JP6101926B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6101926B2
JP6101926B2 JP2012265936A JP2012265936A JP6101926B2 JP 6101926 B2 JP6101926 B2 JP 6101926B2 JP 2012265936 A JP2012265936 A JP 2012265936A JP 2012265936 A JP2012265936 A JP 2012265936A JP 6101926 B2 JP6101926 B2 JP 6101926B2
Authority
JP
Japan
Prior art keywords
capillary tube
refrigerator
dew
evaporator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012265936A
Other languages
Japanese (ja)
Other versions
JP2014112008A (en
Inventor
境 寿和
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012265936A priority Critical patent/JP6101926B2/en
Priority to PCT/JP2013/006752 priority patent/WO2014087584A1/en
Priority to CN201380063575.1A priority patent/CN104823010B/en
Publication of JP2014112008A publication Critical patent/JP2014112008A/en
Application granted granted Critical
Publication of JP6101926B2 publication Critical patent/JP6101926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Description

本発明は、冷凍サイクルの膨張機構としてキャピラリチューブを有する冷蔵庫において、負荷条件に応じて絞り量を調整する冷蔵庫に関するものである。   The present invention relates to a refrigerator that has a capillary tube as an expansion mechanism of a refrigeration cycle and adjusts the amount of squeezing according to load conditions.

省エネルギーの観点から、家庭用冷蔵庫の冷凍サイクルにおいては、負荷条件に応じて回転数を可変するインバータ圧縮機が使用される。この時、高負荷条件においてはインバータ圧縮機を高速回転することで冷媒循環量を増大させて高能力化を図るとともに、通常負荷条件においてはインバータ圧縮機を低速回転することで冷媒循環量を低下させて高効率化を図る。しかし、冷凍サイクルの膨張機構としてキャピラリチューブを使用する場合、高負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、通常負荷条件では適正な絞り量よりも緩く効率の低下を招くとともに、通常負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、高負荷条件では適正な絞り量よりもきつく能力の低下を招く。   From the viewpoint of energy saving, in the refrigeration cycle of a household refrigerator, an inverter compressor whose rotation speed is variable according to load conditions is used. At this time, under high load conditions, the inverter compressor is rotated at a high speed to increase the refrigerant circulation rate to increase the capacity. Under normal load conditions, the inverter compressor is rotated at a low speed to reduce the refrigerant circulation rate. To improve efficiency. However, when a capillary tube is used as the expansion mechanism of the refrigeration cycle, if the throttle amount of the capillary tube is designed according to the refrigerant circulation amount under the high load condition, the efficiency will be reduced more slowly than the proper throttle amount under the normal load condition. In addition, if the amount of restriction of the capillary tube is designed in accordance with the amount of refrigerant circulation under normal load conditions, the ability to tighten is reduced more than the proper amount of restriction under high load conditions.

そこで、冷蔵庫の負荷条件に応じて冷媒循環量を調整するために、複数のキャピラリチューブを切り替えて使用する冷蔵庫が提案されている(例えば、特許文献1参照)。   Then, in order to adjust the refrigerant | coolant circulation amount according to the load conditions of a refrigerator, the refrigerator which switches and uses several capillary tubes is proposed (for example, refer patent document 1).

以下、図面を参照しながら従来の冷蔵庫を説明する。   Hereinafter, a conventional refrigerator will be described with reference to the drawings.

図6は従来の冷蔵庫の冷凍サイクル構成図である。   FIG. 6 is a configuration diagram of a refrigeration cycle of a conventional refrigerator.

図6において、60は圧縮機、61は凝縮器、62は冷凍室蒸発器、63は冷蔵室蒸発器、64は冷凍室ファン、65は冷蔵室ファン、66はアキュームレータ、67は逆止弁である。また、68は凝縮器61から冷凍室蒸発器62、あるいは冷蔵室蒸発器63への流路を切り換える流路切換バルブ、69は冷凍室キャピラリチューブ、70は冷蔵室キャピラリチューブ、71は冷蔵室補助キャピラリチューブ、72は冷蔵室補助キャピラリチューブ71への流路を開閉する開閉弁である。   In FIG. 6, 60 is a compressor, 61 is a condenser, 62 is a freezer compartment evaporator, 63 is a refrigerator compartment evaporator, 64 is a freezer compartment fan, 65 is a refrigerator compartment fan, 66 is an accumulator, and 67 is a check valve. is there. 68 is a flow path switching valve for switching the flow path from the condenser 61 to the freezer compartment evaporator 62 or the refrigerator compartment evaporator 63, 69 is a freezer compartment capillary tube, 70 is a refrigerator compartment capillary tube, and 71 is a refrigerator compartment auxiliary. A capillary tube 72 is an open / close valve that opens and closes the flow path to the refrigerator compartment auxiliary capillary tube 71.

ここで、従来の冷蔵庫は、冷凍室蒸発器62を用いて冷凍室(図示せず)を冷却し、冷蔵室蒸発器63を用いて冷蔵室(図示せず)を冷却するものである。また、冷凍室蒸発器62に冷媒を供給する場合は、凝縮器61から冷凍室キャピラリチューブ69を介して冷凍室蒸発器62に連通するように流路切換バルブ68を切り換え、冷蔵室蒸発器63に冷媒を供給する場合は、凝縮器61から冷蔵室キャピラリチューブ70あるいは冷蔵室補助キャピラリチューブ71を介して冷蔵室蒸発器63に連通するように流路切換バルブ68を切り換えるものである。   Here, the conventional refrigerator cools a freezer compartment (not shown) using the freezer evaporator 62 and cools the refrigerator compartment (not shown) using the refrigerator compartment evaporator 63. When supplying the refrigerant to the freezer compartment evaporator 62, the flow path switching valve 68 is switched so as to communicate with the freezer compartment evaporator 62 from the condenser 61 through the freezer compartment capillary tube 69, and the refrigerator compartment evaporator 63. When the refrigerant is supplied to the refrigerant, the flow path switching valve 68 is switched so as to communicate with the refrigerator compartment evaporator 63 from the condenser 61 via the refrigerator compartment capillary tube 70 or the refrigerator compartment auxiliary capillary tube 71.

以上のように構成された従来の冷蔵庫について以下にその動作を説明する。   The operation of the conventional refrigerator configured as described above will be described below.

圧縮機60から吐出された冷媒は凝縮器61で放熱されて液化した後、流路切換バルブ68に供給される。冷凍室(図示せず)の冷却が必要な場合は、流路切換バルブ68を切り換えて、冷凍室キャピラリチューブ69で減圧して冷凍室蒸発器62に冷媒を供給して蒸発させる。このとき、冷凍室ファン64を駆動することで冷凍室(図示せず)の冷却を行う。また、冷凍室(図示せず)の負荷に比べて冷媒循環量が過多となり、冷凍室蒸発器62で蒸発できなかった余剰冷媒は、アキュームレータ66に貯留される。   The refrigerant discharged from the compressor 60 is radiated and liquefied by the condenser 61 and then supplied to the flow path switching valve 68. When the freezing room (not shown) needs to be cooled, the flow path switching valve 68 is switched, the pressure is reduced by the freezing room capillary tube 69, and the refrigerant is supplied to the freezing room evaporator 62 to be evaporated. At this time, the freezer compartment (not shown) is cooled by driving the freezer compartment fan 64. Further, the refrigerant circulation amount is excessive as compared with the load of the freezer compartment (not shown), and surplus refrigerant that could not be evaporated by the freezer evaporator 62 is stored in the accumulator 66.

一方、冷蔵室(図示せず)の冷却が必要な場合は、流路切換バルブ68を切り換えて、
冷蔵室キャピラリチューブ70あるいは冷蔵室補助キャピラリチューブ71で減圧して冷蔵室蒸発器63に冷媒を供給して蒸発させる。このとき、冷蔵室ファン65を駆動することで冷蔵室(図示せず)の冷却を行う。
On the other hand, when cooling of the refrigerator compartment (not shown) is necessary, the flow path switching valve 68 is switched,
The refrigerant is depressurized by the refrigerator compartment capillary tube 70 or the refrigerator compartment auxiliary capillary tube 71 and supplied to the refrigerator compartment evaporator 63 to evaporate. At this time, the refrigerator compartment (not shown) is cooled by driving the refrigerator compartment fan 65.

ここで、冷凍室(図示せず)及び冷蔵室(図示せず)の温度が比較的安定した通常負荷条件においては、冷蔵室(図示せず)の冷却を行う際に開閉弁72を閉塞し冷蔵室補助キャピラリチューブ71には冷媒を供給せず、冷蔵室キャピラリチューブ70のみを使用する。また、扉開閉や高温の食品が多量に投入されて冷蔵室(図示せず)の温度が上昇した高負荷条件においては、冷蔵室(図示せず)の冷却を行う際に開閉弁72を開放し冷蔵室補助キャピラリチューブ71と冷蔵室キャピラリチューブ70の両方に冷媒を供給する。   Here, under normal load conditions in which the temperatures of the freezer compartment (not shown) and the refrigerator compartment (not shown) are relatively stable, the on-off valve 72 is closed when the refrigerator compartment (not shown) is cooled. No refrigerant is supplied to the refrigerator compartment auxiliary capillary tube 71, and only the refrigerator compartment capillary tube 70 is used. On the other hand, when the door is opened or closed and a large amount of high-temperature food is added to increase the temperature of the refrigerator compartment (not shown), the opening / closing valve 72 is opened when the refrigerator compartment (not shown) is cooled. Then, the refrigerant is supplied to both the refrigerator compartment auxiliary capillary tube 71 and the refrigerator compartment capillary tube 70.

この結果、冷蔵室(図示せず)の温度が上昇した高負荷条件において、冷蔵室蒸発器63への冷媒循環量を増大させて高能力化を図ることができる。この際、開閉弁72の開放と同期して圧縮機60を増速すればさらに高能力化を図ることができる。また、開閉弁72を閉塞して運転する通常負荷条件に合わせて冷蔵室キャピラリチューブ70の絞り量を設計すれば、高効率化を図ることができるとともに、開閉弁72の開放と同期して圧縮機60を減速すればさらに高効率化を図ることができる。   As a result, in a high load condition where the temperature of the refrigerating room (not shown) has increased, the refrigerant circulation amount to the refrigerating room evaporator 63 can be increased to increase the capacity. At this time, if the speed of the compressor 60 is increased in synchronism with the opening of the on-off valve 72, the capacity can be further increased. Further, if the throttle amount of the refrigeration chamber capillary tube 70 is designed in accordance with the normal load condition in which the on-off valve 72 is closed, the efficiency can be improved and the compression is performed in synchronization with the opening of the on-off valve 72. If the machine 60 is decelerated, higher efficiency can be achieved.

特に、冷蔵室(図示せず)は冷凍室(図示せず)に比べて設定温度が高く、扉開閉や食品の投入などがない通常負荷条件における負荷量が小さいにも関わらず、夏場に室温に近い比較的高温の食品が多量に投入されるような高負荷条件における負荷量が冷凍室(図示せず)に比べて大きくなる可能性があることから、負荷条件に応じて冷媒循環量を調整することは重要である。   In particular, the refrigerator compartment (not shown) has a higher set temperature than the freezer compartment (not shown), and the room temperature is low in summer, even though the load is small under normal load conditions where there is no door opening or closing or food input. Since there is a possibility that the amount of load under a high load condition in which a large amount of relatively high-temperature foods close to is charged is larger than that in a freezer compartment (not shown), the amount of refrigerant circulation can be reduced according to the load condition. It is important to adjust.

特開2001−263902号公報JP 2001-263902 A

しかしながら、従来の冷蔵庫の構成では、冷蔵室の冷却において絞り量を調整するために、冷蔵室補助キャピラリチューブ71と開閉弁72が必要であるとともに、配管構成が複雑となる。   However, in the conventional refrigerator configuration, the refrigerator compartment auxiliary capillary tube 71 and the open / close valve 72 are necessary to adjust the throttle amount in cooling the refrigerator compartment, and the piping configuration becomes complicated.

また、従来の冷蔵庫の構成では、絞り量の調整が開閉弁72の開閉の2段階に限定され、通常3〜6段階に切り換えられる圧縮機60の回転数変化に伴う冷媒循環量変化に細かく対応することができない。   Further, in the conventional refrigerator configuration, the throttle amount adjustment is limited to two stages of opening / closing of the on-off valve 72, and finely copes with the refrigerant circulation amount change accompanying the rotation speed change of the compressor 60 which is normally switched to 3-6 stages. Can not do it.

従って、冷蔵庫の負荷条件に応じて絞り量を適正に調整することが課題であった。   Therefore, it has been a problem to appropriately adjust the amount of squeezing according to the load condition of the refrigerator.

本発明は、従来の課題を解決するもので、キャピラリチューブの入口側非熱交換部を冷蔵室に供給される吐出冷気で冷却することで、特に冷蔵室の負荷条件に応じてキャピラリチューブの絞り量を自動的に調整することを目的とする。   The present invention solves the conventional problems, and by cooling the inlet-side non-heat exchange section of the capillary tube with the discharged cold air supplied to the refrigerator compartment, the capillary tube is squeezed particularly according to the load condition of the refrigerator compartment. The purpose is to adjust the amount automatically.

従来の課題を解決するために、本発明の冷蔵庫は、筐体は、少なくとも圧縮機、凝縮器、キャピラリチューブ、蒸発器、蒸発器ファン、サクションを有する冷凍サイクルと、冷蔵室と、冷凍室とを備え、前記冷凍サイクルの内部熱交換を行うために、前記キャピラリチューブと前記サクションを熱結合する内部熱交換部を有し、前記キャピラリチューブに
おける前記内部熱交換部よりも上流側の非熱交換部を、前記蒸発器ファンにより冷蔵室に供給される冷気により冷却するものである。
In order to solve the conventional problems, the refrigerator of the present invention includes a refrigeration cycle having at least a compressor, a condenser, a capillary tube, an evaporator, an evaporator fan, and a suction, a refrigerator compartment, and a freezer compartment. An internal heat exchanging portion that thermally couples the capillary tube and the suction to perform internal heat exchange of the refrigeration cycle, and the capillary tube
The non-heat exchanging portion upstream of the internal heat exchanging portion is cooled by cold air supplied to the refrigerating chamber by the evaporator fan .

これによって、冷蔵室を冷却する際に、同時にキャピラリチューブの入口側非熱交換部を冷却することでキャピラリチューブの絞り量を小さくし、冷媒循環量を増大させて高能
力化を図ることができる。これは、キャピラリチューブの入口側非熱交換部を冷却することにより、内部を通過する冷媒の蒸発を抑制して乾き度の増加を抑制することで、キャピラリチューブの圧力損失を低減するものである。特に、キャピラリチューブの入口側非熱交換部は、乾き度の変化が大きいことから、冷却による圧力損失低減の効果が大きい。
As a result, when the refrigerator compartment is cooled, the capillary tube inlet side non-heat exchanging portion is simultaneously cooled to reduce the capillary tube throttling amount and increase the refrigerant circulation amount, thereby achieving higher performance. . This is to reduce the pressure loss of the capillary tube by cooling the inlet side non-heat exchanging part of the capillary tube, thereby suppressing the evaporation of the refrigerant passing through the inside and suppressing the increase in the dryness. . In particular, the non-heat exchange section on the inlet side of the capillary tube has a great effect of reducing pressure loss due to cooling because the change in dryness is large.

また、冷蔵室の冷却運転時間は冷蔵庫の負荷条件によって大きく変化し、特に高負荷条件となる夏場に室温に近い比較的高温の食品が多量に投入された場合、冷蔵室の冷却運転時間が増大するとともに圧縮機及びファンを増速して冷凍システムを高能力化するように制御する。このとき、冷蔵室に供給される吐出冷気は、通常より高風量で低温となり、キャピラリチューブの入口側非熱交換部の冷却を促進することになる。この結果、さらに冷媒循環量を増大させて高能力化を図ることができる。   In addition, the cooling operation time of the refrigerator compartment varies greatly depending on the load condition of the refrigerator, and especially when a large amount of relatively hot food near room temperature is thrown in the summer when the load condition is high, the cooling operation time of the refrigerator compartment increases. At the same time, the compressor and the fan are increased in speed to control the refrigeration system to have a higher capacity. At this time, the discharged cool air supplied to the refrigerating chamber becomes a low temperature with a higher air volume than usual, and promotes cooling of the inlet side non-heat exchange section of the capillary tube. As a result, it is possible to further increase the capacity by increasing the refrigerant circulation rate.

一方、通常負荷条件では、冷蔵室の冷却運転時間は短く、冷凍室の冷却運転が主体となる。この場合、キャピラリチューブの入口側非熱交換部の冷却は緩慢となり、キャピラリチューブ本来の絞り量が維持される。結果として、通常負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、通常負荷条件で高効率化を図るとともに、高負荷条件で高能力化を図ることができる。   On the other hand, under normal load conditions, the cooling operation time of the refrigerator compartment is short, and the cooling operation of the freezer room is the main. In this case, cooling of the inlet-side non-heat exchanging portion of the capillary tube is slow, and the original throttle amount of the capillary tube is maintained. As a result, if the amount of restriction of the capillary tube is designed in accordance with the refrigerant circulation amount under the normal load condition, it is possible to achieve high efficiency under the normal load condition and high performance under the high load condition.

本発明の冷蔵庫は、キャピラリチューブの入口側非熱交換部を冷蔵室に供給される吐出冷気で冷却することで、通常負荷条件の冷媒循環量に合わせてキャピラリチューブの絞り量を設計すれば、通常負荷条件で高効率化を図るとともに、高負荷条件で高能力化を図ることができる。   The refrigerator of the present invention is designed by cooling the capillary tube inlet-side non-heat exchanging portion with the discharge cold air supplied to the refrigeration chamber so that the capillary tube throttle amount is designed in accordance with the refrigerant circulation amount under normal load conditions. It is possible to achieve high efficiency under normal load conditions and high capacity under high load conditions.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫のサイクル構成図Cycle configuration diagram of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の正面の模式図Schematic diagram of the front of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の背面の模式図The schematic diagram of the back surface of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の内部熱交換部の断面図Sectional drawing of the internal heat exchange part of the refrigerator in Embodiment 1 of this invention 従来の冷蔵庫のサイクル構成図Cycle configuration diagram of a conventional refrigerator

第1の発明は、筐体は、少なくとも圧縮機、凝縮器、キャピラリチューブ、蒸発器、蒸発器ファン、サクションを有する冷凍サイクルと、冷蔵室と、冷凍室とを備え、前記冷凍サイクルの内部熱交換を行うために、前記キャピラリチューブと前記サクションを熱結合する内部熱交換部を有し、前記キャピラリチューブにおける前記内部熱交換部よりも上流側の非熱交換部を、前記蒸発器ファンにより冷蔵室に供給される冷気により冷却することを特徴とする冷蔵庫である。
In the first invention, the housing includes a refrigeration cycle having at least a compressor, a condenser, a capillary tube, an evaporator, an evaporator fan, and a suction, a refrigeration chamber, and a freezing chamber, and the internal heat of the refrigeration cycle In order to perform the exchange, an internal heat exchange unit that thermally couples the capillary tube and the suction is provided, and the non-heat exchange unit upstream of the internal heat exchange unit in the capillary tube is refrigerated by the evaporator fan. It is a refrigerator characterized by cooling with cold air supplied to a room.

これによって、冷蔵室を冷却する際に、同時にキャピラリチューブの入口側非熱交換部を冷却することでキャピラリチューブの絞り量を小さくし、冷媒循環量を増大させて高能力化を図ることができる。   As a result, when the refrigerator compartment is cooled, the capillary tube inlet side non-heat exchanging portion is simultaneously cooled to reduce the capillary tube throttling amount and increase the refrigerant circulation amount, thereby achieving higher performance. .

第2の発明は、キャピラリチューブにおける内部熱交換部よりも入口側の非熱交換部と熱結合し、前記キャピラリチューブの入口側の非熱交換部の2〜10倍の表面積を有する放熱プレートを備え、前記放熱プレートを、前記蒸発器ファンにより冷蔵室に供給される冷気により冷却することを特徴とする冷蔵庫である。   According to a second aspect of the present invention, there is provided a heat dissipating plate that is thermally coupled to a non-heat exchanging portion on the inlet side of an internal heat exchanging portion in a capillary tube and has a surface area 2 to 10 times that of the non-heat exchanging portion on the inlet side of the capillary tube. The refrigerator is characterized in that the heat dissipation plate is cooled by cold air supplied to a refrigerating chamber by the evaporator fan.

これによって、キャピラリチューブの入口側非熱交換部と冷蔵室に供給される冷気との
熱交換の効率を向上することで、キャピラリチューブの入口側非熱交換部の長さを短縮することができる。キャピラリチューブの入口側非熱交換部の長さが必要以上に長い場合、内部熱交換の効率が低下してサクションの温度低下による結露が発生するなどの不具合が生じる。
This improves the efficiency of heat exchange between the inlet-side non-heat exchange section of the capillary tube and the cold air supplied to the refrigerator compartment, thereby reducing the length of the inlet-side non-heat exchange section of the capillary tube. . If the length of the non-heat exchange part on the inlet side of the capillary tube is longer than necessary, the efficiency of the internal heat exchange is reduced, resulting in problems such as dew condensation due to a reduction in the temperature of the suction.

第3の発明は、サクションと、前記サクションの管内に形成され、管内表面積を1.5〜5倍に拡大するフィンとを備えたことを特徴とする冷蔵庫である。   3rd invention is a refrigerator provided with the suction and the fin which is formed in the pipe | tube of the said suction and expands the surface area in a pipe | tube 1.5 to 5 times.

これによって、内部熱交換の効率を向上することで、キャピラリチューブの入口側非熱交換部の温度低下によるサクションの温度低下を抑制することができる。   Thereby, by improving the efficiency of internal heat exchange, it is possible to suppress the temperature drop of the suction due to the temperature drop of the inlet side non-heat exchange part of the capillary tube.

第4の発明は、複数の防露パイプと、前記防露パイプを切り換える切換バルブとを備え、高負荷時はすべての前記防露パイプを使用するとともに、通常負荷時は前記切換バルブを切換えて一部の前記防露パイプだけを選択的に使用することを特徴とする冷蔵庫である。   A fourth invention includes a plurality of dew-proof pipes and a switching valve for switching the dew-proof pipes, and uses all the dew-proof pipes at high loads and switches the switching valves at normal loads. It is a refrigerator characterized by selectively using only some of the dew-proof pipes.

これによって、キャピラリチューブの絞り量を小さくし冷媒循環量を増大させた高負荷時は、すべての前記防露パイプを使用することで十分な放熱量を確保することができるとともに、キャピラリチューブの絞り量を大きくし冷媒循環量を減少させた通常負荷時は、一部の前記防露パイプだけを選択的に使用することで防露パイプに起因する負荷量を抑制して省エネを図ることができる。   As a result, at the time of high load when the amount of capillary tube squeezing is reduced and the amount of refrigerant circulation is increased, a sufficient heat radiation amount can be secured by using all the above dew-proof pipes, and the capillary tube squeezing amount can be secured. During normal loads with increased amounts and reduced refrigerant circulation, only some of the dew-proof pipes can be used selectively to reduce the load caused by the dew-proof pipes and save energy. .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は本発明の実施の形態1における冷蔵庫のサイクル構成図、図3は本発明の実施の形態1における冷蔵庫の正面の模式図、図4は本発明の実施の形態1における冷蔵庫の背面の模式図、図5は本発明の実施の形態1における冷蔵庫の内部熱交換部の断面図である。
(Embodiment 1)
1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cycle configuration diagram of the refrigerator according to Embodiment 1 of the present invention, and FIG. 3 is a schematic front view of the refrigerator according to Embodiment 1 of the present invention. 4 is a schematic view of the back surface of the refrigerator according to Embodiment 1 of the present invention, and FIG. 5 is a cross-sectional view of the internal heat exchange part of the refrigerator according to Embodiment 1 of the present invention.

図1において、冷蔵庫11は、筐体12と、扉13と、筐体12を支える脚14とを備えており、筐体12の下部に設けられた下部機械室15、筐体12の背面上部に設けられた上部機械室16、筐体12の上部に配置された貯蔵室である冷蔵室17、筐体12の下部に配置された冷凍室18が形成されている。   In FIG. 1, the refrigerator 11 includes a housing 12, a door 13, and legs 14 that support the housing 12, a lower machine room 15 provided in a lower portion of the housing 12, and a rear upper portion of the housing 12. An upper machine room 16 provided in the storage room, a refrigerating room 17 serving as a storage room arranged at the upper part of the casing 12, and a freezing room 18 arranged at the lower part of the casing 12 are formed.

冷凍サイクルは、上部機械室16に納められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に納められた凝縮器の中でも放熱量の大きい主凝縮器21を有している。   The refrigeration cycle includes a compressor 19 housed in the upper machine room 16, an evaporator 20 housed in the back side of the freezer room 18, and a main condenser having a large heat dissipation among the condensers housed in the lower machine room 15. 21.

また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、下部機械室15の背面側に納められた蒸発皿24、下部機械室15の底板25を有する。ここで、主凝縮器21は内径約4.5mmの冷媒配管に帯状のフィンを巻き付けたスパイラルフィンチューブからなる。   In addition, it has a partition wall 22 that partitions the lower machine room 15, a fan 23 that is attached to the partition wall 22 to air-cool the main condenser 21, an evaporating dish 24 that is housed on the back side of the lower machine room 15, and a bottom plate 25 of the lower machine room 15. . Here, the main condenser 21 is composed of a spiral fin tube in which a strip-shaped fin is wound around a refrigerant pipe having an inner diameter of about 4.5 mm.

また、下部機械室15には、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28が備えてられている。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。   The lower machine chamber 15 includes a plurality of intake ports 26 provided in the bottom plate 25, a discharge port 27 provided on the back side of the lower machine chamber 15, a discharge port 27 of the lower machine chamber 15, and the upper machine chamber 16. A connecting air passage 28 is provided. Here, the lower machine chamber 15 is divided into two chambers by a partition wall 22, and a main condenser 21 is housed on the windward side of the fan 23 and an evaporating dish 24 is housed on the leeward side.

また、蒸発器20の上部には、蒸発器20の冷気を供給する蒸発器ファン38、冷蔵室17への冷気の供給を調整する冷蔵室ダンパ39が備えられ、冷蔵室17の背面に冷蔵室ダンパを介して冷蔵室17へ供給される冷気の通路である冷蔵室冷却風路40が備えられている。   In addition, an evaporator fan 38 that supplies the cool air of the evaporator 20 and a refrigerating room damper 39 that adjusts the supply of the cool air to the refrigerating room 17 are provided on the upper part of the evaporator 20. A refrigerating room cooling air passage 40, which is a passage for the cold air supplied to the refrigerating room 17 through the damper, is provided.

図2から図5において、凝縮器として、主凝縮器21に加えて冷凍サイクルの高温の熱の放熱を行う副凝縮器として冷凍室18の開口部に配設された防露パイプA30、筐体12の背面側に配設された防露パイプB31が備えられている。   2 to 5, as a condenser, in addition to the main condenser 21, a dew-proof pipe A <b> 30 disposed in the opening of the freezer compartment 18 as a sub-condenser that dissipates high-temperature heat in the refrigeration cycle, a housing 12 is provided with a dew-proof pipe B31 disposed on the back side.

また、主凝縮器21の下流側と防露パイプA30および防露パイプB31を繋ぐ流路切換バルブ32、防露パイプA30の下流側と防露パイプB31の下流側を繋ぐ合流点33、合流点33の下流側に設置されたドライヤ34、ドライヤ34の下流側に設置されたキャピラリチューブ35、蒸発器20から圧縮機19へ帰還するサクション36が備えられている。ここで、キャピラリチューブ35とサクション36は内部熱交換を行うために、ハンダ41を介して熱結合している。また、キャピラリチューブ35の内部熱交換部より上流にある入口側非熱交換部35aは、約5倍の表面積を有する放熱プレート37とアルミ箔テープ(図示せず)によって熱結合しており、入口側非熱交換部35aと放熱プレート37は冷蔵室冷却風路40の壁面に埋設されて、冷蔵室冷却風路40内を流れる冷気と熱交換している。なお、本発明の実施の形態1においては入口側非熱交換部35aの約5倍の表面積を有する放熱プレート37を使用したが、2〜10倍の表面積を有する放熱プレート37を使用することが望ましい。2倍未満では十分な放熱効果が得られず、10倍超では表面積増加に対する放熱量増加の効果がほとんど得られなくなる。   Further, a flow path switching valve 32 connecting the downstream side of the main condenser 21 with the dew-proof pipe A30 and the dew-proof pipe B31, a junction point 33 connecting the downstream side of the dew-proof pipe A30 and the downstream side of the dew-proof pipe B31, and a junction point A dryer 34 installed downstream of the dryer 33, a capillary tube 35 installed downstream of the dryer 34, and a suction 36 returning from the evaporator 20 to the compressor 19 are provided. Here, the capillary tube 35 and the suction 36 are thermally coupled via solder 41 in order to perform internal heat exchange. Further, the inlet-side non-heat exchanging portion 35a upstream from the internal heat exchanging portion of the capillary tube 35 is thermally coupled by a heat radiating plate 37 having an approximately five times surface area and an aluminum foil tape (not shown). The side non-heat exchanging portion 35 a and the heat radiating plate 37 are embedded in the wall surface of the refrigerator compartment cooling air passage 40 and exchange heat with the cold air flowing in the refrigerator compartment cooling air passage 40. In the first embodiment of the present invention, the heat radiating plate 37 having a surface area about 5 times that of the inlet-side non-heat exchanging portion 35a is used. However, the heat radiating plate 37 having a surface area of 2 to 10 times may be used. desirable. If it is less than 2 times, a sufficient heat dissipation effect cannot be obtained, and if it exceeds 10 times, the effect of increasing the heat radiation amount with respect to an increase in surface area can hardly be obtained.

また、防露パイプA30と防露パイプB31は内径約3.2mmの冷媒配管からなり、筐体12の外表面と熱結合している。   The dew-proof pipe A30 and the dew-proof pipe B31 are made of refrigerant pipes having an inner diameter of about 3.2 mm, and are thermally coupled to the outer surface of the housing 12.

図5において、サクション36の管内にはフィン36aが形成され、サクション36の管内表面積を平滑管に比べて約2倍に拡大している。これにより、サクション36と管内を流れる冷媒の熱伝導を向上し、キャピラリチューブ35とサクション36の内部熱交換の効率を向上している。なお、本発明の実施の形態1においてはサクション36の管内表面積を平滑管に比べて約2倍となるようにフィン36aを形成したが、1.5〜5倍の範囲でフィン36aを形成することが望ましい。1.5倍未満では十分な熱伝導向上の効果が得られず、5倍超では熱伝導向上の効果に比べて圧力損失増大による循環量低減の悪影響が大きくなる。   In FIG. 5, the fin 36a is formed in the pipe | tube of the suction 36, and the internal surface area of the pipe | tube of the suction 36 is expanded about 2 time compared with the smooth pipe. Thereby, the heat conduction of the refrigerant flowing in the suction 36 and the pipe is improved, and the efficiency of the internal heat exchange between the capillary tube 35 and the suction 36 is improved. In the first embodiment of the present invention, the fin 36a is formed so that the inner surface area of the suction 36 is about twice that of the smooth tube, but the fin 36a is formed in the range of 1.5 to 5 times. It is desirable. If it is less than 1.5 times, a sufficient effect of improving heat conduction cannot be obtained, and if it exceeds 5 times, the adverse effect of reducing the circulation rate due to an increase in pressure loss is greater than the effect of improving heat conduction.

以上のように構成された本発明の実施の形態1における冷蔵庫について、以下その動作を説明する。   About the refrigerator in Embodiment 1 of this invention comprised as mentioned above, the operation | movement is demonstrated below.

高負荷条件においては、流路切換バルブ32を切換えて、防露パイプA30への接続を開とし防露パイプB31への接続を開とし、圧縮機19の運転と連動して、ファン23を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。   Under high load conditions, the flow path switching valve 32 is switched to open the connection to the dew-proof pipe A30 and open the connection to the dew-proof pipe B31, and drive the fan 23 in conjunction with the operation of the compressor 19. To do. By driving the fan 23, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side has a positive pressure. The air is discharged from the plurality of discharge ports 27 to the outside.

一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、流路切換バルブ32を介して防露パイプA30と防露パイプB31へ供給される。このとき、主凝縮器21の配管内は冷媒が凝縮する初期段階にあり、防露パイプA30や防露パイプB31よりも気体の冷媒が多く存在し比較的流速が早いため、防露パイプA30や防露パイプB31よりも内径が太い配管、望ましくは内径4mm以上の配管を用いることがよい。   On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then the dew-proof pipe A 30 and the dew-proof pipe through the flow path switching valve 32. To B31. At this time, the pipe of the main condenser 21 is in an initial stage where the refrigerant condenses, and there is more gaseous refrigerant than the dew-proof pipe A30 and the dew-proof pipe B31, and the flow rate is relatively high. A pipe having an inner diameter larger than that of the dew-proof pipe B31, preferably a pipe having an inner diameter of 4 mm or more is preferably used.

そして、防露パイプA30を通過した冷媒は冷凍室18の開口部を温めながら、筐体12を介して外部に放熱して凝縮するとともに、防露パイプB31を通過した冷媒は筐体12の背面を温めながら、筐体12を介して外部に放熱して凝縮する。防露パイプA30と防露パイプB31を通過した液冷媒は、ドライヤ34で水分除去され、キャピラリチューブ35で減圧されて蒸発器20で蒸発しながら蒸発器ファン38で循環される庫内空気と熱交換した後、サクション36を通って気体冷媒として圧縮機19に還流する。このとき、サクション36内を還流する気体冷媒は、ハンダ41を介してキャピラリチューブ35内を流れる高温冷媒と内部熱交換しながら室温付近まで温められる。   The refrigerant that has passed through the dew-proof pipe A30 dissipates heat and condenses outside through the housing 12 while warming the opening of the freezer compartment 18, and the refrigerant that has passed through the dew-proof pipe B31 passes through the back surface of the housing 12. While being heated, the heat is dissipated to the outside through the housing 12 and condensed. The liquid refrigerant that has passed through the dew-proof pipe A30 and the dew-proof pipe B31 is dehydrated by the dryer 34, depressurized by the capillary tube 35, and evaporated in the evaporator 20 while being circulated by the evaporator fan 38 and heat. After the replacement, the refrigerant passes through the suction 36 and is returned to the compressor 19 as a gaseous refrigerant. At this time, the gaseous refrigerant that recirculates in the suction 36 is heated to near room temperature while exchanging internal heat with the high-temperature refrigerant flowing in the capillary tube 35 via the solder 41.

ここで、冷蔵室17の温度が上昇すると冷蔵室ダンパ39を開状態とし、蒸発器20で生成された冷気を蒸発器ファン38によって冷蔵室冷却風路40から冷蔵室17に供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37が冷却されることで、キャピラリチューブ35の入口側非熱交換部35aが冷却される。この結果、内部を通過する冷媒の蒸発を抑制して乾き度の増加を抑制することで、キャピラリチューブの圧力損失を低減することができ、冷媒循環量を増大させて高能力化を図ることができる。   Here, when the temperature of the refrigerator compartment 17 rises, the refrigerator compartment damper 39 is opened, and the cold air generated by the evaporator 20 is supplied from the refrigerator compartment cooling air passage 40 to the refrigerator compartment 17 by the evaporator fan 38. At this time, the inlet side non-heat exchanging portion 35a of the capillary tube 35 is cooled by cooling the heat radiating plate 37 installed on the wall surface in the refrigerator compartment cooling air passage 40. As a result, it is possible to reduce the pressure loss of the capillary tube by suppressing the evaporation of the refrigerant passing through the inside and thereby suppressing the increase in the dryness, and to increase the circulation amount of the refrigerant and to improve the performance. it can.

一方、蒸発器20で生成された冷気を蒸発器ファン38によって冷蔵室17と並列に冷凍室18にも供給する。しかし、冷蔵室17に投入された負荷により蒸発器20に還流する庫内空気が長時間比較的高温となることから、蒸発器20で生成される冷気の温度も上昇し、冷凍室18は冷凍温度の上限である−18〜−15℃を維持する程度に留まる。   On the other hand, the cold air generated by the evaporator 20 is supplied to the freezer compartment 18 in parallel with the refrigerator compartment 17 by the evaporator fan 38. However, since the internal air that is returned to the evaporator 20 due to the load put into the refrigerator compartment 17 becomes relatively high for a long time, the temperature of the cold air generated in the evaporator 20 also rises, and the freezer compartment 18 is frozen. It remains to the extent that the upper temperature limit of −18 to −15 ° C. is maintained.

そして、冷蔵室17が十分冷却されて所定温度に達すると、冷蔵室ダンパ39を閉状態とし、蒸発器20で生成された冷気を蒸発器ファン38によって冷凍室18にのみ供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37は冷却されず、キャピラリチューブ35本来の絞り量が維持され、冷媒循環量が減少する。この結果、蒸発器20内の冷媒の蒸発温度が−25〜−30℃に低下して、冷凍室18を−20℃程度に冷却することができる。   When the refrigerator compartment 17 is sufficiently cooled and reaches a predetermined temperature, the refrigerator compartment damper 39 is closed, and the cold air generated by the evaporator 20 is supplied only to the freezer compartment 18 by the evaporator fan 38. At this time, the heat radiating plate 37 installed on the wall surface in the refrigerating room cooling air passage 40 is not cooled, the original throttle amount of the capillary tube 35 is maintained, and the refrigerant circulation amount is reduced. As a result, the evaporation temperature of the refrigerant in the evaporator 20 is lowered to −25 to −30 ° C., and the freezer compartment 18 can be cooled to about −20 ° C.

以上のように、高負荷条件においては、冷蔵室の冷却運転に伴い放熱プレート37が冷却されることで、キャピラリチューブの圧力損失を低減することができ、冷媒循環量を増大させて高能力化を図ることができる。   As described above, under a high load condition, the heat radiation plate 37 is cooled in accordance with the cooling operation of the refrigerator compartment, so that the pressure loss of the capillary tube can be reduced, and the refrigerant circulation amount is increased to increase the capacity. Can be achieved.

また、防露パイプA30と防露パイプB31に並列に冷媒を流すことにより、放熱能力を増大させることができ、1本当りの冷媒循環量を低減することで、防露パイプに起因する圧力損失を抑制することも期待できる。   In addition, by flowing the refrigerant in parallel to the dew-proof pipe A30 and the dew-proof pipe B31, the heat radiation capacity can be increased, and the pressure loss caused by the dew-proof pipe can be reduced by reducing the refrigerant circulation amount per one. Can also be expected to be suppressed.

次に、通常条件においては、流路切換バルブ32を切換えて、防露パイプA30への接続を閉とし防露パイプB31への接続を開とする。このとき、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、流路切換バルブ32を介して副凝縮器としての防露パイプB31へ供給される。そして、防露パイプB31を通過した冷媒は筐体12の背面を温めながら、筐体12を介して外部に放熱して凝縮する。   Next, under normal conditions, the flow path switching valve 32 is switched to close the connection to the dew-proof pipe A30 and open the connection to the dew-proof pipe B31. At this time, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then dew-proofing as a sub-condenser via the flow path switching valve 32. It is supplied to the pipe B31. The refrigerant that has passed through the dew-proof pipe B31 dissipates heat through the housing 12 and condenses while warming the back surface of the housing 12.

一方、流路切換バルブ32から冷媒が流入しない防露パイプA30は、放熱せず周囲との温度差がなくなる。このとき、合流点33から高圧冷媒が流入して、防露パイプA30は液冷媒でほぼ満たされた状態となる。このように、冷凍サイクルの高圧側で不使用となった防露パイプA30の配管内には液冷媒が滞留したまま移動せず、冷凍サイクルを循環する冷媒の総量が減少する。従って、防露パイプA30あるいは防露パイプB31を切換
えて不使用とする場合、冷凍サイクルを循環する冷媒量の減少を抑制するため、主凝縮器21よりも内径が細い配管を用い、望ましくは内径4mm未満の配管を用いることがよい。
On the other hand, the dew-proof pipe A30 into which the refrigerant does not flow from the flow path switching valve 32 does not radiate heat and eliminates the temperature difference from the surroundings. At this time, the high-pressure refrigerant flows from the junction 33, and the dew proof pipe A30 is almost filled with the liquid refrigerant. Thus, the liquid refrigerant does not move while staying in the dew-proof pipe A30 that is not used on the high-pressure side of the refrigeration cycle, and the total amount of refrigerant circulating in the refrigeration cycle is reduced. Therefore, when the dew-proof pipe A30 or the dew-proof pipe B31 is switched and not used, in order to suppress a decrease in the amount of refrigerant circulating in the refrigeration cycle, a pipe having a smaller inner diameter than that of the main condenser 21 is preferably used. It is preferable to use a pipe of less than 4 mm.

そして、防露パイプB31を通過した液冷媒は、ドライヤ34で水分除去され、キャピラリチューブ35で減圧されて蒸発器20で蒸発しながら蒸発器ファン38で循環される庫内空気と熱交換した後、サクション36を通って気体冷媒として圧縮機19に還流する。このとき、サクション36内を還流する気体冷媒は、ハンダ41を介してキャピラリチューブ35内を流れる高温冷媒と内部熱交換しながら室温付近まで温められる。   The liquid refrigerant that has passed through the dew-proof pipe B31 is subjected to heat exchange with the internal air circulated by the evaporator fan 38 while being dehydrated by the dryer 34, depressurized by the capillary tube 35, and evaporated by the evaporator 20. Then, it passes through the suction 36 and returns to the compressor 19 as a gaseous refrigerant. At this time, the gaseous refrigerant that recirculates in the suction 36 is heated to near room temperature while exchanging internal heat with the high-temperature refrigerant flowing in the capillary tube 35 via the solder 41.

ここで、圧縮機19の起動時は冷蔵室ダンパ39を開状態とし、蒸発器20で生成された冷気を蒸発器ファン38によって冷蔵室冷却風路40から冷蔵室17に供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37が冷却されることで、キャピラリチューブ35の入口側非熱交換部35aが冷却される。この結果、内部を通過する冷媒の蒸発を抑制して乾き度の増加を抑制することで、キャピラリチューブの圧力損失を低減することができ、冷媒循環量を増大させて圧縮機19起動時の冷凍能力の立ち上がり特性を向上することができる。   Here, when the compressor 19 is started, the refrigerator compartment damper 39 is opened, and the cold air generated by the evaporator 20 is supplied from the refrigerator compartment cooling air passage 40 to the refrigerator compartment 17 by the evaporator fan 38. At this time, the inlet side non-heat exchanging portion 35a of the capillary tube 35 is cooled by cooling the heat radiating plate 37 installed on the wall surface in the refrigerator compartment cooling air passage 40. As a result, it is possible to reduce the pressure loss of the capillary tube by suppressing the evaporation of the refrigerant passing through the inside and thereby suppressing the increase in the dryness. The rising characteristic of the ability can be improved.

そして、通常負荷条件においては直ぐに冷蔵室17が十分冷却される。冷蔵室17が所定温度に達すると、冷蔵室ダンパ39を閉状態とし、蒸発器20で生成された冷気を蒸発器ファン38によって冷凍室18にのみ供給する。このとき、冷蔵室冷却風路40内の壁面に設置された放熱プレート37は冷却されず、キャピラリチューブ35本来の絞り量が維持され、冷媒循環量が減少する。この結果、蒸発器20内の冷媒の蒸発温度が−25〜−30℃に低下して、冷凍室18を−20℃程度に冷却することができる。   And under normal load conditions, the refrigerator compartment 17 is immediately cooled sufficiently. When the refrigerator compartment 17 reaches a predetermined temperature, the refrigerator compartment damper 39 is closed, and the cool air generated by the evaporator 20 is supplied only to the freezer compartment 18 by the evaporator fan 38. At this time, the heat radiating plate 37 installed on the wall surface in the refrigerating room cooling air passage 40 is not cooled, the original throttle amount of the capillary tube 35 is maintained, and the refrigerant circulation amount is reduced. As a result, the evaporation temperature of the refrigerant in the evaporator 20 is lowered to −25 to −30 ° C., and the freezer compartment 18 can be cooled to about −20 ° C.

以上のように、通常負荷条件においては、圧縮機19起動時の冷凍能力の立ち上がり特性を向上することができるとともに、通常負荷条件の冷媒循環量に合わせてキャピラリチューブ35の絞り量を設計すれば、通常負荷条件で高効率化を図ることができる。   As described above, under normal load conditions, it is possible to improve the rising characteristics of the refrigeration capacity when the compressor 19 is started, and to design the throttle amount of the capillary tube 35 in accordance with the refrigerant circulation amount under normal load conditions. Thus, high efficiency can be achieved under normal load conditions.

また、通常負荷条件においては、防露パイプA30を不使用とし、防露パイプB31に冷媒を流すことにより、防露パイプA30に起因する熱負荷を削減することでさらに高効率化を図ることができる。   Further, under normal load conditions, the dew-proof pipe A30 is not used, and the refrigerant is allowed to flow through the dew-proof pipe B31, so that the heat load caused by the dew-proof pipe A30 can be reduced to further increase the efficiency. it can.

以上のように、本発明の冷蔵庫は、キャピラリチューブ35の入口側非熱交換部35aを冷蔵室17に供給される吐出冷気で冷却することによって、キャピラリチューブ35の絞り量を小さくし、冷媒循環量を増大させて高能力化を図ることができる。特に高負荷条件となる夏場に室温に近い比較的高温の食品が多量に投入された場合、冷蔵室17の冷却運転時間が増大し、キャピラリチューブ35の入口側非熱交換部35aの冷却を促進することで、冷蔵室17の負荷に応じてより効果的に高能力化を図ることができる。   As described above, the refrigerator of the present invention cools the inlet-side non-heat exchanging portion 35a of the capillary tube 35 with the discharge cold air supplied to the refrigerator compartment 17, thereby reducing the amount of restriction of the capillary tube 35 and circulating the refrigerant. The capacity can be increased by increasing the amount. In particular, when a large amount of food having a relatively high temperature close to room temperature is introduced in summer, which is a high load condition, the cooling operation time of the refrigerator compartment 17 is increased, and the cooling of the inlet side non-heat exchange part 35a of the capillary tube 35 is promoted. By doing so, it is possible to increase the capacity more effectively according to the load of the refrigerator compartment 17.

一方、通常負荷条件では、冷蔵室17の冷却運転時間は短く、冷凍室18の冷却運転が主体となる。この場合、キャピラリチューブ35の入口側非熱交換部35aの冷却は緩慢となり、キャピラリチューブ35本来の絞り量が維持される。結果として、通常負荷条件の冷媒循環量に合わせてキャピラリチューブ35の絞り量を設計すれば、通常負荷条件で高効率化を図るとともに、高負荷条件で高能力化を図ることができる。   On the other hand, under normal load conditions, the cooling operation time of the refrigerator compartment 17 is short, and the cooling operation of the freezer compartment 18 is mainly performed. In this case, the cooling of the inlet-side non-heat exchanging portion 35a of the capillary tube 35 becomes slow, and the original throttle amount of the capillary tube 35 is maintained. As a result, if the amount of restriction of the capillary tube 35 is designed in accordance with the refrigerant circulation amount under the normal load condition, it is possible to achieve high efficiency under the normal load condition and high performance under the high load condition.

なお、本発明の実施の形態1における冷蔵庫では、高負荷条件での放熱プレート37の冷却量を蒸発器20で得られる冷凍能力の約5%となるように設計したが、放熱プレート37の冷却量を蒸発器20で得られる冷凍能力の2〜10%に設計することが望ましい。2%未満の冷却量ではキャピラリチューブ35の絞り量を低減する効果が得られず、10
%超ではサクション36の温度が低下して結露などが発生する問題が生じる恐れがある。サクション36はハンダ41を介してキャピラリチューブ35と内部熱交換することで室温付近まで温められるため、放熱プレート37の冷却量が10%を超えるとキャピラリチューブ35の温度が低下してサクション36及びサクション36内を流れる気体冷媒の加温が不十分となる。
In the refrigerator according to the first embodiment of the present invention, the cooling amount of the heat radiating plate 37 under a high load condition is designed to be about 5% of the refrigeration capacity obtained by the evaporator 20. It is desirable to design the amount to 2 to 10% of the refrigeration capacity obtained with the evaporator 20. If the cooling amount is less than 2%, the effect of reducing the amount of restriction of the capillary tube 35 cannot be obtained.
If it exceeds%, there is a risk that the temperature of the suction 36 will decrease and condensation will occur. Since the suction 36 is heated to near room temperature by exchanging heat with the capillary tube 35 via the solder 41, if the cooling amount of the heat radiating plate 37 exceeds 10%, the temperature of the capillary tube 35 is lowered and the suction 36 and the suction are reduced. The heating of the gas refrigerant flowing through the interior 36 becomes insufficient.

このとき、サクション36の管内にフィン36aを形成して管内表面積を1.5〜5倍に拡大することで、内部熱交換の効率を向上してサクション36の温度低下を抑制することができるので、放熱プレート37の冷却量が2〜10%であればキャピラリチューブ35の温度低下によらずサクション36の内部熱交換後の温度が室温付近で維持できる。   At this time, the fin 36a is formed in the pipe of the suction 36 to increase the internal surface area 1.5 to 5 times, thereby improving the efficiency of internal heat exchange and suppressing the temperature drop of the suction 36. If the cooling amount of the heat radiating plate 37 is 2 to 10%, the temperature after the internal heat exchange of the suction 36 can be maintained near room temperature regardless of the temperature drop of the capillary tube 35.

以上のように、本発明にかかる冷蔵庫は、冷蔵室の負荷に応じて冷凍サイクルの絞り量を自動的に調整して高能力化を図ることができるので、業務用冷凍冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。   As described above, the refrigerator according to the present invention can automatically adjust the amount of squeezing of the refrigeration cycle according to the load of the refrigeration room to achieve high performance. Applicable to applied products.

11 冷蔵庫
12 筐体
13 扉
14 脚
15 下部機械室
16 上部機械室
17 冷蔵室
18 冷凍室
19 圧縮機
20 蒸発器
21 主凝縮器
22 隔壁
23 ファン
24 蒸発皿
25 底板
26 吸気口
27 排出口
28 連通風路
30 防露パイプA
31 防露パイプB
32 流路切換バルブ
33 合流点
34 ドライヤ
35 キャピラリチューブ
35a 入口側非熱交換部
36 サクション
37 放熱プレート
38 蒸発器ファン
39 冷蔵室ダンパ
40 冷蔵室冷却風路
41 ハンダ
DESCRIPTION OF SYMBOLS 11 Refrigerator 12 Case 13 Door 14 Leg 15 Lower machine room 16 Upper machine room 17 Refrigeration room 18 Freezing room 19 Compressor 20 Evaporator 21 Main condenser 22 Bulkhead 23 Fan 24 Evaporating dish 25 Bottom plate 26 Inlet 27 Outlet 28 Ventilation path 30 Dew prevention pipe A
31 Dew prevention pipe B
32 Flow path switching valve 33 Junction point 34 Dryer 35 Capillary tube 35a Inlet side non-heat exchanging part 36 Suction 37 Heat radiation plate 38 Evaporator fan 39 Cold room damper 40 Cold room cooling air path 41 Solder

Claims (4)

筐体は、少なくとも圧縮機、凝縮器、キャピラリチューブ、蒸発器、蒸発器ファン、サクションを有する冷凍サイクルと、冷蔵室と、冷凍室とを備え、前記冷凍サイクルの内部熱交換を行うために、前記キャピラリチューブと前記サクションを熱結合する内部熱交換部を有し、前記キャピラリチューブにおける前記内部熱交換部よりも上流側の非熱交換部を、前記蒸発器ファンにより冷蔵室に供給される冷気により冷却することを特徴とする冷蔵庫。 The casing includes at least a compressor, a condenser, a capillary tube, an evaporator, an evaporator fan, a refrigeration cycle having a suction, a refrigeration chamber, and a freezing chamber, and in order to perform internal heat exchange of the refrigeration cycle, Cold air that has an internal heat exchange part that thermally couples the capillary tube and the suction, and that is supplied to the refrigerating chamber by the evaporator fan at the non-heat exchange part upstream of the internal heat exchange part in the capillary tube The refrigerator is characterized by being cooled by. キャピラリチューブにおける内部熱交換部よりも入口側の非熱交換部と熱結合し、前記キャピラリチューブの入口側の非熱交換部の2〜10倍の表面積を有する放熱プレートを備え、前記放熱プレートを、前記蒸発器ファンにより冷蔵室に供給される冷気により冷却することを特徴とする請求項1記載の冷蔵庫。 A heat dissipating plate thermally coupled to the non-heat exchanging part on the inlet side of the internal heat exchanging part in the capillary tube and having a surface area of 2 to 10 times that of the non-heat exchanging part on the inlet side of the capillary tube; The refrigerator according to claim 1, wherein the refrigerator is cooled by cold air supplied to a refrigerator compartment by the evaporator fan. サクションと、前記サクションの管内に形成され、管内表面積を1.5〜5倍に拡大するフィンとを備えたことを特徴とする請求項1または2に記載の冷蔵庫。 The refrigerator according to claim 1 or 2, further comprising a suction and a fin that is formed in the tube of the suction and expands the surface area of the tube by 1.5 to 5 times. 複数の防露パイプと、前記防露パイプを切り換える切換バルブとを備え、高負荷時はすべての前記防露パイプを使用するとともに、通常負荷時は前記切換バルブを切換えて一部の前記防露パイプだけを選択的に使用することを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 A plurality of dew-proof pipes and a switching valve for switching the dew-proof pipes, all of the dew-proof pipes are used at high loads, and some of the dew-proof valves are switched at normal loads. The refrigerator according to any one of claims 1 to 3, wherein only a pipe is selectively used.
JP2012265936A 2012-12-05 2012-12-05 refrigerator Expired - Fee Related JP6101926B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012265936A JP6101926B2 (en) 2012-12-05 2012-12-05 refrigerator
PCT/JP2013/006752 WO2014087584A1 (en) 2012-12-05 2013-11-18 Refrigerator
CN201380063575.1A CN104823010B (en) 2012-12-05 2013-11-18 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265936A JP6101926B2 (en) 2012-12-05 2012-12-05 refrigerator

Publications (2)

Publication Number Publication Date
JP2014112008A JP2014112008A (en) 2014-06-19
JP6101926B2 true JP6101926B2 (en) 2017-03-29

Family

ID=50883026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265936A Expired - Fee Related JP6101926B2 (en) 2012-12-05 2012-12-05 refrigerator

Country Status (3)

Country Link
JP (1) JP6101926B2 (en)
CN (1) CN104823010B (en)
WO (1) WO2014087584A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241949A (en) * 2011-05-18 2012-12-10 Panasonic Corp Refrigerator
JP6469966B2 (en) * 2014-05-16 2019-02-13 日立アプライアンス株式会社 refrigerator
JP2016223698A (en) * 2015-06-01 2016-12-28 パナソニックIpマネジメント株式会社 refrigerator
CN113669938B (en) * 2021-07-27 2023-03-14 澳柯玛股份有限公司 Refrigerator refrigeration and self-cleaning control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159984A (en) * 1997-12-01 1999-06-15 Hitachi Ltd Heat exchanger
JP2002130912A (en) * 2000-10-30 2002-05-09 Matsushita Refrig Co Ltd Refrigerator
JP2002327969A (en) * 2001-04-26 2002-11-15 Mitsubishi Heavy Ind Ltd Refrigerating system
JP3875563B2 (en) * 2002-01-18 2007-01-31 株式会社東芝 refrigerator
JP2005265269A (en) * 2004-03-18 2005-09-29 Matsushita Electric Ind Co Ltd Heat exchange pipe for refrigerating cycle
CN2833458Y (en) * 2005-04-12 2006-11-01 合肥美菱股份有限公司 Low-temperature electric refrigerator
JP2012122692A (en) * 2010-12-09 2012-06-28 Hitachi Cable Ltd Heat transfer tube with grooved inner surface
CN103547872B (en) * 2011-05-18 2015-12-23 松下电器产业株式会社 Freezer

Also Published As

Publication number Publication date
WO2014087584A1 (en) 2014-06-12
CN104823010A (en) 2015-08-05
CN104823010B (en) 2017-03-22
JP2014112008A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JP6934603B2 (en) Refrigerator and cooling system
JP6074596B2 (en) refrigerator
JP2018136063A (en) Refrigerator and method for operating the same
JP5261066B2 (en) Refrigerator and refrigerator
JP6177605B2 (en) refrigerator
JP6101926B2 (en) refrigerator
JP2008116100A (en) Commodity storage apparatus
JP6872689B2 (en) refrigerator
JP2013057415A (en) Refrigerator
JP2012241949A (en) Refrigerator
JP5402176B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP5056026B2 (en) vending machine
JP2014059110A (en) Refrigerator and cooling mechanism
JP6197176B2 (en) refrigerator
JP6543811B2 (en) refrigerator
KR20120003224A (en) Refrigerant circulation system for refrigerating apparatus
JP5068340B2 (en) Freezer refrigerator
JP2017026210A (en) refrigerator
WO2018147113A1 (en) Refrigerator
JP6340586B2 (en) refrigerator
WO2021244077A1 (en) Control method for refrigerator, and refrigerator
JP7442045B2 (en) refrigerator
WO2021218343A1 (en) Refrigerator and control method therefor
JP4286106B2 (en) Freezer refrigerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R151 Written notification of patent or utility model registration

Ref document number: 6101926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees