JP6469966B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6469966B2
JP6469966B2 JP2014101899A JP2014101899A JP6469966B2 JP 6469966 B2 JP6469966 B2 JP 6469966B2 JP 2014101899 A JP2014101899 A JP 2014101899A JP 2014101899 A JP2014101899 A JP 2014101899A JP 6469966 B2 JP6469966 B2 JP 6469966B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
flow path
heating
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014101899A
Other languages
Japanese (ja)
Other versions
JP2015218938A (en
Inventor
大平 昭義
昭義 大平
慎一郎 岡留
慎一郎 岡留
小谷 正直
正直 小谷
山下 太一郎
太一郎 山下
真也 岩渕
真也 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014101899A priority Critical patent/JP6469966B2/en
Publication of JP2015218938A publication Critical patent/JP2015218938A/en
Application granted granted Critical
Publication of JP6469966B2 publication Critical patent/JP6469966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特開2007−113825号公報(特許文献1)と、特開平7−180951号公報(特許文献2)がある。   As background arts in this technical field, there are JP-A-2007-113825 (Patent Document 1) and JP-A-7-180951 (Patent Document 2).

特許文献1では、庫内が冷凍温度となる二つの食品室と、その食品室と食品室の間で上と下から直接はさまれた野菜室と、その野菜室が規定温度以下になった時にオンとなる野菜室加熱用の温度補償ヒータを有し、前記野菜室は前記温度補償ヒータとは別に前記凝縮器と連通し、その凝縮器の一部となる冷凍サイクルパイプによる放熱で常に暖められている。
In Patent Document 1, two food rooms in which the inside is at a freezing temperature, a vegetable room sandwiched directly between the food room and the food room from above and below, and when the vegetable room falls below a specified temperature are turned on. The vegetable compartment is connected to the condenser separately from the temperature compensation heater, and is always warmed by heat radiation from the refrigeration cycle pipe that is a part of the condenser. Yes.

特許文献2では、圧縮機、放熱パイプ、キャピラリチューブ及び蒸発器からなる冷凍サイクルにより冷却機能を有する冷蔵庫と、この冷蔵庫内に設けられ冷気の流出入可能な冷気流入口、冷気流出口及び冷気流量制御手段を有する乾燥室と、この乾燥室内に放熱パイプの一部を配置し前記冷凍サイクルの加熱冷媒が流れるようにした加熱手段と、この加熱手段に前記冷凍サイクルからの冷媒流路及び流量を制御する制御弁とを具備してなることを特徴とする乾燥機能付き冷蔵庫が記載されている。
In patent document 2, the refrigerator which has a cooling function with the refrigerating cycle which consists of a compressor, a heat radiating pipe, a capillary tube, and an evaporator, the cold air flow inlet provided in this refrigerator and the inflow / outflow of cold air, a cold air flow outlet, and a cold air flow rate A drying chamber having a control unit, a heating unit in which a part of the heat radiating pipe is arranged in the drying chamber so that the heating refrigerant of the refrigeration cycle flows, and a refrigerant flow path and a flow rate from the refrigeration cycle are set in the heating unit. The refrigerator with a drying function characterized by comprising the control valve to control is described.

特開2007−113825号公報JP2007-1113825A 特開平7−180951号公報JP-A-7-180951

特許文献1に記載の冷蔵庫では、野菜室に凝縮器の一部を配置している構成であり、圧縮機運転中は野菜室が常時加熱されることになるため、野菜室にとって熱負荷が増加する場合があり、省エネルギー性能が悪化する。
In the refrigerator described in Patent Document 1, a part of the condenser is arranged in the vegetable room, and the vegetable room is constantly heated during the compressor operation, so the heat load increases for the vegetable room. The energy-saving performance may deteriorate.

特許文献2に記載の冷蔵庫では、クリーンパイプ(放熱パイプの一部)よりも上流側で乾燥室加熱パイプに冷媒を流すA流路と、乾燥室加熱パイプを迂回してそのまま流すB流路とを切り替える構成である。この構成では、直列に配置されている乾燥室加熱パイプとクリーンパイプの両方に冷媒を流した場合に加熱不足が発生するおそれがある。   In the refrigerator described in Patent Document 2, the A channel that flows the refrigerant to the drying chamber heating pipe on the upstream side of the clean pipe (part of the heat radiating pipe), and the B channel that bypasses the drying chamber heating pipe and flows as it is. It is the structure which switches. With this configuration, there is a risk that insufficient heating will occur when the refrigerant is passed through both the drying chamber heating pipe and the clean pipe arranged in series.

本発明は、以上のような問題点に鑑みてなされたものであり、冷凍サイクルの一部を複数の加熱手段として用いても、省エネルギー性能が高く、加熱不足を抑えた冷蔵庫を提供することを目的とする。
The present invention has been made in view of the problems as described above, and provides a refrigerator having high energy saving performance and suppressing shortage of heating even when a part of the refrigeration cycle is used as a plurality of heating means. Objective.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、冷凍温度帯の貯蔵室と、冷蔵温度帯の貯蔵室と、前記冷凍温度帯の貯蔵室と前記冷蔵温度帯の貯蔵室を仕切る断熱仕切部と、圧縮機と、放熱手段と、減圧手段と、冷却器を接続した冷凍サイクルと、を備え、前記放熱手段は、前記冷凍温度帯の貯蔵室の前方の仕切部を加熱する第一の加熱手段と、前記断熱仕切部に設けられて冷蔵温度帯の貯蔵室を加熱する第二の加熱手段と、を備え、前記第一の加熱手段を含む第一の冷媒流路と、前記第二の加熱手段を含む第二の冷媒流路は並列に配置されて、前記第一の冷媒流路と前記第二の冷媒流路とを切り替える冷媒流路切替手段を備えたことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a storage room in a refrigeration temperature zone, a storage room in a refrigeration temperature zone, a storage room in the refrigeration temperature zone, and the refrigeration temperature zone. A heat insulating partition that partitions the storage chamber, a compressor, a heat radiating means, a pressure reducing means, and a refrigeration cycle connected to a cooler, wherein the heat radiating means is a partition in front of the storage room in the refrigeration temperature zone. A first heating means for heating a part, and a second heating means provided in the heat insulating partition for heating a storage room in a refrigerated temperature zone, the first refrigerant including the first heating means The flow path and the second refrigerant flow path including the second heating means are arranged in parallel, and include a refrigerant flow path switching means for switching between the first refrigerant flow path and the second refrigerant flow path. It is characterized by that.

本発明によれば、冷凍サイクルの一部を複数の加熱手段として用いても、省エネルギー性能が高く、加熱不足を抑えた冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses a part of refrigerating cycle as a some heating means, the energy-saving performance is high and the refrigerator which suppressed shortage of heating can be provided.

上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の実施例1に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on Example 1 of this invention. 図1に示した冷蔵庫のA−A断面図である。It is AA sectional drawing of the refrigerator shown in FIG. 本発明の実施例1に係る冷蔵庫の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the refrigerator which concerns on Example 1 of this invention. 本発明の実施例1に係る冷蔵庫の放熱側パイプの配置図である。It is an arrangement plan of a heat dissipation side pipe of a refrigerator concerning Example 1 of the present invention. 上断熱仕切壁、下断熱仕切壁及び断熱仕切部の部分断面図である。It is a fragmentary sectional view of an upper heat insulation partition wall, a lower heat insulation partition wall, and a heat insulation partition part. 図1に示した冷蔵庫のB−B断面図である。It is BB sectional drawing of the refrigerator shown in FIG. 野菜室ドアと収納容器を外した状態の野菜室の正面図である。It is a front view of the vegetable room of the state which removed the vegetable room door and the storage container. 本発明の実施例1に係る冷凍サイクルにおいて、サイクルAとサイクルBを切り替える場合の制御概念図である。In the refrigerating cycle which concerns on Example 1 of this invention, it is a control conceptual diagram in the case of switching the cycle A and the cycle B. FIG. 本発明の実施例1に係る冷蔵庫の冷却運転の一例を示すタイムチャートである。It is a time chart which shows an example of the cooling operation of the refrigerator which concerns on Example 1 of this invention. 本発明の実施例1に係る冷凍サイクルの説明図であって、複数の加熱手段に同時に冷媒を流した場合の冷媒の状態を説明する図である。It is explanatory drawing of the refrigerating cycle which concerns on Example 1 of this invention, Comprising: It is a figure explaining the state of a refrigerant | coolant at the time of flowing a refrigerant | coolant simultaneously to several heating means. 本発明の実施例1に係る冷凍サイクルの運転状態を示したモリエル線図である。It is the Mollier diagram which showed the driving | running state of the refrigerating cycle which concerns on Example 1 of this invention. 比較例の冷凍サイクルを示す図であって、加熱手段を直列に配置した例である。It is a figure which shows the refrigerating cycle of a comparative example, Comprising: It is the example which has arrange | positioned the heating means in series. 図11の比較例の冷凍サイクルの冷媒の状態を説明する図である。It is a figure explaining the state of the refrigerant | coolant of the refrigerating cycle of the comparative example of FIG. 図11の比較例の冷凍サイクルの運転状態を示すモリエル線図ある。It is a Mollier diagram which shows the driving | running state of the refrigerating cycle of the comparative example of FIG. 本発明の実施例2に係る冷蔵庫の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the refrigerator which concerns on Example 2 of this invention. 冷媒流路切替手段(四方弁)による冷媒流路の切り替えパターンを模式的に示した図である。It is the figure which showed typically the switching pattern of the refrigerant flow path by a refrigerant flow path switching means (four-way valve). 本発明の実施例3に係る冷蔵庫の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the refrigerator which concerns on Example 3 of this invention. 本発明の実施例3に係る冷凍サイクルの説明図であって、複数の加熱手段に同時に冷媒を流した場合の冷媒の状態を説明する図である。It is explanatory drawing of the refrigerating cycle which concerns on Example 3 of this invention, Comprising: It is a figure explaining the state of a refrigerant | coolant at the time of flowing a refrigerant | coolant simultaneously to several heating means. 本発明の実施例4に係る冷蔵庫の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the refrigerator which concerns on Example 4 of this invention. 本発明の実施例4に係る冷凍サイクルの説明図であって、複数の加熱手段に同時に冷媒を流した場合の冷媒の状態を説明する図である。It is explanatory drawing of the refrigerating cycle which concerns on Example 4 of this invention, Comprising: It is a figure explaining the state of a refrigerant | coolant at the time of flowing a refrigerant | coolant simultaneously to several heating means.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1に係る冷蔵庫の正面図である。図1に示すように、本実施例の冷蔵庫1は、上方から冷蔵室2、左右に併設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6の順番で構成されている。以降、製氷室3、上段冷凍室4、下段冷凍室5を総称して冷凍室7と表現する場合がある。冷蔵室2の前方は左右に分割された回動式の冷蔵室ドア2a、2bを備え、いわゆるフレンチドアを構成している。製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aを備えている。以下では、冷蔵室ドア2a、2b、製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aを、単にドア2a、2b、3a、4a、5a、6aと称する場合がある。冷蔵室ドア2aの前面には庫内の温度設定の操作を行う操作部50を設けている。冷蔵室ドア2a、2bを固定するためのドアヒンジ(図示せず)は、冷蔵室2の外側上部及び外側下部に設けてあり、外側上部のドアヒンジは意匠性と部品の保護を考慮してドアヒンジカバー53で覆われている。また、庫外温度センサ52、及び庫外湿度センサ120は、冷蔵庫1内部の温度の影響を受け難い位置として、例えば、冷蔵庫1のドアヒンジカバー53の内部に設けている。   FIG. 1 is a front view of a refrigerator according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigerator 1 according to the present embodiment includes a refrigerator room 2 from the top, an ice making room 3 provided on the left and right, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6 in this order. . Hereinafter, the ice making room 3, the upper freezer room 4, and the lower freezer room 5 may be collectively referred to as the freezer room 7 in some cases. The front of the refrigerating room 2 is provided with rotary refrigerating room doors 2a and 2b which are divided into left and right, and constitute a so-called French door. The ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each provided with a drawer type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a may be simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a. is there. An operation unit 50 is provided on the front surface of the refrigerator compartment door 2a for performing temperature setting operation in the cabinet. Door hinges (not shown) for fixing the refrigerator compartment doors 2a and 2b are provided on the outer upper portion and the outer lower portion of the refrigerator compartment 2, and the door hinges on the outer upper portion are door hinge covers in consideration of design and protection of parts. 53. Further, the outside temperature sensor 52 and the outside humidity sensor 120 are provided, for example, inside the door hinge cover 53 of the refrigerator 1 as positions that are not easily affected by the temperature inside the refrigerator 1.

次に図2は、図1に示した冷蔵庫のA−A断面図である。冷蔵庫1の庫外空間と庫内空間は、外箱10aと内箱10bとの間に発泡断熱材を充填して形成された断熱箱体10によって隔てられている。外箱10aと内箱10bとの間には、発泡断熱材に加えて複数の真空断熱材25を実装しており、断熱性能を高めている。各貯蔵室は上断熱仕切部28によって、冷蔵室2と、その下方に位置する上段冷凍室4及び製氷室3が隔てられ、下断熱仕切部29によって下段冷凍室5と野菜室6が隔てられている。冷蔵室ドア2a、2bの庫内側には複数のドアポケット33a、33b、33cと、冷蔵室2には複数の棚34a、34b、34c、34d(総称して棚34と表現する場合がある)が上下方向に設けてあり、複数の貯蔵スペースに区画されている。   Next, FIG. 2 is an AA cross-sectional view of the refrigerator shown in FIG. The external space and internal space of the refrigerator 1 are separated by a heat insulating box 10 formed by filling a foam heat insulating material between the outer box 10a and the inner box 10b. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 25 are mounted between the outer box 10a and the inner box 10b to enhance the heat insulating performance. Each storage room is separated from the refrigerator compartment 2 from the upper freezer compartment 4 and the ice making room 3 by the upper heat insulating partition 28, and the lower freezer compartment 5 and the vegetable compartment 6 are separated from each other by the lower heat insulating partition 29. ing. A plurality of door pockets 33a, 33b, 33c are provided inside the refrigerator compartment doors 2a, 2b, and a plurality of shelves 34a, 34b, 34c, 34d are provided in the refrigerator compartment 2 (sometimes collectively referred to as a shelf 34). Are provided in the vertical direction and are partitioned into a plurality of storage spaces.

冷蔵室2下部であって上断熱仕切部28の上方には、貯蔵室35を設けている。貯蔵室35は冷蔵室2の温度帯よりも低めに設定されたチルド温度帯の貯蔵室である。貯蔵室35内の温度調整は、例えば、貯蔵室35の後方部の冷蔵室冷気ダクト11の途中に設けた専用の風量調整装置(図示なし)によって行なわれるが、貯蔵室35が設定温度よりも冷え過ぎた場合は、貯蔵室35の下部に設けた温度調整用の加熱手段(一例としてヒータ19)によって加熱する場合がある。なお、貯蔵室35はチルド温度帯に限らず、チルド温度帯よりも低く冷凍温度帯よりも高い温度帯、すなわち、氷温帯やパーシャル温度帯であってもよい。   A storage chamber 35 is provided at the bottom of the refrigerator compartment 2 and above the upper heat insulating partition 28. The storage room 35 is a storage room in a chilled temperature range that is set lower than the temperature range of the refrigerator compartment 2. The temperature adjustment in the storage chamber 35 is performed by, for example, a dedicated air volume adjusting device (not shown) provided in the middle of the refrigeration chamber cool air duct 11 at the rear of the storage chamber 35. If it is too cold, it may be heated by a temperature adjusting heating means (as an example, the heater 19) provided in the lower part of the storage chamber 35. The storage chamber 35 is not limited to the chilled temperature zone but may be a temperature zone lower than the chilled temperature zone and higher than the freezing temperature zone, that is, an ice temperature zone or a partial temperature zone.

