporation temperature in response to a decrease in the storage chamber temperature. As means for lowering the evaporation temperature (evaporation pressure), it is conceivable to increase the decompression amount of the refrigerant by increasing the throttle and to increase the rotational speed of the compressor 24. If the value is lowered, the compressor 24 can be driven at a low speed and the energy consumption of the compressor 24 can be reduced, so that the operation with high energy saving performance can be performed.

以上から、熱負荷に応じて冷凍サイクルの絞りの強さを変えることで、蒸発圧力を制御することが、省エネルギー性能の向上につながることがわかる。   From the above, it can be seen that controlling the evaporation pressure by changing the squeezing strength of the refrigeration cycle in accordance with the heat load leads to an improvement in energy saving performance.

本実施例の冷蔵庫1では、キャピラリチューブ44dの絞りの強さを熱負荷の小さい条件に適する仕様のものを用い、キャピラリチューブ44eは熱負荷の大きい場合に適する仕様の絞りとしている。これにより、熱負荷の小さい時には、キャピラリチューブ44dに、熱負荷が大きい時にはキャピラリチューブ44eに冷媒を流すことで適切な絞りの強さとすることができ、省エネルギー性能の高い冷却運転を行うことができる。   In the refrigerator 1 according to the present embodiment, the capillary tube 44d has a throttle strength suitable for conditions with a small heat load, and the capillary tube 44e has a specification suitable for a large heat load. As a result, when the heat load is small, the refrigerant can be flowed through the capillary tube 44d and when the heat load is large, the refrigerant can be flowed through the capillary tube 44e to obtain an appropriate throttle strength, and a cooling operation with high energy saving performance can be performed. .

以上で、本実施例の冷蔵庫1の主要な構成について説明した。次に、蒸発器7への着霜による冷凍サイクルへの作用について図8を用いて説明する。霜は蒸発器と蒸発器周囲の空気との熱交換を阻害するため、蒸発器圧力P1を低下させる働きをする。また、蒸発器47と圧縮機24は配管84によって接続されているため、蒸発圧力が減少すると圧縮機24の吸い込み蒸気圧力も同様に減少する。これによって冷媒循環量の低下が起きるため、蒸発器47に着霜が増えると冷凍能力や省エネルギー性能の低下につながる。   The main configuration of the refrigerator 1 according to the present embodiment has been described above. Next, the effect | action to the refrigerating cycle by the frost formation to the evaporator 7 is demonstrated using FIG. Since frost hinders heat exchange between the evaporator and the air around the evaporator, it acts to lower the evaporator pressure P1. Further, since the evaporator 47 and the compressor 24 are connected by the pipe 84, when the evaporation pressure is reduced, the suction steam pressure of the compressor 24 is similarly reduced. As a result, the refrigerant circulation rate is reduced. Therefore, when the frost is increased in the evaporator 47, the refrigerating capacity and the energy saving performance are reduced.

また、前述のとおり各仕切り壁28、29、30では結露防止管43に高温冷媒を流すことで結露を防止している。よって、蒸発器47への着霜により冷媒循環量が減少すると結露防止管43内を流れる高温冷媒の流量も同様に減少し、仕切り壁を過熱する能力が減少することとなる。   Further, as described above, at each partition wall 28, 29, 30, dew condensation is prevented by flowing a high-temperature refrigerant through the dew condensation prevention pipe 43. Therefore, when the refrigerant circulation amount is reduced due to frost formation on the evaporator 47, the flow rate of the high-temperature refrigerant flowing in the dew condensation prevention pipe 43 is similarly reduced, and the ability to overheat the partition wall is reduced.

このように蒸発器への着霜は冷却性能の低下に加え、省エネルギー性能の低下や結露防止機能の低下を引き起こす場合があるため、冷蔵庫1では除霜の間隔に最大時間を設けて定期的に除霜することで蒸発器47への過度の着霜を防いでいる。また、複数の条件を組み合わせて蒸発器への着霜量を予測し、一定以上の着霜があると判定した場合は前述の最大時間が経過する前であっても除霜を行なう制御としている。   In this way, the frost formation on the evaporator may cause a decrease in cooling performance, a decrease in energy saving performance and a decrease in dew condensation prevention function, and therefore the refrigerator 1 periodically sets a maximum time for defrosting. Defrosting prevents excessive frost formation on the evaporator 47. In addition, the amount of frost formation on the evaporator is predicted by combining a plurality of conditions, and when it is determined that there is frost formation above a certain level, control is performed to perform defrosting even before the aforementioned maximum time has elapsed. .

