JPH11159984A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH11159984A
JPH11159984A JP32935597A JP32935597A JPH11159984A JP H11159984 A JPH11159984 A JP H11159984A JP 32935597 A JP32935597 A JP 32935597A JP 32935597 A JP32935597 A JP 32935597A JP H11159984 A JPH11159984 A JP H11159984A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
refrigerant
air flow
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32935597A
Other languages
Japanese (ja)
Inventor
Mitsutaka Shizutani
光隆 静谷
Hirokazu Nakamura
浩和 中村
Terukazu Ishioka
輝一 石岡
Yasuhiro Matsuoka
康博 松岡
Taichi Tanaami
太一 店網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32935597A priority Critical patent/JPH11159984A/en
Publication of JPH11159984A publication Critical patent/JPH11159984A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a forced convection type heat exchanger for refrigeration/air conditioning in which high heat exchanging performance can be kept even it the refrigerant tube is made oval, flattened or reduced in diameter in order to reduce the quantity of the refrigerant. SOLUTION: A plurality of straight parts of refrigerant tubes 3A arranged substantially orthogonally to the air flow 4 are integrated with a large number of fins 2A juxtaposed at an interval in the axial direction of the straight parts of refrigerant tubes 3A such that the major part is substantially orthogonal to the straight parts of refrigerant tubes 3A thus constituting a heat exchanger. The straight parts of refrigerant tubes 3A has oval or flat cross-section and the long axis thereof is substantially orthogonal to the air flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器に係り、
特に、冷媒量の削減のために冷媒管の楕円・偏平管化あ
るいは細径管化を行っても、熱交換性能を高く保つこと
ができる冷凍空調用の強制対流型の熱交換器に関するも
のである。
TECHNICAL FIELD The present invention relates to a heat exchanger,
In particular, it relates to a forced convection type heat exchanger for refrigeration and air conditioning that can maintain a high heat exchange performance even if the refrigerant pipe is made elliptical, flat, or narrow in diameter to reduce the amount of refrigerant. is there.

【0002】[0002]

【従来の技術】冷蔵庫や空気調和機等の冷凍空調機器に
用いられる強制対流型の熱交換器としては、内部に冷媒
が流れる伝熱管である冷媒管と、周囲に空気が流れる比
較的密な間隔(フィンピッチ)で配列されたほぼ平板状
のフィンとを、互いにほぼ直交するように固定し一体化
した主構造部分をもつクロスフィン・チューブ型が最も
一般的で大半を占めている。このクロスフィン・チュー
ブ型熱交換器は、沸騰・凝縮伝熱や液単相伝熱となる冷
媒側に比べて、空気の単相伝熱となるために熱伝達率が
低い空気側の性能をフィンによる伝熱面積の拡大で補う
ことができ、全体として熱交換性能を高くできるという
特徴がある。
2. Description of the Related Art As a forced convection type heat exchanger used for refrigeration and air-conditioning equipment such as a refrigerator and an air conditioner, a refrigerant pipe as a heat transfer pipe through which a refrigerant flows and a relatively dense pipe through which air flows are provided. A cross fin tube type having a main structure portion in which substantially flat fins arranged at intervals (fin pitches) are fixed and integrated so as to be substantially orthogonal to each other and are integrated is the most common and occupies most. This cross fin tube type heat exchanger uses a single-phase heat transfer of air as compared with the refrigerant side which performs boiling / condensation heat transfer or liquid single-phase heat transfer, so that the heat transfer coefficient of the air side is low due to the fins. There is a characteristic that the heat transfer area can be compensated for by increasing the heat transfer area, and the heat exchange performance can be improved as a whole.

【0003】一般に、冷媒管は規則的な間隔・配列で並
べられた複数の直管部とそれらの両端を順に接続あるい
は合流・分岐してつなぐ接続管部とからなり、フィンは
冷媒管の直管部に固定される。設置スペースや送風機仕
様等の条件の違いから、主に家庭用の冷蔵庫には、空気
流と直管部の管軸とに直交する方向である段方向への直
管部の数(段数)より通風方向でもある列方向への直管
部の数(列数)が多く、通風方向の上流側から見て前面
面積は小さいが奥行きの大きい全体形状の熱交換器が用
いられている。また、空気調和機には、冷媒管の直管部
の段数が列数より多く、前面面積が大きく奥行きの小さ
い全体形状の熱交換器が用いられている。
[0003] Generally, a refrigerant pipe comprises a plurality of straight pipes arranged at regular intervals and arrangement and a connecting pipe which connects or merges / branches both ends thereof in order. Fixed to the tube. Due to differences in installation space, blower specifications, and other conditions, home refrigerators are mainly based on the number of straight pipe sections (the number of steps) in the step direction, which is the direction perpendicular to the airflow and the pipe axis of the straight pipe sections. There is a large number of straight pipe sections (the number of rows) in the row direction, which is also the ventilation direction, and a heat exchanger having an overall shape with a small front area but a large depth when viewed from the upstream side in the ventilation direction is used. Further, in the air conditioner, a heat exchanger having an overall shape in which the number of stages of the straight pipe portion of the refrigerant pipe is greater than the number of rows, the front surface area is large, and the depth is small.

【0004】一般的な冷凍空調用熱交換器について、図
13ないし図16を参照して説明する。図13は、一般
的な冷蔵庫用の熱交換器、特に蒸発器を示す斜視図、図
14は、図13の側方断面図、図15は、一般的な空気
調和機用の熱交換器を示す斜視図、図16は、図15の
側方断面図である。これら各図では、冷蔵庫用,空気調
和機用とも同一機能部は同一符号を用いて示している。
[0004] A general heat exchanger for refrigeration and air conditioning will be described with reference to FIGS. 13 is a perspective view showing a general heat exchanger for a refrigerator, particularly an evaporator, FIG. 14 is a side sectional view of FIG. 13, and FIG. 15 is a general heat exchanger for an air conditioner. FIG. 16 is a side sectional view of FIG. In each of these drawings, the same reference numerals are used for the same functional parts in both the refrigerator and the air conditioner.

【0005】各図に示す熱交換器1は、フィン2と冷媒
管3からなり、太い矢印で示す空気流4と冷媒管3の内
部を流れる冷媒との間で熱交換を効率よく行わせる機能
を有する。冷蔵庫用,空気調和機用ともに、熱交換器1
は、空気流4にほぼ直交するように配置された冷媒管3
の複数の直管部(熱交換器の幅方向中央の部分)と、そ
の冷媒管3の直管部に主要部分がほぼ直交すると共に、
それらの管軸方向(熱交換器の幅方向でもある)に互い
に間隔を保持して並べられているフィン2とが固定され
一体化された主構造部分をもち、主構造部分の幅方向両
端には冷媒管3の直管部同士を順に接続する接続管部
(合流・分岐させる仕様のものは図示せず)が設けられ
ている。
[0005] The heat exchanger 1 shown in each figure comprises a fin 2 and a refrigerant pipe 3, and has a function of efficiently exchanging heat between an air flow 4 indicated by a thick arrow and a refrigerant flowing inside the refrigerant pipe 3. Having. Heat exchanger 1 for both refrigerator and air conditioner
Is a refrigerant pipe 3 arranged substantially orthogonal to the air flow 4.
A plurality of straight pipes (a central part in the width direction of the heat exchanger) and a main part of the straight pipe of the refrigerant pipe 3 are substantially orthogonal to each other;
It has a main structure portion in which the fins 2 arranged at intervals in the tube axis direction (which is also the width direction of the heat exchanger) are fixed and integrated, and at both ends in the width direction of the main structure portion. Is provided with a connecting pipe portion (not shown for merging / branching) for connecting the straight pipe portions of the refrigerant pipe 3 in order.

【0006】図13,14に示す冷蔵庫用の熱交換器の
中で特に蒸発器の場合には、空気流4と冷媒管3の直管
部の管軸に直交する方向である段方向Bへは直管部の段
数を2〜3と少なくし、空気流4に沿う方向である列方
向Aには直管部の列数を7〜9と多くするとともに、フ
ィンピッチを比較的粗くするという構造を採用し、狭い
設置スペースと小風量の送風機でも良好な熱交換ができ
るようにしている。
Among the heat exchangers for refrigerators shown in FIGS. 13 and 14, especially in the case of an evaporator, the air flow 4 and the refrigerant pipe 3 go in a step direction B which is a direction orthogonal to the pipe axis of the straight pipe section. Refers to reducing the number of straight pipe sections to two or three, increasing the number of straight pipe sections to seven to nine in the column direction A, which is the direction along the air flow 4, and making the fin pitch relatively coarse. Adopting a structure, good heat exchange can be performed even with a small installation space and a small air volume blower.

【0007】これとは逆に、図15,16に示す空気調
和機用の熱交換器の場合には、段数を例えば10以上と
多くしながら列数は2〜3と少なくするとともに、フィ
ンピッチを比較的密にする構造として、前面面積を広く
とれる設置法を活かして大風量の送風機で良好な熱交換
を行わせるようにしている。熱交換器1は、フィン2に
より熱交換に有効な表面積を冷媒管3の外表面積の10
〜20倍に拡大するとともに、冷媒管3が(空気流4に
対し拡大風路となる管断面の後半ではく離を起こさせ
て)より乱れた空気流4aを発生させ空気側の熱伝達率
を増加させることにより、高い熱交換性能が得られるよ
うにしている。
On the other hand, in the case of the heat exchanger for an air conditioner shown in FIGS. 15 and 16, the number of rows is reduced to 2 to 3 while the number of stages is increased to, for example, 10 or more, and the fin pitch is reduced. Is relatively dense, and a good heat exchange is performed by a blower having a large air volume by utilizing an installation method capable of increasing a front surface area. The heat exchanger 1 uses the fins 2 to increase the surface area effective for heat exchange by 10% of the outer surface area of the refrigerant pipe 3.
As the refrigerant pipe 3 expands to 20 times, the refrigerant pipe 3 generates a more turbulent air flow 4a (causing the air flow 4 to be separated in the latter half of the pipe cross section that becomes an expanded air path) to reduce the heat transfer coefficient on the air side. By increasing it, high heat exchange performance is obtained.

【0008】このような冷凍空調用のクロスフィン・チ
ューブ型熱交換器では、冷媒管自体の製作性、コスト、
形状精度の点、および冷媒管とフィンの固定法の点か
ら、冷媒管として円管が多く用いられている。前者の管
自体に関する理由は、円形断面の管が一般的で多く作ら
れているからであるが、後者の固定法に関する理由は冷
媒管とフィンの固定に拡管法が最も多く使われるためで
ある。
In such a cross fin tube type heat exchanger for refrigeration and air conditioning, the manufacturability and cost of the refrigerant tube itself are reduced.
From the viewpoint of the shape accuracy and the method of fixing the fins to the refrigerant tubes, circular tubes are often used as the refrigerant tubes. The reason for the former tube itself is that tubes with a circular cross section are common and many are made, whereas the reason for the latter fixing method is that the expansion method is most often used for fixing refrigerant tubes and fins. .

【0009】拡管法は、挿入孔をもつほぼ平板状のフィ
ンを密な間隔をとって並べた後に、挿入孔にそれよりや
や小径の冷媒管を貫通させ、冷媒管の径を内部に治具を
通すことで拡大してフィンの挿入孔に密着させるという
方法であり、このように管を均等に拡大するには円形断
面の方が適している。その他の冷媒管とフィンの固定法
としては、小さめに加工したフィンの挿入孔に冷媒管を
挿入することや、フィンの挿入孔に冷媒管を挿入したの
ちに、冷媒管の断面をやや変形させてフィンに密着させ
ること等の非拡管法もある。しかし、この場合も冷媒管
は円管をベースに多少の加工を加えるだけなので、冷媒
管はやや楕円形になるが元の円形断面から大きくずれる
ことはない。
In the pipe expansion method, after fins having a substantially flat plate shape having insertion holes are arranged at a close interval, a refrigerant pipe having a diameter slightly smaller than the insertion hole is passed through the insertion hole, and the diameter of the refrigerant pipe is set inside the jig. This is a method in which the tube is enlarged by passing through the fin so as to be in close contact with the insertion hole of the fin. A circular cross section is more suitable for uniformly expanding the tube in this way. Other fixing methods of the refrigerant tube and the fin include inserting the refrigerant tube into the insertion hole of the fin that has been machined smaller, or inserting the refrigerant tube into the insertion hole of the fin, and then deforming the cross section of the refrigerant tube slightly. There is also a non-expansion method such as contacting the fin with a fin. However, also in this case, the refrigerant pipe is only slightly processed based on the circular pipe, so that the refrigerant pipe becomes slightly elliptical, but does not largely deviate from the original circular cross section.