上段冷凍室4及び製氷室3と下段冷凍室5との間には、断熱仕切部40を設けている。上断熱仕切壁28、下断熱仕切壁29、断熱仕切部40のうちドア2a、2b、3a、4a、5a、6aのいずれかに接する側には、それぞれ仕切りカバー36a、36b、36cを設けてある。上段冷凍室4、下段冷凍室5及び野菜室6には、それぞれの前方に備えられたドア4a、5a、6aと一体に移動する収納容器4b、5b、6bがそれぞれ設けられており、ドア4a、5a、6aを手前側に引き出すことにより、収納容器4b、5b、6bも引き出せるようになっている。製氷室3にもドア3aと一体に移動する収納容器が設けられ、ドア3aを手前側に引き出すことにより、収納容器3bも引き出せる。   Between the upper freezing room 4 and the ice making room 3 and the lower freezing room 5, a heat insulating partition 40 is provided. Partition covers 36a, 36b, and 36c are provided on the sides of the upper heat insulating partition wall 28, the lower heat insulating partition wall 29, and the heat insulating partition portion 40 that are in contact with any of the doors 2a, 2b, 3a, 4a, 5a, and 6a. is there. The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided with storage containers 4b, 5b, 6b that move integrally with the doors 4a, 5a, 6a provided in front of the respective compartments. The storage containers 4b, 5b and 6b can also be pulled out by pulling out 5a and 6a to the near side. The ice making chamber 3 is also provided with a storage container that moves integrally with the door 3a, and the storage container 3b can also be pulled out by pulling the door 3a forward.

冷却器14は、下段冷凍室5の略背部に備えた冷却器収納室8内に設けてあり、冷却器14の上方に設けたファン9により、冷却器14と熱交換した冷気が冷蔵室冷気ダクト11、上段冷凍室冷気ダクト12、下段冷凍室送風ダクト13、及び製氷室送風ダクト(図示なし)を介して、冷蔵室2、上段冷凍室4、下段冷凍室5、製氷室3の各貯蔵室へ吐出口11a、11b、11c、12a、13a、13bからそれぞれ送られる。各貯蔵室への冷気の送風は、冷蔵室ダンパ20と冷凍室ダンパ60による風路の開閉により制御される。冷蔵室ダンパ20、冷凍室ダンパ60にはそれぞれ回動するバッフル20a、60aを備えており、バッフル20a、60aはモータ駆動(図示なし)によって回動角度が調整される。すなわち、冷蔵室ダンパ20、冷凍室ダンパ60によって風路の開放量を制御することにより、冷気の送風量を制御している。   The cooler 14 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezer compartment 5, and the cold air that has exchanged heat with the cooler 14 is cooled by the fan 9 provided above the cooler 14. Each storage of the refrigerator compartment 2, the upper freezer compartment 4, the lower freezer compartment 5, and the ice compartment 3 through the duct 11, the upper freezer compartment cool air duct 12, the lower freezer compartment air duct 13, and the ice making compartment air duct (not shown). It is sent from the discharge ports 11a, 11b, 11c, 12a, 13a and 13b to the chamber. The blowing of cold air to each storage room is controlled by opening and closing the air path by the refrigerator compartment damper 20 and the freezer compartment damper 60. The refrigerator compartment damper 20 and the freezer compartment damper 60 are provided with rotating baffles 20a and 60a, respectively, and the rotation angles of the baffles 20a and 60a are adjusted by motor driving (not shown). That is, the amount of cool air blown is controlled by controlling the amount of opening of the air passage by the refrigerator compartment damper 20 and the freezer compartment damper 60.

冷却器14の下部には除霜ヒータ22を設けている。除霜時に発生したドレン水は樋23に一旦落下し、ドレン孔27を介して圧縮機24の上部に設けた蒸発皿21に排出される。冷蔵庫1の背面下部に設けた機械室61内には、圧縮機24の他に放熱器(図示なし)と放熱用のファン(図示なし)が配置されている。   A defrost heater 22 is provided below the cooler 14. The drain water generated at the time of defrosting falls once to the trough 23 and is discharged to the evaporating dish 21 provided on the upper part of the compressor 24 through the drain hole 27. In addition to the compressor 24, a radiator (not shown) and a heat radiating fan (not shown) are disposed in the machine room 61 provided at the lower back of the refrigerator 1.

冷蔵庫1の上壁上部後方にはメモリー、インターフェース回路を搭載した制御基板51が配置されており、制御基板51のROMに記憶された制御手段に従って冷凍サイクル、及び送風系の制御が実施される。制御基板51は意匠性や部品の保護を考慮して基板カバー30で覆われている。   A control board 51 equipped with a memory and an interface circuit is arranged behind the upper wall of the refrigerator 1, and the control of the refrigeration cycle and the air blowing system is performed according to the control means stored in the ROM of the control board 51. The control board 51 is covered with a board cover 30 in consideration of design properties and component protection.

冷蔵室2を冷却する冷蔵室冷却運転の場合には、冷蔵室ダンパ20を開、冷凍室ダンパ60を閉にし、冷蔵室冷気ダクト11に設けた吐出口11a、11b、11cから冷蔵室2に冷気が送られる。冷蔵室2を冷却した後の冷気は、冷蔵室2下部に設けた冷気戻り口(図示なし)に流入し、その後、冷却器14に戻される。
野菜室6の冷却手段については種々の方法があるが、例えば、冷蔵室2を冷却した後に野菜室6に冷気を送る方法や、野菜室専用の風量調整装置(一例として、野菜室ダンパ13(図7参照))を用いて冷却器14で熱交換した冷気を直接野菜室6に送る方法が考えられる。本実施例においては、野菜室6への冷気の供給方法についてはいずれの場合でも良い。図2では、野菜室6に流入した冷気は、断熱仕切部29の下部前方に設けた野菜室側の冷気戻り部18aから野菜室冷気戻りダクト18を介して、野菜室冷気戻り部18bから冷却器14下部に流入する(図7参照)。
In the case of the refrigerating room cooling operation for cooling the refrigerating room 2, the refrigerating room damper 20 is opened, the freezing room damper 60 is closed, and the outlets 11 a, 11 b, 11 c provided in the refrigerating room cold air duct 11 are transferred to the refrigerating room 2. Cold air is sent. The cool air after cooling the refrigerating chamber 2 flows into a cool air return port (not shown) provided in the lower portion of the refrigerating chamber 2 and then returned to the cooler 14.
There are various methods for cooling the vegetable compartment 6, for example, a method of sending cold air to the vegetable compartment 6 after cooling the refrigerator compartment 2, an air volume adjusting device dedicated to the vegetable compartment (as an example, the vegetable compartment damper 13 ( A method of sending the cold air heat-exchanged by the cooler 14 directly to the vegetable compartment 6 using FIG. In the present embodiment, any method may be used for supplying cold air to the vegetable compartment 6. In FIG. 2, the cold air flowing into the vegetable compartment 6 is cooled from the vegetable compartment cold air return portion 18 b through the vegetable compartment cold air return duct 18 from the vegetable compartment side cold air return portion 18 a provided in front of the lower part of the heat insulating partition 29. Flows into the lower part of the container 14 (see FIG. 7).

冷凍室7(製氷室3、上段冷凍室4、下段冷凍室5)を冷却する冷凍室冷却運転の場合には、冷蔵室ダンパ20を閉、冷凍室ダンパ60を開にし、上段冷凍室冷気ダクト12、及び下段冷凍室冷気ダクト13のそれぞれに設けた複数の吐出口12a、13a、13bから冷気が吐出されて、上段冷凍室4、下段冷凍室5、及び製氷室3を冷却した後、冷凍室冷気戻り部17から冷却器14に戻される。   In the case of the freezing room cooling operation for cooling the freezing room 7 (the ice making room 3, the upper freezing room 4, the lower freezing room 5), the refrigerating room damper 20 is closed, the freezing room damper 60 is opened, and the upper freezing room cold air duct is opened. 12 and cool air are discharged from a plurality of outlets 12a, 13a and 13b provided in the cooler duct 13 of the lower freezer compartment, and the upper freezer chamber 4, the lower freezer compartment 5 and the ice making chamber 3 are cooled and then frozen. It returns to the cooler 14 from the room cool air return part 17.

冷蔵室2及び冷凍室7の温度は、各貯蔵空間に設けた冷蔵室温度センサ121、冷凍室温度センサ122でそれぞれ検知される。各貯蔵空間の温度によっては、冷蔵室2と冷凍室7を同時に冷却する運転モードの場合があり、その場合には冷蔵室ダンパ20と冷凍室ダンパ60のいずれも開にして、冷蔵室2及び冷凍室7に冷気を送風する。   The temperatures of the refrigerator compartment 2 and the freezer compartment 7 are detected by a refrigerator compartment temperature sensor 121 and a freezer compartment temperature sensor 122 provided in each storage space, respectively. Depending on the temperature of each storage space, there may be an operation mode in which the refrigerator compartment 2 and the freezer compartment 7 are simultaneously cooled. In this case, both the refrigerator compartment damper 20 and the refrigerator compartment damper 60 are opened, and the refrigerator compartment 2 and Cool air is blown into the freezer compartment 7.

次に図3は、本発明の実施例1に係る冷蔵庫の冷凍サイクルの構成図である。圧縮機24の吐出側の冷媒パイプ66は、機械室ファン45によって空冷される第一の放熱器46に接続されており、第一の放熱器46と第二の放熱器41a、41b(図4で詳細を後述)は冷媒パイプ67で接続されている。第二の放熱器41bの出口側は、冷媒パイプ68の一端に接続されており、この冷媒パイプ68の他端は冷媒流路切替手段の一例である三方弁130に接続している。   Next, FIG. 3 is a configuration diagram of the refrigeration cycle of the refrigerator according to the first embodiment of the present invention. The refrigerant pipe 66 on the discharge side of the compressor 24 is connected to a first radiator 46 that is air-cooled by the machine room fan 45, and the first radiator 46 and the second radiators 41a and 41b (FIG. 4). And the details will be described later). The outlet side of the second radiator 41b is connected to one end of a refrigerant pipe 68, and the other end of the refrigerant pipe 68 is connected to a three-way valve 130 which is an example of a refrigerant flow switching means.

圧縮機24、冷媒パイプ66、機械室ファン45及び第一の放熱器46は、断熱箱体10の下部後方に位置する機械室61に設けてある。   The compressor 24, the refrigerant pipe 66, the machine room fan 45, and the first radiator 46 are provided in a machine room 61 located at the lower rear of the heat insulating box 10.

三方弁130の入口側に接続された冷媒パイプ68から流入した冷媒は、三方弁130の出口側に接続した冷媒パイプ70(第一の冷媒流路であるサイクルA)と、冷媒パイプ70を迂回するバイパスパイプ74(第三の冷媒流路であるサイクルB)の2方向に分岐して流れる構成であり、それぞれに流す冷媒量を三方弁130によって制御している。   The refrigerant flowing in from the refrigerant pipe 68 connected to the inlet side of the three-way valve 130 bypasses the refrigerant pipe 70 (cycle A which is the first refrigerant flow path) connected to the outlet side of the three-way valve 130 and the refrigerant pipe 70. The bypass pipe 74 (cycle B, which is the third refrigerant flow path) is branched and flows in two directions, and the amount of refrigerant flowing through each is controlled by the three-way valve 130.

三方弁130の出口側の冷媒パイプ70(サイクルA)には、第一の放熱手段である結露防止パイプ72が接続されている。結露防止パイプ72の出口側には冷媒パイプ100の一端が接続されて、冷媒パイプ100の他端には第一のドライヤ77aを接続している。   The refrigerant pipe 70 (cycle A) on the outlet side of the three-way valve 130 is connected with a dew condensation prevention pipe 72 as a first heat radiating means. One end of the refrigerant pipe 100 is connected to the outlet side of the dew condensation prevention pipe 72, and the first dryer 77 a is connected to the other end of the refrigerant pipe 100.

三方弁130の入口側に接続する冷媒パイプ68の途中には、この冷媒パイプ68から分岐するように冷媒パイプ71の一端を接続しており、この冷媒パイプ71の他端には、第二の加熱手段である野菜室加熱パイプ73を接続している。野菜室加熱パイプ73の上流側であって冷媒パイプ71の途中には、冷媒流路切替手段の一例である二方弁131を設けている。この二方弁131を開にすると、野菜室加熱パイプ73(第二の冷媒流路であるサイクルC)に冷媒が流れる。なお、本実施例では三方弁130と二方弁131とを総称して冷媒流路切替手段としており、これらの制御によって第一から第三の冷媒流路を切り替える構成である。   In the middle of the refrigerant pipe 68 connected to the inlet side of the three-way valve 130, one end of the refrigerant pipe 71 is connected so as to branch from the refrigerant pipe 68, and the other end of the refrigerant pipe 71 is connected to the second pipe. The vegetable room heating pipe 73 which is a heating means is connected. A two-way valve 131 that is an example of a refrigerant flow switching means is provided on the upstream side of the vegetable room heating pipe 73 and in the middle of the refrigerant pipe 71. When the two-way valve 131 is opened, the refrigerant flows through the vegetable room heating pipe 73 (cycle C as the second refrigerant flow path). In this embodiment, the three-way valve 130 and the two-way valve 131 are collectively referred to as a refrigerant flow path switching unit, and the first to third refrigerant flow paths are switched by these controls.

野菜室加熱パイプ73の出口側には冷媒パイプ101の一端を接続し、この冷媒パイプ101の他端は、結露防止パイプ72と第一のドライヤ77aを接続するパイプ100に対して合流部76で合流している。また、冷媒パイプ101と合流部76の間には、逆止弁75を設けることで、冷媒パイプ101から野菜室加熱パイプ73への冷媒の逆流を防止している。   One end of the refrigerant pipe 101 is connected to the outlet side of the vegetable room heating pipe 73, and the other end of the refrigerant pipe 101 is connected to the pipe 100 connecting the dew condensation prevention pipe 72 and the first dryer 77 a at the junction 76. Have joined. In addition, a check valve 75 is provided between the refrigerant pipe 101 and the junction 76 to prevent the refrigerant from flowing back from the refrigerant pipe 101 to the vegetable compartment heating pipe 73.

冷媒パイプ100の合流部76の上流側であって結露防止パイプ72の下流には、逆止弁75を設けている。これにより、冷媒パイプ100から結露防止パイプ72側への冷媒の逆流を防止している。第一のドライヤ77aの下流側には、冷媒パイプ78の一端を接続し、冷媒パイプ78の他端には第一の絞り装置(減圧手段)81を接続している。   A check valve 75 is provided upstream of the junction 76 of the refrigerant pipe 100 and downstream of the condensation prevention pipe 72. Thereby, the reverse flow of the refrigerant from the refrigerant pipe 100 to the dew condensation prevention pipe 72 side is prevented. One end of a refrigerant pipe 78 is connected to the downstream side of the first dryer 77 a, and a first expansion device (decompression unit) 81 is connected to the other end of the refrigerant pipe 78.

また、三方弁130の出口側に接続されたバイパスパイプ74の下流側には、第二のドライヤ77bを接続している。第二のドライヤ77bの下流側には、冷媒パイプ79の一端を接続し、この冷媒パイプ79の他端には第二の絞り装置82を接続している。第一の絞り装置81と第二の絞り装置82は、それぞれの下流側の合流部83で合流して冷媒パイプ84に接続されて、この冷媒パイプ84の下流側は蒸発器14に接続されている。蒸発器14の出口側に接続された冷媒パイプ85は、途中に第一の絞り装置81及び第二の絞り装置82の一部と熱交換するように熱交換部80を設けてあり、冷媒パイプ85の熱交換部80よりも下流側は圧縮機24の吸込側に接続されている。   A second dryer 77 b is connected to the downstream side of the bypass pipe 74 connected to the outlet side of the three-way valve 130. One end of a refrigerant pipe 79 is connected to the downstream side of the second dryer 77b, and a second expansion device 82 is connected to the other end of the refrigerant pipe 79. The first throttling device 81 and the second throttling device 82 merge at their downstream junctions 83 and are connected to the refrigerant pipe 84, and the downstream side of the refrigerant pipe 84 is connected to the evaporator 14. Yes. The refrigerant pipe 85 connected to the outlet side of the evaporator 14 is provided with a heat exchanging unit 80 so as to exchange heat with a part of the first expansion device 81 and the second expansion device 82 in the middle. The downstream side of the 85 heat exchanger 80 is connected to the suction side of the compressor 24.

本実施例の構成では、バイパスパイプ74(第三の冷媒流路であるサイクルB)に冷媒を流す冷凍サイクルによって、冷凍室7への熱侵入が少ない省エネルギー性能を高めた冷却運転が実施できる(図5,図6参照)。また、庫内の熱負荷に応じて、第一の絞り装置81と第二の絞り装置82を選択して絞り量を調節できるようにしてあり、省エネルギー性能を高めたバイパスパイプ74側に接続する第二の絞り装置82の絞り量は、第一の絞り装置81の絞り量よりも大きくしている。   In the configuration of the present embodiment, a cooling operation with improved energy saving performance with less heat intrusion into the freezer compartment 7 can be performed by the refrigeration cycle in which the refrigerant flows through the bypass pipe 74 (cycle B which is the third refrigerant flow path) ( (See FIGS. 5 and 6). Further, the first expansion device 81 and the second expansion device 82 are selected in accordance with the heat load in the cabinet so that the amount of expansion can be adjusted, and connected to the bypass pipe 74 side with improved energy saving performance. The diaphragm amount of the second diaphragm device 82 is larger than the diaphragm amount of the first diaphragm device 81.

この冷凍サイクルの構成において、三方弁130によって第一の放熱手段である結露防止パイプ72を流れる第一の冷媒流路(サイクルA)と、第一の放熱手段を迂回するバイパスパイプ74を流れる第三の冷媒流路(サイクルB)が所定の時間ごとに切り替わる。また、野菜室6の温度が所定の温度以下になると、二方弁131を開にして、第二の加熱手段である野菜室加熱パイプ73を含む第二の冷媒流路に冷媒を流している。   In this refrigeration cycle configuration, a three-way valve 130 causes a first refrigerant flow path (cycle A) that flows through a dew condensation prevention pipe 72 that is a first heat radiating means, and a bypass pipe 74 that bypasses the first heat radiating means. Three refrigerant flow paths (cycle B) are switched every predetermined time. Moreover, when the temperature of the vegetable compartment 6 becomes below a predetermined temperature, the two-way valve 131 is opened, and the refrigerant is caused to flow through the second refrigerant flow path including the vegetable compartment heating pipe 73 as the second heating means. .

ここで例えば、結露防止パイプ72だけに冷媒を流す場合(この時、二方弁131は閉)、野菜室加熱パイプ73側に冷媒が逆流することがあり、野菜室加熱パイプ73だけに冷媒を流す場合(この時、三方弁130は全閉)、結露防止パイプ72側に冷媒が逆流することがあり、それぞれの運転中の冷凍サイクルで冷媒不足を引き起こすことが想定される。従って、結露防止パイプ72と野菜室加熱パイプ73の出口側にそれぞれ逆止弁75をそれぞれ設けることで、冷媒が逆流することによる冷媒不足を防止している。なお、三方弁130と二方弁131は、例えば機械室61内に配置することにより、設置スペースを有効に活用できる。   Here, for example, when the refrigerant is allowed to flow only to the dew condensation prevention pipe 72 (at this time, the two-way valve 131 is closed), the refrigerant may flow backward to the vegetable room heating pipe 73 side. When flowing (at this time, the three-way valve 130 is fully closed), the refrigerant may flow backward to the dew condensation prevention pipe 72 side, and it is assumed that the refrigerant will run short in each refrigeration cycle during operation. Therefore, by providing the check valves 75 on the outlet sides of the dew condensation prevention pipe 72 and the vegetable room heating pipe 73, respectively, the refrigerant shortage due to the reverse flow of the refrigerant is prevented. The three-way valve 130 and the two-way valve 131 can be effectively utilized by arranging them in the machine room 61, for example.

次に図4は、本発明の実施例1に係る冷蔵庫の放熱側パイプの配置図である。第一の放熱器46は、冷蔵庫1の背面側下部に設けた機械室61内に設置している(図2参照)。第二の放熱器41a、41bは、冷蔵庫1の左右両側の断熱壁内、すなわち、外箱10aと内箱10bとの間の断熱空間に配置している。結露防止パイプ72は、各貯蔵室を分割する上断熱仕切壁28、下断熱仕切壁29及び断熱仕切部40にそれぞれ埋設されている(図5参照)。   Next, FIG. 4 is a layout diagram of the heat radiation side pipe of the refrigerator according to the first embodiment of the present invention. The 1st heat radiator 46 is installed in the machine room 61 provided in the back side lower part of the refrigerator 1 (refer FIG. 2). The second radiators 41a and 41b are arranged in the heat insulating walls on the left and right sides of the refrigerator 1, that is, in the heat insulating space between the outer box 10a and the inner box 10b. The dew condensation prevention pipe 72 is embedded in the upper heat insulation partition wall 28, the lower heat insulation partition wall 29, and the heat insulation partition part 40 which divide | segment each store room, respectively (refer FIG. 5).

図5は、上断熱仕切壁、下断熱仕切壁及び断熱仕切部の部分断面図である。上断熱仕切部28、下断熱仕切部29及び断熱仕切部40の端面にそれぞれ設けた仕切カバー36a、36b、36cと接触するように、結露防止パイプ72を配置している。冷蔵庫1周囲の温度が例えば30℃の場合、定常運転時の結露防止パイプ72の温度は約33℃となり、上断熱仕切部28、下断熱仕切部29及び断熱仕切部40に近接した冷凍室7(一例として約−20℃)に対して大きな温度差を形成する。仕切カバー36a、36b、36cの表面とその周囲の空気は、冷凍室7によって冷やされるため温度が低下し、仕切カバー36a、36b、36c近傍の空気中の水分によって仕切カバー36a、36b、36cの表面に結露が発生する場合がある。それを回避するために、結露防止パイプ72に冷媒を流して仕切カバー36a、36b、36cを加熱(図5中の熱の流れ110)して温度を上げている。一方、結露防止パイプ72から放出される熱は、温度差が大きい冷凍室7に対しても加熱(図5中の熱の流れ111)していることになる。このように、結露防止パイプ72による仕切カバー36a、36b、36cの加熱は結露防止になるが、一方で庫内の熱負荷増加につながるため、省エネルギー性能の悪化の原因にもなっている。   FIG. 5 is a partial cross-sectional view of the upper heat insulation partition wall, the lower heat insulation partition wall, and the heat insulation partition portion. Condensation prevention pipes 72 are arranged so as to be in contact with partition covers 36a, 36b, and 36c provided on the end surfaces of the upper heat insulating partition 28, the lower heat insulating partition 29, and the heat insulating partition 40, respectively. When the temperature around the refrigerator 1 is, for example, 30 ° C., the temperature of the dew condensation prevention pipe 72 during steady operation is about 33 ° C., and the freezer compartment 7 adjacent to the upper heat insulating partition 28, the lower heat insulating partition 29, and the heat insulating partition 40. A large temperature difference is formed with respect to (about -20 ° C as an example). The surface of the partition covers 36a, 36b, and 36c and the surrounding air are cooled by the freezer compartment 7 so that the temperature decreases, and moisture in the air near the partition covers 36a, 36b, and 36c causes the partition covers 36a, 36b, and 36c to Condensation may occur on the surface. In order to avoid this, the refrigerant is passed through the dew condensation prevention pipe 72 to heat the partition covers 36a, 36b, 36c (heat flow 110 in FIG. 5) to raise the temperature. On the other hand, the heat released from the dew condensation prevention pipe 72 heats the freezer compartment 7 having a large temperature difference (heat flow 111 in FIG. 5). As described above, the heating of the partition covers 36a, 36b, and 36c by the dew condensation prevention pipe 72 prevents the dew condensation. However, on the other hand, it leads to an increase in the thermal load in the warehouse, which causes the energy saving performance to deteriorate.

次に図6は、図1に示した冷蔵庫のB−B断面図であって、下段冷凍室5側から見た下断熱仕切壁29の外観である。図7は、野菜室ドアと収納容器を外した状態の野菜室の正面図である。   Next, FIG. 6 is a BB cross-sectional view of the refrigerator shown in FIG. 1, and is an appearance of the lower heat insulating partition wall 29 as viewed from the lower freezer compartment 5 side. FIG. 7 is a front view of the vegetable compartment with the vegetable compartment door and storage container removed.

野菜室6の上部に配置された下段冷凍室5の影響により、野菜室6の天井部、すなわち下断熱仕切壁29を通して熱の移動が起こり、野菜室6は低温になり易い。下断熱仕切壁29内には野菜室ヒータ26が配置されており、野菜室ヒータ26の接続部31を介して制御基板51に接続されている。また、下断熱仕切壁29内には、二方弁131を備えた冷媒パイプ71に接続された野菜室加熱パイプ73を配置している。   Due to the influence of the lower freezing room 5 arranged at the upper part of the vegetable room 6, heat transfer occurs through the ceiling part of the vegetable room 6, that is, the lower heat insulating partition wall 29, and the vegetable room 6 tends to become low temperature. A vegetable room heater 26 is disposed in the lower heat insulating partition wall 29, and is connected to the control board 51 via a connection portion 31 of the vegetable room heater 26. A vegetable room heating pipe 73 connected to a refrigerant pipe 71 having a two-way valve 131 is disposed in the lower heat insulating partition wall 29.

野菜室加熱パイプ73を下断熱仕切壁部29内に配設するため、断熱壁10に埋設した冷媒パイプ71を下断熱仕切壁部29まで一旦延長し、再び冷媒パイプ100に合流させる。野菜室加熱パイプ73の配設例としては、下断熱仕切壁部29内に設けたスチロフォーム等の断熱材に、野菜室加熱パイプ73を固定する。   In order to arrange the vegetable room heating pipe 73 in the lower heat insulating partition wall 29, the refrigerant pipe 71 embedded in the heat insulating wall 10 is once extended to the lower heat insulating partition wall 29 and joined to the refrigerant pipe 100 again. As an example of arrangement of the vegetable room heating pipe 73, the vegetable room heating pipe 73 is fixed to a heat insulating material such as styrofoam provided in the lower heat insulating partition wall 29.

この構成において、野菜室温度センサ32で検知される温度に応じて、野菜室6の温度が低くなった場合は、野菜室ヒータ26と野菜室加熱パイプ73の少なくともいずれかを用いて加熱することができる。   In this configuration, when the temperature of the vegetable compartment 6 is lowered according to the temperature detected by the vegetable compartment temperature sensor 32, heating is performed using at least one of the vegetable compartment heater 26 and the vegetable compartment heating pipe 73. Can do.

図2で説明したように、野菜室6には野菜室ダンパ47を介して冷気が供給される。野菜室ダンパ47を開にすると、野菜室6内に冷気47aが供給され、その後、野菜室側の冷気戻り部18aから野菜室冷気戻りダクト18を介して、野菜室冷気戻り部18bから冷却器14下部に冷気が流入する。野菜室奥側壁面16には、野菜室6の温度を検知する野菜室温度センサ32を備えている。   As described with reference to FIG. 2, cold air is supplied to the vegetable compartment 6 via the vegetable compartment damper 47. When the vegetable compartment damper 47 is opened, the cold air 47a is supplied into the vegetable compartment 6, and then the cooler from the vegetable compartment cold air return portion 18b through the vegetable compartment cold air return duct 18 from the cold air return portion 18a on the vegetable compartment side. 14 Cool air flows into the lower part. The vegetable room back side wall surface 16 includes a vegetable room temperature sensor 32 that detects the temperature of the vegetable room 6.

次に図8は、本発明の実施例1に係る冷凍サイクルにおいて、サイクルAとサイクルBを切り替える場合の制御概念図である。三方弁130を冷媒パイプ70(第一の冷媒流路であるサイクルA)に切り替えて結露防止パイプ72に冷媒を流すことで、仕切カバー36a、36b、36cを加熱して、空気中の水分が仕切カバー36a、36b、36cの表面で結露することを防止している。   Next, FIG. 8 is a conceptual diagram of control when switching between cycle A and cycle B in the refrigeration cycle according to Embodiment 1 of the present invention. By switching the three-way valve 130 to the refrigerant pipe 70 (cycle A which is the first refrigerant flow path) and flowing the refrigerant through the dew condensation prevention pipe 72, the partition covers 36a, 36b and 36c are heated, and moisture in the air is Condensation is prevented on the surfaces of the partition covers 36a, 36b, and 36c.

ここで、冷媒流路切替手段である三方弁130と二方弁131を制御することによって、次の(1)から(5)の5通りの冷媒流れモードを有する。すなわち、(1)結露防止パイプ72(第一の冷媒流路であるサイクルA)に冷媒を流す場合、(2)バイパスパイプ74(第三の冷媒流路であるサイクルB)に冷媒を流す場合、(3)野菜室加熱パイプ73(第二の冷媒流路であるサイクルC)に冷媒を流す場合、(4)結露防止用パイプ72(サイクルA)と野菜室加熱パイプ73(サイクルC)に同時に冷媒を流す場合、(5)結露防止パイプ72(サイクルA)、バイパスパイプ74(サイクルB)、野菜室加熱パイプ73(サイクルC)のいずれの流路にも冷媒を流さない場合。   Here, by controlling the three-way valve 130 and the two-way valve 131 which are the refrigerant flow switching means, the following five refrigerant flow modes (1) to (5) are provided. That is, (1) When flowing the refrigerant through the dew condensation prevention pipe 72 (cycle A which is the first refrigerant flow path), (2) When flowing the refrigerant through the bypass pipe 74 (cycle B which is the third refrigerant flow path) (3) When flowing the refrigerant through the vegetable room heating pipe 73 (cycle C as the second refrigerant flow path), (4) dew condensation prevention pipe 72 (cycle A) and vegetable room heating pipe 73 (cycle C) When flowing the refrigerant at the same time, (5) When flowing no refrigerant through any flow path of the dew condensation prevention pipe 72 (cycle A), the bypass pipe 74 (cycle B), and the vegetable room heating pipe 73 (cycle C).

結露防止パイプ72(サイクルA)に冷媒を流す制御については、上断熱仕切壁28、下断熱仕切壁29及び断熱仕切部40のそれぞれの端面を覆う仕切カバー36a、36b、36cに温度センサ及び湿度センサを直接取り付け、その検出される温度及び湿度に応じて仕切カバー36a、36b、36cの表面に結露が生じないように、三方弁130によって冷媒を切替える。   Regarding the control of flowing the refrigerant through the dew condensation prevention pipe 72 (cycle A), the temperature sensors and humidity are applied to the partition covers 36a, 36b, 36c covering the respective end faces of the upper heat insulating partition wall 28, the lower heat insulating partition wall 29 and the heat insulating partition portion 40. A sensor is directly attached, and the refrigerant is switched by the three-way valve 130 so that condensation does not occur on the surfaces of the partition covers 36a, 36b, 36c according to the detected temperature and humidity.

なお、仕切カバー36a、36b、36cと接触するドアパッキン(図示せず)に温度センサ及び湿度センサが干渉すると、ドアパッキンを介して熱侵入量が増加して、温度と湿度の検出値が不正確となることが懸念される。そこで、冷蔵庫1の庫外に設けた温度センサ52と湿度センサ120により検出した温度及び湿度に基づいて、サイクルA側(第一の冷媒流路)とサイクルB側(第三の冷媒流路)の切り替え時間を制御する構成を採用することができる。この構成について、一例を図8でさらに説明する。図8は、ある温度における湿度(横軸)に対する結露防止パイプ72の加熱割合(縦軸)を示している。例えば、湿度が高いRH2の場合、仕切カバー36a、36b、36cの表面で結露する可能性が高くなるので、結露防止パイプ72(サイクルA)に冷媒を流す時間(tA2)を長く、バイパスパイプ74(サイクルB)に冷媒を流す時間(tB2)を短くする。反対に、湿度が低いRH1の場合は、結露発生の恐れが少ないため、結露防止パイプ72で仕切カバー36a、36b、36cを加熱する時間が短くても構わないので、結露防止パイプ72(サイクルA)に冷媒を流す時間(tA1)を短く、バイパスパイプ74(サイクルB)に冷媒を流す時間(tB1)を長くすると良い。   If a temperature sensor and a humidity sensor interfere with a door packing (not shown) in contact with the partition covers 36a, 36b, 36c, the amount of heat intrusion increases through the door packing, and the detected values of temperature and humidity are not good. There is concern about being accurate. Therefore, based on the temperature and humidity detected by the temperature sensor 52 and the humidity sensor 120 provided outside the refrigerator 1, the cycle A side (first refrigerant channel) and the cycle B side (third refrigerant channel) It is possible to employ a configuration for controlling the switching time. An example of this configuration will be further described with reference to FIG. FIG. 8 shows the heating rate (vertical axis) of the dew condensation prevention pipe 72 with respect to humidity (horizontal axis) at a certain temperature. For example, in the case of RH2 where the humidity is high, there is a high possibility of condensation on the surfaces of the partition covers 36a, 36b, and 36c. Therefore, the time (tA2) for which the refrigerant flows through the condensation prevention pipe 72 (cycle A) is lengthened, and the bypass pipe 74 The time (tB2) during which the refrigerant flows in (cycle B) is shortened. On the other hand, in the case of RH1 where the humidity is low, there is little possibility of condensation, so the time for heating the partition covers 36a, 36b, 36c with the condensation prevention pipe 72 may be short, so the condensation prevention pipe 72 (cycle A ), The time for flowing the refrigerant (tA1) may be shortened, and the time for flowing the refrigerant to the bypass pipe 74 (cycle B) (tB1) may be lengthened.

なお、図5で説明したように、仕切カバー36a、36b、36cの表面は、結露防止パイプ72を流れる冷媒による加熱を利用して結露防止を図っているが、結露防止パイプ72の加熱割合、すなわちサイクルA側の時間が長いほど冷凍室7への熱侵入が多くなり、その結果、省エネルギー性能が悪化する傾向にある。結露防止パイプ72を切り替える手段(バイパスパイプ74)を備えていない冷蔵庫では、常時、結露防止パイプ72(サイクルA)に冷媒が流れる。すると、結露防止パイプ72による加熱割合は100%となり、結露が発生しない条件での仕切カバー36a、36b、36cの表面加熱は冷凍室7の熱負荷になり、省エネルギー性能が悪化する。   As described with reference to FIG. 5, the surfaces of the partition covers 36 a, 36 b, and 36 c are designed to prevent condensation by using heat generated by the refrigerant flowing through the condensation prevention pipe 72, but the heating rate of the condensation prevention pipe 72, That is, the longer the time on the cycle A side, the greater the heat intrusion into the freezer compartment 7, and as a result, the energy saving performance tends to deteriorate. In a refrigerator that does not include means for switching the dew condensation prevention pipe 72 (bypass pipe 74), the refrigerant always flows through the dew condensation prevention pipe 72 (cycle A). Then, the heating rate by the dew condensation prevention pipe 72 becomes 100%, and the surface heating of the partition covers 36a, 36b, 36c under the condition where no dew condensation occurs becomes a heat load of the freezer compartment 7 and the energy saving performance is deteriorated.

次に図9は、本発明の実施例1に係る冷蔵庫の冷却運転の一例を示すタイムチャートである。庫内が所定の温度に到達した後の安定状態における冷却運転は、冷蔵室2を冷却する冷蔵運転(時間t2からt4)、冷凍室7を冷却する冷凍運転(時間t4からt7)、圧縮機停止(時間t1からt2、t7からt8)からなる運転パターンを基本とし、周囲温度の変動や食品等の投入が行なわれない限り、これらの運転を繰り返す。図9では、圧縮機停止中に冷凍室温度センサ122で検知された冷凍室温度がTF1(時間t2)まで上昇した時に、圧縮機24がONになる。この場合、冷却器14の温度は高い状態であり、冷却器14と熱交換した冷気は冷凍室7を冷却する温度となっていない。そのため、圧縮機24がONとなった際は、冷蔵室ダンパ20を開、冷凍室ダンパ60を閉にして、冷蔵室温度センサ121で検知された冷蔵室温度がTR2(時間t4)に到達するまで冷蔵運転を実施する。その後、冷蔵室ダンパ20を閉、冷凍室ダンパ60を開にして、引き続き冷凍室温度がTF2(時間t1、t7)に到達するまで冷凍運転を実施し、その後、圧縮機24は停止する。   Next, FIG. 9 is a time chart showing an example of the cooling operation of the refrigerator according to the first embodiment of the present invention. The cooling operation in a stable state after the interior reaches a predetermined temperature includes a refrigeration operation for cooling the refrigerator compartment 2 (time t2 to t4), a refrigeration operation for cooling the freezer compartment 7 (time t4 to t7), and a compressor. Based on an operation pattern consisting of stops (from time t1 to time t2, from time t7 to time t8), these operations are repeated as long as the ambient temperature does not change or food is not charged. In FIG. 9, the compressor 24 is turned ON when the freezer temperature detected by the freezer temperature sensor 122 rises to TF1 (time t2) while the compressor is stopped. In this case, the temperature of the cooler 14 is in a high state, and the cold air that has exchanged heat with the cooler 14 is not at a temperature for cooling the freezer compartment 7. Therefore, when the compressor 24 is turned on, the refrigerator compartment damper 20 is opened and the freezer compartment damper 60 is closed, and the refrigerator compartment temperature detected by the refrigerator compartment temperature sensor 121 reaches TR2 (time t4). Refrigerate operation until. Thereafter, the refrigerator compartment damper 20 is closed, the freezer compartment damper 60 is opened, and the freezing operation is continued until the freezer compartment temperature reaches TF2 (time t1, t7), and then the compressor 24 is stopped.

次に三方弁130と二方弁131の動作について説明する。第一の放熱器46から第一の絞り装置81又は第二の絞り装置82の入口部までの冷媒は、冷却器14内よりも高温高圧となるため、圧縮機24が停止中にそれらの圧力差によって、第一の放熱器46と第二の放熱器41a、41b(凝縮器)側の冷媒が冷却器14(蒸発器)側に流入する。これによって冷却器14の温度が上昇するため、消費電力量の増加につながる。従って、第一の放熱器46から第一の絞り装置81又は第二の絞り装置82の入口部までに形成される放熱側配管容積において、第一の放熱器46、第二の放熱器41a、41bが占める配管容積の割合が大きいので、圧縮機24停止時には三方弁130と二方弁131を全閉状態にして(冷媒流れモード(5)に相当)、放熱器側(第一の放熱器46と第二の放熱器41a、41b側)の冷媒が冷却器14側に流入するのを抑制する。   Next, the operation of the three-way valve 130 and the two-way valve 131 will be described. Since the refrigerant from the first radiator 46 to the inlet of the first expansion device 81 or the second expansion device 82 is at a higher temperature and pressure than in the cooler 14, the pressure of the refrigerant 24 when the compressor 24 is stopped. Due to the difference, the refrigerant on the first radiator 46 and the second radiator 41a, 41b (condenser) side flows into the cooler 14 (evaporator) side. As a result, the temperature of the cooler 14 rises, leading to an increase in power consumption. Therefore, in the heat radiation side pipe volume formed from the first heat radiator 46 to the inlet portion of the first throttle device 81 or the second throttle device 82, the first radiator 46, the second radiator 41a, Since the proportion of the pipe volume occupied by 41b is large, when the compressor 24 is stopped, the three-way valve 130 and the two-way valve 131 are fully closed (corresponding to the refrigerant flow mode (5)), and the radiator side (first radiator) 46 and the second radiators 41a and 41b) are prevented from flowing into the cooler 14 side.

また、本実施例の冷蔵庫では、ファン9をON、冷蔵室ダンパ20を開、冷凍室ダンパ60を閉にして、冷却器14に成長した霜により冷気を発生させて冷蔵室2を冷却する(図9の時間t1からt2の区間、時間t7からt8の区間)。ここで、圧縮機24が停止中に三方弁130と二方弁131を閉にすると、冷却器14及び霜の温度上昇の割合が抑制される。このことより、圧縮機24が停止中に三方弁130と二方弁131を閉にすることで、圧縮機24をOFF、ファン9をON、冷蔵室ダンパ20を開、冷凍室ダンパ60を閉として、冷却器14の霜を冷熱源とした冷蔵室冷却運転の効率を高めることができ、消費電力量の低減に寄与する。   In the refrigerator of the present embodiment, the fan 9 is turned on, the refrigerator compartment damper 20 is opened, the refrigerator compartment damper 60 is closed, and cold air is generated by the frost grown on the cooler 14 to cool the refrigerator compartment 2 ( The section from time t1 to t2 in FIG. 9, the section from time t7 to t8). Here, if the three-way valve 130 and the two-way valve 131 are closed while the compressor 24 is stopped, the rate of the temperature rise of the cooler 14 and frost is suppressed. Thus, by closing the three-way valve 130 and the two-way valve 131 while the compressor 24 is stopped, the compressor 24 is turned off, the fan 9 is turned on, the refrigerator compartment damper 20 is opened, and the freezer compartment damper 60 is closed. As described above, the efficiency of the refrigerating room cooling operation using the frost of the cooler 14 as a cold heat source can be increased, which contributes to the reduction of power consumption.

圧縮機24が運転中の場合、図8に示したように、温度センサ52と湿度センサ120で検知される温度及び湿度に応じて結露防止パイプ72(サイクルA)とバイパスパイプ74(サイクルB)の切替え時間を制御する。例えば、湿度が低いRH1の場合、結露防止パイプ72(サイクルA)の時間tA1が約10分、バイパスパイプ74(サイクルB)の時間tB1が約40分となり、これらを繰り返し動作させる。   When the compressor 24 is in operation, as shown in FIG. 8, the dew condensation prevention pipe 72 (cycle A) and the bypass pipe 74 (cycle B) according to the temperature and humidity detected by the temperature sensor 52 and the humidity sensor 120. Control the switching time. For example, when the humidity is RH1, the time tA1 of the dew condensation prevention pipe 72 (cycle A) is about 10 minutes and the time tB1 of the bypass pipe 74 (cycle B) is about 40 minutes, and these are operated repeatedly.

冷却運転の一例として示した図9では、圧縮機24が停止する前に、三方弁130を結露防止パイプ72(サイクルA)に固定している。この時、二方弁131は閉にしておく。圧縮機24が停止中には仕切カバー36a、36b、36cを加熱する手段がないため、結露防止パイプ72に冷媒を流すことによって圧縮機24停止前に仕切カバー36a、36b、36cの表面温度を高めて結露防止を図っている。   In FIG. 9 shown as an example of the cooling operation, the three-way valve 130 is fixed to the dew condensation prevention pipe 72 (cycle A) before the compressor 24 stops. At this time, the two-way valve 131 is closed. Since there is no means for heating the partition covers 36a, 36b, 36c when the compressor 24 is stopped, the surface temperature of the partition covers 36a, 36b, 36c is reduced before the compressor 24 is stopped by flowing a refrigerant through the dew condensation prevention pipe 72. It is designed to prevent condensation.

次に、野菜室加熱パイプ73による、野菜室6の加熱制御について説明する。野菜室6の冷却は、野菜室温度センサ32で検知される野菜室温度がTV1に到達した時点(時間t1)で野菜室ダンパ13を開にして冷気を供給する。圧縮機24停止中には、冷却器14に成長した霜により発生させた冷気も利用して野菜室6の冷却を行っている。その後、圧縮機24を運転し(時間t2)、野菜室6の温度がTV2に到達していない場合は、野菜室ダンパ13を開にして引き続き冷気を供給し、野菜室6の温度がTV2に到達した時点(時間t3)で、野菜室ダンパ13を閉にする。   Next, heating control of the vegetable compartment 6 by the vegetable compartment heating pipe 73 will be described. Cooling of the vegetable compartment 6 supplies the cold air by opening the vegetable compartment damper 13 when the vegetable compartment temperature detected by the vegetable compartment temperature sensor 32 reaches the TV 1 (time t1). While the compressor 24 is stopped, the vegetable compartment 6 is cooled using the cold air generated by the frost grown on the cooler 14. Thereafter, the compressor 24 is operated (time t2), and when the temperature of the vegetable compartment 6 does not reach the TV 2, the vegetable compartment damper 13 is opened and the cool air is continuously supplied, and the temperature of the vegetable compartment 6 reaches the TV 2. When reaching (time t3), the vegetable compartment damper 13 is closed.