一方で、家庭用冷蔵庫における除霜運転は通常の冷却運転と比べて消費電力量が大きい場合が多い。そのため、除霜区間は長いほど省エネルギー化が図りやすい。そこで、冷蔵庫1では次の制御を行うことで、蒸発圧力の低下による性能低下の防止と省エネルギー化を両立している。   On the other hand, the defrosting operation in a household refrigerator often has a large amount of power consumption compared to a normal cooling operation. Therefore, the longer the defrosting section, the easier it is to save energy. Therefore, in the refrigerator 1, the following control is performed to achieve both prevention of performance degradation due to a decrease in evaporation pressure and energy saving.

次に、制御について図11を用いて説明する。本実施例の制御では、扉センサ(図示せず)や冷蔵庫1のCPUが持つタイマを用いて蒸発器への着霜量を予測し、予測した着霜量に応じて三方弁112を切り替えることで蒸発圧力の制御を行なっている。以下に詳細を説明する。   Next, control will be described with reference to FIG. In the control of this embodiment, the amount of frost formed on the evaporator is predicted using a door sensor (not shown) or a timer of the CPU of the refrigerator 1, and the three-way valve 112 is switched according to the predicted amount of frost formed. The evaporation pressure is controlled by Details will be described below.

着霜量判定値は冷蔵庫1のCPUが持つタイマの積算値と、冷蔵室扉、冷凍室扉、野菜室扉にそれぞれ取り付けられている開閉状態センサにおいて検知された扉開放時間より求める。   The frost formation amount determination value is obtained from the integrated value of the timer of the CPU of the refrigerator 1 and the door opening time detected by the open / closed state sensors attached to the refrigerator compartment door, the freezer compartment door, and the vegetable compartment door.

冷蔵庫へ水分が進入する経路の1つとして、各貯蔵室の扉2a、2b、3a、4a、5a、6aを開放した際の外気の流入が考えられる。この際、交換される空気の最大量は、扉を開放した室の内容積に依存する。貯蔵室内容積は固定値であるため、流入する水分量の予測が可能となる。また、CPU内のタイマで扉開放時間の測定を行い空気の交換量の予測や、外気温度センサ37、や外気湿度センサ38により外気の状態の推定などをおこなうと、より精度の高い予測が可能となる。また、貯蔵室内の食料品からの蒸発による水分の流入も考えられるが、冷蔵庫1では食品の投入量は貯蔵室の開放時間に依存するとして予測を行っている。   As one of the routes through which moisture enters the refrigerator, inflow of outside air when the doors 2a, 2b, 3a, 4a, 5a, 6a of the respective storage rooms are opened is considered. At this time, the maximum amount of air exchanged depends on the internal volume of the chamber with the door opened. Since the storage chamber volume is a fixed value, the amount of water flowing in can be predicted. In addition, more accurate prediction is possible by measuring the door opening time with a timer in the CPU and predicting the amount of air exchange and estimating the state of the outside air with the outside air temperature sensor 37 and the outside air humidity sensor 38. It becomes. Moreover, although inflow of the water | moisture content by the evaporation from the foodstuff in a storage chamber is also considered, in the refrigerator 1, it estimates that the input amount of food depends on the opening time of a storage chamber.

もう1つの水分の進入経路として、断熱箱体10と各貯蔵室の扉2a、2b、3a、4a、5a、6a間の隙間や排水管27からの外気の流入が考えられる。これは、冷蔵庫の運転が安定している状態では一定量の空気が交換されていると考えられるため、タイマによって除霜後からの経過時間を測定することで着霜量の予測が行える。   As another moisture ingress path, the inflow of outside air from the gap between the heat insulating box 10 and the doors 2 a, 2 b, 3 a, 4 a, 5 a, 6 a of each storage chamber or the drain pipe 27 can be considered. Since it is considered that a certain amount of air is exchanged in a state where the operation of the refrigerator is stable, the amount of frost formation can be predicted by measuring the elapsed time after defrosting with a timer.

以上から、冷蔵庫1では扉の開放時間に係数を掛けた値と、除霜後の運転時間に別の係数を掛けた値の合算値を着霜量判定値としている。また、扉開放時の係数は扉2a、2b、3a、4a、5a、6aそれぞれに別の値が割り当てられており、対応する貯蔵室の内容積の大きい室の扉ほど大きな値が割り当てられている。着霜量判定値は時間経過により積算してゆくが、除霜が終了した時点で0から積算を再開する。
次に、着霜量判定値を用いた弁112の切り替え条件について説明する。切り替えには、着霜量判定値のほかに、あらかじめ設けた固定値である禁止判定値SjA、SjBを用いる。禁止判定値SjA、SjBは冷蔵庫1が持つキャピラリチューブ44d、44eそれぞれに対して定めている。着霜量判定値が禁止判定値を超えた場合、割り当てられているキャピラリチューブへの切り替えを禁止する。ただし、禁止判定値はキャピラリチューブ内径が細いものほど小さな値を与え、かつ、少なくともひとつのキャピラリチューブは着霜量判定値によらず常に使用可能とした。
From the above, in the refrigerator 1, the total value of the value obtained by multiplying the door opening time by a coefficient and the value obtained by multiplying the operation time after defrosting by another coefficient is used as the frost amount determination value. Also, the door opening factor is assigned a different value to each of the doors 2a, 2b, 3a, 4a, 5a, 6a, and a larger value is assigned to the door of the corresponding storage chamber having a larger internal volume. Yes. The frost amount determination value is integrated over time, but the integration is restarted from 0 when the defrosting is completed.
Next, switching conditions of the valve 112 using the frost amount determination value will be described. In addition to the frost amount determination value, prohibition determination values SjA and SjB, which are fixed values provided in advance, are used for switching. The prohibition determination values SjA and SjB are determined for the capillary tubes 44d and 44e of the refrigerator 1, respectively. When the frost formation amount determination value exceeds the prohibition determination value, switching to the assigned capillary tube is prohibited. However, the smaller the inner diameter of the capillary tube, the smaller the prohibition determination value, and at least one capillary tube can always be used regardless of the frost formation amount determination value.

着霜量判定値が禁止判定値(SjA、SjB)に達したとき、三方弁112がキャピラリチューブ44へ冷媒を流出する禁止判定値に対応したモードへの切り替えを禁止する。禁止判定値は冷蔵庫1が持つキャピラリチューブ44それぞれに対して定める。ただし、禁止判定値はキャピラリチューブ内径が細いものほど小さな値を与え、かつ、少なくともひとつのキャピラリチューブは着霜量判定値によらず常に使用可能とする。冷蔵庫1では除霜期間の決定に同じ着霜量判定値を用いている。また、キャピラリチューブ44dの禁止判定値を除霜期間の90%の値とし、キャピラリチューブ44dよりも太いキャピラリチューブ44eは禁止判定を設けず、着霜量判定値によらず常に使用可能とした。   When the frosting amount determination value reaches the prohibition determination value (SjA, SjB), switching to the mode corresponding to the prohibition determination value at which the three-way valve 112 flows out the refrigerant to the capillary tube 44 is prohibited. The prohibition determination value is determined for each capillary tube 44 of the refrigerator 1. However, the smaller the inner diameter of the capillary tube, the smaller the prohibition determination value, and at least one capillary tube can always be used regardless of the frost formation amount determination value. The refrigerator 1 uses the same frost formation amount determination value for determining the defrost period. The prohibition determination value of the capillary tube 44d is 90% of the defrost period, and the capillary tube 44e that is thicker than the capillary tube 44d is not provided with a prohibition determination, and can always be used regardless of the frost formation amount determination value.

冷蔵庫1では2本のキャピラリチューブ44d、44eを使用して構成された冷蔵庫について議論しているが、より多くのキャピラリチューブが使用されている場合も同様に、細いキャピラリチューブから使用禁止となるように禁止判定値を設定する。また、少なくともひとつのキャピラリチューブはこの着霜量判定値によらず常に使用できるようにする必要がある。   The refrigerator 1 discusses a refrigerator configured using two capillary tubes 44d and 44e. Similarly, when a larger number of capillary tubes are used, the use of thin capillary tubes is prohibited. Set the prohibition judgment value to. In addition, it is necessary that at least one capillary tube can always be used regardless of the frost formation amount determination value.

また、実施例では複数のキャピラリチューブ44の切り替えにより減圧量の調節を行っているが、膨張弁などほかの減圧手段を用いる場合も同様に、絞り量の大きな領域を着霜量判定値増加に伴って禁止することで同様の効果が得られる。   In the embodiment, the pressure reduction amount is adjusted by switching the plurality of capillary tubes 44. Similarly, when other pressure reducing means such as an expansion valve is used, a region where the throttle amount is large is used to increase the frost formation amount determination value. The same effect can be obtained by prohibiting it.

冷蔵庫1では着霜量判定値として、除霜後からの経過時間と冷蔵庫扉が開放されている時間の合算値を用いたが、除霜量を推定できる手法であれば、どのような計算を行ってもよい。たとえば、冷蔵庫周囲の外気温と湿度を検知する手段があれば、扉開放時間と共に外気温、外気湿度、貯蔵室内容量などを計算に用いることで、外部から貯蔵室に流入する水蒸気量(着霜量の近似値となる)を得る計算を行うことも可能である。また、着霜した霜の量を取得する霜量センサなどの開発も行なわれている。着霜量をより正確に検知できるようになれば、省エネルギー性を高めることが出来る。   In the refrigerator 1, the total value of the elapsed time after defrosting and the time when the refrigerator door is opened is used as the frosting amount determination value, but any calculation can be performed as long as the defrosting amount can be estimated. You may go. For example, if there is a means to detect the outside air temperature and humidity around the refrigerator, the amount of water vapor flowing into the storage room from the outside (frosting) can be calculated by using the outside air temperature, outside air humidity, storage room capacity, etc. along with the door opening time. It is also possible to perform a calculation that yields an approximation of the quantity. In addition, a frost amount sensor that acquires the amount of frost that has formed is also being developed. If the amount of frost formation can be detected more accurately, the energy saving property can be improved.

1 冷蔵庫
2 冷蔵室(貯蔵室)
3 製氷室(貯蔵室)
4 上段冷凍室(貯蔵室)
5 下段冷凍室(貯蔵室)
6 野菜室(貯蔵室)
7 蒸発器
9 貯蔵室内ファン
10 断熱箱体
24 圧縮機
28 冷蔵室−冷凍室仕切り壁(仕切部)
29 冷凍室−野菜室仕切り壁(仕切部)
30 冷凍室間仕切り壁(仕切部)
33 冷蔵室温度センサ
34 野菜室温度センサ
35 冷凍室温度センサ
36 蒸発器温度センサ
37 外気温度センサ
38 外気湿度センサ
41 貯蔵室外放熱器(放熱手段)
41a 貯蔵室外ファン
42 壁面放熱配管(放熱手段)
43 結露防止配管
44 キャピラリチューブ(減圧手段)
44d 第一のキャピラリチューブ
44e 第二のキャピラリチューブ
45 ドライヤ
46 気液分離器
47 熱交換部
50 冷蔵室ダンパ
52 冷凍室ダンパ
60 冷凍室
112 三方弁(冷媒流路制御手段)
200、201 冷媒合流部
1 Refrigerator
2 Refrigerated room (storage room)
3 Ice making room (storage room)
4 Upper freezer room (storage room)
5 Lower freezer compartment (storage room)
6 Vegetable room (storage room)
7 Evaporator
9 Storage room fan
10 Insulated box
24 Compressor
28 Cold room-freezer compartment partition (partition)
29 Freezer compartment-vegetable compartment partition wall
30 Freezer compartment partition wall (partition)
33 Cold room temperature sensor
34 Vegetable room temperature sensor
35 Freezer temperature sensor
36 Evaporator temperature sensor
37 Outside temperature sensor
38 Outside air humidity sensor
41 Heatsink outside storage room (heat dissipation means)
41a Fan outside storage room
42 Wall heat radiation piping (heat radiation means)
43 Anti-condensation piping
44 Capillary tube (pressure reduction means)
44d first capillary tube
44e Second capillary tube
45 dryer
46 Gas-liquid separator
47 Heat exchanger
50 Cold room damper
52 Freezer compartment damper
60 Freezer
112 Three-way valve (refrigerant flow path control means)
200, 201 Refrigerant junction

Claims (4)

前方に開口を形成する開口縁を有する断熱箱体と、前記開口を開閉する扉と、該扉と前記断熱箱体によって形成された貯蔵室と、圧縮機と、該圧縮機の吐出口から吐出される冷媒を、放熱手段、結露防止配管、減圧手段、蒸発器、前記圧縮機の吸込口の順に流す冷媒流路と、備えた冷蔵庫において、
前記減圧手段の絞り量の変更によって前記開口縁の温度を制御することを特徴とする冷蔵庫。
A heat insulating box having an opening edge that forms an opening in the front, a door that opens and closes the opening, a storage chamber formed by the door and the heat insulating box, a compressor, and a discharge from the discharge port of the compressor In the refrigerator provided with the refrigerant flow path for flowing the refrigerant to be radiated, the dew condensation prevention pipe, the pressure reducing means, the evaporator, the suction port of the compressor in this order,
The refrigerator characterized in that the temperature of the opening edge is controlled by changing the squeezing amount of the decompression means.
前記扉の開閉状態を検知する扉開閉センサと、ある時間からの経過時間を計測するタイマと、を備え、
前記扉の開放時間に係数を掛けた値と、前記圧縮機の回転数に応じた係数と前記経過時間の積を除霜終了時から積算した値と、の合算値が指定した値に達すると、前記減圧手段による絞り量を減少させることを特徴とする、請求項1に記載の冷蔵庫。
A door opening / closing sensor for detecting the opening / closing state of the door, and a timer for measuring an elapsed time from a certain time,
When the sum of a value obtained by multiplying the opening time of the door by a coefficient, and a value obtained by integrating a product of the coefficient corresponding to the number of rotations of the compressor and the elapsed time from the end of defrosting reaches a specified value. The refrigerator according to claim 1, wherein the amount of squeezing by the decompression means is reduced.
前記冷蔵庫周囲の温度を測定する温度センサと、前記開口縁の温度を測定する温度センサと、を備え、前記開口縁の温度が前記冷蔵庫周囲の温度から予測される前記冷蔵庫周囲の露点温度よりも低い場合、前記減圧手段による絞り量を減少させることを特徴とする、請求項1に記載の冷蔵庫。   A temperature sensor that measures the temperature around the refrigerator; and a temperature sensor that measures the temperature of the opening edge, and the temperature of the opening edge is higher than the dew point temperature around the refrigerator predicted from the temperature around the refrigerator. The refrigerator according to claim 1, wherein when it is low, the amount of squeezing by the decompression unit is reduced. 前記開口縁の湿度を計測する湿度センサを備え、前記開口縁の湿度が一定以上になった場合、前記減圧手段による絞り量を減少させることを特徴とする、請求項3に記載の冷蔵庫。   The refrigerator according to claim 3, further comprising a humidity sensor that measures the humidity of the opening edge, wherein when the humidity of the opening edge becomes equal to or higher than a certain level, the amount of squeezing by the decompression unit is reduced.
JP2015144538A 2015-07-22 2015-07-22 refrigerator Pending JP2017026210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015144538A JP2017026210A (en) 2015-07-22 2015-07-22 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015144538A JP2017026210A (en) 2015-07-22 2015-07-22 refrigerator

Publications (1)

Publication Number Publication Date
JP2017026210A true JP2017026210A (en) 2017-02-02

Family

ID=57949537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015144538A Pending JP2017026210A (en) 2015-07-22 2015-07-22 refrigerator

Country Status (1)

Country Link
JP (1) JP2017026210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049647A1 (en) * 2018-09-05 2020-03-12 三菱電機株式会社 Refrigerator
WO2024009395A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049647A1 (en) * 2018-09-05 2020-03-12 三菱電機株式会社 Refrigerator
WO2024009395A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Refrigerator

Similar Documents

Publication Publication Date Title
JP4954484B2 (en) Cooling storage
JP4867758B2 (en) refrigerator
JP6687384B2 (en) refrigerator
JP5507511B2 (en) refrigerator
JP6177605B2 (en) refrigerator
JP5178771B2 (en) Freezer refrigerator
JP5110192B1 (en) Refrigeration equipment
JP2012017920A (en) Refrigerator
JP5847198B2 (en) refrigerator
JP5492845B2 (en) refrigerator
JP6469966B2 (en) refrigerator
JP2013155910A (en) Refrigerator
JP2013019598A (en) Refrigerator
JP6872689B2 (en) refrigerator
JP2012042143A (en) Refrigerator
JP4654539B2 (en) refrigerator
JP2017026210A (en) refrigerator
JP2005156105A (en) Refrigerator
JP6940424B2 (en) refrigerator
JP2004333092A (en) Freezer/refrigerator
JP6762149B2 (en) refrigerator
JP6543811B2 (en) refrigerator
JP2019132506A (en) refrigerator
JP4286106B2 (en) Freezer refrigerator
JP2019138514A (en) refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125