【0010】円管以外の冷媒管の例として一般的なの
は、主に自動車用空調機の熱交換器に用いられる偏平管
である。この自動車用空気調和機の熱交換器では、上下
方向に並べた偏平管の間にフィンを挟んだ状態で両者を
ロウ付けで固定・一体化する製造法がとられるが、熱交
換器の仕様、コスト、生産性等の点から、そのような製
造法や偏平管が家庭用の冷蔵庫や空気調和機に採用され
ることは少なかった。
A common example of a refrigerant pipe other than a circular pipe is a flat pipe mainly used for a heat exchanger of an air conditioner for an automobile. This heat exchanger for automotive air conditioners uses a manufacturing method in which fins are sandwiched between flat tubes arranged in the vertical direction and both are fixed and integrated by brazing. From the viewpoints of cost, productivity, and the like, such manufacturing methods and flat tubes are rarely used for home refrigerators and air conditioners.

【0011】近年、オゾン層の保護・地球温暖化抑制の
ためのフロン系冷媒の大気放出量制限の点、可燃性冷媒
での漏洩時の爆発事故防止等の点等から、冷凍空調機器
に用いられる冷媒量の削減が重視されるようになってき
た。これに対応して家庭用の冷凍空調機器の熱交換器に
関しては、管内部の容積を減らすために、最も一般的な
円管のまま冷媒管を細径管化することと、これまでの実
用例は少ないが冷媒管を楕円管ないし偏平管にすること
が考えられている。
In recent years, it has been used in refrigeration and air-conditioning equipment from the viewpoint of restricting the amount of CFC-based refrigerant released into the atmosphere for the protection of the ozone layer and suppressing global warming, and the prevention of explosion accidents when flammable refrigerants leak. The importance of reducing the amount of refrigerant used has been emphasized. Correspondingly, in order to reduce the internal volume of the heat exchangers for domestic refrigeration and air conditioning equipment, the most common circular pipes have to be made thinner and the refrigerant pipes have to be reduced in diameter. Although there are few examples, it is considered that the refrigerant pipe is an elliptical pipe or a flat pipe.

【0012】後者のような楕円管・偏平管を採用した熱
交換器については、冷蔵庫用ではあまり見当たらない
が、空気調和機用の熱交換器については、例えば、特開
昭58−125325号公報、特開昭58−18144
0号公報、特開昭60−108689号公報、実開昭6
1−84387号公報、特開平2−133797号公報
等に開示されており、これら先行技術における冷媒管の
配置は、空気調和機の性能向上とともに通風抵抗を低く
抑えることも重複したため、冷媒管の断面の長軸を空気
流とほぼ平行にすることを前提としたものであった。
A heat exchanger employing an elliptic tube or a flat tube as described above is rarely found for refrigerators, but a heat exchanger for air conditioners is disclosed, for example, in Japanese Patent Application Laid-Open No. 58-125325. And JP-A-58-18144.
No. 0, JP-A-60-108689, and Shokai 6
No. 1-84387, Japanese Unexamined Patent Publication No. Hei 2-133797, and the like, and the arrangement of the refrigerant pipes in these prior arts is not only to improve the performance of the air conditioner but also to suppress the ventilation resistance low. It was assumed that the long axis of the cross section was almost parallel to the air flow.

【0013】しかしながら、前者の対策により冷媒管を
細径管化した場合、直径の減少で管内部の容積は減るも
のの、冷媒管による空気流の乱れ促進効果も小さくなっ
て熱交換性能が低下するという問題が現れる。例えば、
管内部の容積の変化は直径(簡単のため内径も外径と同
じ比率で減少すると仮定)の2乗に比例するとして評価
し、管径の変化による熱交換性能(影響は冷媒側よりも
空気側の熱伝達率に大きく現れるのでこれで評価)は、
冷蔵庫用の場合には蒸発器に関するナショナル・テクニ
カル・レポート、30、5(1984年)第736頁か
ら第744頁(National Technical
Report 30、5(1984)pp738−7
44)の実験データで、空気調和機用の場合には伝熱工
学資料(改訂第4版)の第263頁に示された平板フィ
ン・千鳥管列の熱交換器に関するRichの実験式で評
価するとして、細径管化による管内部容積と性能の変化
を試算すると次の表のようになる。
However, when the diameter of the refrigerant pipe is reduced by the former measure, the internal diameter of the pipe is reduced due to the decrease in diameter, but the effect of the refrigerant pipe on promoting the turbulence of the air flow is reduced, and the heat exchange performance is reduced. The problem appears. For example,
The change in the volume inside the tube is evaluated as being proportional to the square of the diameter (assuming that the inner diameter also decreases at the same ratio as the outer diameter for simplicity). Side heat transfer coefficient is large, so this is evaluated)
National Technical Report on Evaporators for Refrigerators, 30, 5 (1984) 736-744 (National Technical).
Report 30, 5 (1984) pp738-7
44) Based on the experimental data, for air conditioners, it was evaluated by Rich's empirical formula for heat exchangers with flat fins and staggered tube rows shown on page 263 of the heat transfer engineering data (Revised 4th edition) The following table shows a trial calculation of changes in tube internal volume and performance due to the use of small diameter tubes.

【0014】[0014]

【表1】 表1には、7列2段構成の冷蔵庫用蒸発器について、冷
媒管の管径をφ8からφ6.35にしたとき、管内部容
積は36%減少するが性能は10%低下すること、2列
多段構成の空気調和機用熱交換器について、冷媒管の管
径をφ7からφ5.6にしたとき、管内部容積は36%
減少するが性能は5.4%低下することが示されてい
る。サイクル全体に対して熱交換器が占める内容積は数
分の1程度であることを考えると、冷媒管を細径にする
対策では全体の冷媒封入量の削減と同時に熱交換器のか
なりの性能低下が起きてしまうことがわかる。
[Table 1] Table 1 shows that, for a refrigerator evaporator having a seven-row two-stage structure, when the pipe diameter of the refrigerant pipe is changed from φ8 to φ6.35, the internal volume of the pipe is reduced by 36% but the performance is reduced by 10%. When the diameter of the refrigerant pipe is changed from φ7 to φ5.6 in the heat exchanger for an air conditioner having a multi-stage configuration, the internal volume of the pipe is 36%.
It is shown to decrease, but performance is reduced by 5.4%. Considering that the internal volume occupied by the heat exchanger with respect to the entire cycle is about a fraction, taking measures to reduce the diameter of the refrigerant pipe reduces the total amount of refrigerant charged and at the same time considerably reduces the performance of the heat exchanger. It can be seen that a drop occurs.

【0015】また、後者の対策により冷媒管を楕円管な
いし偏平管にした場合でも同様な傾向になる。ここでは
冷媒管を楕円管とした場合を考え、管内部容積の変化に
ついては、元の円管の周長を保ちながら楕円につぶされ
るとして、変形前後の円管と楕円管の断面積(管の外部
と内部は相似に変形すると仮定)の差で評価した。ま
た、既に示したように管は断面の長軸を空気流にほぼ平
行に配置されるので、変形後の熱交換性能は空気流に対
する流れを妨げる大きさ(以下本明細書ではブロッケー
ジという)が楕円管の短軸の長さと等しい直径の円管と
同等であると仮定して評価した。前述の細径管化の場合
と同様に計算すると次の表のようになる。
[0015] The same tendency also occurs when the refrigerant tube is an elliptical tube or a flat tube due to the latter measure. Here, the case where the refrigerant pipe is an elliptical pipe is considered. Regarding the change in the internal volume of the pipe, it is assumed that the pipe is crushed into an ellipse while maintaining the circumference of the original circular pipe. And the inside are assumed to deform similarly). Further, as described above, since the tube is disposed with the major axis of the cross section being substantially parallel to the air flow, the heat exchange performance after deformation has a size (hereinafter referred to as blockage in the present specification) that hinders the flow with respect to the air flow. The evaluation was made assuming that it was equivalent to a circular tube having a diameter equal to the length of the minor axis of the elliptic tube. The following table shows the results calculated in the same manner as in the case of the small diameter tube described above.

【0016】[0016]

【表2】 表2には、7列2段構成の冷蔵庫用蒸発器について、冷
媒管をφ8の円管から長軸10.8×端軸3.6の楕円
管にしたとき、管内部容積は39%減少するが性能は2
9%低下すること、2列多段構成の空気調和機用熱交換
器について、冷媒管の管径をφ7の円管から長軸9.5
×端軸3.2の楕円管にしたとき、管内部容積は39%
減少するが性能は14%低下することが示されている。
[Table 2] Table 2 shows that, for a refrigerator evaporator with 7 rows and 2 stages, when the refrigerant tube is changed from a φ8 circular tube to an elliptical tube with a major axis of 10.8 x an end axis of 3.6, the internal volume of the tube decreases by 39%. But performance is 2
In the heat exchanger for an air conditioner having a two-row multi-stage structure, the diameter of the refrigerant pipe is reduced from a circular pipe of φ7 to a major axis of 9.5.
X When an elliptic tube with an end axis of 3.2 is used, the internal volume of the tube is 39%
It has been shown to decrease but performance by 14%.

【0017】前述の細径管化の場合と同様に、楕円管化
する対策でも管内部容積の減少と同時に熱交換器の性能
低下が起き、その内部容積の減少に比べた性能低下の割
合は細径管化の場合より大きくなることがわかる。以上
のように、冷凍空調機器に用いられる冷媒量を削減する
ため、従来考えられてきた熱交換器の冷媒管を細径にし
たり楕円管ないし偏平管にする方式では、管内部容積の
減少と同時に熱交換器性能がかなり低下してしまうとい
う問題があった。
As in the case of the above-mentioned small-diameter tube, even in the countermeasure for the elliptical tube, the performance of the heat exchanger is reduced at the same time as the internal volume of the tube is reduced. It turns out that it becomes larger than the case of the small diameter tube. As described above, in order to reduce the amount of refrigerant used in refrigeration and air-conditioning equipment, in the conventional method of reducing the diameter of the refrigerant tube of the heat exchanger or changing it to an elliptical tube or a flat tube, the internal volume of the tube is reduced. At the same time, there is a problem that the heat exchanger performance is considerably reduced.

【0018】以上のような細径管化や楕円管ないし偏平
管化する方式に伴う性能低下の問題に応用可能な技術の
1つとして、例えば、特開昭59−95391号公報、
特開昭59−95392号公報、特開昭60−1965
99号公報、特開昭61−202094号公報等に開示
されたような空気調和機用熱交換器の1列目の直前に円
筒状部材、ダミー管、多孔板等を配置したり、特開昭6
3−279079号公報に示されたような冷蔵庫用の蒸
発器に対しパイプ状除霜ヒータ(幾つかの列間の段方向
両端位置にフィンに挟まれるように設置)を設置する方
法がある。
As one of the techniques applicable to the problem of performance degradation accompanying the above-described method of reducing the diameter of a tube or forming an elliptic tube or a flat tube, for example, JP-A-59-95391,
JP-A-59-95392, JP-A-60-1965
No. 99, Japanese Unexamined Patent Publication No. 61-202094, etc., a cylindrical member, a dummy tube, a perforated plate, etc. are arranged immediately before the first row of a heat exchanger for an air conditioner. Showa 6
There is a method of installing a pipe-shaped defrost heater (installed so as to be sandwiched between fins at both end positions in a stepwise direction between several rows) with respect to an evaporator for a refrigerator as disclosed in JP-A-3-279079.

【0019】これらの方法では、追加される部材が冷媒
管とは別に空気流の乱れを大きくするので熱交換性能は
確かに上がるが、次のような限界がある。まず空気調和
機用のものでは、1列目の直前だけに設置するので乱れ
が大きくなる範囲が熱交換器の前半に限られ、また部材
の径が小さいか開口が大きい場合は乱れが小さくて性能
向上が少なく、逆に部材の径が大きいか開口が小さい場
合は乱れは大きくなるものの通風抵抗の増大による風量
低下のため性能向上が頭打ちになり、実際には大きな性
能向上は期待できないものであった。
In these methods, since the added member increases the turbulence of the air flow separately from the refrigerant pipe, the heat exchange performance is certainly improved, but has the following limitations. First, in the case of an air conditioner, the range where the disturbance is large is limited to the first half of the heat exchanger because it is installed just before the first row, and when the diameter of the member is small or the opening is large, the disturbance is small. Conversely, if the diameter of the member is large or the opening is small, the turbulence will increase, but the performance improvement will level off due to the decrease in air flow due to the increase in ventilation resistance, and in fact, large performance improvement can not be expected. there were.

【0020】また、冷蔵庫用の蒸発器のものでは、除霜
ヒータはコードでつながったパイプ状のもので、蒸発器
の両側面に後付けで挿入する形で設置されることから、
フィンのつぶれを少なくするために、フィンの段方向中
央寄りには設置できず、空気流の乱れ促進効果がフィン
の段方向両端付近に限られて大きな性能向上は期待でき
ないものであった。
In the case of an evaporator for a refrigerator, the defrost heater is a pipe-shaped one connected by a cord, and is installed so as to be inserted later on both sides of the evaporator.
In order to reduce the collapse of the fin, the fin cannot be installed near the center of the fin in the stepwise direction, and the effect of promoting the turbulence of the air flow is limited to the vicinity of both ends of the fin in the stepwise direction.

【0021】楕円管ないし偏平管にする方式に限った前
述した中の、特に熱交換器の性能低下の問題に応用可能
な技術として、対象は空気調和機用熱交換器に限られる
が、例えば、特開昭63−3183号公報に示されたよ
うな複数の楕円管において管断面の長軸と各楕円管の位
置を空気流に対し傾けるもの、特開平1−306796
号公報、特開平1−306797号公報、特開平7−9
1873号公報に示されたような長軸の長さが熱交換器
の奥行きに匹敵するような偏平管において結露水等の水
切り性を良くするために空気流や水平面に対して傾ける
というものがある。
Among the techniques described above limited to the elliptic tube or the flat tube, particularly applicable to the problem of performance deterioration of the heat exchanger, the target is limited to a heat exchanger for an air conditioner. Japanese Patent Application Laid-Open No. 1-306796 discloses a plurality of elliptic tubes as described in JP-A-63-3183, in which the major axis of the tube cross section and the position of each elliptic tube are inclined with respect to the air flow.
JP, JP-A-1-306797, JP-A-7-9
In a flat tube whose length is equal to the depth of a heat exchanger as shown in Japanese Patent No. 1873, the flat tube is inclined with respect to an air flow or a horizontal plane in order to improve drainage of dew water or the like. is there.

【0022】楕円管や偏平管で管断面の長軸を空気流に
対して傾けることにより、空気流に対するブロッケージ
である冷媒管の段方向の幅が短軸の長さより大きくな
る。そのような冷媒管の乱れ促進効果及び性能向上の大
きさが、既に述べた楕円管,偏平管化の場合と同様にブ
ロッケージの等しい円管に置き換えて評価できるなら
ば、熱交換器としての性能向上が期待できる。
By inclining the major axis of the cross section of the elliptic tube or the flat tube with respect to the air flow, the stepwise width of the refrigerant tube, which is a blockage for the air flow, becomes larger than the length of the minor axis. If the turbulence accelerating effect and performance improvement of such a refrigerant tube can be evaluated by replacing the elliptic tube and the circular tube with the same blockage as in the case of the flat tube described above, the performance as a heat exchanger Improvement can be expected.

【0023】しかしながら、前記の技術の最初のもの、
すなわち、複数の楕円管で断面の長軸と管の位置を空気
流に対し傾けるものでは、管断面の後半で空気流のはく
離が少ないまま後続の管に当たるようにして空気流の死
水域を大幅に小さくすることを意図しているものであ
る。したがって、(管断面の後半での空気流のはく離で
乱れを促進することを前提とした)ブロッケージの等し
い円管に置き換えるという既に述べた性能評価法をこの
場合に適用することはできない。また、冷媒管による乱
れ促進を積極的に利用するものではないために、既に述
べた楕円管を空気流に対しほぼ平行に配置する場合に比
べても性能向上はそれ程大きくなく、冷媒量削減のため
楕円管化してこのように配置しても元の円管の場合より
熱交換器の性能は低下してしまうことが考えられる。
However, the first of the above techniques,
In other words, when the major axis of the cross section and the position of the pipe are inclined with respect to the air flow with multiple elliptic pipes, the dead water area of the air flow is greatly increased by hitting the subsequent pipe with little separation of the air flow in the latter half of the pipe cross section. It is intended to be smaller. Therefore, the already described performance evaluation method of replacing the pipe with a circular pipe having the same blockage (assuming that the turbulence is promoted by separation of the air flow in the latter half of the pipe section) cannot be applied in this case. Further, since the turbulence promotion by the refrigerant pipe is not actively used, the performance improvement is not so large as compared with the case where the elliptical pipe is arranged almost parallel to the air flow as described above. Therefore, even if the heat exchanger is formed into an elliptical tube and arranged in this manner, the performance of the heat exchanger may be lower than that of the original circular tube.

【0024】この場合、空気流のはく離が少ない管断面
の長軸と管位置の実用的な傾斜角としては、浅野友一著
の流体工学(1973年)の第193頁の第5・22図
に例示された比較的厚い翼の失速角(翼面からの空気流
のはく離が大きくなる傾斜角)が22度であること、冷
媒管として実用的な楕円形は翼よりも空気流に対する前
縁が鈍頭な範囲にありはく離しにくい形状であることを
考えると、約30度以下が妥当な範囲と考えられる。
In this case, as the long axis of the pipe cross section and the practical inclination angle of the pipe position where the air flow is less likely to be separated, FIG. 5-22 on page 193 of Fluid Engineering (1973) written by Yuichi Asano. The stall angle of the relatively thick wing illustrated in (2) is 22 degrees (the inclination angle at which the air flow separates from the wing surface becomes large), and the elliptical shape practical as a refrigerant pipe has a leading edge for the air flow more than the wing. Considering that the shape is in a blunt range and difficult to peel off, it is considered that about 30 degrees or less is an appropriate range.

【0025】前記の技術の残りのもの、すなわち、管断
面長軸の長さが熱交換器の奥行きに近い偏平管を空気流
に対して傾けるものは、水切りのために若干傾斜させる
(水滴がフィン・管との毛細管力等に打ち勝って重力で
落下できる程度)ものの、この場合も空気流の乱れ促進
効果を積極的に利用するものではない。したがって、前
記の楕円管の長軸と管位置を傾斜させるものと同様の理
由で、冷媒量削減のため冷媒管をこのような傾斜させた
偏平管としても元の円管の場合より熱交換器の性能は低
下してしまうことが考えられる。
The rest of the above techniques, that is, those in which the length of the tube cross-section major axis is close to the depth of the heat exchanger and the flat tube is inclined with respect to the air flow, are slightly inclined for drainage (water droplets are not removed). Although it is possible to fall by the gravitational force by overcoming the capillary force between the fin and the tube, etc.), in this case, too, the effect of promoting the turbulence of the air flow is not positively used. Therefore, for the same reason as that of inclining the major axis and the tube position of the elliptical tube, the refrigerant tube is also used as such a flat tube in which the refrigerant tube is inclined to reduce the amount of refrigerant. Is likely to be degraded.

【0026】この場合、空気流のはく離が少ない管断面
の長軸の実用的な傾斜角としては、シュリヒティング著
の境界層理論(1979年)の第22頁の第1・13図
(H.Schlichting Boundary L
ayer Theory,7th Edition(1
979)p22)に例示された比較的薄い翼であるジュ
ウコフスキー翼の失速角が15度であること、水滴を円
滑に落下させる必要があることを考えると、約20度以
下が妥当な範囲と考えられる。
In this case, as a practical inclination angle of the long axis of the pipe cross section where the air flow is less separated, the boundary layer theory by Schrichting (1979), page 22, FIG. Schlicting Boundary L
aer Theory, 7th Edition (1
979) Considering that the stall angle of the Zhukovsky wing, which is a comparatively thin wing exemplified in p22), is 15 degrees and that it is necessary to drop water droplets smoothly, a reasonable range is about 20 degrees or less. Conceivable.

【0027】[0027]

【発明が解決しようとする課題】以上のことから、従来
の冷凍空調用の強制対流型の熱交換器では、冷媒量削減
のため冷媒管を細径管化や楕円・偏平管化して内部容積
を減少させる構造とした場合、そのままでは熱交換性能
のかなりの低下が起こる問題があり、また提案されてい
る従来技術の中にも性能低下の解消に有効なものはな
い。本発明の目的は、冷媒量削減のために熱交換器の冷
媒管の細径管化や楕円・偏平管化を行っても、熱交換性
能を高く保つことができる冷凍空調用の強制対流型の熱
交換器を提供することにある。
As described above, in the conventional forced convection type heat exchanger for refrigeration and air conditioning, in order to reduce the amount of refrigerant, the refrigerant pipe is formed into a small-diameter pipe or an elliptical or flat pipe to form an internal volume. If the structure is reduced, there is a problem that the heat exchange performance is considerably deteriorated as it is, and none of the proposed prior arts is effective in solving the performance deterioration. SUMMARY OF THE INVENTION An object of the present invention is to provide a forced convection type for refrigeration and air conditioning that can maintain a high heat exchange performance even when a refrigerant pipe of a heat exchanger is formed into a small-diameter tube or an elliptical or flat tube in order to reduce the amount of refrigerant. To provide a heat exchanger.

【0028】[0028]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱交換器に係る第1の構成は、空気流にほ
ぼ直交するように配設された冷媒管の複数の直管部と、
該冷媒管の直管部に主要部分がほぼ直交すると共に該冷
媒管の直管部の管軸方向に互いに間隔を保持して並設さ
れた多数のフィンとを一体化して構成した熱交換器にお
いて、前記冷媒管の直管部を楕円形あるいは偏平な断面
形状のものとし、かつ、前記冷媒管の直管部の断面の長
軸が前記空気流とほぼ直交するように配設したものであ
る。
In order to achieve the above object, a first configuration of the heat exchanger according to the present invention comprises a plurality of straight refrigerant tubes arranged substantially orthogonal to the air flow. Department and
A heat exchanger in which a main part is substantially orthogonal to a straight pipe portion of the refrigerant pipe and a large number of fins arranged in parallel with each other at intervals in a pipe axis direction of the straight pipe part of the refrigerant pipe are integrated. Wherein the straight pipe portion of the refrigerant pipe has an elliptical or flat cross-sectional shape, and is disposed such that the major axis of the cross section of the straight pipe portion of the refrigerant pipe is substantially orthogonal to the air flow. is there.

【0029】また、上記目的を達成するために、本発明
の熱交換器に係る第2の構成は、空気流にほぼ直交する
ように配設された冷媒管の複数の直管部と、該冷媒管の
直管部に主要部分がほぼ直交すると共に該冷媒管の直管
部の管軸方向に互いに間隔を保持して並設された多数の
フィンとを一体化して構成した熱交換器において、前記
冷媒管の直管部を楕円形あるいは偏平な断面形状のもの
とし、かつ、前記冷媒管の直管部の断面の長軸が前記空
気流に対して保持する傾斜角が45度ないし直角となる
ように前記冷媒管の直管部を傾斜させて配設するととも
に、前記冷媒管の直管部の傾斜方向を前記熱交換器の列
方向および段方向に規則性を有するように設定したもの
である。
Further, in order to achieve the above object, a second configuration of the heat exchanger according to the present invention comprises a plurality of straight pipe portions of a refrigerant pipe disposed substantially orthogonal to the air flow, In a heat exchanger in which a main part is substantially orthogonal to a straight pipe portion of a refrigerant pipe and a large number of fins are arranged integrally with a plurality of fins arranged side by side at intervals in a pipe axis direction of the straight pipe part of the refrigerant pipe. The straight pipe portion of the refrigerant pipe has an elliptical or flat cross-sectional shape, and the long axis of the cross section of the straight pipe portion of the refrigerant pipe has an inclination angle of 45 degrees or right angle with respect to the airflow. The straight pipe portion of the refrigerant pipe is disposed so as to be inclined such that the inclination direction of the straight pipe portion of the refrigerant pipe is set to have regularity in the row direction and the step direction of the heat exchanger. Things.

【0030】さらに、上記目的を達成するために、本発
明の熱交換器に係る第3の構成は、空気流にほぼ直交す
るように配設された冷媒管の複数の直管部と、該冷媒管
の直管部に主要部分がほぼ直交すると共に該冷媒管の直
管部の管軸方向に互いに間隔を保持して並設された多数
のフィンとを一体化して構成した熱交換器において、前
記空気流と直交する方向に長い偏平形状の断面を有する
乱れ促進部材を、前記冷媒管の各列の直管部に対し上流
位置となる前記フィンの前縁あるいは中間に設けたもの
である。
Further, in order to achieve the above object, a third configuration of the heat exchanger according to the present invention comprises a plurality of straight pipe portions of a refrigerant pipe disposed substantially orthogonal to the air flow, In a heat exchanger in which a main part is substantially orthogonal to a straight pipe portion of a refrigerant pipe and a large number of fins are arranged integrally with a plurality of fins arranged side by side at intervals in a pipe axis direction of the straight pipe part of the refrigerant pipe. A turbulence accelerating member having a flat cross section that is long in a direction perpendicular to the air flow is provided at a front edge or an intermediate portion of the fin, which is located upstream with respect to the straight pipe portions of each row of the refrigerant pipes. .

【0031】そして、前記第2の構成の熱交換器におい
て、前記傾斜角を列毎に正負が逆になるように設定した
り、また前記傾斜角を段方向に正負が逆になるように設
定したり、また前記傾斜角を段方向に正負が逆になるよ
うに設定すると共に前記冷媒管の直管部の段方向の配列
ピッチも規則的に増減させて設定することが好ましい。
In the heat exchanger of the second configuration, the inclination angle is set so that the sign is reversed for each row, or the inclination angle is set so that the sign is reversed in the step direction. In addition, it is preferable that the inclination angle is set so that the positive and negative are reversed in the step direction, and the arrangement pitch of the straight pipe portions of the refrigerant pipes in the step direction is regularly increased or decreased.

【0032】また、上記第3の構成の熱交換器におい
て、前記乱れ促進部材がすぐ下流位置にある前記冷媒管
の直管部に対し段方向にはほぼ中間位置となるように設
置したり、また前記熱交換器が前記空気流を氷点以下に
冷却する形で使用される場合は前記乱れ促進部材の材質
を樹脂とすることが好ましい。また以上の本発明の第1
ないし第2の構成の熱交換器において、前記空気流と直
交する方向に長い偏平形状の断面を有する乱れ促進部材
を前記冷媒管の各列の直管部に対し上流位置となる前記
フィンの前縁や中間に設置してもよい。
In the heat exchanger according to the third configuration, the turbulence promoting member may be installed at a substantially intermediate position in a stepwise direction with respect to a straight pipe portion of the refrigerant pipe immediately downstream. When the heat exchanger is used to cool the air stream to a temperature below freezing, it is preferable that the material of the turbulence promoting member is resin. The first aspect of the present invention
In the heat exchanger according to the second aspect, the turbulence promoting member having a flat cross section that is long in a direction perpendicular to the air flow is provided with a turbulence promoting member upstream of the fins positioned upstream of the straight pipe portions of each row of the refrigerant pipes. It may be installed at the edge or in the middle.

【0033】上記の本発明の第1の方式(構成)の熱交
換器は、冷媒管を楕円管や偏平管にすると共に管断面の
長軸を空気流に対してほぼ直交するように配置するもの
である。冷媒量削減のために冷媒管を円管から楕円管や
偏平管に代え、この方式のように冷媒管の直管部を空気
流に対しほぼ直交するように配置すると、空気流に対す
る冷媒管のブロッケージである段方向の幅は管断面の長
軸の長さとなって元の円管の直径より必ず大きくなる。
また、このような配置の楕円管や偏平管では、管断面の
後半の拡大風路部分の曲率が元の円管より急になって空
気流がはく離しやすくなることからも、管の乱れ促進効
果が元の円管より大きくなる。この方式を適用した場合
の管内部容積と熱交換性能の変化を、既に従来の技術の
ところで使用した方法を適用して試算すると、次の表の
ようになる。
In the heat exchanger of the first type (configuration) of the present invention, the refrigerant pipe is an elliptical pipe or a flat pipe, and the long axis of the pipe section is arranged so as to be substantially perpendicular to the air flow. Things. In order to reduce the amount of refrigerant, the refrigerant pipe is changed from a circular pipe to an elliptical pipe or a flat pipe, and if the straight pipe part of the refrigerant pipe is arranged so as to be substantially perpendicular to the air flow as in this method, The stepwise width of the blockage is the length of the major axis of the cross section of the pipe and is always larger than the diameter of the original circular pipe.
In the case of an elliptical tube or a flat tube having such an arrangement, the curvature of the enlarged air passage in the latter half of the tube cross section becomes steeper than that of the original circular tube, so that the air flow is easily separated. The effect is greater than the original tube. The following table shows the results of a trial calculation of the changes in tube internal volume and heat exchange performance when this method is applied by applying the method already used in the conventional technology.

【0034】[0034]

【表3】 表3には、表1,2同様の7列2段構成の冷蔵庫用蒸発
器について、冷媒管をφ8の円管から長軸10.8×端
軸3.6の楕円管にし、管断面の長軸を空気流に対し直
交させて配置したとき、管内部容積は39%減少するが
性能は8.2%向上すること、2列多段構成の空気調和
機用熱交換器について、冷媒管の管径をφ7の円管から
長軸9.5×端軸3.2の楕円管にし、管断面の長軸を
空気流に対し直交させて配置したとき、管内部容積は3
9%減少するが性能は11.5%向上することを示して
いる。すなわち、表2に示した従来の楕円管化の場合と
は異なり、本発明の第1の構成によれば、管内部容積の
低減と共に熱交換性能の向上が実現されることがわか
る。
[Table 3] Table 3 shows a refrigerant evaporator having a seven-row, two-stage configuration similar to Tables 1 and 2, in which the refrigerant tube is changed from a φ8 circular tube to an elliptical tube having a major axis of 10.8 × an end axis of 3.6. When the long axis is arranged perpendicular to the air flow, the internal volume of the tube is reduced by 39% but the performance is improved by 8.2%. When the pipe diameter is changed from a φ7 circular pipe to an elliptical pipe having a major axis of 9.5 and an end axis of 3.2, and the major axis of the pipe section is arranged perpendicular to the air flow, the internal volume of the pipe becomes 3
This shows a 9% reduction but a 11.5% improvement in performance. That is, unlike the case of the conventional elliptical tube shown in Table 2, according to the first configuration of the present invention, it is found that the heat exchange performance is improved while the internal volume of the tube is reduced.

【0035】上記の本発明の第2の構成の熱交換器は、
冷媒管を楕円管や偏平管にすると共に管断面の長軸を空
気流に対して45度以上に傾斜させて配置し、さらにそ
の傾斜の方向を列方向や段方向に規則性をもたせて設定
するものである。楕円管や偏平管を空気流に対して傾け
た場合、既に従来の技術のところで説明したように、管
の表面で空気流のはく離があまり起きない傾斜角は30
度以下や20度以下である。熱交換性能の向上のために
は、管の表面で空気流のはく離を起こさせて管断面の後
半での乱れを大きくする必要があるので、管断面の長軸
がなす空気流との傾斜角は上記のはく離があまり起きな
い上限値以上でなければならない。
The heat exchanger of the second configuration of the present invention is
The refrigerant pipe is made elliptical or flat, and the long axis of the pipe section is inclined at an angle of 45 degrees or more with respect to the air flow, and the direction of the inclination is set with regularity in the row direction and the step direction. Is what you do. When the elliptic tube or the flat tube is inclined with respect to the air flow, the inclination angle at which the air flow does not largely separate on the surface of the tube is 30 as described in the related art.
Degrees or less and 20 degrees or less. In order to improve the heat exchange performance, it is necessary to cause the air flow to separate at the surface of the tube to increase the turbulence in the latter half of the tube cross section. Must be greater than or equal to the upper limit at which the above-mentioned peeling does not occur much.

【0036】また冷媒管の空気流に対するブロッケージ
の点からは、実用的な楕円管,偏平管の偏平度を断面の
長軸と短軸の比が2:1以上と考えると(管内部の容積
が元の円管の81%に減る)、この最もゆるい偏平度の
楕円管、偏平管の空気流に対するブロッケージを元の円
管以上とするには45度以上の傾斜角が必要となる。こ
れよりきつい偏平度の楕円管、偏平管ではもっと小さな
傾斜角でブロッケージが元の円管以上になる。これらの
ことから、本発明の第2の方式(構成)での空気流と管
断面の長軸の傾斜角を45度以上にすれば、乱れ促進効
果が大きく現れると共に空気流に対するブロッケージも
元の円管以上になるので、本発明の第1の方式と同様
に、管内部容積の低減と共に熱交換性能の向上も得られ
るようになる。
Further, from the viewpoint of the blockage with respect to the air flow of the refrigerant tube, the flatness of a practical elliptic tube or flat tube is considered to have a ratio of the major axis to the minor axis of the cross section of 2: 1 or more (volume inside the pipe). Is reduced to 81% of the original circular pipe). In order to make the blockage for the air flow of the elliptic pipe having the least flatness and the flattened pipe larger than that of the original circular pipe, an inclination angle of 45 degrees or more is required. With a flatter elliptic tube and a flatter tube, the blockage becomes larger than the original circular tube at a smaller inclination angle. From these facts, if the inclination angle of the long axis of the cross section of the airflow and the pipe in the second system (configuration) of the present invention is set to 45 degrees or more, the turbulence promoting effect is greatly exhibited and the blockage for the airflow is also reduced to the original. Since the number of pipes is equal to or greater than that of a circular pipe, the heat exchange performance can be improved as well as the internal volume of the pipe can be reduced as in the first method of the present invention.

【0037】この本発明の第2の構成において、管断面
の傾斜方向が列方向と段方向に全て同一であると空気流
の偏流を起こして熱交換性能の多少の低下を招く可能性
があるので、規則性をもたせて変化させるほうがよい。
例えば、列毎に傾斜角の正負を逆にしたり、段方向に傾
斜角の正負を逆にしたり、また傾斜角の正負を段方向に
逆にすると共に冷媒管の直管部の段方向の配列ピッチも
それに合わせて規則的に増減したりすることが好まし
い。
In the second configuration of the present invention, if the inclination directions of the pipe cross sections are the same in both the row direction and the step direction, a drift of the air flow may occur, which may cause a slight decrease in the heat exchange performance. Therefore, it is better to change it with regularity.
For example, the polarity of the inclination angle is reversed for each row, the polarity of the inclination angle is reversed in the step direction, the polarity of the inclination angle is reversed in the step direction, and the arrangement of the straight pipe portions of the refrigerant pipes in the step direction. It is preferable that the pitch is also regularly increased or decreased accordingly.

【0038】上記の本発明の第3の構成の熱交換器は、
空気流と直交する方向に長い偏平断面の乱れ促進部材を
冷媒管の各列の直管部に対し上流位置となる前記フィン
の前縁や中間に設置するものである。既に従来の技術の
ところで説明したような、空気調和機用の熱交換器に対
する円筒状部材類や冷蔵庫用の蒸発器に対するパイプ状
除霜ヒータに比べ、本発明の第3の構成の乱れ促進部材
は、空気流と直交する方向に長い偏平断面であると共に
部材同士がつながっていないので冷媒管の各列の間のど
の位置にも設置が可能であり、空気流に対するブロッケ
ージの大きさも空気流と直交する方向の部材の幅や段方
向の設置数により調整が可能であるため、より熱交換性
能を向上させることができる。
The heat exchanger of the third configuration of the present invention is
A turbulence-promoting member having a flat cross section that is long in a direction perpendicular to the air flow is provided at a front edge or an intermediate portion of the fin, which is located at an upstream position with respect to the straight pipe portion of each row of the refrigerant pipes. As compared with the cylindrical members for the heat exchanger for the air conditioner and the pipe-shaped defrost heater for the evaporator for the refrigerator as described in the prior art, the turbulence promoting member of the third configuration of the present invention is used. Has a flat cross section that is long in the direction perpendicular to the air flow, and since the members are not connected to each other, it can be installed at any position between the rows of the refrigerant pipes. Since the adjustment can be made by adjusting the width of the members in the direction orthogonal to each other or the number of members installed in the step direction, the heat exchange performance can be further improved.

【0039】発明者らが実験した結果では、表1に示し
た仕様の冷蔵庫用蒸発器(ただし管径φ8で管は千鳥配
列、フィンの段方向の長さは60mm)の各列のフィン
の前縁に幅6mmの部材を蒸発器の段方向の両端から6
mm内側に設置することで、空気側熱交伝達率が同一風
速(0.6m/s付近)で10%ほど向上することがわ
かった。この性能差は、既に表1に示した20%の細径
管化による冷蔵庫用蒸発器の性能低下分と同じ大きさで
ある。これより、本発明の第3の方式(構成)の乱れ促
進部材の設置により、細径管化等を行った際に管内部容
積の低減と共に起こる熱交換性能の低下を補うことがで
き、熱交換性能を高く保つことが可能になる。
According to the results of experiments conducted by the inventors, the evaporators for refrigerators having the specifications shown in Table 1 (however, the diameter of the fins is 8 mm, the tubes are arranged in a staggered manner, and the length of the fins in the stepwise direction is 60 mm) are used. At the leading edge, a member with a width of 6 mm is placed
It has been found that the air-side heat transfer coefficient is improved by about 10% at the same wind speed (around 0.6 m / s) by being installed on the inner side of mm. This performance difference is the same as the performance decrease of the refrigerator evaporator due to the 20% reduction in the diameter of the tube as shown in Table 1. Thus, by installing the turbulence accelerating member of the third method (configuration) of the present invention, it is possible to compensate for the decrease in the heat exchange performance that occurs with the reduction of the internal volume of the tube when the diameter of the tube is reduced, etc. Exchange performance can be kept high.

【0040】この本発明の第3の構成において、乱れ促
進部材の位置はすぐ下流位置にある冷媒管の直管部に対
し段方向にほぼ中間となるようにずらす方が部材と冷媒
管が千鳥配列になるので性能的に好ましい。また、冷蔵
庫用蒸発器など熱交換器が空気流を氷点以下に冷却する
状態で使用されて着霜する場合は、乱れ促進部材の材質
を熱伝導率の低い樹脂とすれば、フィンに接触していて
ても乱れ促進部材はそれほど低温にならずあまり着霜し
ないので、性能向上の割に霜詰まりが早くならないとい
う効果がある。また以上の本発明の第1ないし第2の構
成の熱交換器に対し、第3の構成の乱れ促進部材をさら
に適用すれば、明らかに両方の性能向上効果が得られる
ようになるので好ましい。
In the third configuration of the present invention, it is preferable that the position of the turbulence promoting member is shifted so as to be substantially intermediate in the stepwise direction with respect to the straight pipe portion of the refrigerant pipe immediately downstream, so that the member and the refrigerant pipe are staggered. It is preferable in terms of performance because it becomes an array. In addition, when a heat exchanger such as a refrigerator evaporator is used in a state where the airflow is cooled below the freezing point and frost is formed, if the material of the turbulence promoting member is made of a resin having a low thermal conductivity, the fin may come into contact with the fins. Even if it is, the turbulence accelerating member does not become so low in temperature and does not frost much, so that there is an effect that frost clogging does not become early for the performance improvement. It is preferable to further apply the turbulence accelerating member of the third configuration to the heat exchanger of the first or second configuration of the present invention, since both of the performance improving effects can be obviously obtained.

【0041】[0041]

【発明の実施の形態】以下、本発明の具体的な実施の形
態を図1ないし図12を参照して説明する。まず、本発
明の第1の技術手段(構成)の実施の形態を図1および
図2を参照して説明する。 〔実施の形態 1〕図1は、本発明の第1の実施の形態
を示す冷蔵庫用の熱交換器、特に蒸発器の側方断面図で
ある。図1に示す冷蔵庫用の熱交換器1Aは、冷媒管3
Aを楕円管あるいは偏平管化するともに、空気流4に対
し管断面の長軸がほぼ直交するように配設したものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described below with reference to FIGS. First, an embodiment of the first technical means (configuration) of the present invention will be described with reference to FIGS. Embodiment 1 FIG. 1 is a side sectional view of a heat exchanger for a refrigerator, particularly an evaporator, showing a first embodiment of the present invention. The refrigerator heat exchanger 1A shown in FIG.
A is formed into an elliptical tube or a flat tube, and is disposed such that the major axis of the tube cross section is substantially orthogonal to the air flow 4.

【0042】熱交換器1Aの構成要素であるフィン2A
や冷媒管3Aの機能や空気流4,4aの流動状態は、既
に従来の技術で図13,14で説明したものと基本的に
は変わりがない。
Fin 2A which is a component of heat exchanger 1A
The function of the refrigerant pipe 3A and the flow state of the airflows 4 and 4a are basically the same as those already described with reference to FIGS.

【0043】図1に示す熱交換器1Aが、図13,14
で説明した従来技術と相違するところは、冷媒管3Aは
楕円管であり、その断面の長軸を空気流4とほぼ直交
(傾斜角θ=90°)するように配設していることにあ
る。したがって、この冷媒管3Aでは、周の長さが同じ
である円管に比べ空気流4に対するブロッケージが管断
面の長軸の長さとなって大きくなり、既に〔課題を解決
する手段〕のところで述べたように、円管の場合より熱
交換器としての性能を向上させることができるものであ
る。
The heat exchanger 1A shown in FIG.
The difference from the prior art described in the above is that the refrigerant pipe 3A is an elliptical pipe, and is disposed so that the major axis of its cross section is substantially orthogonal to the air flow 4 (inclination angle θ = 90 °). is there. Therefore, in this refrigerant pipe 3A, the blockage for the air flow 4 becomes longer as the length of the major axis of the pipe cross section as compared with a circular pipe having the same circumferential length, which has already been described in [Means for Solving the Problems]. As described above, the performance as a heat exchanger can be improved as compared with the case of a circular tube.

【0044】〔実施の形態 2〕図2は、本発明の第2
の実施の形態を示す空気調和機用の熱交換器の側方断面
図である。図2に示す空気調和機用の熱交換器1Bは、
冷媒管3Bを楕円管あるいは偏平管化するともに、空気
流4に対し管断面の長軸がほぼ直交するように配設した
ものである。
[Embodiment 2] FIG. 2 shows a second embodiment of the present invention.
It is a side sectional view of the heat exchanger for air conditioners which shows an embodiment. The heat exchanger 1B for an air conditioner shown in FIG.
The refrigerant pipe 3B is formed into an elliptical pipe or a flat pipe, and is disposed so that the major axis of the pipe section is substantially orthogonal to the air flow 4.

【0045】熱交換器1Bの構成要素であるフィン2B
や冷媒管3Bの機能や空気流4,4aの流動状態は、既
に従来の技術で図15,16で説明したものと基本的に
は変わりがない。
Fin 2B as a component of heat exchanger 1B
The function of the refrigerant pipe 3B and the flow state of the airflows 4 and 4a are basically the same as those already described with reference to FIGS.

【0046】図2に示す熱交換器1Bが、図15,16
で説明した従来技術と相違するところは、冷媒管3Bは
楕円管であり、その断面の長軸を空気流4とほぼ直交
(傾斜角θ=90°)するように配設していることにあ
る。すなわち、この冷媒管3Bでは、周の長さが同じで
ある円管に比べ空気流4に対するブロッケージが管断面
の長軸の長さとなって大きくなり、円管の場合より熱交
換器としての性能を向上させることができる。したがっ
て、本発明の第1の技術手段の熱交換器により、冷媒の
削減のために冷媒管を楕円・偏平管化しても、管内部容
積の低減とともに熱交換性能を高くすることができる。
The heat exchanger 1B shown in FIG.
The difference from the prior art described in the above is that the refrigerant pipe 3B is an elliptical pipe, and is disposed such that the major axis of its cross section is substantially orthogonal to the air flow 4 (inclination angle θ = 90 °). is there. That is, in the refrigerant pipe 3B, the blockage for the airflow 4 becomes longer as the length of the major axis of the pipe cross section as compared with the circular pipe having the same circumference, and the performance as a heat exchanger is larger than that of the circular pipe. Can be improved. Therefore, the heat exchanger according to the first technical means of the present invention can reduce the internal volume of the tube and increase the heat exchange performance even if the refrigerant tube is made elliptical or flat to reduce the amount of refrigerant.

【0047】次に、本発明の第2の技術手段(構成)の
実施の形態を図3ないし図8を参照して説明する。 〔実施の形態 3〕図3は、本発明の第3の実施の形態
を示す冷蔵庫用の熱交換器、特に蒸発器の側方断面図で
ある。図3に示す第3の実施の形態の熱交換器1Cは、
冷媒管3Cを楕円管あるいは偏平管化するとともに、空
気流4に対し管断面の長軸を45度以上に傾斜させ、か
つ、冷媒管3Cの傾斜方向を列方向Aや段方向Bに規則
性をもつように設定したものである。
Next, an embodiment of the second technical means (configuration) of the present invention will be described with reference to FIGS. [Embodiment 3] FIG. 3 is a side sectional view of a heat exchanger for a refrigerator, particularly an evaporator, showing a third embodiment of the present invention. The heat exchanger 1C according to the third embodiment shown in FIG.
The refrigerant pipe 3C is formed into an elliptical pipe or a flat pipe, the major axis of the pipe section is inclined at 45 degrees or more with respect to the air flow 4, and the inclination direction of the refrigerant pipe 3C is regular in the column direction A or the step direction B. Is set to have.

【0048】熱交換器1Cにおいて、熱交換器の構成要
素であるフィン2Cや冷媒管3Cの機能や空気流4,4
aの流動状態は、既に説明した従来技術および第1の実
施の形態と基本的には変わりがない。冷媒管3Cは楕円
管であり、その断面の長軸を空気流4に対し45度ない
し直角に傾けて(傾斜角θ=45〜90°)配置し、そ
の傾斜方向を列方向Aで交互に逆になるようにさせてい
る。
In the heat exchanger 1C, the functions of the fins 2C and the refrigerant pipes 3C, which are components of the heat exchanger, and the air flow 4, 4
The flow state of “a” is basically the same as that of the prior art and the first embodiment described above. The refrigerant pipe 3C is an elliptical pipe, and the major axis of its cross section is arranged at an angle of 45 degrees or at right angles to the airflow 4 (inclination angle θ = 45 to 90 °), and its inclination direction alternates in the column direction A. It is made to be reversed.

【0049】冷媒管3Cの断面の長軸を45度以上に傾
けることにより、先に〔課題を解決する手段〕で述べた
ように、管断面の後半で空気流4aがはく離しやすくな
って乱れ促進効果が大きくなり、また周の長さが同じで
ある円管に比べ空気流に対するブロッケージが大きくな
る。冷媒管3Cの傾斜方向を列方向Aで交互に逆にする
ことにより、空気流4は熱交換器1Cの内部でジグザグ
に流れて大きく乱れるようになる。したがって、円管の
場合より熱交換器としての性能を向上させることができ
る。
By inclining the major axis of the cross section of the refrigerant pipe 3C at 45 degrees or more, the air flow 4a is easily separated in the latter half of the cross section of the pipe as described in [Means for Solving the Problems]. The promotion effect is greater, and the blockage against the air flow is greater than that of a circular tube having the same circumference. By alternately reversing the inclination direction of the refrigerant pipes 3C in the row direction A, the air flow 4 flows in a zigzag manner inside the heat exchanger 1C and becomes largely disturbed. Therefore, the performance as a heat exchanger can be improved more than in the case of a circular tube.

【0050】〔実施の形態 4〕図4は、本発明の第4
の実施の形態を示す空気調和機用の熱交換器の側方断面
図である。図4に示す第4の実施の形態の熱交換器1D
は、冷媒管3Dを楕円管あるいは偏平管化するととも
に、空気流4に対し管断面の長軸を45度以上に傾斜さ
せ、かつ、冷媒管3Dの傾斜方向を列方向Aや段方向B
に規則性をもつように設定したものである。
[Embodiment 4] FIG. 4 shows a fourth embodiment of the present invention.
It is a side sectional view of the heat exchanger for air conditioners which shows an embodiment. Heat exchanger 1D of the fourth embodiment shown in FIG.
Is to make the refrigerant pipe 3D an elliptical pipe or a flat pipe, incline the major axis of the pipe section with respect to the air flow 4 at 45 degrees or more, and change the inclination direction of the refrigerant pipe 3D to the row direction A or the step direction B.
Is set to have regularity.

【0051】熱交換器1Dにおいて、熱交換器の構成要
素であるフィン2Dや冷媒管3Dの機能や空気流4,4
aの流動状態は、既に説明した従来技術および第2の実
施の形態とと基本的には変わりがない。冷媒管3Dは楕
円管であり、その断面の長軸を空気流4に対し45度な
いし直角に傾けて(傾斜角θ=45〜90°)配置し、
その傾斜方向を列方向Aに逆になるようにさせている。
In the heat exchanger 1D, the functions of the fins 2D and the refrigerant pipes 3D, which are the components of the heat exchanger, and the air flow 4, 4
The flow state of “a” is basically the same as that of the prior art and the second embodiment described above. The refrigerant pipe 3D is an elliptic pipe, and the major axis of its cross section is inclined at an angle of 45 degrees or at right angles to the airflow 4 (inclination angle θ = 45 to 90 °), and is arranged.
The inclination direction is set to be opposite to the column direction A.

【0052】冷媒管3Dの断面の長軸を45度以上に傾
けることにより、前述のように、管断面の後半で空気流
4aがはく離しやすくなって乱れ促進効果が大きくな
り、また周の長さが同じである円管に比べ空気流に対す
るブロッケージが大きくなる。冷媒管3Dの傾斜方向を
列方向Aで交互に逆にすることにより、空気流4は熱交
換器の内部でジグザグに流れて大きく乱れるようにな
る。したがって、円管の場合より熱交換器としての性能
を向上させることができる。
By inclining the major axis of the cross section of the refrigerant pipe 3D to 45 degrees or more, as described above, the air flow 4a is easily separated in the latter half of the cross section of the pipe, and the turbulence promoting effect is increased. The blockage with respect to the air flow is larger than that of a circular tube having the same size. By alternately reversing the inclination direction of the refrigerant pipes 3D in the row direction A, the air flow 4 flows in a zigzag manner inside the heat exchanger and becomes largely disturbed. Therefore, the performance as a heat exchanger can be improved more than in the case of a circular tube.

【0053】〔実施の形態 5〕図5は、本発明の第5
の実施の形態を示す冷蔵庫用の熱交換器、特に蒸発器の
側方断面図である。図5に示す冷蔵庫用の熱交換器1E
は、冷媒管3Eを楕円管あるいは偏平管化するととも
に、空気流4に対し管断面の長軸を45度以上に傾斜さ
せ、さらに図3の例とは異なり、冷媒管3Eの傾斜方向
を列方向Aだけではなく段方向Bにも交互に逆になるよ
うに設定したものである。2Eはフィンを示す。
[Embodiment 5] FIG. 5 shows a fifth embodiment of the present invention.
FIG. 2 is a side sectional view of a heat exchanger for a refrigerator, particularly an evaporator, showing the embodiment. Heat exchanger 1E for refrigerator shown in FIG.
Is to make the refrigerant pipe 3E an elliptical pipe or a flat pipe, incline the major axis of the pipe cross section with respect to the air flow 4 at 45 degrees or more, and further, unlike the example of FIG. It is set so that it is alternately reversed not only in the direction A but also in the step direction B. 2E indicates a fin.

【0054】熱交換器1Eにおいて、冷媒管3Eの傾斜
により、空気流4は乱されるとともにやや偏向させられ
るが、冷媒管3Eの傾斜方向が特定方向に偏っていなけ
れば、空気流4の偏りによる熱交換性能の若干の低下が
起きることがない。したがって、この場合での傾斜した
冷媒管3Eによる管内部容積や熱交換性能への効果は、
前記の第3の実施の形態の場合と全く同じである。
In the heat exchanger 1E, the air flow 4 is disturbed and slightly deflected by the inclination of the refrigerant pipe 3E. However, if the inclination direction of the refrigerant pipe 3E is not deviated in a specific direction, the air flow 4 is deflected. There is no slight decrease in heat exchange performance due to heat. Therefore, the effect of the inclined refrigerant pipe 3E on the internal volume of the pipe and the heat exchange performance in this case is as follows.
This is exactly the same as in the case of the third embodiment.

【0055】〔実施の形態 6〕図6は、本発明の第6
の実施の形態を示す空気調和機用の熱交換器の側方断面
図である。図6に示す熱交換器1Fは、冷媒管3Fを楕
円管あるいは偏平管化するとともに、空気流4に対し管
断面の長軸を45度以上に傾斜させ、さらに図4の例と
は異なり、冷媒管3Fの傾斜方向を列方向Aだけではな
く段方向Bにも交互に逆になるように設定したものであ
る。2Fはフィンを示す。
[Embodiment 6] FIG. 6 shows a sixth embodiment of the present invention.
It is a side sectional view of the heat exchanger for air conditioners which shows an embodiment. The heat exchanger 1F shown in FIG. 6 is configured such that the refrigerant tube 3F is formed into an elliptical tube or a flat tube, and the major axis of the tube cross section is inclined at 45 degrees or more with respect to the airflow 4, and further, unlike the example of FIG. The inclination direction of the refrigerant pipe 3F is set so as to be alternately reversed not only in the column direction A but also in the step direction B. 2F indicates a fin.

【0056】熱交換器1Fでは、冷媒管3Fの傾斜によ
り、空気流4は乱されるとともにやや偏向させられる
が、冷媒管3Fの傾斜方向が特定方向に偏っていなけれ
ば、空気流4の偏りによる熱交換性能の若干の低下が起
きることがない。したがって、この場合での傾斜した冷
媒管3Fによる管内部容積や熱交換性能への効果は、前
記の第4の実施の形態の場合と全く同じである。
In the heat exchanger 1F, the air flow 4 is disturbed and slightly deflected by the inclination of the refrigerant pipe 3F. However, if the inclination direction of the refrigerant pipe 3F is not deviated in a specific direction, the air flow 4 is deflected. There is no slight decrease in heat exchange performance due to heat. Therefore, the effect of the inclined refrigerant pipe 3F on the internal volume of the pipe and the heat exchange performance in this case is exactly the same as in the case of the fourth embodiment.

【0057】〔実施の形態 7〕図7は、本発明の第7
の実施の形態を示す冷蔵庫用の熱交換器、特に蒸発器の
側方断面図である。図7に示す熱交換器1Gは、冷媒管
3Gを楕円管あるいは偏平管化するとともに、空気流4
に対し管断面の長軸を45度以上に傾斜させ、さらに、
冷媒管3Gの傾斜方向を列方向Aには同一としながら段
方向Bには逆になるように設定している。2Gはフィン
を示す。
[Embodiment 7] FIG. 7 shows a seventh embodiment of the present invention.
FIG. 2 is a side sectional view of a heat exchanger for a refrigerator, particularly an evaporator, showing the embodiment. In the heat exchanger 1G shown in FIG. 7, the refrigerant pipe 3G is formed into an elliptical pipe or a flat
In contrast, the major axis of the pipe section is inclined at 45 degrees or more,
The direction of inclination of the refrigerant pipe 3G is set to be the same in the column direction A and opposite in the step direction B. 2G indicates a fin.

【0058】熱交換器1Gでは、冷媒管3Gの傾斜によ
る空気流4の偏向に合わせて冷媒管3Gの段方向Bの配
列ピッチCを風路が先細りになる部分で広く設定したの
で、空気流4の偏りによる熱交換性能の若干の低下を少
なくすることができる。したがって、この場合での傾斜
した冷媒管3Gによる管内部容積や熱交換性能への効果
は、前記の第3の実施の形態の場合と全く同じである。
In the heat exchanger 1G, the arrangement pitch C of the refrigerant pipes 3G in the step direction B is set wider in the portion where the air path is tapered in accordance with the deflection of the air flow 4 due to the inclination of the refrigerant pipes 3G. It is possible to reduce a slight decrease in the heat exchange performance due to the bias of 4. Therefore, the effect on the tube internal volume and the heat exchange performance of the inclined refrigerant tube 3G in this case is exactly the same as in the case of the third embodiment.

【0059】〔実施の形態 8〕図8は、本発明の第8
の実施の形態を示す空気調和機用の熱交換器の側方断面
図である。図8に示す熱交換器1Hは、冷媒管3Hを楕
円管あるいは偏平管化するとともに、空気流4に対し管
断面の長軸を45度以上に傾斜させ、さらに、冷媒管3
Hの傾斜方向を列方向Aには同一としながら段方向Bに
は交互に逆になるように設定し、冷媒管3Hの段方向B
の配列ピッチCを冷媒管3Hの傾斜で風路が先細りにな
る部分は広く、風路が拡大する部分は狭くしている。2
Hはフィンを示す。
[Embodiment 8] FIG. 8 shows an eighth embodiment of the present invention.
It is a side sectional view of the heat exchanger for air conditioners which shows an embodiment. The heat exchanger 1H shown in FIG. 8 is configured such that the refrigerant pipe 3H is formed into an elliptical pipe or a flat pipe, the long axis of the pipe section is inclined at 45 degrees or more with respect to the air flow 4, and the refrigerant pipe 3H
The inclination direction of H is set to be the same in the column direction A and alternately reversed in the step direction B.
In the arrangement pitch C, the part where the air path is tapered due to the inclination of the refrigerant pipe 3H is wide, and the part where the air path is enlarged is narrow. 2
H indicates a fin.

【0060】熱交換器1Hでは、冷媒管3Hの傾斜方向
を列方向Aには同一としながら段方向Bには交互に逆に
なるように設定し、冷媒管3Hの段方向Bの配列ピッチ
Cを冷媒管3Hの傾斜で風路が先細りになる部分は広く
適正に設定したので、空気流4の偏りによる熱交換性能
の若干の低下を少なくすることができる。したがって、
この場合での傾斜した冷媒管3Hによる管内部容積や熱
交換性能への効果は、前記の第4の実施の形態の場合と
全く同じである。上記により、本発明の第2の技術手段
を適用した熱交換器により、冷媒の削減のために冷媒管
を楕円・偏平管化しても、管内部容積の低減と共に熱交
換性能を高くすることができる。
In the heat exchanger 1H, the inclination direction of the refrigerant pipes 3H is set to be the same in the column direction A and alternately reversed in the step direction B, and the arrangement pitch C of the refrigerant pipes 3H in the step direction B is set. Since the portion where the air path is tapered due to the inclination of the refrigerant pipe 3H is set appropriately widely, it is possible to reduce a slight decrease in the heat exchange performance due to the bias of the air flow 4. Therefore,
The effect of the inclined refrigerant pipe 3H on the internal volume of the pipe and the heat exchange performance in this case is exactly the same as in the case of the fourth embodiment. As described above, the heat exchanger to which the second technical means of the present invention is applied makes it possible to increase the heat exchange performance as well as to reduce the internal volume of the pipe even if the refrigerant pipe is made elliptical or flat to reduce the amount of refrigerant. it can.

【0061】次に、本発明の第3の技術手段(構成)の
実施の形態を図9ないし図12を参照して説明する。 〔実施の形態 9〕図9は、本発明の第9の実施の形態
を示す冷蔵庫用の熱交換器、特に蒸発器の側方断面図で
ある。図9に示す熱交換器1Iは、図14に示した熱交
換器の構成に対し、空気流4と直交する方向に長い偏平
形状の断面を有する乱れ促進部材5を冷媒管3の各列の
直管部に対し上流位置となるフィン2の前縁や中間に設
けた熱交換器である。
Next, an embodiment of the third technical means (configuration) of the present invention will be described with reference to FIGS. Ninth Embodiment FIG. 9 is a side sectional view of a heat exchanger for a refrigerator, particularly an evaporator, showing a ninth embodiment of the present invention. The heat exchanger 1I shown in FIG. 9 differs from the heat exchanger shown in FIG. 14 in that a turbulence promoting member 5 having a flat cross section that is long in a direction orthogonal to the airflow 4 is provided in each row of the refrigerant pipes 3. This is a heat exchanger provided at the front edge or middle of the fin 2 located upstream of the straight pipe portion.

【0062】熱交換器1Iでは、熱交換器の構成要素で
あるフィン2や冷媒管3の機能や空気流4,4aの流動
状態は、従来の技術と基本的には変わりがない。しか
し、冷媒管3の各列のフィン2の前縁に接するように偏
平断面の乱れ促進部材5が設置されており、これら乱れ
促進部材5が冷媒管3と同様に空気流4を大きく乱す作
用を行う。したがって、乱れ促進部材5が設置される前
にくらべて、熱交換器としての性能を向上させることが
できる。
In the heat exchanger 1I, the functions of the fins 2 and the refrigerant pipes 3, which are the components of the heat exchanger, and the flow states of the air flows 4 and 4a are basically the same as those of the conventional technology. However, the turbulence accelerating members 5 having a flat cross section are provided so as to be in contact with the front edges of the fins 2 in each row of the refrigerant pipes 3, and these turbulence accelerating members 5 act to greatly disturb the air flow 4 like the refrigerant pipes 3. I do. Therefore, the performance as a heat exchanger can be improved compared to before the turbulence promoting member 5 is installed.

【0063】〔実施の形態 10〕図10は、本発明の
第10の実施の形態を示す空気調和機用の熱交換器の側
方断面図である。図10に示す熱交換器IJは、図16
に示した熱交換器の構成に対し、空気流4と直交する方
向に長い偏平断面の乱れ促進部材5を冷媒管3の各列の
直管部に対し上流位置となるフィン2の前縁や中間に設
けたものである。
[Embodiment 10] FIG. 10 is a side sectional view of a heat exchanger for an air conditioner according to a tenth embodiment of the present invention. The heat exchanger IJ shown in FIG.
In contrast to the configuration of the heat exchanger shown in FIG. 1, the turbulence promoting member 5 having a flat cross section that is long in a direction orthogonal to the air flow 4 is provided with a front edge of the fin 2 at an upstream position with respect to the straight pipe portion of each row of the refrigerant pipes 3. It is provided in the middle.

【0064】熱交換器IJでは、熱交換器の構成要素で
あるフィン2や冷媒管3の機能や空気流4,4aの流動
状態は、従来技術と基本的には変わりがない。しかし、
冷媒管3の各列のフィン2の前縁に接するように偏平断
面の乱れ促進部材5が設置されており、これら乱れ促進
部材5が冷媒管3と同様に空気流4を大きく乱す作用を
行う。
In the heat exchanger IJ, the functions of the fins 2 and the refrigerant pipes 3, which are the components of the heat exchanger, and the flow states of the airflows 4 and 4a are basically the same as those of the prior art. But,
The turbulence promoting members 5 having a flat cross section are provided so as to be in contact with the front edges of the fins 2 in each row of the refrigerant pipes 3, and these turbulence promoting members 5 have a function of greatly disturbing the air flow 4 similarly to the refrigerant pipes 3. .

【0065】これにより、従来の構成のまま冷媒管3を
細径管化や楕円・偏平管化して熱交換性能の低下が起き
る状態であっても、乱れ促進部材5により性能低下を解
消することができ、細径管化や楕円・偏平管化する前の
円管に対し熱交換性能を同等以上に保つことができる。
したがって、本発明の第3の技術手段の熱交換器によ
り、冷媒の削減のために冷媒管を楕円・偏平管化して
も、管内部容積の低減と共に熱交換性能の向上を図るこ
とができる。
In this way, even if the refrigerant pipe 3 is made thinner or elliptical or flattened in the conventional configuration and the heat exchange performance is deteriorated, the performance deterioration is eliminated by the turbulence promoting member 5. Therefore, the heat exchange performance can be kept equal to or higher than that of the circular pipe before being formed into a small diameter pipe or an elliptical or flat pipe.
Therefore, the heat exchanger according to the third technical means of the present invention can reduce the internal volume of the pipe and improve the heat exchange performance even if the refrigerant pipe is made elliptical or flat to reduce the amount of refrigerant.

【0066】〔実施の形態11〕図11は、本発明の第
11の実施の形態を示す冷蔵庫用の熱交換器、特に蒸発
器の側方断面図である。図11に示す熱交換器1Kは、
本発明の第1の技術手段と第3の技術手段とを組み合わ
せたものである。すなわち、冷媒管3Aを楕円管あるい
は偏平管化するともに、空気流4に対し管断面の長軸が
ほぼ直交するように配設した熱交換器1Kに、空気流4
と直交する方向に長い偏平形状の断面を有する乱れ促進
部材5を冷媒管3Aの各列の直管部に対し上流位置とな
るフィン2Aの前縁や中間に設けたものである。
[Embodiment 11] FIG. 11 is a side sectional view of a heat exchanger for a refrigerator, particularly an evaporator, showing an eleventh embodiment of the present invention. The heat exchanger 1K shown in FIG.
This is a combination of the first technical means and the third technical means of the present invention. That is, the refrigerant pipe 3A is formed into an elliptical pipe or a flat pipe, and the air flow 4 is supplied to the heat exchanger 1K disposed so that the major axis of the pipe cross section is substantially orthogonal to the air flow 4.
A turbulence accelerating member 5 having a flat cross section that is long in a direction perpendicular to the above is provided at the front edge or middle of the fin 2A located upstream with respect to the straight pipe portion of each row of the refrigerant pipes 3A.

【0067】熱交換器1Kでは、これまでの説明から明
らかなように、冷媒量削減のために冷媒管を楕円・偏平
管化しても、管内部容積の低減とともに熱交換性能を高
くすることができる。
As is clear from the above description, in the heat exchanger 1K, even if the refrigerant pipe is made elliptical or flat to reduce the amount of refrigerant, it is possible to increase the heat exchange performance while reducing the internal volume of the pipe. it can.

【0068】〔実施の形態12〕図12は、本発明の第
12の実施の形態を示す空気調和機用の熱交換器の側方
断面図である。図12に示す熱交換器1Lは、本発明の
第1の技術手段と第3の技術手段とを組み合わせた熱交
換器である。すなわち、冷媒管3Bを楕円管あるいは偏
平管化するともに、空気流4に対し管断面の長軸がほぼ
直交するように配設した熱交換器1Lに、空気流4と直
交する方向に長い偏平形状の断面を有する乱れ促進部材
5を冷媒管3Bの各列の直管部に対し上流位置となるフ
ィン2Bの前縁や中間に設けたものである。
[Twelfth Embodiment] FIG. 12 is a side sectional view of a heat exchanger for an air conditioner showing a twelfth embodiment of the present invention. A heat exchanger 1L shown in FIG. 12 is a heat exchanger combining the first technical means and the third technical means of the present invention. That is, the refrigerant pipe 3B is formed into an elliptical pipe or a flat pipe, and the heat exchanger 1L arranged so that the major axis of the pipe cross section is substantially perpendicular to the air flow 4 is provided with a long flat shape in the direction perpendicular to the air flow 4. A turbulence accelerating member 5 having a cross section of a shape is provided at a front edge or an intermediate portion of the fin 2B located upstream with respect to the straight pipe portion of each row of the refrigerant pipes 3B.

【0069】前記空気調和機用の熱交換器1Lでは、こ
れまでの説明から明らかなように、冷媒の削減のために
冷媒管を楕円,偏平管化しても、管内部容積の低減とと
もに熱交換性能の向上を図ることができる。
In the heat exchanger 1L for the air conditioner, as is clear from the above description, even if the refrigerant pipe is made elliptical or flat for the purpose of reducing the refrigerant, the heat exchange with the pipe inner volume is reduced. Performance can be improved.

【0070】[0070]

【発明の効果】以上詳細に説明したように、本発明によ
れば、冷媒量削減のために熱交換器の冷媒管の細径管化
や楕円・偏平管化を行っても、熱交換性能を高く保つこ
とができる冷凍空調用の強制対流型の熱交換器を提供す
ることができる。
As described above in detail, according to the present invention, even if the refrigerant pipe of the heat exchanger is reduced in diameter or is made elliptical or flat to reduce the amount of refrigerant, the heat exchange performance can be improved. , A forced convection type heat exchanger for refrigeration and air conditioning, which can maintain a high air temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す冷蔵庫用の熱
交換器の側方断面図である。
FIG. 1 is a side sectional view of a heat exchanger for a refrigerator, showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示す空気調和機用
の熱交換器の側方断面図である。
FIG. 2 is a side sectional view of a heat exchanger for an air conditioner according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態を示す冷蔵庫用の熱
交換器の側方断面図である。
FIG. 3 is a side sectional view of a heat exchanger for a refrigerator according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態を示す空気調和機用
の熱交換器の側方断面図である。
FIG. 4 is a side sectional view of a heat exchanger for an air conditioner according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施の形態を示す冷蔵庫用の熱
交換器の側方断面図である。
FIG. 5 is a side sectional view of a heat exchanger for a refrigerator according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施の形態を示す空気調和機用
の熱交換器の側方断面図である。
FIG. 6 is a side sectional view of a heat exchanger for an air conditioner according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施の形態を示す冷蔵庫用の熱
交換器の側方断面図である。
FIG. 7 is a side sectional view of a heat exchanger for a refrigerator, showing a seventh embodiment of the present invention.

【図8】本発明の第8の実施の形態を示す空気調和機用
の熱交換器の側方断面図である。
FIG. 8 is a side sectional view of a heat exchanger for an air conditioner, showing an eighth embodiment of the present invention.

【図9】本発明の第9の実施の形態を示す冷蔵庫用の熱
交換器の側方断面図である。
FIG. 9 is a side sectional view of a heat exchanger for a refrigerator according to a ninth embodiment of the present invention.

【図10】本発明の第10の実施の形態を示す空気調和
機用の熱交換器の側方断面図である。
FIG. 10 is a side sectional view of a heat exchanger for an air conditioner, showing a tenth embodiment of the present invention.

【図11】本発明の第11の実施の形態を示す冷蔵庫用
の熱交換器の側方断面図である。
FIG. 11 is a side sectional view of a heat exchanger for a refrigerator showing an eleventh embodiment of the present invention.

【図12】本発明の第12の実施の形態を示す空気調和
機用の熱交換器の側方断面図である。
FIG. 12 is a side sectional view of a heat exchanger for an air conditioner according to a twelfth embodiment of the present invention.

【図13】一般的な冷蔵庫用の熱交換器を示す斜視図で
ある。
FIG. 13 is a perspective view showing a general heat exchanger for a refrigerator.

【図14】図13の側方断面図である。FIG. 14 is a side sectional view of FIG. 13;

【図15】一般的な空気調和機用の熱交換器を示す斜視
図である。
FIG. 15 is a perspective view showing a heat exchanger for a general air conditioner.

【図16】図15の側方断面図である。FIG. 16 is a side sectional view of FIG. 15;

【符号の説明】[Explanation of symbols]

1A,1B,1C,1D,1E,1F,1G,1H,1
I,1J…熱交換器、2,2A,2B,2C,2D,2
E,2F,2G,2H…フィン、3,3A,3B,3
C,3D,3E,3F,3G,3H…冷媒管、4,4a
…空気流、5…乱れ促進部材。
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1
I, 1J: heat exchanger, 2, 2A, 2B, 2C, 2D, 2
E, 2F, 2G, 2H ... fin, 3, 3A, 3B, 3
C, 3D, 3E, 3F, 3G, 3H ... refrigerant pipe, 4, 4a
... air flow, 5 ... turbulence promoting member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 康博 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 店網 太一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiro Matsuoka 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside of Hitachi, Ltd. Address: In the Refrigeration Division, Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 空気流にほぼ直交するように配設された
冷媒管の複数の直管部と、該冷媒管の直管部に主要部分
がほぼ直交すると共に該冷媒管の直管部の管軸方向に互
いに間隔を保持して並設された多数のフィンとを一体化
して構成した熱交換器において、 前記冷媒管の直管部を楕円形あるいは偏平な断面形状の
ものとし、かつ、前記冷媒管の直管部の断面の長軸が前
記空気流とほぼ直交するように配設したことを特徴とす
る熱交換器。
1. A refrigerant pipe having a plurality of straight pipes disposed so as to be substantially orthogonal to an air flow, a main part being substantially orthogonal to the straight pipe of the refrigerant pipe, and a straight pipe of the refrigerant pipe. In a heat exchanger configured by integrating a large number of fins arranged side by side while maintaining an interval in the pipe axis direction, the straight pipe portion of the refrigerant pipe has an elliptical or flat cross-sectional shape, and The heat exchanger according to claim 1, wherein a long axis of a cross section of the straight pipe portion of the refrigerant pipe is disposed so as to be substantially orthogonal to the air flow.
【請求項2】 空気流にほぼ直交するように配設された
冷媒管の複数の直管部と、該冷媒管の直管部に主要部分
がほぼ直交すると共に該冷媒管の直管部の管軸方向に互
いに間隔を保持して並設された多数のフィンとを一体化
して構成した熱交換器において、 前記冷媒管の直管部を楕円形あるいは偏平な断面形状の
ものとし、かつ、前記冷媒管の直管部の断面の長軸が前
記空気流に対して保持する傾斜角が45度ないし直角と
なるように前記冷媒管の直管部を傾斜させて配設すると
ともに、 前記冷媒管の直管部の傾斜方向を前記熱交換器の列方向
および段方向に規則性を有するように設定したことを特
徴とする熱交換器。
2. A refrigerant pipe having a plurality of straight pipes disposed substantially orthogonal to an air flow, a main part substantially orthogonal to the straight pipe of the refrigerant pipe, and a straight pipe of the refrigerant pipe. In a heat exchanger configured by integrating a large number of fins arranged side by side while maintaining an interval in the pipe axis direction, the straight pipe portion of the refrigerant pipe has an elliptical or flat cross-sectional shape, and The straight pipe section of the refrigerant pipe is disposed so as to be inclined such that the long axis of the cross section of the straight pipe section of the refrigerant pipe with respect to the air flow is 45 degrees or a right angle. A heat exchanger characterized in that the inclination direction of the straight pipe portion of the pipe is set so as to have regularity in the row direction and the step direction of the heat exchanger.
【請求項3】 請求項2記載のものにおいて、前記冷媒
管の直管部の断面の長軸が前記空気流に対して保持する
傾斜角を列毎に正負が逆になるように設定したことを特
徴とする熱交換器。
3. The inclination angle of the cross section of the straight pipe portion of the refrigerant pipe held with respect to the airflow is set so that the polarity is reversed for each row. A heat exchanger.
【請求項4】 請求項2記載のものにおいて、前記冷媒
管の直管部の断面の長軸が前記空気流に対して保持する
傾斜角を段方向に正負が逆になるように設定したことを
特徴とする熱交換器。
4. The apparatus according to claim 2, wherein a major axis of a cross section of the straight pipe portion of the refrigerant pipe is set such that an inclination angle held by the air flow with respect to the air flow is opposite in the step direction. A heat exchanger.
【請求項5】 請求項2記載のものにおいて、前記冷媒
管の直管部の断面の長軸が前記空気流に対して保持する
傾斜角を段方向に正負が逆になるように設定するととも
に、前記冷媒管の直管部の段方向の配列ピッチを規則的
に増減させて設定したことを特徴とする熱交換器。
5. An apparatus according to claim 2, wherein a major axis of a cross section of the straight pipe portion of the refrigerant pipe has an inclination angle held with respect to the air flow set so that the positive and negative are reversed in the stepwise direction. A heat exchanger, wherein the arrangement pitch of the straight pipe portions of the refrigerant pipes in the step direction is regularly increased and decreased.
【請求項6】 空気流にほぼ直交するように配設された
冷媒管の複数の直管部と、該冷媒管の直管部に主要部分
がほぼ直交すると共に該冷媒管の直管部の管軸方向に互
いに間隔を保持して並設された多数のフィンとを一体化
して構成した熱交換器において、 前記空気流と直交する方向に長い偏平形状の断面を有す
る乱れ促進部材を、前記冷媒管の各列の直管部に対し上
流位置となる前記フィンの前縁あるいは中間に設けたこ
とを特徴とする熱交換器。
6. A refrigerant pipe having a plurality of straight pipes disposed substantially orthogonal to the air flow, a main part substantially orthogonal to the straight pipe of the refrigerant pipe, and a straight pipe of the refrigerant pipe. In a heat exchanger configured by integrating a large number of fins arranged side by side while maintaining an interval in the pipe axis direction, the turbulence promoting member having a flat cross section that is long in a direction orthogonal to the air flow, A heat exchanger provided at a front edge or an intermediate portion of the fin, which is located upstream of a straight pipe portion of each row of the refrigerant pipes.
【請求項7】 請求項6記載のものにおいて、前記乱れ
促進部材がすぐ下流位置にある前記冷媒管の直管部に対
し段方向にはほぼ中間位置となるように設けたことを特
徴とする熱交換器。
7. The apparatus according to claim 6, wherein the turbulence promoting member is provided at a substantially intermediate position in a stepwise direction with respect to a straight pipe portion of the refrigerant pipe located immediately downstream. Heat exchanger.
【請求項8】 請求項6記載のものにおいて、前記熱交
換器が前記空気流を氷点以下に冷却する状態で使用され
る場合は、前記乱れ促進部材の材質を樹脂としたことを
特徴とする熱交換器。
8. The turbulence promoting member according to claim 6, wherein the turbulence promoting member is made of resin when the heat exchanger is used in a state where the air flow is cooled below the freezing point. Heat exchanger.
【請求項9】 請求項1または2記載のもののいずれか
において、前記空気流と直交する方向に長い偏平形状の
断面を有する乱れ促進部材を、前記冷媒管の各列の直管
部に対し上流位置となる前記フィンの前縁あるいは中間
に設けたことを特徴とする熱交換器。
9. The cooling pipe according to claim 1, wherein a turbulence promoting member having a flat cross section that is long in a direction perpendicular to the air flow is provided upstream of a straight pipe portion of each row of the refrigerant pipes. A heat exchanger provided at a front edge or an intermediate portion of the fin as a position.
JP32935597A 1997-12-01 1997-12-01 Heat exchanger Pending JPH11159984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32935597A JPH11159984A (en) 1997-12-01 1997-12-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32935597A JPH11159984A (en) 1997-12-01 1997-12-01 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH11159984A true JPH11159984A (en) 1999-06-15

Family

ID=18220541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32935597A Pending JPH11159984A (en) 1997-12-01 1997-12-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH11159984A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287733A (en) * 2008-06-19 2008-11-27 Hitachi Ltd Liquid cooling system
WO2012014934A1 (en) * 2010-07-27 2012-02-02 住友軽金属工業株式会社 Serpentine heat exchanger for an air conditioner
WO2014087584A1 (en) * 2012-12-05 2014-06-12 パナソニック株式会社 Refrigerator
WO2014091536A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus
WO2020012548A1 (en) * 2018-07-10 2020-01-16 三菱電機株式会社 Heat exchanger, heat exchanger unit, and refrigeration cycle device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287733A (en) * 2008-06-19 2008-11-27 Hitachi Ltd Liquid cooling system
WO2012014934A1 (en) * 2010-07-27 2012-02-02 住友軽金属工業株式会社 Serpentine heat exchanger for an air conditioner
JPWO2012014934A1 (en) * 2010-07-27 2013-09-12 住友軽金属工業株式会社 Serpentine heat exchanger for air conditioner
WO2014087584A1 (en) * 2012-12-05 2014-06-12 パナソニック株式会社 Refrigerator
JP2014112008A (en) * 2012-12-05 2014-06-19 Panasonic Corp Refrigerator
WO2014091536A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus
WO2014091782A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
CN104838224A (en) * 2012-12-10 2015-08-12 三菱电机株式会社 Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
JPWO2014091782A1 (en) * 2012-12-10 2017-01-05 三菱電機株式会社 Flat tube heat exchanger and air conditioner outdoor unit equipped with the same
US9657996B2 (en) 2012-12-10 2017-05-23 Mitsubishi Electric Corporation Flat tube heat exchanger and outdoor unit of air-conditioning apparatus including the heat exchanger
WO2020012548A1 (en) * 2018-07-10 2020-01-16 三菱電機株式会社 Heat exchanger, heat exchanger unit, and refrigeration cycle device
JPWO2020012548A1 (en) * 2018-07-10 2021-04-30 三菱電機株式会社 Heat exchanger, heat exchanger unit and refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
US7549465B2 (en) Heat exchangers based on non-circular tubes with tube-endplate interface for joining tubes of disparate cross-sections
US7913750B2 (en) Louvered air center with vortex generating extensions for compact heat exchanger
US7398819B2 (en) Minichannel heat exchanger with restrictive inserts
US9803935B2 (en) Heat exchanger
US20160123681A1 (en) Fin tube heat exchanger
US20190024963A1 (en) Heat exchanger for refrigerator and refrigerator having the same
JP2000193389A (en) Outdoor unit of air-conditioner
JP2005106328A (en) Heat exchanging device
JPH04177091A (en) Heat exchanger
CN110462326B (en) Heat exchanger and refrigeration cycle device
JPH11159984A (en) Heat exchanger
US20030150601A1 (en) Heat exchanger fin for air conditioner
JP5935167B2 (en) Air conditioner
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
US20220034593A1 (en) Heat exchanger devices and systems and associated methods
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP2003161588A (en) Heat exchanger and air conditioner having the same
JPH10132424A (en) Flat heat exchanger tube
KR100606332B1 (en) Flat tube for heat exchanger for use in air conditioning or refrigeration systems
JP2001165586A (en) Heat exchanger and air-conditioning refrigerating device equipped with the heat exchanger
US7028766B2 (en) Heat exchanger tubing with connecting member and fins and methods of heat exchange
KR101430362B1 (en) Fin-microchannel heat exchanger and manufacturing method of a heat exchanger
JP6921323B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP2001004291A (en) Heat exchanger and method for manufacturing same
JPH0735441A (en) Plate fin and tube type evaporator