野菜室6は野菜室ダンパ13によって冷気の流量を調整しているが、特に冷凍運転中は下断熱仕切壁29を介して野菜室6の温度が低下する傾向にある。野菜室6の温度が低下すると、貯蔵している野菜が凍結してしまう恐れがあるので、野菜室6は所定の温度以上に保つ必要がある。野菜室6の凍結防止温度がTV3(時間t5)に到達すると、野菜室加熱パイプ73に冷媒が流れるように二方弁131を制御する。図6に示したように、下断熱仕切壁29内に配置した野菜室加熱パイプ73に冷媒を流すことによって、野菜室温度がTV4に到達するまで(時間t6)野菜室6は加熱される。時間t5からt6の間、野菜室加熱パイプ73に冷媒を流しているが、この間、結露防止パイプ72にも冷媒を流す時間帯がある。この場合、三方弁130によって結露防止パイプ72を流れる第一の冷媒流路(サイクルA)に切替え、二方弁131を開にして野菜室加熱パイプ73を流れる第二の冷媒流路(サイクルC)にも同時に冷媒を供給することになる。野菜室加熱パイプ73に冷媒を流す必要がない時は、結露防止パイプ72を流れる第一の冷媒流路(サイクルA)とバイパスパイプ74を流れる第三の冷媒流路(サイクルB)を三方弁130で切り替えていたが、同時に野菜室加熱パイプ73にも冷媒を流す必要がある場合には、バイパスパイプ74を流れる第三の冷媒流路(サイクルB)には冷媒は流さない。   In the vegetable compartment 6, the flow rate of the cold air is adjusted by the vegetable compartment damper 13, but the temperature of the vegetable compartment 6 tends to decrease through the lower heat insulating partition wall 29 particularly during the freezing operation. If the temperature of the vegetable compartment 6 is lowered, the stored vegetables may be frozen, so the vegetable compartment 6 needs to be kept at a predetermined temperature or higher. When the freezing prevention temperature of the vegetable compartment 6 reaches TV3 (time t5), the two-way valve 131 is controlled so that the refrigerant flows through the vegetable compartment heating pipe 73. As shown in FIG. 6, the vegetable compartment 6 is heated until the vegetable compartment temperature reaches the TV 4 (time t <b> 6) by flowing the refrigerant through the vegetable compartment heating pipe 73 disposed in the lower heat insulating partition wall 29. During the period from time t5 to t6, the refrigerant flows through the vegetable room heating pipe 73. During this time, there is a time zone during which the refrigerant flows through the condensation prevention pipe 72 as well. In this case, the three-way valve 130 switches to the first refrigerant flow path (cycle A) that flows through the dew condensation prevention pipe 72, and the second refrigerant flow path (cycle C) that flows through the vegetable room heating pipe 73 with the two-way valve 131 opened. At the same time, the refrigerant is supplied. When there is no need to flow the refrigerant through the vegetable room heating pipe 73, the first refrigerant flow path (cycle A) flowing through the dew condensation prevention pipe 72 and the third refrigerant flow path (cycle B) flowing through the bypass pipe 74 are three-way valves. Although switching is performed at 130, when it is necessary to cause the refrigerant to flow through the vegetable room heating pipe 73 at the same time, the refrigerant does not flow through the third refrigerant flow path (cycle B) flowing through the bypass pipe 74.

また、冷蔵庫1の周囲温度が低い場合、例えば、周囲温度が15℃程度の冷蔵庫では、圧縮機24が停止している時間帯が長くなるので、野菜室6の温度がTV3以下になっても、野菜室加熱パイプ73を用いた加熱を実施することができない。このような場合は、下断熱仕切壁29内に併設した野菜室ヒータ26を用いて温度TV4まで加熱する。時間t5からt6の間、野菜室加熱パイプ73に冷媒を流して野菜室6を加熱して温度を予め決めたTV4まで高めているが、所定時間内の野菜室6の温度上昇が少ない場合は、野菜室ヒータ26と併用して加熱時間を短くしても良い。   Moreover, when the ambient temperature of the refrigerator 1 is low, for example, in a refrigerator having an ambient temperature of about 15 ° C., the time period during which the compressor 24 is stopped becomes long. The vegetable room heating pipe 73 cannot be used for heating. In such a case, the vegetable room heater 26 provided in the lower heat insulating partition wall 29 is used to heat to the temperature TV4. During the period from time t5 to t6, the refrigerant is passed through the vegetable room heating pipe 73 to heat the vegetable room 6 and raise the temperature to the predetermined TV 4, but when the temperature rise of the vegetable room 6 within a predetermined time is small The heating time may be shortened in combination with the vegetable room heater 26.

次に図10aは、本発明の実施例1に係る冷凍サイクルの説明図であって、複数の加熱手段に同時に冷媒を流した場合の冷媒の状態を説明する図である。図10bは、本発明の実施例1に係る冷凍サイクルの運転状態を示したモリエル線図である。   Next, FIG. 10a is an explanatory diagram of the refrigeration cycle according to the first embodiment of the present invention, and is a diagram for explaining the state of the refrigerant when the refrigerant is caused to flow simultaneously through a plurality of heating means. FIG. 10 b is a Mollier diagram showing the operating state of the refrigeration cycle according to Example 1 of the present invention.

図10b中の記号a、b、c、d、f、g1、g2、hは、図10aに示す冷凍サイクルを構成する冷媒パイプの途中位置にそれぞれ対応している(併せて図3参照)。第一の放熱器46に流入した冷媒は、機械室ファン45によって送風された外気と熱交換し、気相域(aからb)から気液二相域(bからc)まで状態が変化する。その後、冷蔵庫1の両側壁面内(外箱10aと内箱10bの間の断熱空間内)に配置した第二の放熱器41a、41bを冷媒が流れ、気液二相域の状態cから状態dである三方弁130及び二方弁131の入口部まで至る。この間、液相域が徐々に増えてくるので、乾き度は小さくなっている。   Symbols a, b, c, d, f, g1, g2, and h in FIG. 10b correspond to intermediate positions of the refrigerant pipes that constitute the refrigeration cycle shown in FIG. 10a (refer to FIG. 3 together). The refrigerant flowing into the first radiator 46 exchanges heat with the outside air blown by the machine room fan 45, and the state changes from the gas phase region (a to b) to the gas-liquid two phase region (b to c). . Thereafter, the refrigerant flows through the second radiators 41a and 41b disposed in the both side walls of the refrigerator 1 (within the heat insulating space between the outer box 10a and the inner box 10b), and the state d is changed from the state c in the gas-liquid two-phase region. To the inlets of the three-way valve 130 and the two-way valve 131. During this time, as the liquid phase region gradually increases, the dryness is reduced.

三方弁130を結露防止パイプ72(サイクルA)に切替え、二方弁131を開にして、結露防止パイプ72と野菜室加熱パイプ73に冷媒を同時に流して、仕切カバー36a、36b、36cの表面加熱、及び下断熱仕切壁29の加熱を行う(例えば、図9に示した時間t5とt6の間で、結露防止パイプ72に冷媒を流す場合を想定)。結露防止パイプ72及び野菜室加熱パイプ73は並列に配置されているので、結露防止パイプ72及び野菜室加熱パイプ73の入口部の冷媒の状態はほぼ同じである。結露防止パイプ72を流れる冷媒は、入口部の状態dから状態fに変化し、結露防止パイプ72の途中の状態fから出口部の状態g1に変化する。状態dからfまでは気液二相域であるため温度は一定であるが、状態fからg1は液相域となるため仕切カバー36a、36b、36cの表面温度は徐々に低下していく。一方、野菜室加熱パイプ73を流れる冷媒は、入口部の状態dから状態fに変化し、野菜室加熱用パイプ73の途中の状態fから出口部の状態g2に変化する。   The three-way valve 130 is switched to the dew condensation prevention pipe 72 (cycle A), the two way valve 131 is opened, and the refrigerant flows through the dew condensation prevention pipe 72 and the vegetable compartment heating pipe 73 simultaneously, so that the surfaces of the partition covers 36a, 36b, 36c Heating and heating of the lower heat insulating partition wall 29 are performed (for example, assuming that the refrigerant flows through the dew condensation prevention pipe 72 between times t5 and t6 shown in FIG. 9). Since the dew condensation prevention pipe 72 and the vegetable room heating pipe 73 are arranged in parallel, the state of the refrigerant at the inlet of the dew condensation prevention pipe 72 and the vegetable room heating pipe 73 is substantially the same. The refrigerant flowing through the dew condensation prevention pipe 72 changes from the state d of the inlet portion to the state f, and changes from the state f in the middle of the condensation prevention pipe 72 to the state g1 of the outlet portion. Since the state d to f is a gas-liquid two-phase region, the temperature is constant. However, since the state f to g1 is a liquid phase region, the surface temperatures of the partition covers 36a, 36b, and 36c gradually decrease. On the other hand, the refrigerant flowing through the vegetable room heating pipe 73 changes from the state d of the inlet part to the state f, and changes from the state f in the middle of the vegetable room heating pipe 73 to the state g2 of the outlet part.

結露防止パイプ72に流れる冷媒流量と野菜室加熱パイプ73に流れる冷媒流量は異なるため、それぞれの加熱量が異なる。そのため、結露防止パイプ72と野菜室加熱パイプ73でそれぞれ一定温度に維持される気液二相域の長さと、温度低下を伴う液相域の長さが異なる。但し、結露防止パイプ72と野菜室加熱パイプ73を並列に配置しているので、同時に冷媒を流した際は、結露防止パイプ72と野菜室加熱パイプ73における気液二相域の長さはそれぞれ一定以上確保することができ、加熱不足になり難い。従って、仕切カバー36a、36b、36cの表面加熱及び下断熱仕切壁29の加熱を冷凍サイクルの冷媒パイプを加熱手段として利用することができ、省エネルギー性能が高い冷却運転が実現できる。   Since the refrigerant flow rate flowing through the dew condensation prevention pipe 72 and the refrigerant flow rate flowing through the vegetable compartment heating pipe 73 are different, the respective heating amounts are different. Therefore, the length of the gas-liquid two-phase region maintained at a constant temperature by the dew condensation prevention pipe 72 and the vegetable room heating pipe 73 is different from the length of the liquid phase region accompanied by a temperature drop. However, since the dew condensation prevention pipe 72 and the vegetable room heating pipe 73 are arranged in parallel, the lengths of the gas-liquid two-phase areas in the dew condensation prevention pipe 72 and the vegetable room heating pipe 73 when the refrigerant flows at the same time, respectively. It can be secured above a certain level, and is unlikely to be underheated. Accordingly, the surface heating of the partition covers 36a, 36b and 36c and the heating of the lower heat insulating partition wall 29 can be used as the heating means of the refrigerant pipe of the refrigeration cycle, and a cooling operation with high energy saving performance can be realized.

パイプ内の冷媒の液相域の長さが長くなると温度低下が進むので、特に結露防止パイプ72の下流部の温度が下がり易くなる。このような場合、図8に示した結露防止パイプ72に冷媒を流す割合(tA)を増やして結露防止パイプ72の下流部に位置する仕切部である仕切カバー36a、または仕切カバー36b(図2、図4参照)の温度を高める必要があるので、省エネルギー効果は減ってしまう。図10aにおいて、結露防止パイプ72の出口部の状態g1の冷媒と、野菜室加熱パイプ73の出口部の状態g2の冷媒は合流部76で合流し、第一のドライヤ77aを通過した後、第一の絞り装置81の入口部で冷媒は状態hとなる。合流後の状態hの冷媒のエンタルピは、結露防止パイプ72の出口部のエンタルピと、野菜室加熱パイプ73の出口部のエンタルピのそれぞれの冷媒流量の割合に応じた値となる。   When the length of the liquid phase region of the refrigerant in the pipe increases, the temperature decreases, so that the temperature in the downstream portion of the dew condensation prevention pipe 72 is particularly likely to decrease. In such a case, the partition cover 36a or the partition cover 36b (FIG. 2), which is a partition located at the downstream portion of the dew condensation prevention pipe 72 by increasing the ratio (tA) of flowing the refrigerant through the dew condensation prevention pipe 72 shown in FIG. 4), the energy saving effect is reduced. In FIG. 10a, the refrigerant in the state g1 at the outlet of the dew condensation prevention pipe 72 and the refrigerant in the state g2 at the outlet of the vegetable room heating pipe 73 merge at the junction 76 and pass through the first dryer 77a. The refrigerant is in the state h at the inlet of one expansion device 81. The enthalpy of the refrigerant in the state h after the merging is a value corresponding to the ratio of the refrigerant flow rates of the enthalpy at the outlet of the dew condensation prevention pipe 72 and the enthalpy at the outlet of the vegetable room heating pipe 73.

図3に示したように、結露防止パイプ72に冷媒を流す場合、野菜室加熱パイプ73に冷媒を流す場合、及び結露防止パイプ72と野菜室加熱パイプ73に同時に冷媒を流す場合は、それぞれ第一の絞り装置81に冷媒が流れる。結露防止パイプ72を迂回した冷媒が流れるバイパスパイプ74に接続した第二の絞り装置82は、第一の絞り装置81よりも絞り量を大きくすることで、省エネルギー性能を重視した冷却運転を実施している。   As shown in FIG. 3, when flowing a refrigerant through the dew condensation prevention pipe 72, when flowing a refrigerant through the vegetable room heating pipe 73, and when flowing a refrigerant through the dew condensation prevention pipe 72 and the vegetable room heating pipe 73 at the same time, respectively. The refrigerant flows through one throttle device 81. The second expansion device 82 connected to the bypass pipe 74 through which the refrigerant that bypasses the dew condensation prevention pipe 72 flows performs a cooling operation that emphasizes energy saving performance by making the expansion amount larger than that of the first expansion device 81. ing.

図11は、比較例の冷凍サイクルを示す図であって、加熱手段を直列に配置した例である。加熱を目的に、野菜室加熱パイプ72と結露防止パイプ73を直列に配置した場合の一例を示している。本実施例では、野菜室加熱パイプ72と結露防止パイプ73を並列に配置しており(図3参照)、両者の冷凍サイクルについて比較する。   FIG. 11 is a diagram showing a refrigeration cycle of a comparative example, in which heating means are arranged in series. An example in which a vegetable room heating pipe 72 and a dew condensation prevention pipe 73 are arranged in series for the purpose of heating is shown. In the present embodiment, the vegetable room heating pipe 72 and the dew condensation prevention pipe 73 are arranged in parallel (see FIG. 3), and both refrigeration cycles are compared.

図11において、冷媒パイプ68に接続する三方弁86までの冷媒流路は、図3に示した構成と同様である。図11の比較例においては、三方弁86の下流で冷媒パイプ88とバイパスパイプ89に分岐し、冷媒パイプ88の途中に野菜室加熱パイプ72を設けている。バイパスパイプ89は再び合流部132で冷媒パイプ88と合流し、その後、冷媒パイプ88の下流側は三方弁87に接続されている。三方弁87の出口側は冷媒パイプ90とバイパスパイプ91に分岐し、冷媒パイプ90の途中に結露防止パイプ73を設けている。冷媒パイプ90の下流側にはドライヤ77c、冷媒パイプ92、絞り装置94が順番に接続されている。バイパスパイプ91の途中にはドライヤ77cと別体のドライヤ77dを設けてあり、ドライヤ77dの出口側には冷媒パイプ93、絞り装置94と別体の絞り装置95が順番に接続され、絞り装置94と絞り装置95の下流側は合流部83で合流している。合流部83よりも下流側で圧縮機24に再び戻る冷媒配管の構成は、図3に示したものと同様である。   In FIG. 11, the refrigerant flow path to the three-way valve 86 connected to the refrigerant pipe 68 is the same as that shown in FIG. In the comparative example of FIG. 11, the refrigerant pipe 88 and the bypass pipe 89 are branched downstream of the three-way valve 86, and the vegetable compartment heating pipe 72 is provided in the middle of the refrigerant pipe 88. The bypass pipe 89 joins the refrigerant pipe 88 again at the junction 132, and then the downstream side of the refrigerant pipe 88 is connected to the three-way valve 87. The outlet side of the three-way valve 87 branches into a refrigerant pipe 90 and a bypass pipe 91, and a dew condensation prevention pipe 73 is provided in the middle of the refrigerant pipe 90. A dryer 77c, a refrigerant pipe 92, and a throttle device 94 are sequentially connected to the downstream side of the refrigerant pipe 90. A dryer 77c separate from the dryer 77c is provided in the middle of the bypass pipe 91. A refrigerant pipe 93, a throttle device 94, and a separate throttle device 95 are connected in order to the outlet side of the dryer 77d. The downstream side of the expansion device 95 is joined at a junction 83. The configuration of the refrigerant pipe that returns to the compressor 24 on the downstream side of the junction 83 is the same as that shown in FIG.

図12aは、図11の比較例の冷凍サイクルの冷媒の状態を説明する図である。図12bは、図11の比較例の冷凍サイクルの運転状態を示すモリエル線図ある。   FIG. 12a is a diagram illustrating the state of the refrigerant in the refrigeration cycle of the comparative example of FIG. 12b is a Mollier diagram showing the operating state of the refrigeration cycle of the comparative example of FIG.

図中の記号a、b、c、d、e、f、gは、図11に示した冷蔵庫の冷凍サイクルを構成する冷媒流路の位置に、それぞれ対応している。冷蔵庫1の両側壁面内に配置した第二の放熱器41a、41bを冷媒が通過した後の状態dまでは、図3と共通である。   Symbols a, b, c, d, e, f, and g in the figure respectively correspond to the positions of the refrigerant flow paths constituting the refrigeration cycle of the refrigerator shown in FIG. The state up to the state d after the refrigerant has passed through the second radiators 41a and 41b arranged in the both side wall surfaces of the refrigerator 1 is the same as that in FIG.

比較例においては、三方弁86を冷媒パイプ88側に切替え、三方弁87を冷媒パイプ90側に切り替えて、直列に配置した野菜室加熱パイプ72と結露防止パイプ73に冷媒を流す場合を考える。野菜室加熱パイプ72の入口部の冷媒を状態dとすると、下断熱仕切壁29の加熱に従い野菜室加熱パイプ72の出口部は、乾き度が小さくなって状態eとなる。その後、冷媒は結露防止パイプ73に流入して、仕切カバー36a、36b、36cの表面を加熱し、結露防止パイプ73の途中からは液相域の状態fに到達して温度低下を伴いながら、結露防止パイプ73の出口部では状態gとなる。   In the comparative example, a case is considered in which the three-way valve 86 is switched to the refrigerant pipe 88 side, the three-way valve 87 is switched to the refrigerant pipe 90 side, and the refrigerant flows through the vegetable room heating pipe 72 and the dew condensation prevention pipe 73 arranged in series. Assuming that the refrigerant at the inlet of the vegetable compartment heating pipe 72 is in state d, the outlet of the vegetable compartment heating pipe 72 becomes dry and becomes state e as the lower heat insulating partition wall 29 is heated. Thereafter, the refrigerant flows into the dew condensation prevention pipe 73, heats the surfaces of the partition covers 36a, 36b, 36c, and reaches the liquid phase state f from the middle of the dew condensation prevention pipe 73 with a decrease in temperature. At the outlet of the dew condensation prevention pipe 73, the state is g.

以上のように、野菜室加熱パイプ72と結露防止パイプ73を直列に配置して冷媒を流すと、特に野菜室加熱パイプ72の下流側に設けた結露防止パイプ73内の液相域の割合が大きくなるため、結露防止パイプ73の流れ方向に向かって温度低下が顕著になり、仕切カバー36a、36b、36cを結露防止に必要な温度にまで高めることができなくなる。結露防止バイプ73による仕切カバー36a、36b、36cの加熱が不足する場合は、圧縮機24の回転速度を高めて結露防止パイプ73を流れる冷媒の温度を上げれば良いが、消費電力量の増加を招くことになる。   As described above, when the vegetable compartment heating pipe 72 and the dew condensation prevention pipe 73 are arranged in series and the refrigerant is flowed, the ratio of the liquid phase region in the dew condensation prevention pipe 73 provided on the downstream side of the vegetable compartment heating pipe 72 in particular is increased. Therefore, the temperature decreases significantly in the flow direction of the dew condensation prevention pipe 73, and the partition covers 36a, 36b, 36c cannot be raised to a temperature necessary for preventing dew condensation. If the partition covers 36a, 36b, and 36c are not sufficiently heated by the dew condensation prevention viper 73, the rotation speed of the compressor 24 can be increased to increase the temperature of the refrigerant flowing through the dew condensation prevention pipe 73, but the power consumption can be increased. Will be invited.

従って、図3に示した本実施例に係る冷凍サイクルの構成のように、冷媒流路切替手段(三方弁130、二方弁131)の下流側に、結露防止パイプ72と野菜室加熱用パイプ73を並列に配置することで、結露防止パイプ72と野菜室加熱用パイプ73に同時に冷媒を流しても、結露防止パイプ72と野菜室加熱パイプ73において加熱不足を発生し難くなり、仕切カバー(仕切部)36a、36b、36cの表面加熱、及び下断熱仕切壁(冷蔵温度帯の貯蔵室と冷凍温度帯の貯蔵室を仕切る断熱仕切部)29の野菜室6側の加熱を、冷凍サイクルの冷媒パイプを加熱手段として機能させることができ、省エネルギー性能が高い冷却運転が実現できる。   Therefore, as in the configuration of the refrigeration cycle according to the present embodiment shown in FIG. 3, the dew condensation prevention pipe 72 and the vegetable room heating pipe are provided downstream of the refrigerant flow switching means (three-way valve 130, two-way valve 131). By arranging 73 in parallel, even if the refrigerant flows through the condensation prevention pipe 72 and the vegetable room heating pipe 73 at the same time, it becomes difficult for the condensation prevention pipe 72 and the vegetable room heating pipe 73 to be underheated. (Partitions) 36a, 36b, 36c surface heating, and heating of the vegetable compartment 6 side of the lower heat insulation partition wall (heat insulation partition part that partitions the storage room of the refrigeration temperature zone and the storage room of the freezing temperature zone) 29 of the refrigeration cycle The refrigerant pipe can function as a heating means, and a cooling operation with high energy saving performance can be realized.

図13は、本発明の実施例2に係る冷蔵庫の冷凍サイクルの構成図である。なお、実施例1と同様の構成については、同一の符号を付して説明を省略する。結露防止パイプ72と野菜室加熱パイプ73を並列に配置した点では実施例1と同様の構成である。実施例2では、結露防止パイプ72とバイパスパイプ74を切り替える冷媒流路切替手段として、四方弁69を用いている。四方弁69の入口側に接続された冷媒パイプ68から流入する冷媒は、図14に示すように、四方弁69の内部の弁体140の回転によって、四方弁69の出口側に設けた冷媒パイプ70(第一の冷媒流路であるサイクルA)、冷媒パイプ74(第三の冷媒流路であるサイクルB)、冷媒パイプ71(第二の冷媒流路であるサイクルC)の3方向に切り替えて冷媒を流すことができる。   FIG. 13 is a configuration diagram of the refrigeration cycle of the refrigerator according to the second embodiment of the present invention. In addition, about the structure similar to Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. It is the same structure as Example 1 in the point which has arrange | positioned the dew condensation prevention pipe 72 and the vegetable compartment heating pipe 73 in parallel. In the second embodiment, a four-way valve 69 is used as a refrigerant flow path switching unit that switches between the dew condensation prevention pipe 72 and the bypass pipe 74. As shown in FIG. 14, the refrigerant flowing from the refrigerant pipe 68 connected to the inlet side of the four-way valve 69 is supplied to the refrigerant pipe provided on the outlet side of the four-way valve 69 by the rotation of the valve body 140 inside the four-way valve 69. 70 (cycle A which is the first refrigerant flow path), refrigerant pipe 74 (cycle B which is the third refrigerant flow path), and refrigerant pipe 71 (cycle C which is the second refrigerant flow path). Can flow the refrigerant.

四方弁69の出口側の冷媒パイプ70(サイクルA)には、結露防止パイプ72が接続されており、この結露防止パイプ72の出口側には冷媒パイプ100を接続し、冷媒パイプ100の下流側には第一のドライヤ77aを設けている。第一のドライヤ77aと結露防止パイプ72を接続するパイプ100の途中には、逆止弁75を設けている。第一のドライヤ77aの出口側には冷媒パイプ78を接続し、この冷媒パイプ78の下流側には第一の絞り装置81を接続している。   A condensation pipe 72 is connected to the refrigerant pipe 70 (cycle A) on the outlet side of the four-way valve 69. The refrigerant pipe 100 is connected to the outlet side of the condensation prevention pipe 72, and the downstream side of the refrigerant pipe 100. Is provided with a first dryer 77a. A check valve 75 is provided in the middle of the pipe 100 connecting the first dryer 77 a and the dew condensation prevention pipe 72. A refrigerant pipe 78 is connected to the outlet side of the first dryer 77 a, and a first expansion device 81 is connected to the downstream side of the refrigerant pipe 78.

四方弁69の出口側の冷媒パイプ71(サイクルC)には、野菜室加熱パイプ73が接続されている。この野菜室加熱パイプ73の出口側には冷媒パイプ101を接続しており、この冷媒パイプ101の下流側は冷媒パイプ100と合流部76で合流している。逆止弁75は、この合流部76と結露防止パイプ72の間に配置されており、冷媒パイプ101と合流部76の間にも、逆止弁75を設けている。   A vegetable room heating pipe 73 is connected to the refrigerant pipe 71 (cycle C) on the outlet side of the four-way valve 69. A refrigerant pipe 101 is connected to the outlet side of the vegetable chamber heating pipe 73, and the downstream side of the refrigerant pipe 101 merges with the refrigerant pipe 100 at the junction 76. The check valve 75 is disposed between the junction 76 and the condensation prevention pipe 72, and the check valve 75 is also provided between the refrigerant pipe 101 and the junction 76.

四方弁69の出口側のバイパスパイプ74(サイクルB)は、結露防止パイプ72と野菜室加熱パイプ73のいずれも冷媒を流通させない場合の冷媒流路である。バイパスパイプ74の下流側には第二のドライヤ77bを設け、この第二のドライヤ77bの出口側には冷媒パイプ79を接続している。また、この冷媒パイプ79の下流側には第二の絞り装置82を接続している。第一の絞り装置81と第二の絞り装置82の出口側は合流部83で合流しており、この合流部83の下流側に冷媒パイプ84が接続されて、さらに冷媒パイプ84の下流側は蒸発器14に接続されている。蒸発器14の出口側に接続された冷媒パイプ85は、途中に第一の絞り絞り装置81及び第二の絞り装置絞り82の一部と熱交換するように熱交換部80を設けてあり、熱交換部80の下流側の冷媒パイプ85は圧縮機24の吸込側に接続されている。   The bypass pipe 74 (cycle B) on the outlet side of the four-way valve 69 is a refrigerant flow path when neither the dew condensation prevention pipe 72 nor the vegetable compartment heating pipe 73 allows the refrigerant to flow. A second dryer 77b is provided on the downstream side of the bypass pipe 74, and a refrigerant pipe 79 is connected to the outlet side of the second dryer 77b. A second expansion device 82 is connected to the downstream side of the refrigerant pipe 79. The outlet side of the first throttle device 81 and the second throttle device 82 merges at a junction 83, a refrigerant pipe 84 is connected to the downstream side of the junction 83, and the downstream side of the refrigerant pipe 84 is further downstream. It is connected to the evaporator 14. The refrigerant pipe 85 connected to the outlet side of the evaporator 14 is provided with a heat exchanging unit 80 so as to exchange heat with a part of the first throttle device 81 and the second throttle device throttle 82 in the middle. A refrigerant pipe 85 on the downstream side of the heat exchange unit 80 is connected to the suction side of the compressor 24.

実施例2の四方弁69を用いた制御は、実施例1の図9に示した冷却運転の一例と同様に行う。すなわち、実施例1の三方弁130と二方弁131による冷媒回路の切替えを、実施例2では四方弁69で行う構成である。   Control using the four-way valve 69 of the second embodiment is performed in the same manner as in the example of the cooling operation shown in FIG. 9 of the first embodiment. In other words, the refrigerant circuit is switched by the three-way valve 130 and the two-way valve 131 of the first embodiment with the four-way valve 69 in the second embodiment.

野菜室加熱パイプ73に冷媒を流す場合には、実施例2では出口側の冷媒パイプ71に接続するように四方弁69を切り替える。また、実施例2では四方弁69を全閉状態にすることで、実施例1における三方弁130と二方弁131を閉状態にした冷媒流路構成に対応する。また、結露防止パイプ72と野菜室加熱パイプ73の両方に冷媒を流す場合は、四方弁69の出口側の冷媒パイプ70と冷媒パイプ71の両方に冷媒が流れるように、四方弁69を切り替える。   In the case of flowing the refrigerant through the vegetable compartment heating pipe 73, in the second embodiment, the four-way valve 69 is switched so as to be connected to the refrigerant pipe 71 on the outlet side. In the second embodiment, the four-way valve 69 is fully closed to correspond to the refrigerant flow path configuration in which the three-way valve 130 and the two-way valve 131 in the first embodiment are closed. When the refrigerant flows through both the condensation prevention pipe 72 and the vegetable compartment heating pipe 73, the four-way valve 69 is switched so that the refrigerant flows through both the refrigerant pipe 70 and the refrigerant pipe 71 on the outlet side of the four-way valve 69.

以上のように、結露防止パイプ72、野菜室加熱パイプ73、バイパスパイプ74を切り替える冷媒流路切替手段として四方弁69を用いることで、仕切カバー36a、36b、36cの表面加熱、及び下断熱仕切壁29の野菜室6側の加熱を冷凍サイクルの冷媒パイプを放熱手段として機能させることができ、同様に省エネルギー性能が高い冷却運転が実現できる。また、実施例1の図3に示した三方弁130と二方弁131による冷媒流路の切り替えを、実施例2では単体の四方弁69に集約して行うことができるので、例えば、機械室61内に設置する冷媒流路切替手段の設置スペースが少なくて済む。従って、機械室61内にはスペースの余裕が生まれるため、機械室61に配置している圧縮機24や第一の放熱器46の放熱性能の向上にも寄与することができ、更に省エネルギー性能が高い運転が実施できる。更に、単一の四方弁69で冷媒流路の切替制御を実施できるので制御が簡略化される。   As described above, by using the four-way valve 69 as the refrigerant flow path switching means for switching the dew condensation prevention pipe 72, the vegetable room heating pipe 73, and the bypass pipe 74, the surface heating of the partition covers 36a, 36b, 36c, and the lower heat insulating partition The heating of the wall 29 on the vegetable compartment 6 side can function as a heat radiating means using the refrigerant pipe of the refrigeration cycle, and similarly, a cooling operation with high energy saving performance can be realized. Further, the switching of the refrigerant flow path by the three-way valve 130 and the two-way valve 131 shown in FIG. 3 of the first embodiment can be performed collectively in the single four-way valve 69 in the second embodiment. The installation space for the refrigerant flow path switching means installed in 61 can be reduced. Accordingly, since there is room in the machine room 61, it is possible to contribute to the improvement of the heat radiation performance of the compressor 24 and the first radiator 46 disposed in the machine room 61, and further energy saving performance is achieved. High operation can be carried out. Furthermore, since the refrigerant flow path switching control can be performed with the single four-way valve 69, the control is simplified.

図14は、冷媒流路切替手段(四方弁)による冷媒流路の切り替えパターンを模式的に示した図である。弁体140の動作が分かるように、四方弁69の内部の様子を上部から見たものである。弁体140を回転させる駆動部は省略している。四方弁69のベース部には1つの入口部141と、3つの出口部、すなわち、出口部(A)142、出口部(B)143、出口部(C)144を設けてあり、入口部141は冷媒パイプ68、出口部(A)142は例浴びパイプ70、出口部(B)143は冷媒パイプ74、出口部(C)144は冷媒パイプ71にそれぞれ接続されている。四方弁69は弁体140の回転により、四方弁69の内部で連通させる部分と閉鎖させる部分を選択することができる。   FIG. 14 is a diagram schematically showing a refrigerant flow path switching pattern by the refrigerant flow path switching means (four-way valve). The inside of the four-way valve 69 is seen from above so that the operation of the valve body 140 can be understood. The drive part which rotates the valve body 140 is abbreviate | omitted. The base portion of the four-way valve 69 is provided with one inlet portion 141 and three outlet portions, that is, an outlet portion (A) 142, an outlet portion (B) 143, and an outlet portion (C) 144. The inlet portion 141 Is the refrigerant pipe 68, the outlet part (A) 142 is connected to the example pipe 70, the outlet part (B) 143 is connected to the refrigerant pipe 74, and the outlet part (C) 144 is connected to the refrigerant pipe 71. The four-way valve 69 can select a portion to be communicated and a portion to be closed inside the four-way valve 69 by the rotation of the valve body 140.

四方弁69による冷媒流路の切り替えパターンは、以下の5通りである。四方弁69が全閉の場合、出口部(A)142、出口部(B)143、出口部(C)144はいずれも弁体140によって閉鎖するように位置決めされているので、入口部141から四方弁69の内部に流入した冷媒は、いずれの出口部側からも流出しない。   There are five ways of switching the refrigerant flow path by the four-way valve 69 as follows. When the four-way valve 69 is fully closed, the outlet part (A) 142, the outlet part (B) 143, and the outlet part (C) 144 are all positioned so as to be closed by the valve body 140. The refrigerant that has flowed into the four-way valve 69 does not flow out from any outlet side.

結露防止パイプ72(第一の冷媒流路であるサイクルA)に冷媒を流す場合、結露防止パイプ72に接続されているパイプ70に冷媒を流すために、入口部141と出口部(A)142が四方弁69内部で連通するように、弁体140を回転させて位置決めする。   When the refrigerant flows through the dew condensation prevention pipe 72 (cycle A which is the first refrigerant flow path), in order to flow the refrigerant through the pipe 70 connected to the dew condensation prevention pipe 72, the inlet part 141 and the outlet part (A) 142 are provided. Is positioned by rotating the valve body 140 such that the valve body 140 communicates with the inside of the four-way valve 69.

結露防止パイプ72(第一の冷媒流路であるサイクルA)と野菜室加熱パイプ73(第二の冷媒流路であるサイクルC)に同時に冷媒を流す場合、入口部141と出口部(A)142、及び出口部(C)143が四方弁69内部で連通するように、弁体140を回転させて位置決めする。   In the case where the refrigerant flows simultaneously through the dew condensation prevention pipe 72 (cycle A which is the first refrigerant flow path) and the vegetable room heating pipe 73 (cycle C which is the second refrigerant flow path), the inlet portion 141 and the outlet portion (A) 142 and the outlet portion (C) 143 are rotated and positioned so that the four-way valve 69 communicates with the valve body 140.

野菜室加熱パイプ73(第二の冷媒流路であるサイクルC)に冷媒を流す場合、野菜室加熱パイプ73に接続されている冷媒パイプ71に冷媒を流すために、入口部141と出口部(C)143が四方弁69内部で連通するように、弁体140を回転させて位置決めする。   When flowing the refrigerant through the vegetable compartment heating pipe 73 (cycle C which is the second refrigerant flow path), in order to flow the refrigerant through the refrigerant pipe 71 connected to the vegetable compartment heating pipe 73, an inlet portion 141 and an outlet portion ( C) The valve body 140 is rotated and positioned so that 143 communicates within the four-way valve 69.

バイパスパイプ74(第三の冷媒流路であるサイクルB)に冷媒を流す場合、バイパスパイプ73に接続されている冷媒パイプ74に冷媒を流すために、入口部141と出口部(B)144が四方弁69内部で連通するように、弁体140を回転させて位置決めする。   When flowing the refrigerant through the bypass pipe 74 (cycle B which is the third refrigerant flow path), in order to flow the refrigerant through the refrigerant pipe 74 connected to the bypass pipe 73, the inlet portion 141 and the outlet portion (B) 144 are provided. The valve body 140 is rotated and positioned so as to communicate with the inside of the four-way valve 69.

図15は、本発明の実施例3に係る冷蔵庫の冷凍サイクルの構成図である。実施例1及び実施例2と同様の構成については、同一の符号を付して説明を省略する。四方弁69によって結露防止パイプ72(第一の冷媒流路であるサイクルA)、バイパスパイプ74(第三の冷媒流路であるサイクルB)、野菜室加熱パイプ(第二の冷媒流路であるサイクルC)が並列に配置された構成は、図3、図13と同様である。実施例3では、結露防止パイプ72の出口側に接続した冷媒パイプ100が、合流部98においてバイパスパイプ74と合流し、また、野菜室加熱パイプ73の出口側に接続した冷媒パイプ101が合流部99において合流する。なお、合流部99は合流部98よりも冷媒パイプ100の下流側に設けている。合流部99の下流側の冷媒パイプ100には、第三の放熱器105を設けている。この第三の放熱器105は、例えば、図4に示したように冷蔵庫1の背面側の断熱壁内、すなわち、外箱10aと内箱10bとの間の断熱空間に設けても良い。第三の放熱器105の出口側には、冷媒パイプ102を接続し、この冷媒パイプ102の途中にドライヤ77eを設け、ドライヤ77eの出口側に絞り装置96を接続している。実施例3における四方弁69を用いた制御は、図9に示した冷却運転の一例と同様に行うが、結露防止パイプ72(サイクルA)と野菜室加熱パイプ73(サイクルC)を並列に配置することで、結露防止パイプ72(サイクルA)と野菜室加熱パイプ73(サイクルC)内の気液二相域の状態が長くなるように構成している。これにより、仕切カバー36a、36b、36cや下断熱仕切壁29を一定温度で加熱できる冷媒パイプの範囲(気液二相域の状態の範囲)が拡大されるとともに、単一の四方弁69による冷媒流路の切替制御がし易くなる。なお、四方弁69をバイパスパイプ74に冷媒が流れるように切り替えた場合に、放熱性能が不足する時は、バイパスパイプ74の途中に他の放熱器を別途設けても良い。   FIG. 15 is a configuration diagram of the refrigeration cycle of the refrigerator according to the third embodiment of the present invention. About the structure similar to Example 1 and Example 2, the same code | symbol is attached | subjected and description is abbreviate | omitted. By the four-way valve 69, the dew condensation prevention pipe 72 (cycle A which is the first refrigerant flow path), the bypass pipe 74 (cycle B which is the third refrigerant flow path), and the vegetable room heating pipe (second refrigerant flow path) The configuration in which the cycles C) are arranged in parallel is the same as in FIGS. In the third embodiment, the refrigerant pipe 100 connected to the outlet side of the dew condensation prevention pipe 72 joins the bypass pipe 74 at the junction 98, and the refrigerant pipe 101 connected to the outlet side of the vegetable room heating pipe 73 joins the junction. At 99, join. The junction 99 is provided on the downstream side of the refrigerant pipe 100 with respect to the junction 98. A third radiator 105 is provided in the refrigerant pipe 100 on the downstream side of the junction 99. For example, as shown in FIG. 4, the third radiator 105 may be provided in a heat insulating wall on the back side of the refrigerator 1, that is, in a heat insulating space between the outer box 10 a and the inner box 10 b. A refrigerant pipe 102 is connected to the outlet side of the third radiator 105, a dryer 77e is provided in the middle of the refrigerant pipe 102, and a throttle device 96 is connected to the outlet side of the dryer 77e. The control using the four-way valve 69 in Example 3 is performed in the same manner as in the example of the cooling operation shown in FIG. 9, but the dew condensation prevention pipe 72 (cycle A) and the vegetable room heating pipe 73 (cycle C) are arranged in parallel. By doing so, the state of the gas-liquid two-phase region in the dew condensation prevention pipe 72 (cycle A) and the vegetable room heating pipe 73 (cycle C) is configured to be long. As a result, the range of the refrigerant pipe that can heat the partition covers 36a, 36b, 36c and the lower heat insulating partition wall 29 at a constant temperature (the range of the state of the gas-liquid two-phase region) is expanded, and the single four-way valve 69 It becomes easy to perform switching control of the refrigerant flow path. In addition, when the four-way valve 69 is switched so that the refrigerant flows through the bypass pipe 74, when the heat dissipation performance is insufficient, another heat radiator may be separately provided in the middle of the bypass pipe 74.

以上のように、仕切カバー36a、36b、36cの表面加熱、及び下断熱仕切壁29の野菜室6側の加熱を冷凍サイクルの冷媒パイプを加熱手段として機能させることができ、省エネルギー性能が高い冷却運転が実現できる。   As described above, the surface heating of the partition covers 36a, 36b, and 36c and the heating of the lower heat insulating partition wall 29 on the vegetable compartment 6 side can function as the refrigerant pipe of the refrigeration cycle as a heating means, and cooling with high energy saving performance Driving can be realized.

図16は、本発明の実施例3に係る冷凍サイクルの説明図であって、複数の加熱手段に同時に冷媒を流した場合の冷媒の状態を説明する図である。図中の記号a、b、c、g1、g2、hは、図15に示した冷凍サイクルを構成する冷媒流路の位置に、それぞれ対応している。冷蔵庫1の両側壁面内の配置した第二の放熱器41a、41bを冷媒が通過した後の状態dまでは、実施例1の図3、実施例2の図13と共通である。実施例3では、第二の放熱器41a、41bと第三の放熱器105の間に、四方弁69で分岐した結露防止パイプ72と野菜室加熱パイプ73を設けて、それぞれに冷媒を同時に流しても結露防止パイプ72では状態dから出口部の状態g1、野菜室加熱パイプ73では状態dから出口部の状態g2まで、冷媒が気液二相域になるようにしているので、仕切カバー36a、36b、36cや、下断熱仕切壁29を一定温度で加熱し易く、加熱不足になり難い。   FIG. 16 is an explanatory diagram of the refrigeration cycle according to the third embodiment of the present invention, and is a diagram illustrating the state of the refrigerant when the refrigerant is caused to flow simultaneously through a plurality of heating means. Symbols a, b, c, g1, g2, and h in the figure respectively correspond to the positions of the refrigerant flow paths that constitute the refrigeration cycle shown in FIG. The state up to the state d after the refrigerant has passed through the second radiators 41a and 41b arranged in the both side wall surfaces of the refrigerator 1 is the same as FIG. 3 of the first embodiment and FIG. 13 of the second embodiment. In the third embodiment, a dew condensation prevention pipe 72 and a vegetable room heating pipe 73 branched by a four-way valve 69 are provided between the second radiators 41a and 41b and the third radiator 105, and the refrigerant is allowed to flow through each of them simultaneously. Even in the dew condensation prevention pipe 72, since the refrigerant is in the gas-liquid two-phase region from the state d to the state g1 of the outlet portion and in the vegetable room heating pipe 73 from the state d to the state g2 of the outlet portion, the partition cover 36a. , 36b, 36c and the lower heat insulating partition wall 29 are easily heated at a constant temperature, and are not easily heated.

結露防止パイプ72(サイクルA)と野菜室加熱パイプ73(サイクルC)の合流部99で合流した後の冷媒は、第三の放熱器105に流入するように構成しているので、第三の放熱器105の出口側に位置する絞り装置96の入口部における液相域の割合を大きくすることができる。第三の放熱器105は冷蔵庫1の周囲への放熱が目的なので、第三の放熱器105内に液相域が多く占めて温度低下を引き起こしても問題はない。   Since the refrigerant after having joined at the junction 99 of the condensation prevention pipe 72 (cycle A) and the vegetable room heating pipe 73 (cycle C) is configured to flow into the third radiator 105, the third The ratio of the liquid phase region at the inlet portion of the expansion device 96 located on the outlet side of the radiator 105 can be increased. Since the third radiator 105 is intended to dissipate heat around the refrigerator 1, there is no problem even if a large amount of liquid phase area occupies the third radiator 105 and causes a temperature drop.

図17は、本発明の実施例4に係る冷蔵庫の冷凍サイクルの構成図である。実施例1から実施例3と同様の構成については、同一の符号を付して説明を省略する。図中の記号a、b、c、g1、g2、hは、図17に示した冷凍サイクルの冷媒流路の位置に、それぞれ対応している。冷蔵庫1の両側壁面内の配置した第二の放熱器41a、41bを冷媒が通過した後の状態dまでは、実施例1の図3、実施例2の図13、実施例3の図15と共通である。実施例4では、野菜室加熱パイプ73に接続する冷媒パイプ71の途中に、流量調整部97を設けてあり、野菜室加熱パイプ73の出口側は冷媒パイプ103に接続してある。冷媒パイプ103の下流側は、四方弁69で分岐した結露防止パイプ72の途中の合流部104に接続している。野菜室加熱パイプ73の出口側で、冷媒パイプ103の途中には逆止弁75を設けている。野菜室加熱パイプ73の出口側を、結露防止パイプ72の途中に接続した理由について、図18で説明する。   FIG. 17 is a configuration diagram of the refrigeration cycle of the refrigerator according to the fourth embodiment of the present invention. The same components as those in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. Symbols a, b, c, g1, g2, and h in the figure respectively correspond to the positions of the refrigerant flow paths of the refrigeration cycle shown in FIG. FIG. 3 of Example 1, FIG. 13 of Example 2, FIG. 15 of Example 3 and FIG. 15 of Example 3 until state d after the refrigerant has passed through the second radiators 41a and 41b arranged in the both side walls of the refrigerator 1 It is common. In Example 4, a flow rate adjusting unit 97 is provided in the middle of the refrigerant pipe 71 connected to the vegetable compartment heating pipe 73, and the outlet side of the vegetable compartment heating pipe 73 is connected to the refrigerant pipe 103. The downstream side of the refrigerant pipe 103 is connected to the junction 104 in the middle of the dew condensation prevention pipe 72 branched by the four-way valve 69. A check valve 75 is provided in the middle of the refrigerant pipe 103 on the outlet side of the vegetable room heating pipe 73. The reason why the outlet side of the vegetable room heating pipe 73 is connected in the middle of the dew condensation prevention pipe 72 will be described with reference to FIG.

図18は、本発明の実施例4に係る冷凍サイクルの説明図であって、複数の加熱手段に同時に冷媒を流した場合の冷媒の状態を説明する図である。結露防止パイプ72と野菜室加熱パイプ73を流れる冷媒によって、それぞれ仕切カバー36a、36b、36cや下断熱仕切壁29を加熱するが、必ずしも結露防止パイプ72と野菜室加熱パイプ73の出口部の冷媒の状態が同じであるとは限らない。図17に示した実施例4では、四方弁69によって結露防止パイプ72と野菜室加熱パイプ73に同時に冷媒を流す時、野菜室加熱パイプ73の出口部の温度と結露防止パイプ72の合流部104の温度が等しくなるように、野菜室加熱パイプ73の入口側に設けた流量調整部97で冷媒流量を調整している。第一の絞り装置81の入口側の冷媒の状態hによって絞り量が変化するため、流量調整部97で冷媒流量を調整してから結露防止パイプ72に合流させて、より安定した減圧量を得ている。本実施例の場合、図示していないが、野菜室加熱パイプ73の出口部と結露防止パイプ72の合流部104の温度を測定する温度センサを設ける。結露防止パイプ72の合流部104の温度は、図8で示した結露防止パイプ72の切替え制御に必要な温度センサと兼ねても良い。また、野菜室加熱パイプ73の入口側に流量調整部97を設けているが、四方弁69内の弁体140の位置を調整し、出口部(A)142、あるいは出口部(C)143の開口面積を調整することによっても、結露防止パイプ72、または野菜室加熱パイプ73の冷媒流量が調整できる(図14参照)。   FIG. 18 is an explanatory diagram of the refrigeration cycle according to the fourth embodiment of the present invention, and is a diagram illustrating the state of the refrigerant when the refrigerant is caused to flow simultaneously through a plurality of heating means. The partition covers 36 a, 36 b, 36 c and the lower heat insulating partition wall 29 are heated by the refrigerant flowing through the dew condensation prevention pipe 72 and the vegetable room heating pipe 73, respectively. Are not necessarily the same. In the fourth embodiment shown in FIG. 17, when the refrigerant flows simultaneously through the dew condensation prevention pipe 72 and the vegetable room heating pipe 73 by the four-way valve 69, the temperature at the outlet of the vegetable room heating pipe 73 and the junction 104 of the dew condensation prevention pipe 72. The refrigerant flow rate is adjusted by a flow rate adjusting unit 97 provided on the inlet side of the vegetable room heating pipe 73 so that the temperature of the vegetable room heating pipe 73 becomes equal. Since the throttle amount changes depending on the refrigerant state h on the inlet side of the first throttle device 81, the refrigerant flow rate is adjusted by the flow rate adjusting unit 97 and then joined to the dew condensation prevention pipe 72 to obtain a more stable pressure reduction amount. ing. In the case of the present embodiment, although not shown, a temperature sensor for measuring the temperature of the outlet portion of the vegetable room heating pipe 73 and the junction portion 104 of the dew condensation prevention pipe 72 is provided. The temperature of the merging portion 104 of the dew condensation prevention pipe 72 may also serve as a temperature sensor necessary for switching control of the dew condensation prevention pipe 72 shown in FIG. Moreover, although the flow volume adjustment part 97 is provided in the entrance side of the vegetable room heating pipe 73, the position of the valve body 140 in the four-way valve 69 is adjusted, and the outlet part (A) 142 or the outlet part (C) 143 is adjusted. The refrigerant flow rate of the condensation prevention pipe 72 or the vegetable room heating pipe 73 can also be adjusted by adjusting the opening area (see FIG. 14).

以上のように、仕切カバー36a、36b、36cの表面加熱及び下断熱仕切壁29の加熱を冷凍サイクルの冷媒パイプを加熱手段として機能させることができ、更に第一の絞り装置81の入口部の冷媒の状態も制御できるので、省エネルギー性能が高い冷却運転が実現できる。   As described above, the surface heating of the partition covers 36a, 36b, and 36c and the heating of the lower heat insulating partition wall 29 can be functioned as the refrigerant pipe of the refrigeration cycle as a heating means. Since the state of the refrigerant can also be controlled, a cooling operation with high energy saving performance can be realized.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Also, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯の貯蔵室)
3 製氷室
4 上段冷凍室
5 下段冷凍室
6 野菜室
7 冷凍室(冷凍温度帯の貯蔵室)
8 冷却器収納室
9 ファン
10 断熱箱体
10a 外箱
10b 内箱
14 冷却器
16 野菜室奥側壁面
17 冷凍室冷気戻り部
18 野菜室冷気戻りダクト
18a 野菜室側の冷気戻り部
18b 野菜室冷気戻り部
19 ヒータ
20 冷蔵室ダンパ
20a バッフル
22 除霜ヒータ
23 樋
24 圧縮機
25 真空断熱材
26 野菜室ヒータ
27 ドレン孔
28 上断熱仕切部
29 下断熱仕切部
30 基板カバー
31 接続部
32 野菜室温度センサ
36a、36b、36c 仕切カバー(仕切部)
40 断熱仕切部
41a、41b 第二の放熱器
45 機械室ファン
46 第一の放熱器
47 野菜室ダンパ
51 制御基板
52 温度センサ
60 冷凍室ダンパ
60a バッフル
61 機械室
66、67、68 冷媒パイプ
69 四方弁(冷媒流路切替手段)
70、71 冷媒パイプ
72 結露防止パイプ(第一の放熱手段)
73 野菜室加熱パイプ(第二の放熱手段)
74 バイパスパイプ
75 逆止弁
76 合流部
77a 第一のドライヤ
77b 第二のドライヤ
77c、77d、77e ドライヤ
78、79 冷媒パイプ
80 熱交換部
81 第一の絞り装置(減圧手段)
82 第二の絞り装置(減圧手段)
83 合流部
84、85 冷媒パイプ
96 絞り装置(減圧手段)
97 流量調整部
98、99 合流部
100、101、102 冷媒パイプ
104 合流部
105 第三の放熱器
110、111 熱の流れ
120 庫外湿度センサ
121 冷蔵室温度センサ
122 冷凍室温度センサ
130 三方弁(冷媒流路切替手段)
131 二方弁(冷媒流路切替手段)
132 合流部
140 弁体
141 入口部
142 出口部(A)
143 出口部(C)
144 出口部(B)
145 弁ベース部
1 Refrigerator 2 Refrigerated room (storage room in refrigerated temperature zone)
3 Ice making room 4 Upper freezer room 5 Lower freezer room 6 Vegetable room 7 Freezer room (freezing temperature storage room)
8 Cooler storage chamber 9 Fan 10 Heat insulation box 10a Outer box 10b Inner box 14 Cooler 16 Vegetable room back side wall surface 17 Freezer room cold air return part 18 Vegetable room cold air return duct 18a Vegetable room side cold air return part 18b Vegetable room cold air Return part 19 Heater 20 Cold room damper 20a Baffle 22 Defrost heater 23 樋 24 Compressor 25 Vacuum heat insulating material 26 Vegetable room heater 27 Drain hole 28 Upper heat insulation partition part 29 Lower heat insulation partition part 30 Substrate cover 31 Connection part 32 Vegetable room temperature Sensor 36a, 36b, 36c Partition cover (partition part)
40 Heat insulation partitioning parts 41a and 41b Second radiator 45 Machine room fan 46 First radiator 47 Vegetable room damper 51 Control board 52 Temperature sensor 60 Freezer room damper 60a Baffle 61 Machine rooms 66, 67, 68 Refrigerant pipe 69 Four-way Valve (refrigerant flow path switching means)
70, 71 Refrigerant pipe 72 Condensation prevention pipe (first heat radiation means)
73 Vegetable room heating pipe (second heat dissipation means)
74 Bypass pipe 75 Check valve 76 Junction part 77a First dryer 77b Second dryers 77c, 77d, 77e Dryers 78, 79 Refrigerant pipe 80 Heat exchange part 81 First throttle device (pressure reduction means)
82 Second throttle device (pressure reduction means)
83 Junction section 84, 85 Refrigerant pipe 96 Throttle device (pressure reduction means)
97 Flow rate adjusting unit 98, 99 Junction unit 100, 101, 102 Refrigerant pipe 104 Junction unit 105 Third radiator 110, 111 Heat flow 120 Outside humidity sensor 121 Cold room temperature sensor 122 Freezer room temperature sensor 130 Three-way valve ( Refrigerant flow path switching means)
131 Two-way valve (refrigerant flow path switching means)
132 Junction part 140 Valve body 141 Inlet part 142 Outlet part (A)
143 Exit (C)
144 Exit (B)
145 Valve base

Claims (5)

冷凍温度帯の貯蔵室と、
冷蔵温度帯の貯蔵室と、
前記冷凍温度帯の貯蔵室と前記冷蔵温度帯の貯蔵室を仕切る断熱仕切部と、
圧縮機と、放熱手段と、減圧手段と、冷却器を接続した冷凍サイクルと、を備え、
前記放熱手段は、前記冷凍温度帯の貯蔵室の前方の仕切部を加熱する第一の加熱手段と、前記断熱仕切部に設けられて前記冷蔵温度帯の貯蔵室を加熱する第二の加熱手段と、を備え、
前記第一の加熱手段を含む第一の冷媒流路と前記第二の加熱手段を含む第二の冷媒流路は並列に配置されて、
前記第一の冷媒流路と前記第二の冷媒流路とを切り替える冷媒流路切替手段を備え、
前記第一の加熱手段と前記第二の加熱手段は下流側で合流する合流部を有し、該合流部の下流側に冷蔵庫の周囲へ放熱する放熱器の一部を設けたことを特徴とする冷蔵庫。
A storage room in a freezing temperature zone;
A refrigerated storage room,
A heat insulating partition that partitions the storage compartment of the refrigeration temperature zone and the storage compartment of the refrigeration temperature zone;
A compressor, a heat dissipation means, a decompression means, and a refrigeration cycle connected to a cooler,
The heat dissipating means includes a first heating means for heating a partition in front of the storage room in the freezing temperature zone, and a second heating means for heating the storage room in the refrigeration temperature zone provided in the heat insulating partition. And comprising
The first refrigerant flow path including the first heating means and the second refrigerant flow path including the second heating means are arranged in parallel,
Refrigerant flow path switching means for switching between the first refrigerant flow path and the second refrigerant flow path,
Said first heating means and the second heating means has a merging portion that merges with the downstream side, provided with a portion of the radiator for radiating to the surrounding refrigerator on the downstream side of the confluence portion Features a refrigerator.
前記断熱仕切部には前記冷凍サイクルと独立した加熱源を備え、
前記冷蔵温度帯の貯蔵室は、前記第二の加熱手段と前記加熱源の少なくともいずれかによって加熱することを特徴とする、請求項1記載の冷蔵庫。
The heat insulating partition includes a heating source independent of the refrigeration cycle,
The refrigerator according to claim 1, wherein the storage room in the refrigeration temperature zone is heated by at least one of the second heating means and the heating source.
前記第一の冷媒流路を迂回する第三の冷媒流路を備え、前記第一の冷媒流路と前記第二の冷媒流路と前記第三の冷媒流路は冷媒流路切替手段である四方弁によって流路が切り替えられることを特徴とする、請求項1記載の冷蔵庫。   A third refrigerant flow path bypassing the first refrigerant flow path, wherein the first refrigerant flow path, the second refrigerant flow path, and the third refrigerant flow path are refrigerant flow path switching means; The refrigerator according to claim 1, wherein the flow path is switched by a four-way valve. 冷凍温度帯の貯蔵室と、
冷蔵温度帯の貯蔵室と、
前記冷凍温度帯の貯蔵室と前記冷蔵温度帯の貯蔵室を仕切る断熱仕切部と、
圧縮機と、放熱手段と、減圧手段と、冷却器を接続した冷凍サイクルと、を備え、
前記放熱手段は、前記冷凍温度帯の貯蔵室の前方の仕切部を加熱する第一の加熱手段と、前記断熱仕切部に設けられて前記冷蔵温度帯の貯蔵室を加熱する第二の加熱手段と、を備え、
前記第一の加熱手段を含む第一の冷媒流路と前記第二の加熱手段を含む第二の冷媒流路は並列に配置されて、
前記第一の冷媒流路と前記第二の冷媒流路とを切り替える冷媒流路切替手段を備え、前記第二の加熱手段の下流側は前記第一の加熱手段の途中に接続したことを特徴とする冷蔵庫。
A storage room in a freezing temperature zone;
A refrigerated storage room,
A heat insulating partition that partitions the storage compartment of the refrigeration temperature zone and the storage compartment of the refrigeration temperature zone;
A compressor, a heat dissipation means, a decompression means, and a refrigeration cycle connected to a cooler,
The heat dissipating means includes a first heating means for heating a partition in front of the storage room in the freezing temperature zone, and a second heating means for heating the storage room in the refrigeration temperature zone provided in the heat insulating partition. And comprising
The first refrigerant flow path including the first heating means and the second refrigerant flow path including the second heating means are arranged in parallel,
Refrigerant flow path switching means for switching between the first refrigerant flow path and the second refrigerant flow path is provided, and the downstream side of the second heating means is connected in the middle of the first heating means. Refrigerator.
前記第二の加熱手段の上流側であって前記冷媒流路切替手段の下流側に冷媒流量を調整する冷媒調整部を備えたことを特徴とする、請求項4記載の冷蔵庫。   The refrigerator according to claim 4, further comprising a refrigerant adjusting unit that adjusts a refrigerant flow rate upstream of the second heating unit and downstream of the refrigerant flow switching unit.
JP2014101899A 2014-05-16 2014-05-16 refrigerator Expired - Fee Related JP6469966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101899A JP6469966B2 (en) 2014-05-16 2014-05-16 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101899A JP6469966B2 (en) 2014-05-16 2014-05-16 refrigerator

Publications (2)

Publication Number Publication Date
JP2015218938A JP2015218938A (en) 2015-12-07
JP6469966B2 true JP6469966B2 (en) 2019-02-13

Family

ID=54778465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101899A Expired - Fee Related JP6469966B2 (en) 2014-05-16 2014-05-16 refrigerator

Country Status (1)

Country Link
JP (1) JP6469966B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539093B2 (en) * 2015-04-20 2019-07-03 日立グローバルライフソリューションズ株式会社 refrigerator
JP2017138050A (en) * 2016-02-03 2017-08-10 三菱電機株式会社 refrigerator
JP6762149B2 (en) * 2016-06-29 2020-09-30 日立グローバルライフソリューションズ株式会社 refrigerator
JP2019027674A (en) * 2017-07-31 2019-02-21 日立アプライアンス株式会社 refrigerator
CN115371329A (en) * 2021-05-19 2022-11-22 佛山海尔电冰柜有限公司 Refrigerating apparatus and control method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180951A (en) * 1993-12-24 1995-07-18 Toshiba Corp Refrigerator provided with drying function
JP2000283631A (en) * 1999-03-31 2000-10-13 Fujitsu General Ltd Refrigerator
JP2007113825A (en) * 2005-10-19 2007-05-10 Toshiba Corp Refrigerator
JP2009174767A (en) * 2008-01-23 2009-08-06 Sharp Corp Refrigerator
JP2013044438A (en) * 2011-08-22 2013-03-04 Hitachi Appliances Inc Refrigerator
JP2013061089A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
KR101942526B1 (en) * 2012-01-31 2019-01-25 엘지전자 주식회사 Refrigerator
CN104160224A (en) * 2012-02-29 2014-11-19 松下电器产业株式会社 Refrigerator
JP2014059110A (en) * 2012-09-18 2014-04-03 Sharp Corp Refrigerator and cooling mechanism
JP6101926B2 (en) * 2012-12-05 2017-03-29 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
JP2015218938A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6469966B2 (en) refrigerator
JP4867758B2 (en) refrigerator
KR20120022600A (en) Refrigerator
JP6177605B2 (en) refrigerator
JP4739926B2 (en) refrigerator
KR101869165B1 (en) Refrigerator
JP5572606B2 (en) refrigerator
TWI716636B (en) refrigerator
JP5492845B2 (en) refrigerator
JP2021139591A (en) refrigerator
JP2013155910A (en) Refrigerator
JP6343576B2 (en) refrigerator
JP6539093B2 (en) refrigerator
JP2008111640A (en) Refrigerator
JP6762149B2 (en) refrigerator
JP6940424B2 (en) refrigerator
JP6506645B2 (en) refrigerator
JP2017026210A (en) refrigerator
JP2016023845A (en) refrigerator
JP6533479B2 (en) refrigerator
JP2019132506A (en) refrigerator
JP2019020004A (en) refrigerator
JP7369520B2 (en) refrigerator
JP2018124060A (en) refrigerator
JP2019132493A (en) refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6469966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees