WO2012014934A1 - Serpentine heat exchanger for an air conditioner - Google Patents

Serpentine heat exchanger for an air conditioner Download PDF

Info

Publication number
WO2012014934A1
WO2012014934A1 PCT/JP2011/067087 JP2011067087W WO2012014934A1 WO 2012014934 A1 WO2012014934 A1 WO 2012014934A1 JP 2011067087 W JP2011067087 W JP 2011067087W WO 2012014934 A1 WO2012014934 A1 WO 2012014934A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
resin
heat transfer
air conditioner
Prior art date
Application number
PCT/JP2011/067087
Other languages
French (fr)
Japanese (ja)
Inventor
直栄 佐々木
紀寿 磯村
史郎 柿山
Original Assignee
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社 filed Critical 住友軽金属工業株式会社
Priority to CN201180036442.6A priority Critical patent/CN103026165B/en
Priority to KR1020137003572A priority patent/KR20130036762A/en
Priority to JP2012526532A priority patent/JPWO2012014934A1/en
Priority to KR20157002584A priority patent/KR20150029728A/en
Publication of WO2012014934A1 publication Critical patent/WO2012014934A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the present invention relates to a serpentine heat exchanger in which heat is exchanged between a heat exchange fluid such as air and a refrigerant, and more particularly to a serpentine heat exchanger suitably used as a heat exchanger for an air conditioner. is there.
  • a cross fin tube type heat exchanger has been mainly used as a heat exchanger for an air conditioner.
  • This cross fin tube heat exchanger is formed by joining a plurality of heat transfer tubes bent in a hairpin to a plurality of fins in the vertical direction and expanding the heat transfer tubes to join the fins and the heat transfer tubes. It is structured. And in such a heat exchanger, while circulating a predetermined
  • such a cross fin tube type heat exchanger is generally composed of aluminum or aluminum alloy fins and copper or copper alloy heat transfer tubes, and a plurality of heat transfer tubes per fin. It is structured to be inserted.
  • an indoor heat exchanger of an air conditioner for example, as disclosed in Japanese Patent Laid-Open No. 2008-138913 (Patent Document 1), an arc-shaped heat that covers a scroll fan is disclosed.
  • An exchanger or a heat exchanger having a multi-stage bent shape is used.
  • a flat plate heat exchanger or a heat exchanger having a shape obtained by bending a flat plate is generally used.
  • a cross fin tube type heat exchanger is normally manufactured in the following processes. That is, first, an aluminum plate fin in which a plurality of predetermined assembly holes are formed is formed by pressing or the like. Next, after a plurality of the obtained aluminum plate fins are laminated at a predetermined interval, a separately manufactured heat transfer tube is inserted into the assembly hole.
  • the heat transfer tube used here shall be provided with a hairpin bending process after cutting the groove with a predetermined groove on the inner surface by rolling or the like to a predetermined length. It becomes.
  • the heat transfer tube is fixed to the aluminum plate fin by expanding the tube using various known methods, and then the U-bend tube is brazed to the end of the heat transfer tube opposite to the side subjected to the hairpin bending process.
  • the target cross fin tube type heat exchanger is manufactured through the attaching process.
  • a large capital investment is required.
  • a large press device for forming aluminum plate fins and a press die thereof a tube expansion device for expanding and fixing the aluminum plate fin and the heat transfer tube, and a tube expansion burette used therefor are required.
  • the indoor heat exchanger and the outdoor heat exchanger have different fin shapes (such as slits and louvers) and heat transfer tube diameters. Factors that obstruct drastic model changes that would change the shape of the heat exchangers, because it is necessary to prepare press dies, expanded burettes, etc. It has become.
  • brazing process which is the final process when assembling the heat exchanger
  • brazed locations such as connecting the heat transfer tubes with U-bend tubes, resulting in a large work load and increased energy costs.
  • quality defects such as burning of aluminum fins occurring during brazing and leakage from the brazing part, and a heat exchanger with as few brazing points as possible is desired. It is.
  • a heat exchanger used for a refrigerator or the like conventionally, a large number of holes are formed in one large plate-like aluminum fin as described above, and a cooling pipe is passed through the hole.
  • a cross fin tube type heat exchanger is used, in which fins and cooling pipes are crimped by expansion, brazed at the end of each cooling pipe with a U-shaped connecting pipe, and communicated with each other.
  • this also had the same problem as above.
  • a heat exchanger used in a refrigerator or the like is composed of a large number of plate fins arranged in parallel and a refrigerant pipe penetrating these fins.
  • a fin-and-tube heat exchanger (serpentine heat exchanger) of an independent fin type in which the plate fins are arranged in rows and stages with respect to the refrigerant pipe.
  • Many have been clarified (see Patent Documents 2 to 4).
  • the heat exchanger is configured by bending the refrigerant pipe to which the independent fin group is attached in a zigzag manner, it is possible to reduce brazing points.
  • the productivity can be improved, and the heat exchange performance can be improved by the leading edge effect obtained by using independent fins.
  • heat exchangers for air conditioners have been developed from conventional fin fin tube type heat exchangers composed of aluminum fins and copper heat transfer tubes. There is a movement to convert to an all-aluminum heat exchanger, in which all heat transfer tubes are made of aluminum or aluminum alloy.
  • serpentine heat exchangers In particular, in indoor units, heat exchangers that can sufficiently cope with the remarkable downsizing seen in recent years are desired. In response to such demands, serpentine heat exchangers have independent fins. It is expected to improve heat exchange performance due to the leading edge effect, etc., and has the possibility of being able to cope with compactness. Furthermore, in terms of manufacturing air conditioners, heat exchangers for indoor units and outdoor units It is possible to simplify the process by sharing as much as possible. From these viewpoints, development of a serpentine heat exchanger that is advantageously used as a heat exchanger for an air conditioner is desired.
  • JP 2008-138913 A Japanese Utility Model Publication No. 5-8265 JP-A-5-265941 JP 2002-243382 A
  • the present invention has been made in the background of such circumstances, and the problem to be solved is that a decrease in heat exchange performance due to condensation is effectively suppressed, and an air conditioner
  • An object of the present invention is to provide a serpentine heat exchanger for an air conditioner that can sufficiently cope with downsizing.
  • the heat exchange fluids are arranged in parallel to each other at a predetermined interval in the direction (y direction) perpendicular to the flow direction (x direction) of the heat exchange fluid.
  • a plurality of fin groups composed of a large number of fins are arranged in a row at a predetermined distance in the direction perpendicular to the x direction and the y direction (z direction) to form a multi-stage fin group
  • the metal heat transfer tubes are arranged in a meandering form so as to sequentially penetrate the fin groups of the respective stages.
  • Each fin constituting the fin group has the same shape, and adjacent fins are arranged at intervals of 0.6 to 5.0 mm.
  • the fin is It is made of a pre-coated metal plate in which a single-layer or multi-layer coating layer is formed on at least one surface of the metal plate, and at least the outermost layer of the coating layer is made of a hydrophilic resin or a water-repellent resin.
  • the gist of the present invention is a serpentine heat exchanger for an air conditioner that is a film layer.
  • the shape of the fin a shape such as a rectangle, a circle, or a polygon is preferably employed.
  • the metal plate is made of aluminum or an aluminum alloy.
  • the heat transfer tube is made of aluminum or an aluminum alloy, and according to another desirable aspect, The sacrificial anode effect by zinc is given to the outer surface.
  • the material of the metal plate is JIS A1050, JIS A1100, JIS A1200, JIS A7072, and JIS A1050, JIS.
  • A1100 or JIS A1200 is an aluminum or aluminum alloy composed of any one of 0.1 to 0.5% by mass of Mn and / or 0.1 to 1.8% by mass of Zn
  • the material of the heat transfer tube is aluminum or an aluminum alloy made of any one of JIS A1050, JIS A1100, JIS A1200, and JIS A3003.
  • the heat transfer tube is made of copper or a copper alloy, and is still another desirable aspect. Accordingly, the material of the heat transfer tube is JIS H3300 C1220 or JIS H3300 C5010.
  • the inner surface of the metal heat transfer tube has a predetermined length with respect to the straight groove and the tube axis parallel to the tube axis direction. It is comprised so that it may have any 1 type, or 2 or more types of the cross groove comprised by the spiral groove
  • the fin has a plurality of embossed portions protruding in the thickness direction and having a circular or elliptical bottom portion. It is configured as such.
  • the fin is slit or louvered, and according to another desirable aspect, the projected area of the fin is The cross-sectional area defined by the outer diameter of the heat transfer tube is 3 to 30 times.
  • the projected area of the fin is 200 to 1000 mm 2 .
  • the outer diameter of the metal heat transfer tube is 3 to 13 mm.
  • a surface treatment layer is provided on the surface of the metal plate, and on the surface treatment layer, A single-layer or multiple-layer coating layer is formed.
  • the hydrophilic resin is a polyvinyl alcohol resin, a polyacrylamide resin, a polyacrylic acid resin, a cellulose resin. It will be selected from the group consisting of resins and polyethylene glycol resins.
  • the water-repellent resin is an epoxy resin, polyurethane resin, acrylic resin, melamine resin, fluorine It will be selected from the group consisting of resin based resins, silicone based resins, and polyester based resins.
  • a resin coating layer is advantageously formed on the surface of the metal heat transfer tube.
  • the said resin-made coating-film layer contains a heat conductive filler.
  • a serpentine heat exchanger having the characteristic structure as described above, and fan means for circulating a heat exchange fluid in the x direction through the plurality of fin groups arranged in the z direction.
  • An interval between adjacent fins in the fin group located in the first region where the wind speed during circulation of the heat exchange fluid by the fan means is large or a part thereof is defined as p 1, and 0 with respect to the wind speed in the first region.
  • the fin group located in the first area or a part thereof and the fin group located in the second area or a part thereof are positioned on different stages in the z-direction.
  • the fin group located in the first region or a part thereof and the fin group located in the second region or A part thereof is configured to be located in the same step in the z direction.
  • each fin is made of a pre-coated metal plate in which a single-layer or multi-layer coating layer is formed on at least one surface of the metal plate. Since at least the outermost layer of the coating layer is made of a hydrophilic resin or a water-repellent resin, when used in an air conditioner, a decrease in heat exchange performance due to condensation is effectively suppressed. It is.
  • one or two heat transfer tubes are penetrated through a large number of fins constituting the fin group, and are configured by independent fin groups.
  • the fin efficiency can be advantageously increased, and the heat interference (conduction) through the fins of adjacent heat transfer tubes can be cut off. As a result, it is possible to improve the heat exchange performance, thereby It is possible to advantageously realize a compact exchanger.
  • FIG. 1 It is a perspective explanatory view showing an example of a serpentine heat exchanger for an air conditioner according to the present invention. It is a section explanatory view showing roughly an example at the time of applying the serpentine heat exchanger for air conditioners according to the present invention to the outdoor unit of an air conditioner. It is a section explanatory view showing roughly another example at the time of applying the serpentine heat exchanger for air conditioners according to the present invention to the outdoor unit of an air conditioner. It is sectional explanatory drawing which shows an example of the coating-film layer formed on the surface of the fin which comprises the serpentine heat exchanger for air conditioners according to this invention. It is an isometric view explanatory drawing which shows another different example of the serpentine heat exchanger for air conditioners according to this invention.
  • FIG. 1 shows an embodiment of a serpentine heat exchanger for an air conditioner (hereinafter also simply referred to as a serpentine heat exchanger or a heat exchanger) according to the present invention in the form of a perspective view.
  • a plurality of fin groups 14 including a plurality of rectangular fins 12 arranged in parallel to each other and at a predetermined distance are arranged in parallel at a predetermined distance.
  • the metal heat transfer tubes 16 are arranged in a meandering manner, that is, in a serpentine shape via a bent portion 18 so as to sequentially penetrate the plurality of fin groups 14.
  • the fin 12 is a pre-coated metal plate in which a single-layer or multi-layer coating layer is formed on at least one surface of a predetermined metal plate in a predetermined fin shape (here, a rectangular shape).
  • a predetermined fin shape here, a rectangular shape.
  • An assembly hole into which the metal heat transfer tube 16 is inserted is provided at a substantially central portion of the rectangular shape, and a predetermined height is provided at the peripheral portion of the assembly hole.
  • the collar portion is provided integrally with the fin 12.
  • the metal plate which is a base material of the precoat metal plate which provides this fin 12 is comprised with aluminum or aluminum alloy like the past.
  • Mn is added to JIS A1050, JIS A1100 or JIS A1200 in addition to materials such as JIS A1050, JIS A1100, JIS A1200, etc.
  • a material containing 0.1% to 0.5% by mass and / or about 0.1% to 1.8% by mass of Zn is advantageously used.
  • the material of JIS A7072 is advantageously employed.
  • a symbol represented by a combination of an alphabet of “JIS A” and a four-digit number indicates an aluminum or aluminum alloy material defined in the JIS standard.
  • At least the outermost layer of the coating layer formed on the surface of the fin 12 is made of a hydrophilic resin or a water repellent resin.
  • hydrophilic resins include polyvinyl alcohol resins (polyvinyl alcohol and derivatives thereof), polyacrylamide resins (polyacrylamide and derivatives thereof), polyacrylic resins (polyacrylic acid and derivatives thereof), and cellulose.
  • examples thereof include resin based on sodium (carboxymethylcellulose sodium, carboxymethylcellulose ammonium, etc.), polyethylene glycol resin (polyethylene glycol, polyethylene oxide, etc.) and the like.
  • the water repellent resin include an epoxy resin, a polyurethane resin, an acrylic resin, a melamine resin, a fluorine resin, a silicon resin, and a polyester resin.
  • the projected area of the fin 12 is 3 to 30 times the cross-sectional area defined by the outer diameter of the heat transfer tube (metal heat transfer tube 16) from the viewpoint of achieving both heat exchanger miniaturization and heat exchange performance. It is preferable that The cross-sectional area defined by the outer diameter of the heat transfer tube indicates the cross-sectional area obtained from the outer diameter of the heat transfer tube after the metal heat transfer tube 16 is expanded and fixed to the assembly hole of the fin 12. For example, as shown in FIG. 1, in a serpentine heat exchanger in which one heat transfer tube passes through one fin, if the outer diameter of the expanded metal heat transfer tube 16 is 6.5 mm, The cross-sectional area is 33.2 mm 2 .
  • the projected area of the fin is less than three times the cross-sectional area defined by the outer diameter of the heat transfer tube, the fin is too small for the heat transfer tube, so that sufficient heat exchange performance is achieved.
  • the cross-sectional area exceeds 30 times, the heat exchanger becomes large and not practical.
  • the projected area of the fin is preferably 200 to 1000 mm 2 from the viewpoint of achieving both a reduction in size of the heat exchanger and heat exchange performance. If the projected area of the fin is less than 200 mm 2 , sufficient heat exchange performance may not be obtained. On the other hand, if it exceeds 1000 mm 2 , the heat exchanger becomes large and impractical. Because.
  • a plurality of such fins 12 are in a direction (y direction in FIG. 1) perpendicular to the flow direction of air as the heat exchange fluid (x direction in FIG. 1).
  • the thickness direction of the plate is perpendicular to the air flow direction
  • the adjacent fins 12 and 12 are parallel to each other and have an interval (fin pitch) of 0.6 to 5.0 mm, preferably 1
  • the fin group 14 is formed by being arranged so as to have an interval of 0.0 to 4.0 mm.
  • each fin group 14 composed of a large number of fins 12 are arranged such that each fin group 14 has a certain distance from each other in the direction perpendicular to the x and y directions (the z direction in FIG. 1). By being arranged in a row at a distance, it is configured to exhibit a flat plate shape as a whole.
  • the metal heat transfer tube 16 is a tube having a substantially circular cross section formed of a predetermined metal material as in the prior art. And as a metal material which comprises this metal heat exchanger tube 16, Preferably, aluminum or an aluminum alloy, or copper or a copper alloy will be used.
  • the metal heat transfer tube 16 is made of an aluminum material or an aluminum alloy material, from the viewpoint of manufacturability (extrusibility), among JIS A1050, JIS A1100, JIS A1200, and JIS A3003 Any one kind of material is advantageously employed, but in order to further improve the corrosion resistance of the heat transfer tube, the following is preferable.
  • the metal heat transfer tube 16 is made of any one of aluminum or aluminum alloy of JIS A1050, JIS A1100, JIS A1200, and JIS A3003 as described above, and the outer surface thereof is zinc sprayed and contains zinc. It is possible to improve the corrosion resistance of the heat transfer tube by forming a sacrificial anode material layer by flux (KZnF 4 ), zinc plating or the like on the outer surface of the heat transfer tube and imparting the sacrificial anode effect by zinc.
  • the metal heat transfer tube 16 is made of any one of the materials of JIS A1050, JIS A1100, JIS A1200, and JIS A3003, and the metal plate constituting the fin 12 is made of these aluminum.
  • the corrosion resistance of the heat transfer tube can be improved by using Zn-containing JIS A7072 material that is electrochemically lower than the aluminum alloy.
  • the heat transfer tube 16 can be constituted by a clad tube having a double tube wall structure composed of an inner core material layer and an outer skin material layer in the radial direction. Therefore, the JIS A1050, JIS A1100, JIS A1200, JIS A3003, etc. are adopted as the material of the core material layer, and JIS A7072 etc. are adopted as the material of the skin material layer, and the same effect as above is obtained. It will be realized together.
  • the cladding rate which is the thickness of the outer skin material layer, a value that is 3 to 20% of the total thickness of the tube wall is employed.
  • this cladding ratio is less than 3%, the sacrificial anode effect of the skin material is small, the through-holes are likely to be vacant, causing a problem of poor corrosion resistance, and if the cladding ratio exceeds 20%, the tube wall thickness On the other hand, the ratio of the core material layer becomes low, and problems such as a decrease in strength are likely to occur.
  • the metal heat transfer tube 16 is made of copper or a copper alloy
  • a material such as JIS H3300 C1220 or JIS H3300 C5010 is advantageously employed from the viewpoint of heat transfer.
  • the symbol consisting of the combination of “JIS H3300” and “C + four-digit number” used here also indicates the copper or copper alloy material defined in the JIS standard.
  • the outer diameter is appropriately determined so as to satisfy both the demand for downsizing the target serpentine heat exchanger 10 and the heat exchange performance.
  • it is preferably 3 to 13 mm. This is because heat transfer tubes with an outer diameter of less than 3 mm are difficult to manufacture as tubes, and those with an outer diameter of more than 13 mm are larger for heat exchangers employing such thick heat transfer tubes. This is because it is not practical.
  • the straight portion of such a single metal heat transfer tube 16 sequentially passes through the assembly holes formed in the substantially central portions of the plurality of fins 12 constituting the fin group 14 described above, and the metal The outer peripheral surface of the heat transfer tube 16 and the collar inner peripheral surface of the peripheral edge of the assembly hole of the plurality of fins 12 are brought into close contact with each other and fixed (coupled). It should be noted that, for such a connection between the fin 12 and the metal heat transfer tube 16, various conventionally known methods are appropriately selected and used.
  • An assembly hole with a collar having an inner diameter slightly larger than the outer diameter of the heat transfer tube 16 is opened, and after inserting the metal heat transfer tube 16 into such an assembly hole, the inside of the metal heat transfer tube 16
  • a tube expansion plug into the metal heat transfer tube 16 to increase the outer diameter of the metal heat transfer tube 16
  • the outer peripheral surface of the metal heat transfer tube 16 and the inner peripheral surface of the assembly hole provided in the fin 12 (collar inner peripheral surface)
  • the metal heat transfer tube 16 is perpendicular to the flow direction (x direction) of the air that is the heat exchange fluid and the arrangement direction (y direction) of the multiple fins 12. So as to penetrate through a plurality of fin groups 14 arranged in a certain direction (z direction) in order, and in a meandering form, in other words, by being arranged in a serpentine shape, the entire plate is substantially flat.
  • a serpentine heat exchanger 10 for an air conditioner having a shape is configured.
  • the following methods can be exemplified to make the metal heat transfer tube 16 meandering and to have the desired shape of the heat exchanger 10. That is, first, a plurality of fin groups 14 are arranged at a predetermined interval with respect to one long straight metal heat transfer tube 16. Thereafter, a portion where the fin group 14 of the metal heat transfer tube 16 is not disposed is bent into a U shape, thereby forming a bent portion 18 to have a meandering shape, as shown in FIG. Thus, this is a method of forming the desired shape of the heat exchanger 10.
  • the serpentine heat exchanger 10 for air conditioners which exhibits the substantially flat shape illustrated here is suitably employ
  • this serpentine heat exchanger 10 for air conditioners as a heat exchanger which takes the form which bent the flat plate so that the side view may become L shape is shown by FIG. .
  • two such L-shaped heat exchangers (10, 10 ′) are used in combination so that the heat exchangers 10, 10 ′ have a rectangular shape in plan view.
  • the fan 22 is installed on the upper part of the outdoor unit 20 so as to be positioned above the rectangular shape. Then, by the operation of the fan 22, the air as the heat exchange fluid is circulated through the two heat exchangers 10 and 10 ′ combined in a rectangular cylindrical shape as indicated by arrows, Heat exchange between the refrigerant and the air can be performed.
  • the fins 12 are spaced on the metal heat transfer tube 16 at intervals of 0.6 to 5.0 mm (fin pitch). )
  • a decrease in heat exchange performance due to condensation is effectively suppressed. . That is, if the fin pitch is less than 0.6 mm, water (condensation liquid) generated by dew condensation is unlikely to fall from the fin surface even when the film layer described later is provided on the fin. While the exchange performance is degraded, such condensed liquid may be pushed out by the air blown to cause water splashing in the room.
  • the fin pitch exceeds 5.0 mm, the fin pitch is too large. Therefore, in the heat exchanger of the same size, the number of fins is inevitably reduced, and the heat exchange performance may be deteriorated.
  • the heat exchanger is configured by a plurality of independent fin groups 14, and the fins are configured by assembling a large number of heat transfer tubes on one fin.
  • Fin efficiency can be increased more favorably than an and-tube heat exchanger, and thermal interference (conduction) through the fins of adjacent heat transfer tubes can be effectively suppressed or cut off.
  • the heat exchange performance can be advantageously improved, so that the heat exchanger 10 can be made compact.
  • a single-layer or multiple-layer coating layer is formed on the surface of the fin 12, and at least the outermost layer of the coating layer is formed of a hydrophilic resin or a water-repellent resin. Therefore, the heat exchange performance of the heat exchanger 10 can be advantageously maintained even in a situation where the temperature difference between the set temperature of the air conditioner and the outside air temperature is significant and dew condensation occurs on the fin surface. . That is, when a coating layer made of a hydrophilic resin is provided as the outermost layer, water generated by condensation forms a film on the surface of the outermost layer. It is possible to effectively suppress an increase in resistance when passing between the fins and stably maintain high heat exchange performance.
  • a pre-coated metal plate provided with a single coating layer made of a hydrophilic resin or a water-repellent resin as the fins 12, but preferably, a metal plate serving as a substrate is used.
  • a corrosion-resistant coating layer made of epoxy resin, urethane resin, polyester resin, vinyl chloride resin or the like is formed on the surface, and further, a coating layer made of the above-mentioned hydrophilic resin or the like is formed on the surface.
  • a pre-coated metal plate provided with a plurality of coating layers obtained by forming is used. That is, it is possible to improve the corrosion resistance of the fins 12 by providing such a corrosion-resistant coating layer on the surface of the metal plate to be the substrate.
  • each coating layer formed on the surface of the metal plate in this manner is preferably 0.1 to 5.0 ⁇ m per single layer. This is because when the thickness of each coating layer is less than 0.1 ⁇ m, the effects of each coating layer may not be enjoyed advantageously. On the other hand, even if a coating layer having a thickness of more than 5.0 ⁇ m is provided, the effect of each coating layer is already in a saturated state, so it is only costly to form such a coating layer. It becomes.
  • a base treatment layer 32 is previously formed on the surface of the metal plate 30. It is preferable that this is done (see FIG. 4). By providing such a base treatment layer 32, it is possible to improve the adhesion between the metal plate and each of the coating layers (34, 36) described above.
  • a base treatment layer chromate treatment using phosphate chromate, chromate chromate, etc., and other than chromium compounds, titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate, titanium oxide, oxidation
  • a film layer obtained by a chemical film treatment (chemical conversion treatment) such as non-chromate treatment using zirconium or the like.
  • the chemical film treatment method includes a reaction type and a coating type. In the present invention, any method can be adopted.
  • the intervals (fin pitches) between the adjacent fins 12 and 12 are all equally spaced.
  • the gas phase region and the liquid phase region in the vicinity of the refrigerant inlet / outlet are compared with the gas / liquid two-phase region in the intermediate portion of the refrigerant. Since the exchangeability is low and the heat transfer coefficient is clearly low, it is possible to increase the heat exchange efficiency by expanding the heat exchange area by narrowing the fin pitch at such a part.
  • the flow velocity Va of air flowing between the fins 12 in the fin group 14 in the upper region A is 1.5 to 2 times the flow velocity of air flowing between the fins 12 in the fin group 14 in the lower region B: Vb.
  • the interval between the adjacent fins 12 and 12 (fin pitch: p 1 ) in the fin group 14 in the upper region A is narrowed for the purpose of improving the heat exchange performance.
  • the spacing (fin pitch: p 2 ) between adjacent fins 12 in the fin group 14 in the lower region B is also set to the same fin pitch as the fin pitch: p 1 , the fin group in the lower region B In 14, the ventilation resistance becomes too large, and the problem arises that the heat exchange performance as a whole deteriorates.
  • the fin pitch of the fin group 14 located farther lower region B from the fan 22: the p 2, the fin group 14 located in the upper region A close to the fan 22 It is preferable to expand the fin pitch at an appropriate ratio with respect to p 1 . Therefore, in the present invention, paying attention to the flow velocity (wind velocity) of the air that is the heat exchange fluid in the regions A and B, the upper region A (first region) in which the wind velocity during air circulation by the fan 22 is large.
  • a plurality of fins sites fin pitch in the group of fins 14 located) and p 1 is 0.7 or less of the wind against the wind speed at the upper stage region a, a small lower region B of the wind speed (second region)
  • the ratio p 2 / p 1 is 1.5 or more and 3.0 or less (1.5 ⁇ p 2 / p 1 ⁇ 3.0)
  • the above-described fin pitch: p 1 is set as an interval between adjacent fins in at least one fin group 14 located in the upper region A that is the region closest to the fan 22.
  • the upper region A close to the fan 22 is positioned close to the fan 22 among the plurality of (n-step) fin groups 14 arranged in the z direction.
  • the fin group 14 having n / 4 stages is included.
  • the fin pitch: p 2 is adopted as an interval between adjacent fins in at least one fin group located in the lower region B, which is the region farthest from the fan 22.
  • the n / 4-stage fin group 14 located in the region farthest from the fan 22. It will be applied to.
  • the wind speed of the fin group 14 is 0.7 times or less than the wind speed in the upper region A.
  • the fin pitch (p 2 ) is defined so as to satisfy the inequality related to p 2 / p 1 described above.
  • the p 1 is shown as an average fin pitch of at least one fin group 14 located in the upper region A
  • p 2 is at least one fin group 14 located in the lower region B. It is shown as the average fin pitch at.
  • the air in the fin group 14 located in the intermediate region between the upper region A and the lower region B of the plurality of (n stages) fin groups arranged in the z direction in each heat exchanger 10, 10 ′ Since Vc has a relationship of Vb ⁇ Vc ⁇ Va, the fin pitch of the fin group 14 of the intermediate region of the plurality of fin groups 14 (generally, the number of stages of n / 2) is: p 3 is preferably p 1 ⁇ p 3 ⁇ p 2 .
  • the change in the flow velocity (wind speed) of the heat exchange fluid (air) as described above occurs between the fin groups 14 and 14 located at different stages in the z direction, and different fin arrangements in the fin groups 14 of the same stage.
  • the relationship between the fin pitches p 1 and p 2 described above is that they occur also between the fins 12 of one fin group 14 arranged at different positions in the tube axis direction of the heat transfer tubes 16. In either case, it will be applied.
  • the heat exchanger 10 in this embodiment although the one metal heat exchanger tube 16 penetrated with respect to the one fin 12, as shown in FIG.
  • the heat exchanger 40 having a structure in which the two fins 44 are formed by passing the two metal heat transfer tubes 16 and 16 through the fins 42 may be used.
  • FIGS. 6 a shape in which a plurality of heat exchangers 10 are overlapped with respect to the flow direction of the heat exchange fluid (air), for example, as shown in FIGS. It is also possible to constitute one serpentine heat exchanger 46, 48 for an air conditioner by overlapping each other at intervals.
  • the fins of adjacent heat exchangers 10, such as the heat exchanger 46 shown in FIG. 6, are used.
  • one of the fin groups 14 of the front heat exchanger 10 is adjacent to one of the fin groups 14 of the rear heat exchanger 10 in the flow direction of the heat exchange fluid.
  • fins constituting the heat exchanger 10 in addition to the illustrated fin 12 (42) having a substantially flat rectangular shape, for example, as shown in FIG.
  • a fin 50 having a plurality of embossed portions 52 protruding on the surface in the thickness direction of the fin and having a bottom or outer shape of a circle or an ellipse is preferably used.
  • the embossed portion 52 By forming the embossed portion 52 on the fin surface in this manner, after the heat exchange air passing between the stacked fins 50 comes into contact with the embossed portion 52, the stacking direction (longitudinal direction) of the fins 50 and It is converted into a direction (lateral direction) perpendicular to the stacking direction, and these become an appropriate longitudinal spiral (hereinafter referred to as longitudinal vortex) and lateral spiral (hereinafter referred to as lateral vortex). The air between the fins is appropriately disturbed by such an appropriate spiral flow, and as a result, the heat exchange performance can be improved.
  • longitudinal vortex longitudinal spiral
  • lateral vortex lateral spiral
  • a fin-and-tube heat exchanger (serpentine heat exchanger) is used as an evaporator in a low-temperature environment as an outdoor unit in a cold region, such an appropriate swirl flow, particularly a vertical flow
  • the vortex suppresses the retention of relatively low temperature air in the vicinity of the fin surface, and allows relatively high temperature air that tends to stay in the central part between the fins to contact the fin surface. Suppression of frost formation or growth of frost that has formed frost can be effectively suppressed.
  • Such an improvement in heat exchange performance due to the presence of the embossed portion 52 can also be realized by a cut-and-raised slit or a louver slit formed by slit processing or louver processing. Accordingly, such slit processing and louver processing are performed on the fins (12, 42) in accordance with a conventional method together with or instead of the embossing for forming the embossed portion 52.
  • the pipe diameter of the metal heat transfer pipe 16 may be different depending on the part of the heat exchanger 10 depending on the flow characteristics of the refrigerant flowing in the pipe. For example, a heat transfer tube with a relatively small outer diameter is used in the liquid phase region, while a heat transfer tube with a relatively large outer diameter is used in the gas phase region, thereby improving the heat transfer coefficient in the tube and reducing the pressure loss. This can be advantageously achieved.
  • a metal heat transfer tube having a different pipe diameter depending on the part of such a heat exchanger a single long metal heat transfer pipe whose pipe diameter is appropriately changed at a desired part in the tube axis direction is used.
  • a metal heat transfer tube having a pipe diameter appropriately selected for each fin group 14 may be connected by a U-bend tube or the like to form a metal heat transfer tube having a meandering shape.
  • a tubular body (see FIG. 9A) having a smooth inner surface is used as the metal heat transfer tube 16, but in the longitudinal direction on the inner surface of the heat transfer tube. It is also possible to employ a so-called internally grooved heat transfer tube in which parallel straight grooves, spiral grooves having a twist angle, or cross grooves having a groove shape in which the grooves intersect at a predetermined angle are formed. In this way, it is possible to further increase the heat exchange performance of the heat exchanger 10 by increasing the heat transfer area on the inner surface of the heat transfer tube and further complicating the flow of the refrigerant flowing through the heat transfer tube. It becomes.
  • the entire groove type inner surface grooved heat transfer tube may be employed, but other than that, for example, It is also possible to use an internally grooved heat transfer tube of a type having a different groove shape for each path constituting the fin group 14.
  • the groove formed on the inner surface of the heat transfer tube in this manner preferably has a groove depth of 0.05 to 1.0 mm, and the number of grooves is preferably in a cross section perpendicular to the longitudinal direction of the heat transfer tube. By setting the length to 15 to 150, it is possible to effectively enhance the heat exchange performance.
  • the metal heat transfer tube 16 used in the present invention only needs to have an outer surface having a substantially circular shape.
  • the cross section is 1.
  • various known multi-hole pipes Can be suitably employed.
  • the metal heat transfer tube 16 constituting the serpentine heat exchanger 10 one having a resin coating layer formed on its surface is preferably used.
  • the serpentine heat exchanger 10 described above is assembled by bringing the metal heat transfer tubes 16 and the fins 12 into close contact with each other by a method such as a mechanical tube expansion method, and assembling them. If the contact portion of the heat tube is viewed microscopically, a certain amount of air gap exists between the metal heat transfer tube 16 and each of the fins 12. However, if such voids are present, the contact thermal resistance between the fins and the heat transfer tubes is increased, and the heat exchange performance may be degraded.
  • thermoplastic resins such as a polyethylene resin, the hydrophilic resin and water-repellent resin similar to what is formed in the fin 12 surface mentioned above, And epoxy resins, urethane resins, polyester resins, vinyl chloride resins, and the like.
  • thermoplastic resin such as a polyethylene resin
  • the metal heat transfer tube 16 having a coating layer made of a thermoplastic resin such as a polyethylene resin as the outermost layer
  • the gap between the collar skirt formed on the periphery of the hole with the collar and the metal heat transfer tube is advantageous by the thermoplastic resin such as polyethylene resin. Since the contact area between the fins 12 and the metal heat transfer tubes 16 can be ensured larger, the heat exchange performance of the heat exchanger can be further improved.
  • the exposed portions (portions where no fins are assembled) of the metal heat transfer tube 16 are formed on the fin 12. It is possible to have the same function as. Furthermore, by providing a coating layer made of epoxy resin, urethane resin, polyester resin, vinyl chloride resin or the like on the surface of the metal heat transfer tube 16, the corrosion resistance of the metal heat transfer tube 16 can be improved. Is possible.
  • this resin coating layer contains a heat conductive filler from a viewpoint of improving heat conductivity.
  • thermally conductive fillers include boron nitride, aluminum nitride, silicon nitride, silicon carbide, alumina, zirconia, titanium oxide, fine carbon powder, and the like.
  • a structure in which a single coating layer made of various resins as described above is provided on the surface of the metal heat transfer tube 16 can be employed.
  • a corrosion-resistant coating layer made of epoxy resin, urethane resin, polyester resin, vinyl chloride resin, or the like is formed on the surface of the heat transfer tube 16, and a thermoplastic resin such as polyethylene resin is further formed thereon.
  • the structure which forms the resin-made coating-film layer which consists of hydrophilic resin or water-repellent resin is employ
  • the thickness of the resin coating layer is preferably 0.1 to 5.0 ⁇ m per single layer. If the thickness of the resin coating layer is less than 0.1 ⁇ m, the effects of each of the resin coating layers described above may not be enjoyed. On the other hand, a resin coating layer having a thickness exceeding 5.0 ⁇ m is provided. However, the effect of each coating layer is already in a saturated state, and it is only costly.
  • a base treatment layer is formed on the surface of the metal heat transfer tube 16 in advance.
  • the adhesion between the metal heat transfer tube 16 and each coating layer described above can be improved.
  • the base treatment layer chromate treatment using phosphate chromate, chromate chromate, etc., and other than chromium compounds, titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate, titanium oxide, zirconium oxide
  • Examples thereof include a film layer obtained by chemical film treatment (chemical conversion treatment) such as non-chromate treatment using the like.
  • the chemical film treatment method includes a reaction type and a coating type. In the present invention, any method can be adopted.
  • a plurality of inner surface grooves are formed as spiral grooves extending at a predetermined lead angle with respect to the tube axis.
  • An internally grooved heat transfer tube made of acid copper (JIS H3300 C1220) was prepared. The dimensions of the internally grooved heat transfer tube were as follows: outer diameter: 6.35 mm, bottom wall thickness: 0.23 mm, groove depth: 0.15 mm, number of grooves: 58, lead angle: 30 °.
  • a fin material a plate material of 0.13 mm thick pure aluminum (JIS A1050) is prepared, and the surface of the fin material is subjected to a surface treatment consisting of three layers as shown in FIG. did. That is, first, a chemical conversion film 32 made of phosphoric acid chromate was formed on the surface of the aluminum substrate by subjecting the aluminum material substrate 30 to a phosphoric acid chromate dipping treatment. Next, an epoxy resin was applied on the chemical conversion film 32 using a roll coater and heated at a temperature of 220 ° C. for 10 seconds to form a corrosion-resistant coating film 34 having a thickness of 1 ⁇ m.
  • the coating film for hydrophilic coatings which consist of polyvinyl alcohol resin (PVA resin) is apply
  • the fin material having the hydrophilic coating film 36 was formed.
  • a coating for a water-repellent coating film made of an epoxy resin is used instead of the hydrophilic coating film 36 described above, and this is applied to the surface of the corrosion-resistant coating film 34. It was applied and heated at a temperature of 220 ° C. for 10 seconds to prepare another fin material on which a water-repellent coating film 36 having a film thickness of 1.5 ⁇ m was formed.
  • the two types of fin materials prepared in this way are each cut into a rectangular shape having a size of 12 mm in the x direction and 16 mm in the z direction in FIG. 1, and a heat transfer tube is inserted through the substantially central portion thereof.
  • a large number of two types of fins were prepared by providing through holes (through holes with a 0.5 mm collar on the periphery).
  • a target fin group was formed on one heat transfer tube as follows. That is, a plurality of such fins are arranged so that the respective through holes are parallel to each other with a predetermined interval, and the heat transfer tubes are sequentially inserted through the through holes, and then the heat transfer tubes are expanded. Thus, the heat transfer tubes and the fins were integrated to form a fin group on the heat transfer tubes. At this time, the tube diameter (D) of the heat transfer tube after the tube expansion was 6.75 mm, so that one heat transfer tube penetrated the substantial center of one fin.
  • Examples having fin pitches in the range of 1.0 mm and 3.0 mm according to the present invention are designated as Examples 1 to 4, and those having a fin pitch outside the scope of the present invention are 0.5 to 8 mm as Comparative Examples 1 to 4. It was.
  • a plate material (plate thickness: 0.13 mm) of pure aluminum (JIS A1050) whose surface is not subjected to surface treatment is prepared, and this is processed into fins having the same dimensions as described above.
  • the fin pitch and the number of fins of Comparative Example 5 were set to fin pitch: 3.0 mm and the number of fins of 100.
  • the heat transfer tube fin groups are subjected to bending processing,
  • the heat transfer tubes are configured to be U-shaped, the fin groups are arranged at a predetermined interval, and the heat transfer tubes are arranged in a meandering form so that the heat transfer tubes sequentially pass through the arranged fin groups.
  • a serpentine heat exchanger as shown in FIG. 1 was produced.
  • interval (distance between centers) of the heat exchanger tube bent in parallel is 18 mm, and the clearance gap between fins is 1 mm.
  • each of the nine types of heat exchangers thus obtained was set in a predetermined outdoor unit as shown in FIG. 2, the refrigerant (R410A) was passed through the heat transfer tube, and the cooling operation by rotating the fan was performed. The presence or absence of water splash was observed.
  • the heat exchanger in which the surface treatment was not applied to the fins of Comparative Example 5 the occurrence of water splash was confirmed, and furthermore, in the heat exchangers of Comparative Examples 1 and 3 in which the fin interval was 0.5 mm. Even in such a case, spattering of water was observed even though a hydrophilic resin or water-repellent resin coating layer was provided on the fin surface.
  • the heat exchangers of Examples 1 to 4 and Comparative Examples 2 and 4 in which the fin interval was 1.0 mm or more, no water splashing was observed at all and a good operation state was confirmed.
  • the heat exchange amount thereof is about 1500 W, and the fin interval is 3.0 mm.
  • both are about 750 W, and therefore, these heat exchangers are heat exchange amounts that can withstand practical use as an air conditioner. Admitted.
  • the heat exchange amount is as low as about 100 W, and it was recognized that these are heat exchangers that are difficult to practically use as an air conditioner. .
  • the cross-sectional area (ST) is 31.7 mm 2 , respectively. Since the projected area (SF) is 192 mm 2 , the area ratio (SF / ST) is 6.1 times, which is within the appropriate range defined by the present invention (3 to 30 times). It was confirmed that it was preferable from the viewpoint of achieving both miniaturization of the exchanger.
  • a fin material As a fin material, a plate material of 0.12 mm pure aluminum (JIS A1050) was used, and a film thickness formed on the surface: on a chemical conversion film (undercoat layer) made of 0.1 ⁇ m phosphoric acid chromate, Furthermore, while pre-coating a water-repellent coating layer made of a fluorine-based resin, a hydrophilic coating layer made of a polyurethane-based resin, or a water-repellent coating layer made of a silicon-based resin with a thickness of 1 ⁇ m, A fin group having a fin interval of 3.0 mm, similar to Experimental Example 1, except that an inner grooved heat transfer tube made of phosphorous deoxidized copper (JIS H3300 C1220) having an outer diameter of 7.00 mm is used.
  • Various serpentine heat exchangers having 16 (number of fins per fin group: 100) arranged were produced.
  • the various heat exchangers thus obtained were set in a predetermined outdoor unit as shown in FIG. 2 and the cooling operation was performed in the same manner as in Experimental Example 1. I could't. Further, the heat exchange amount of these serpentine heat exchangers is as follows: dry bulb temperature: 20 ° C., wet bulb temperature: 15 ° C., overall wind speed: 1.0 m / s, refrigerant: R410A, heat exchanger inlet pressure: 2.3 MPa
  • a water-repellent coating layer made of a fluorine-based resin, a hydrophilic coating layer made of a polyurethane-based resin, or a water-repellent coating made of a silicon-based resin was measured on the fin surface.
  • Each of the serpentine heat exchangers with the coating layer formed has a heat exchange amount of about 700 W, about 700 W, or about 720 W, and it is recognized that any of them can be used as an air conditioner. It was.
  • Example 3- Similar to Example 2 described above, a fin material having a hydrophilic resin coating film formed on the surface and an internally grooved heat transfer tube were prepared, and the fin dimensions were set to 12 mm ⁇ 50 mm (fin projection area: 600 mm 2 ).
  • a serpentine heat exchanger having a shape as shown in FIG. 5 was prepared in which the number of the heat transfer tubes penetrating into one fin was two. The fin pitch, the number of fins, the number of fin groups, and the like were the same as in the heat exchanger of Example 2. When such a heat exchanger was set in a predetermined outdoor unit in the same manner as the heat exchanger of Example 2, and the presence or absence of water splashing and the heat exchange performance were confirmed, good results were obtained for both. It was confirmed.
  • Example 4 The same fin material (thickness: 0.12 mm) and heat transfer tube (outer diameter: 8.00 mm) as in Example 2 were prepared, and the fin shape was embossed on the fin surface as shown in FIG. As the applied shape, a serpentine heat exchanger having the same surface treatment and dimensions as those of Example 2 was produced.
  • the embossed portion had a height (h): 1.0 mm, a bottom width (d) in a direction perpendicular to the ventilation direction A: 2.8 mm, and a number: 20 pieces.
  • the serpentine heat exchanger thus obtained was set in a predetermined outdoor unit as shown in FIG. 2 and cooling operation was carried out, no occurrence of water splash was observed, and the amount of heat exchange Was measured in the same manner as in Experimental Example 2 and was about 800 W. Therefore, by applying such embossing to the fins, when used as an evaporator in a low-temperature environment as an outdoor unit in a cold region, the fins are caused by an appropriate swirl flow generated by such embossed parts, particularly longitudinal vortices. Relatively low temperature air can be prevented from staying near the surface, and relatively high temperature air that tends to stay in the central part between the fins can be brought into contact with the fin surface. It is expected that the effect of suppressing the growth of frosted frost is exhibited.
  • Example 5- As the heat transfer tube, an internally grooved heat transfer tube made of pure aluminum (JIS A1050) and having a straight groove on the inner surface was prepared. In such an internally grooved heat transfer tube, the outer diameter was 6.35 mm, the bottom wall thickness was 0.4 mm, the groove depth was 0.15 mm, and the number of grooves was 58. Regarding such an internally grooved heat transfer tube, two types of heat transfer tubes were prepared, one not subjected to surface treatment and the other subjected to zinc spray treatment on the outer surface.
  • a fin material a plate material of pure aluminum (JIS A1050) and a plate material of aluminum alloy (JIS A7072) were prepared, and after the surface was subjected to chemical conversion treatment in the same manner as in Example 2 described above, A hydrophilic coating film was formed to obtain a fin material. Further, these two fin materials were processed into the same fin shape as in Example 2.
  • the fins and heat transfer tubes prepared in this way first, combining the heat transfer tubes made of zinc with the outer surface subjected to zinc spraying and the fins made of pure aluminum (JIS A1050), the fin pitch, the number of fins, etc.
  • a serpentine heat exchanger having the same dimensions as in Example 2 was prepared.
  • a serpentine heat exchanger was similarly produced by combining an aluminum heat transfer tube whose outer surface was not surface-treated and a fin made of an aluminum alloy (JIS A7072). Also in this heat exchanger, the specifications are the same as those in Example 2.
  • a heat transfer tube As a heat transfer tube, a long straight tubular body made of an Al—Mn-based aluminum alloy (JIS A3003) and having an outer diameter of 7.00 mm and a circular cross section was prepared. Further, as another heat transfer tube, the material and the outer diameter are the same, and an inner surface grooved aluminum alloy tube in which a spiral groove or a straight groove as shown in Experimental Example 1 or Experimental Example 5 is formed as the inner surface groove. Also prepared. Furthermore, a pure aluminum (JIS A1050) plate material having a thickness of 0.12 mm was prepared as a fin material, and a phosphate chromate film and a PVA film or an epoxy resin film were formed on the surface in the same manner as in Experimental Example 1. And each fin was produced.
  • JIS A1050 pure aluminum
  • Example 7 As a heat transfer tube, a tube material made of phosphorous deoxidized copper (JIS H3300 C1220) or an Al—Mn-based aluminum alloy (JIS A3003) and having a smooth inner surface with an outer diameter of 7.00 mm and a circular cross section was prepared. Also, an outer tube surface of such a tube material coated with an epoxy resin or a zinc sprayed coating as in Experimental Example 5 is prepared, and a skin material is provided on the outer peripheral surface of the inner core material layer (JIS A3003). A clad tube (outer diameter: 7.00 mm) having a double tube structure in which layers (JIS A7072) were integrally formed with a clad rate of 7% was also prepared.
  • the fin material was prepared by forming a phosphate chromate film and a PVA film on the surface of a pure aluminum (JIS A1050) plate material having a thickness of 0.12 mm in the same manner as in Experimental Example 1. .
  • a serpentine heat exchanger having a fin pitch: 1.0 mm, the number of fins; Made.
  • the corrosion resistance of the various heat exchangers thus obtained was evaluated by the SWAAT test (ASTM G85-94), and the results are shown in Table 3 below.
  • SWAAT test artificial seawater (pH: 2.8 to 3.0) was used as a test solution, and the temperature was 49 ° C. and the holding atmosphere was 98% RH. Spraying was 30 minutes and holding was 90 minutes. The cycle was repeated.
  • Example 8- Serpentine heat exchanger No. having a fin group of 16 stages and having various fin pitches of the fin group in the upper region A, the lower region B and the intermediate region thereof. 31-No. 37 was produced in the same manner as in Example 2.
  • the fin group located in the upper stage area A has four stages
  • the fin group located in the lower stage area B has four stages
  • an intermediate stage between them has an eight-stage fin group.
  • the fin pitches (p 1 , p 2 , p 3 ) of the respective regions are set to have the values shown in Table 4 below in consideration of the wind speed at the respective positions.
  • heat exchanger no. 31-No In order to compare the heat exchange performance of 37, the following experiment was conducted. Specifically, in the configuration shown in FIG. 3, with each heat exchanger set in the wind tunnel device, the fan is operated at a predetermined rotational speed to ventilate, while all the inlet / outlet conditions on the refrigerant side are constant. The refrigerant mass flow rate (kg / s) was measured. And the heat exchange amount (W) was calculated by multiplying the measured refrigerant mass flow rate by the specific enthalpy difference (J / kg) at the refrigerant inlet / outlet. In this experiment, heat exchanger No.
  • the wind speed of the upper region A at 31 was 3.0 m / s
  • the lower region B was 1.0 m / s
  • the middle region was 1.5 m / s.
  • the air-side heat transfer area varies depending on the number of fins, and the heat exchanger no. It was calculated as the performance ratio when the value of 31 was 1.0. The results are shown in Table 4 below.
  • the heat exchanger No. No. 31 had a fin pitch of 3.0 mm from the upper region A to the lower region B, and had a heat exchange amount that could withstand practical use as an air conditioner.
  • heat exchanger No. As for 32, 35 and 36 it is confirmed that the value of p 2 / p 1 is in a preferable range specified in the present invention, and the ventilation resistance is not excessive as the whole heat exchanger, and the heat exchange performance is particularly preferable. It was done.
  • heat exchanger No. 33 and 34 are heat exchangers No. Similar to 31, the value of p 2 / p 1 is out of the preferred range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The disclosed serpentine heat exchanger for an air conditioner effectively minimizes losses in heat-exchange performance due to condensation and is capable of adequately accommodating efforts to reduce the size of air conditioners. Said serpentine heat exchanger (10) comprises a plurality of fin groups (14) and a heat-exchanger pipe (16). Each fin group (14) is formed by arranging a large number of fins (12), each comprising a metal plate with a prescribed coating layer formed on at least one surface, parallel to each other at intervals of 0.6-5.0 mm in a direction (y direction) perpendicular to the direction (x direction) in which a heat-exchange fluid, namely air, flows. The plurality of fin groups (14) are arranged in a row at a constant distance from each other in a direction (z direction) perpendicular to the x direction and the y direction. The heat-exchanger pipe (16) is laid out in a serpentine configuration so as to penetrate each fin group (14) in turn.

Description

空気調和機用サーペンタイン熱交換器Serpentine heat exchanger for air conditioner
 本発明は、空気等の熱交換流体と冷媒との間で熱交換が行なわれるサーペンタイン熱交換器に係り、特に、空気調和機用の熱交換器として好適に用いられるサーペンタイン熱交換器に関するものである。 The present invention relates to a serpentine heat exchanger in which heat is exchanged between a heat exchange fluid such as air and a refrigerant, and more particularly to a serpentine heat exchanger suitably used as a heat exchanger for an air conditioner. is there.
 従来より、空気調和機用の熱交換器としては、主に、クロスフィンチューブ型熱交換器が用いられている。このクロスフィンチューブ型熱交換器は、複数のフィンに対して、ヘアピン曲げした複数の伝熱管を垂直方向に差し込み、それらの伝熱管を拡管することによって、フィンと伝熱管とを接合させてなる構造とされている。そして、そのような熱交換器においては、所定の冷媒を伝熱管内に流通させる一方、伝熱管に対して垂直方向に、フィンに沿って空気が流れるようにすることによって、冷媒と空気との間で熱交換が行われるようになっているのである。 Conventionally, a cross fin tube type heat exchanger has been mainly used as a heat exchanger for an air conditioner. This cross fin tube heat exchanger is formed by joining a plurality of heat transfer tubes bent in a hairpin to a plurality of fins in the vertical direction and expanding the heat transfer tubes to join the fins and the heat transfer tubes. It is structured. And in such a heat exchanger, while circulating a predetermined | prescribed refrigerant | coolant in a heat exchanger tube, while allowing air to flow along a fin perpendicularly | vertically with respect to a heat exchanger tube, a refrigerant | coolant and air are made to flow. Heat exchange takes place between them.
 また、そのようなクロスフィンチューブ型熱交換器は、一般的に、アルミニウム若しくはアルミニウム合金製のフィンと、銅若しくは銅合金製の伝熱管にて構成され、1枚のフィンに複数の伝熱管を挿通させてなる構造とされている。そして、空気調和機の室内熱交換器においては、例えば、特開2008-138913号公報(特許文献1)にて明らかにされているように、スクロールファンを覆う状態となるような円弧状の熱交換器や、多段折り曲げ形状の熱交換器が、用いられているのである。また、空気調和機の室外熱交換器においては、平板状の熱交換器や、平板を折り曲げた形状の熱交換器が、一般的に用いられている。 Moreover, such a cross fin tube type heat exchanger is generally composed of aluminum or aluminum alloy fins and copper or copper alloy heat transfer tubes, and a plurality of heat transfer tubes per fin. It is structured to be inserted. In an indoor heat exchanger of an air conditioner, for example, as disclosed in Japanese Patent Laid-Open No. 2008-138913 (Patent Document 1), an arc-shaped heat that covers a scroll fan is disclosed. An exchanger or a heat exchanger having a multi-stage bent shape is used. Moreover, in the outdoor heat exchanger of an air conditioner, a flat plate heat exchanger or a heat exchanger having a shape obtained by bending a flat plate is generally used.
 そして、このようなクロスフィンチューブ型熱交換器は、通常、以下のような工程で製作されることとなる。即ち、先ず、プレス加工等により、所定の組付孔が複数形成せしめられたアルミニウムプレートフィンが成形される。次いで、この得られたアルミニウムプレートフィンの複数を、それぞれ所定間隔をもって積層した後に、前記組付孔の内部に、別途製作した伝熱管が挿通せしめられる。ここで用いられる伝熱管には、転造加工等によって内面に所定の溝付加工等が施されたものを、所定長さに切断した後、ヘアピン曲げ加工を施したものが、供されることとなる。そして、かかる伝熱管を、公知の各種の手法を用いて拡管することによってアルミニウムプレートフィンに固着せしめた後、ヘアピン曲げ加工を施した側とは反対側の伝熱管端部にUベンド管をロウ付け加工する工程を経て、目的とするクロスフィンチューブ型熱交換器が製作されるのである。 And such a cross fin tube type heat exchanger is normally manufactured in the following processes. That is, first, an aluminum plate fin in which a plurality of predetermined assembly holes are formed is formed by pressing or the like. Next, after a plurality of the obtained aluminum plate fins are laminated at a predetermined interval, a separately manufactured heat transfer tube is inserted into the assembly hole. The heat transfer tube used here shall be provided with a hairpin bending process after cutting the groove with a predetermined groove on the inner surface by rolling or the like to a predetermined length. It becomes. The heat transfer tube is fixed to the aluminum plate fin by expanding the tube using various known methods, and then the U-bend tube is brazed to the end of the heat transfer tube opposite to the side subjected to the hairpin bending process. The target cross fin tube type heat exchanger is manufactured through the attaching process.
 しかしながら、このような工程をもって、クロスフィンチューブ型熱交換器を製作するためには、多大な設備投資が必要となる。例えば、アルミニウムプレートフィンを成形するための大型プレス装置及びそのプレス金型や、アルミニウムプレートフィンと伝熱管を拡管固着するための拡管装置、及びこれに用いられる拡管ビュレットが、必要となるのである。特に、室内熱交換器と室外熱交換器とでは、フィンの形状(スリットやルーバーの有無等)や伝熱管の管径が異なるため、その製造のためには、それぞれの熱交換器に応じたプレス金型や拡管ビュレット等を用意しなくてはならず、それらを準備するために大きな投資が必要であるところから、熱交換器の形状を変えてしまうような思い切ったモデルチェンジが妨げられる要因となっている。 However, in order to manufacture a cross fin tube type heat exchanger by such a process, a large capital investment is required. For example, a large press device for forming aluminum plate fins and a press die thereof, a tube expansion device for expanding and fixing the aluminum plate fin and the heat transfer tube, and a tube expansion burette used therefor are required. In particular, the indoor heat exchanger and the outdoor heat exchanger have different fin shapes (such as slits and louvers) and heat transfer tube diameters. Factors that obstruct drastic model changes that would change the shape of the heat exchangers, because it is necessary to prepare press dies, expanded burettes, etc. It has become.
 さらに、熱交換器を組み立てる際の最終工程となるロウ付け工程においても、伝熱管同士をUベンド管で接続する等のロウ付け箇所が多いため、作業負荷が大きく、加えてエネルギーコストが嵩む等の問題があった。また、そのようなロウ付け時に発生するアルミフィンの焼けや、ロウ付け部からのリーク等の品質不良が発生する可能性の問題もあり、出来るだけロウ付け箇所の少ない熱交換器が望まれているのである。 Furthermore, also in the brazing process, which is the final process when assembling the heat exchanger, there are many brazed locations such as connecting the heat transfer tubes with U-bend tubes, resulting in a large work load and increased energy costs. There was a problem. In addition, there is a possibility of quality defects such as burning of aluminum fins occurring during brazing and leakage from the brazing part, and a heat exchanger with as few brazing points as possible is desired. It is.
 一方、冷蔵庫等に用いられる熱交換器としても、従来より、上述したような、一枚の大きな板状のアルミニウム製フィンに多数の孔を形成して、この孔に冷却管を貫通させ、更に拡管によりフィンと冷却管とを圧着し、各冷却管の端部をU字型の連絡管でロウ付けして、それらを連通させてなる構成の、クロスフィンチューブ型熱交換器が用いられているが、これも、上記と同様の問題を内在していた。 On the other hand, as a heat exchanger used for a refrigerator or the like, conventionally, a large number of holes are formed in one large plate-like aluminum fin as described above, and a cooling pipe is passed through the hole. A cross fin tube type heat exchanger is used, in which fins and cooling pipes are crimped by expansion, brazed at the end of each cooling pipe with a U-shaped connecting pipe, and communicated with each other. However, this also had the same problem as above.
 かかる状況の下、冷蔵庫等に用いられる熱交換器として、平行に配列された多数枚のプレートフィンと、これらのフィンを貫通する冷媒管とから成り、かかる冷媒管を、空気の流れ方向に対して千鳥状に配置すると共に、前記プレートフィンを前記冷媒管に対して列ごと及び段ごとに分断して構成した、独立フィンタイプのフィン・アンド・チューブ式熱交換器(サーペンタイン熱交換器)が数多く明らかにされている(特許文献2~4を参照)。このようなサーペンタイン熱交換器によれば、独立したフィン群が取り付けられた冷媒管を千鳥状に曲げ加工することで、熱交換器を構成しているため、ロウ付け箇所を低減することが出来、生産性を向上させることが可能であると共に、独立フィンにすることで得られる前縁効果等により、熱交換性能の向上を計ることが可能となる。 Under such circumstances, a heat exchanger used in a refrigerator or the like is composed of a large number of plate fins arranged in parallel and a refrigerant pipe penetrating these fins. A fin-and-tube heat exchanger (serpentine heat exchanger) of an independent fin type in which the plate fins are arranged in rows and stages with respect to the refrigerant pipe. Many have been clarified (see Patent Documents 2 to 4). According to such a serpentine heat exchanger, since the heat exchanger is configured by bending the refrigerant pipe to which the independent fin group is attached in a zigzag manner, it is possible to reduce brazing points. The productivity can be improved, and the heat exchange performance can be improved by the leading edge effect obtained by using independent fins.
 このため、空気調和機用の熱交換器においても、このようなサーペンタイン熱交換器を適用することが検討されているのであるが、実際の空気調和機用の熱交換器には、その殆どに、上述したようなクロスフィンチューブ型熱交換器が用いられており、これまで、サーペンタイン熱交換器は採用されていなかった。これは、空気調和機用の熱交換器が、冷蔵庫用の熱交換器と比較して、空気の流れ方向に比較的薄い構造とされた熱交換器(2~3段)であるため、独立フィンにして得られる効果が小さいことが、その理由として考えられているからである。 For this reason, the application of such a serpentine heat exchanger is also being studied in heat exchangers for air conditioners, but most of the actual heat exchangers for air conditioners are used. The cross fin tube type heat exchanger as described above has been used, and a serpentine heat exchanger has not been adopted so far. This is because the heat exchanger for the air conditioner is a heat exchanger (2 to 3 stages) with a relatively thin structure in the air flow direction compared to the heat exchanger for the refrigerator. This is because the effect obtained by using the fin is considered to be small.
 また、特許文献2~4に記載の熱交換器は、冷蔵庫等の冷却システム用の熱交換器として設計されているため、着霜によるフィン間の閉塞を抑制するために伝熱管ピッチやフィン間隔(フィンピッチ)が大きくされており、空気側の伝熱面積が小さくなってしまう。その一方、空気調和機用の熱交換器においては、結露によるフィン間の閉塞を抑制する必要がある。このような事情により、特許文献2~4に記載の熱交換器を始めとする従来のサーペンタイン熱交換器にあっては、そのまま空気調和機用の熱交換器として適用することは困難なものであったのである。 In addition, since the heat exchangers described in Patent Documents 2 to 4 are designed as heat exchangers for cooling systems such as refrigerators, the heat transfer tube pitch and fin spacing are used to suppress blockage between fins due to frost formation. (Fin pitch) is enlarged, and the heat transfer area on the air side is reduced. On the other hand, in a heat exchanger for an air conditioner, it is necessary to suppress clogging between fins due to condensation. Under such circumstances, conventional serpentine heat exchangers such as the heat exchangers described in Patent Documents 2 to 4 are difficult to apply as they are as heat exchangers for air conditioners. There was.
 ところで、近年、素材となる銅地金のコスト高騰から、空気調和機用の熱交換器を、従来のアルミニウム製フィンと銅製の伝熱管にて構成されたクロスフィンチューブ型熱交換器から、フィンと伝熱管を全てアルミニウム或いはアルミニウム合金にて形成した、オールアルミ熱交換器へ転換する動きが出てきている。 By the way, in recent years, due to soaring cost of copper bullion, which is a material, heat exchangers for air conditioners have been developed from conventional fin fin tube type heat exchangers composed of aluminum fins and copper heat transfer tubes. There is a movement to convert to an all-aluminum heat exchanger, in which all heat transfer tubes are made of aluminum or aluminum alloy.
 また、特に、室内機においては、近年に見られる著しいコンパクト化に充分に対応することが出来る熱交換器が望まれており、そのような要望に対して、サーペンタイン熱交換器は、独立フィンの前縁効果による熱交換性能の向上が期待される等、コンパクト化に対応出来る可能性を持ったものであり、更に、空気調和機の製作の面においても、室内機と室外機の熱交換器の形態を出来るだけ共通化して、工程を簡略化することが可能となるものである。これらの観点から、空気調和機用の熱交換器として有利に用いられるサーペンタイン熱交換器の開発が、望まれている。 In particular, in indoor units, heat exchangers that can sufficiently cope with the remarkable downsizing seen in recent years are desired. In response to such demands, serpentine heat exchangers have independent fins. It is expected to improve heat exchange performance due to the leading edge effect, etc., and has the possibility of being able to cope with compactness. Furthermore, in terms of manufacturing air conditioners, heat exchangers for indoor units and outdoor units It is possible to simplify the process by sharing as much as possible. From these viewpoints, development of a serpentine heat exchanger that is advantageously used as a heat exchanger for an air conditioner is desired.
特開2008-138913号公報JP 2008-138913 A 実開平5-8265号公報Japanese Utility Model Publication No. 5-8265 特開平5-265941号公報JP-A-5-265941 特開2002-243382号公報JP 2002-243382 A
 ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決すべき課題とするところは、結露による熱交換性能の低下が効果的に抑制されると共に、空気調和機のコンパクト化に充分対応することが可能な空気調和機用サーペンタイン熱交換器を提供することにある。 Here, the present invention has been made in the background of such circumstances, and the problem to be solved is that a decrease in heat exchange performance due to condensation is effectively suppressed, and an air conditioner An object of the present invention is to provide a serpentine heat exchanger for an air conditioner that can sufficiently cope with downsizing.
 そして、本発明にあっては、かくの如き課題の解決のために、熱交換流体の流通方向(x方向)に対して直角な方向(y方向)において互いに平行に且つ所定の間隔にて配される多数枚のフィンからなるフィン群の複数が、それらx方向及びy方向に対して直角な方向(z方向)に互いに一定距離を隔てて一列に配列されて、複数段のフィン群を構成すると共に、1枚のフィンに1本乃至2本の金属製伝熱管が貫通されてなる形態において、それら各段のフィン群を順次貫通するように、該金属製伝熱管が蛇行形態において配されてなる構造のサーペンタイン熱交換器において、(1)前記フィン群を構成する各フィンが同一の形状を有し、且つ隣り合うフィンが0.6~5.0mmの間隔にて配列されていると共に、(2)前記フィンが、金属板の少なくとも一方の面に単層若しくは複層の塗膜層が形成されてなるプレコート金属板からなり、且つ該塗膜層のうちの少なくとも最外層が親水性樹脂若しくは撥水性樹脂からなる塗膜層であることを特徴とする空気調和機用サーペンタイン熱交換器を、その要旨とするものである。なお、ここで、フィンの形状としては、矩形、円形、多角形などの形状が、好適に採用されることとなる。 In the present invention, in order to solve such problems, the heat exchange fluids are arranged in parallel to each other at a predetermined interval in the direction (y direction) perpendicular to the flow direction (x direction) of the heat exchange fluid. A plurality of fin groups composed of a large number of fins are arranged in a row at a predetermined distance in the direction perpendicular to the x direction and the y direction (z direction) to form a multi-stage fin group In addition, in the form in which one or two metal heat transfer tubes are penetrated by one fin, the metal heat transfer tubes are arranged in a meandering form so as to sequentially penetrate the fin groups of the respective stages. (1) Each fin constituting the fin group has the same shape, and adjacent fins are arranged at intervals of 0.6 to 5.0 mm. (2) The fin is It is made of a pre-coated metal plate in which a single-layer or multi-layer coating layer is formed on at least one surface of the metal plate, and at least the outermost layer of the coating layer is made of a hydrophilic resin or a water-repellent resin. The gist of the present invention is a serpentine heat exchanger for an air conditioner that is a film layer. Here, as the shape of the fin, a shape such as a rectangle, a circle, or a polygon is preferably employed.
 ところで、このような本発明に従う空気調和機用サーペンタイン熱交換器の好ましい態様の一つによれば、前記金属板は、アルミニウム若しくはアルミニウム合金にて構成されることとなる。 By the way, according to one of the preferred embodiments of the serpentine heat exchanger for an air conditioner according to the present invention, the metal plate is made of aluminum or an aluminum alloy.
 また、本発明の空気調和機用サーペンタイン熱交換器における望ましい態様の一つにあっては、前記伝熱管は、アルミニウム若しくはアルミニウム合金にて構成され、更に望ましい態様の別の一つによれば、その外表面には、亜鉛による犠牲陽極効果が付与されている。 Moreover, in one of the desirable aspects in the serpentine heat exchanger for an air conditioner of the present invention, the heat transfer tube is made of aluminum or an aluminum alloy, and according to another desirable aspect, The sacrificial anode effect by zinc is given to the outer surface.
 さらに、かかる本発明に従う空気調和機用サーペンタイン熱交換器の別の好ましい態様の一つによれば、前記金属板の材質は、JIS A1050、JIS A1100、JIS A1200、JIS A7072、及びJIS A1050、JIS A1100若しくはJIS A1200に0.1~0.5質量%のMn及び/又は0.1~1.8質量%のZnを含有せしめたもののうちの何れか1種からなるアルミニウム若しくはアルミニウム合金であり、且つ前記伝熱管の材質が、JIS A1050、JIS A1100、JIS A1200、及びJIS A3003のうちの何れか1種からなるアルミニウム若しくはアルミニウム合金であるものである。 Furthermore, according to another preferred embodiment of the serpentine heat exchanger for an air conditioner according to the present invention, the material of the metal plate is JIS A1050, JIS A1100, JIS A1200, JIS A7072, and JIS A1050, JIS. A1100 or JIS A1200 is an aluminum or aluminum alloy composed of any one of 0.1 to 0.5% by mass of Mn and / or 0.1 to 1.8% by mass of Zn, The material of the heat transfer tube is aluminum or an aluminum alloy made of any one of JIS A1050, JIS A1100, JIS A1200, and JIS A3003.
 更にまた、本発明に従う空気調和機用サーペンタイン熱交換器の他の望ましい態様の一つにあっては、前記伝熱管は、銅若しくは銅合金にて構成され、更に別の望ましい態様の一つによれば、前記伝熱管の材質は、JIS H3300 C1220又はJIS H3300 C5010とされることとなる。 Furthermore, in another desirable aspect of the serpentine heat exchanger for an air conditioner according to the present invention, the heat transfer tube is made of copper or a copper alloy, and is still another desirable aspect. Accordingly, the material of the heat transfer tube is JIS H3300 C1220 or JIS H3300 C5010.
 加えて、そのような本発明に従う空気調和機用サーペンタイン熱交換器にあっては、有利には、前記金属製伝熱管の内面に、管軸方向に平行なストレート溝、管軸に対して所定の捩れ角を有する螺旋溝、若しくは管軸方向において交叉する溝にて構成されるクロス溝の何れか1種もしくは2種以上を有するように、構成されている。 In addition, in such a serpentine heat exchanger for an air conditioner according to the present invention, advantageously, the inner surface of the metal heat transfer tube has a predetermined length with respect to the straight groove and the tube axis parallel to the tube axis direction. It is comprised so that it may have any 1 type, or 2 or more types of the cross groove comprised by the spiral groove | channel which has the following twist angle, or the groove | channel which cross | intersects in a pipe-axis direction.
 また、本発明の空気調和機用サーペンタイン熱交換器における別の望ましい態様の一つにあっては、前記フィンは、厚み方向に突出して底部外形が円形又は楕円形を呈するエンボス部の複数を有するように、構成されている。 In another desirable aspect of the serpentine heat exchanger for an air conditioner according to the present invention, the fin has a plurality of embossed portions protruding in the thickness direction and having a circular or elliptical bottom portion. It is configured as such.
 さらに、本発明にあっては、好適には、前記フィンに対して、スリット加工あるいはルーバー加工が施されており、更に望ましい態様の別の一つによれば、前記フィンの投影面積は、前記伝熱管の外径によって規定される断面積の3~30倍となるように構成されることとなる。 Further, in the present invention, preferably, the fin is slit or louvered, and according to another desirable aspect, the projected area of the fin is The cross-sectional area defined by the outer diameter of the heat transfer tube is 3 to 30 times.
 更にまた、本発明に従う空気調和機用サーペンタイン熱交換器の望ましい態様の他の一つにあっては、前記フィンの投影面積は、200~1000mmとされている。 Furthermore, in another desirable embodiment of the serpentine heat exchanger for an air conditioner according to the present invention, the projected area of the fin is 200 to 1000 mm 2 .
 そして、上記のような本発明に従う空気調和機用サーペンタイン熱交換器の好ましい態様の他の一つによれば、前記金属製伝熱管の外径は、3~13mmとされている。 According to another preferred embodiment of the serpentine heat exchanger for an air conditioner according to the present invention as described above, the outer diameter of the metal heat transfer tube is 3 to 13 mm.
 また、本発明の空気調和機用サーペンタイン熱交換器における他の有利な態様の一つにあっては、前記金属板の表面に、下地処理層が設けられ、この下地処理層の上に、前記単層若しくは複層の塗膜層が形成されている。 In another advantageous aspect of the serpentine heat exchanger for an air conditioner of the present invention, a surface treatment layer is provided on the surface of the metal plate, and on the surface treatment layer, A single-layer or multiple-layer coating layer is formed.
 さらに、かかる本発明に従う空気調和機用サーペンタイン熱交換器の好ましい態様の別の一つによれば、前記親水性樹脂は、ポリビニルアルコール系樹脂、ポリアクリルアミド系樹脂、ポリアクリル酸系樹脂、セルロース系樹脂、及びポリエチレングリコール系樹脂からなる群より選択されることとなる。 Furthermore, according to another preferred embodiment of the serpentine heat exchanger for an air conditioner according to the present invention, the hydrophilic resin is a polyvinyl alcohol resin, a polyacrylamide resin, a polyacrylic acid resin, a cellulose resin. It will be selected from the group consisting of resins and polyethylene glycol resins.
 更にまた、本発明に従う空気調和機用サーペンタイン熱交換器の好ましい態様の別の一つにあっては、前記撥水性樹脂は、エポキシ系樹脂、ポリウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、フッ素系樹脂、シリコン系樹脂、及びポリエステル系樹脂からなる群より選択されることとなる。 Furthermore, in another preferred embodiment of the serpentine heat exchanger for an air conditioner according to the present invention, the water-repellent resin is an epoxy resin, polyurethane resin, acrylic resin, melamine resin, fluorine It will be selected from the group consisting of resin based resins, silicone based resins, and polyester based resins.
 加えて、本発明にあっては、有利には、前記金属製伝熱管の表面には、樹脂製の塗膜層が形成されている。また、本発明の他の好ましい態様の一つによれば、前記樹脂製の塗膜層は、熱伝導性フィラーを含むものである。 In addition, in the present invention, a resin coating layer is advantageously formed on the surface of the metal heat transfer tube. Moreover, according to one of the other preferable aspects of this invention, the said resin-made coating-film layer contains a heat conductive filler.
 ところで、本発明にあっては、前記せる如き特徴的な構造を有するサーペンタイン熱交換器と、前記z方向に配列された複数段のフィン群に前記x方向に熱交換流体を流通せしめるファン手段を備えた空気調和機において、
 該ファン手段による熱交換流体流通時の風速が大なる第一の領域に位置するフィン群又はその一部における隣り合うフィン間の間隔をpとし、該第一の領域における風速に対して0.7以下の風速となる、風速の小さな第二の領域に位置するフィン群又はその一部における隣り合うフィン間の間隔をpとしたとき、次式:
   1.5≦p/p≦3.0
を満足するように、それらフィン群又はその一部におけるフィン間隔が規定されていることを特徴とする空気調和機をも、また、その要旨とするものである。
By the way, in the present invention, there are provided a serpentine heat exchanger having the characteristic structure as described above, and fan means for circulating a heat exchange fluid in the x direction through the plurality of fin groups arranged in the z direction. In the equipped air conditioner,
An interval between adjacent fins in the fin group located in the first region where the wind speed during circulation of the heat exchange fluid by the fan means is large or a part thereof is defined as p 1, and 0 with respect to the wind speed in the first region. a .7 following wind speed, when the interval between adjacent fins in the fin group or a portion thereof located in a small second region of the wind speed was p 2, the following formula:
1.5 ≦ p 2 / p 1 ≦ 3.0
An air conditioner characterized in that the fin interval in the fin group or a part thereof is defined so as to satisfy the above is also the gist of the present invention.
 なお、かかる本発明に従う空気調和機の好適な態様の一つによれば、前記第一の領域に位置するフィン群又はその一部と前記第二の領域に位置するフィン群又はその一部とは、前記z方向において異なる段に位置せしめられる。 According to one of the preferred embodiments of the air conditioner according to the present invention, the fin group located in the first area or a part thereof and the fin group located in the second area or a part thereof Are positioned on different stages in the z-direction.
 また、このような本発明に従う空気調和機の他の好適な態様の一つによれば、前記第一の領域に位置するフィン群又はその一部と前記第二の領域に位置するフィン群又はその一部とが、前記z方向において同一の段に位置するように、構成される。 Further, according to one of the other preferred embodiments of the air conditioner according to the present invention, the fin group located in the first region or a part thereof and the fin group located in the second region or A part thereof is configured to be located in the same step in the z direction.
 このように、本発明に従う空気調和機用サーペンタイン熱交換器にあっては、各フィン群を構成するフィン形状が同一であり、金属製伝熱管上にて隣り合うフィンの間隔(フィンピッチ)が0.6~5.0mmとされていると共に、更に、各フィンは、金属板の少なくとも一方の面に単層若しくは複層の塗膜層が形成されてなるプレコート金属板からなるものであって、かかる塗膜層のうちの少なくとも最外層が親水性樹脂若しくは撥水性樹脂からなるものであるところから、空気調和機において用いた際に、結露による熱交換性能の低下が効果的に抑制されるのである。 Thus, in the serpentine heat exchanger for an air conditioner according to the present invention, the fin shape constituting each fin group is the same, and the interval (fin pitch) between adjacent fins on the metal heat transfer tube is the same. Further, each fin is made of a pre-coated metal plate in which a single-layer or multi-layer coating layer is formed on at least one surface of the metal plate. Since at least the outermost layer of the coating layer is made of a hydrophilic resin or a water-repellent resin, when used in an air conditioner, a decrease in heat exchange performance due to condensation is effectively suppressed. It is.
 また、かかる空気調和機用サーペンタイン熱交換器にあっては、フィン群を構成する多数枚のフィンに1本乃至2本の伝熱管が貫通せしめられて、独立したフィン群で構成されていることにより、フィン効率が有利に高められ得、隣り合う伝熱管のフィンを介した熱干渉(伝導)を遮断することが出来、その結果、熱交換性能を向上させることが可能となり、以て、熱交換器のコンパクト化を有利に実現することが可能となる。 Further, in such a serpentine heat exchanger for an air conditioner, one or two heat transfer tubes are penetrated through a large number of fins constituting the fin group, and are configured by independent fin groups. The fin efficiency can be advantageously increased, and the heat interference (conduction) through the fins of adjacent heat transfer tubes can be cut off. As a result, it is possible to improve the heat exchange performance, thereby It is possible to advantageously realize a compact exchanger.
本発明に従う空気調和機用サーペンタイン熱交換器の一例を示す斜視説明図である。It is a perspective explanatory view showing an example of a serpentine heat exchanger for an air conditioner according to the present invention. 本発明に従う空気調和機用サーペンタイン熱交換器を、空気調和機の室外機に適用した際の一例を概略的に示す、断面説明図である。It is a section explanatory view showing roughly an example at the time of applying the serpentine heat exchanger for air conditioners according to the present invention to the outdoor unit of an air conditioner. 本発明に従う空気調和機用サーペンタイン熱交換器を、空気調和機の室外機に適用した際の他の一例を概略的に示す、断面説明図である。It is a section explanatory view showing roughly another example at the time of applying the serpentine heat exchanger for air conditioners according to the present invention to the outdoor unit of an air conditioner. 本発明に従う空気調和機用サーペンタイン熱交換器を構成するフィンの表面に形成される塗膜層の一例を示す断面説明図である。It is sectional explanatory drawing which shows an example of the coating-film layer formed on the surface of the fin which comprises the serpentine heat exchanger for air conditioners according to this invention. 本発明に従う空気調和機用サーペンタイン熱交換器の他の異なる一例を示す斜視説明図である。It is an isometric view explanatory drawing which shows another different example of the serpentine heat exchanger for air conditioners according to this invention. 本発明に従う空気調和機用サーペンタイン熱交換器の別の異なる一例を示す斜視説明図である。It is an isometric view explanatory drawing which shows another different example of the serpentine heat exchanger for air conditioners according to this invention. 本発明に従う空気調和機用サーペンタイン熱交換器の更に別の異なる一例を示す斜視説明図である。It is an isometric view explanatory drawing which shows another different example of the serpentine heat exchanger for air conditioners according to this invention. 本発明に従う空気調和機用サーペンタイン熱交換器を構成するフィンの別の一例を示す説明図であって、(a)は、1枚のフィン全体の斜視説明図であり、(b)は、エンボス部の断面を拡大して示す断面説明図である。It is explanatory drawing which shows another example of the fin which comprises the serpentine heat exchanger for air conditioners according to this invention, Comprising: (a) is a perspective explanatory drawing of the whole one fin, (b) is embossing It is a section explanatory view expanding and showing a section of a portion. 本発明に従う空気調和機用サーペンタイン熱交換器を構成する金属製伝熱管を示す説明図であって、(a)は、図1に示した熱交換器に用いたもの示す断面説明図であり、(b),(c),(d)は、金属製伝熱管として用いられる他の異なる一例をそれぞれ示す、断面説明図である。It is explanatory drawing which shows the metal heat exchanger tube which comprises the serpentine heat exchanger for air conditioners according to this invention, (a) is sectional explanatory drawing which shows what was used for the heat exchanger shown in FIG. (B), (c), (d) is sectional explanatory drawing which each shows another different example used as a metal heat exchanger tube.
 以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。 Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
 先ず、図1には、本発明に従う空気調和機用サーペンタイン熱交換器(以下、単にサーペンタイン熱交換器、又は熱交換器ともいう)の一つの実施形態が、斜視図の形態において示されている。そこにおいて、熱交換器10は、互いに平行に且つ一定距離を隔てて配置された、矩形形状を呈するフィン12の多数枚からなるフィン群14の複数が、それぞれ一定距離を隔てて平行に配列されていると共に、それら複数のフィン群14を順次貫通するように、金属製伝熱管16が、曲げ部18を介して、蛇行形態において、即ちサーペンタイン状に配設されて、構成されている。 First, FIG. 1 shows an embodiment of a serpentine heat exchanger for an air conditioner (hereinafter also simply referred to as a serpentine heat exchanger or a heat exchanger) according to the present invention in the form of a perspective view. . In the heat exchanger 10, a plurality of fin groups 14 including a plurality of rectangular fins 12 arranged in parallel to each other and at a predetermined distance are arranged in parallel at a predetermined distance. At the same time, the metal heat transfer tubes 16 are arranged in a meandering manner, that is, in a serpentine shape via a bent portion 18 so as to sequentially penetrate the plurality of fin groups 14.
 より詳細には、フィン12は、所定の金属板の少なくとも一方の面に単層若しくは複層の塗膜層が形成されてなるプレコート金属板を所定のフィン形状(ここでは矩形形状)に形成した薄肉の略平坦な板状フィンとされており、その矩形形状の略中央部位に、金属製伝熱管16が挿通される組付孔が設けられ、かかる組付孔の周縁部分には所定高さのカラー部がフィン12と一体的に設けられている。なお、かかるフィン12を与えるプレコート金属板の基材たる金属板は、従来と同様に、アルミニウム若しくはアルミニウム合金にて構成されていることが好ましい。そして、それらの中でも、伝熱性に優れ、且つフィンとしての強度を確保し得るという観点から、JIS A1050、JIS A1100、JIS A1200等の材質の他、JIS A1050、JIS A1100若しくはJIS A1200に、Mnを0.1~0.5質量%程度の割合において、及び/又はZnを0.1~1.8質量%程度の割合において、含有せしめてなる材質のもの等が、有利に用いられることとなる。また、フィンとしての強度を優先する場合にあっては、JIS A7072の材質が、有利に採用されることとなる。なお、ここで、「JIS A」のアルファベットと四桁の数字との組合せにて表わされる記号は、JIS規格にて規定されているアルミニウム若しくはアルミニウム合金材質を示している。 More specifically, the fin 12 is a pre-coated metal plate in which a single-layer or multi-layer coating layer is formed on at least one surface of a predetermined metal plate in a predetermined fin shape (here, a rectangular shape). An assembly hole into which the metal heat transfer tube 16 is inserted is provided at a substantially central portion of the rectangular shape, and a predetermined height is provided at the peripheral portion of the assembly hole. The collar portion is provided integrally with the fin 12. In addition, it is preferable that the metal plate which is a base material of the precoat metal plate which provides this fin 12 is comprised with aluminum or aluminum alloy like the past. Among them, from the viewpoint of excellent heat transfer and ensuring the strength as a fin, Mn is added to JIS A1050, JIS A1100 or JIS A1200 in addition to materials such as JIS A1050, JIS A1100, JIS A1200, etc. A material containing 0.1% to 0.5% by mass and / or about 0.1% to 1.8% by mass of Zn is advantageously used. . Further, when priority is given to the strength as the fin, the material of JIS A7072 is advantageously employed. Here, a symbol represented by a combination of an alphabet of “JIS A” and a four-digit number indicates an aluminum or aluminum alloy material defined in the JIS standard.
 さらに、かかるフィン12の表面に形成されている塗膜層は、少なくとも最外層が親水性樹脂若しくは撥水性樹脂にて形成されている。そこにおいて、親水性樹脂としては、例えば、ポリビニルアルコール系樹脂(ポリビニルアルコールとその誘導体)、ポリアクリルアミド系樹脂(ポリアクリルアミドとその誘導体)、ポリアクリル酸系樹脂(ポリアクリル酸とその誘導体)、セルロース系樹脂(カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースアンモニウム等)、ポリエチレングリコール系樹脂(ポリエチレングリコール、ポリエチレンオキサイド等)等を、挙げることが出来る。また、撥水性樹脂としては、例えば、エポキシ系樹脂、ポリウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、フッ素系樹脂、シリコン系樹脂、ポリエステル系樹脂等を、挙げることが出来る。 Furthermore, at least the outermost layer of the coating layer formed on the surface of the fin 12 is made of a hydrophilic resin or a water repellent resin. Examples of hydrophilic resins include polyvinyl alcohol resins (polyvinyl alcohol and derivatives thereof), polyacrylamide resins (polyacrylamide and derivatives thereof), polyacrylic resins (polyacrylic acid and derivatives thereof), and cellulose. Examples thereof include resin based on sodium (carboxymethylcellulose sodium, carboxymethylcellulose ammonium, etc.), polyethylene glycol resin (polyethylene glycol, polyethylene oxide, etc.) and the like. Examples of the water repellent resin include an epoxy resin, a polyurethane resin, an acrylic resin, a melamine resin, a fluorine resin, a silicon resin, and a polyester resin.
 なお、フィン12の投影面積は、熱交換器の小型化と熱交換性能との両立を図る観点から、伝熱管(金属製伝熱管16)の外径によって規定される断面積の3~30倍とされることが好ましい。この伝熱管の外径によって規定される断面積とは、金属製伝熱管16をフィン12の組付孔に対して拡管固着した後の伝熱管の外径から求められる断面積を示しており、例えば、図1のように、フィン1枚に対して伝熱管が1本貫通しているようなサーペンタイン熱交換器において拡管後の金属製伝熱管16の外径が6.5mmであれば、その断面積は33.2mm2 となる。そして、フィンの投影面積が、このように伝熱管の外径によって規定される断面積の3倍未満となる場合にあっては、伝熱管に対してフィンが小さ過ぎるため、充分な熱交換性能が得られなくなる恐れがある一方、かかる断面積の30倍を超えるようになると、熱交換器が大型化してしまい、実用的ではなくなるのである。特に、フィンの投影面積は、熱交換器の小型化と熱交換性能との両立を図る観点から、200~1000mmであることが好ましい。このフィンの投影面積が200mm未満の場合には、充分な熱交換性能が得られない恐れがあり、一方、1000mmを超えるようになると、熱交換器が大型化してしまい、実用的でなくなるからである。 The projected area of the fin 12 is 3 to 30 times the cross-sectional area defined by the outer diameter of the heat transfer tube (metal heat transfer tube 16) from the viewpoint of achieving both heat exchanger miniaturization and heat exchange performance. It is preferable that The cross-sectional area defined by the outer diameter of the heat transfer tube indicates the cross-sectional area obtained from the outer diameter of the heat transfer tube after the metal heat transfer tube 16 is expanded and fixed to the assembly hole of the fin 12. For example, as shown in FIG. 1, in a serpentine heat exchanger in which one heat transfer tube passes through one fin, if the outer diameter of the expanded metal heat transfer tube 16 is 6.5 mm, The cross-sectional area is 33.2 mm 2 . When the projected area of the fin is less than three times the cross-sectional area defined by the outer diameter of the heat transfer tube, the fin is too small for the heat transfer tube, so that sufficient heat exchange performance is achieved. On the other hand, if the cross-sectional area exceeds 30 times, the heat exchanger becomes large and not practical. In particular, the projected area of the fin is preferably 200 to 1000 mm 2 from the viewpoint of achieving both a reduction in size of the heat exchanger and heat exchange performance. If the projected area of the fin is less than 200 mm 2 , sufficient heat exchange performance may not be obtained. On the other hand, if it exceeds 1000 mm 2 , the heat exchanger becomes large and impractical. Because.
 そして、そのようなフィン12の複数が、図1に示されるように、熱交換流体である空気の流通方向(図1において、x方向)に対して垂直な方向(図1において、y方向)において、つまり、板の厚さ方向が空気の流通方向に垂直となるようにして、互いに平行に且つ隣り合うフィン12,12が0.6~5.0mmの間隔(フィンピッチ)、望ましくは1.0~4.0mmの間隔を隔てるように、配置されることによって、フィン群14が形成されている。更に、このような多数枚のフィン12からなるフィン群14の複数が、それらのx方向及びy方向に対して直角な方向(図1においてz方向)において、各フィン群14が互いに一定距離を隔てて一列に配列されることによって、全体として平板形状を呈するように構成されている。 Then, as shown in FIG. 1, a plurality of such fins 12 are in a direction (y direction in FIG. 1) perpendicular to the flow direction of air as the heat exchange fluid (x direction in FIG. 1). In other words, the thickness direction of the plate is perpendicular to the air flow direction, and the adjacent fins 12 and 12 are parallel to each other and have an interval (fin pitch) of 0.6 to 5.0 mm, preferably 1 The fin group 14 is formed by being arranged so as to have an interval of 0.0 to 4.0 mm. Further, a plurality of such fin groups 14 composed of a large number of fins 12 are arranged such that each fin group 14 has a certain distance from each other in the direction perpendicular to the x and y directions (the z direction in FIG. 1). By being arranged in a row at a distance, it is configured to exhibit a flat plate shape as a whole.
 一方、金属製伝熱管16は、従来と同様な、所定の金属材料にて形成された、略円形形状の断面をもつ管体とされている。そして、かかる金属製伝熱管16を構成する金属材料としては、好ましくは、アルミニウム若しくはアルミニウム合金、或いは銅若しくは銅合金が用いられることとなる。 On the other hand, the metal heat transfer tube 16 is a tube having a substantially circular cross section formed of a predetermined metal material as in the prior art. And as a metal material which comprises this metal heat exchanger tube 16, Preferably, aluminum or an aluminum alloy, or copper or a copper alloy will be used.
 ここで、金属製伝熱管16をアルミニウム材料若しくはアルミニウム合金材料にて構成する場合にあっては、製造性(押出性)の観点から、JIS A1050、JIS A1100、JIS A1200、及びJIS A3003のうちの何れか1種からなる材質が、有利に採用されるものであるが、更に、伝熱管の耐食性を向上させるためには、以下のようにすることが、好ましい。 Here, in the case where the metal heat transfer tube 16 is made of an aluminum material or an aluminum alloy material, from the viewpoint of manufacturability (extrusibility), among JIS A1050, JIS A1100, JIS A1200, and JIS A3003 Any one kind of material is advantageously employed, but in order to further improve the corrosion resistance of the heat transfer tube, the following is preferable.
 すなわち、金属製伝熱管16を、上述の如き、JIS A1050、JIS A1100、JIS A1200、JIS A3003の何れか1種のアルミニウム若しくはアルミニウム合金にて構成すると共に、その外表面に、亜鉛溶射、亜鉛含有フラックス(KZnF)、亜鉛メッキ等による犠牲陽極材層を、伝熱管外表面に形成して、亜鉛による犠牲陽極効果を付与することで、伝熱管の耐食性を向上させることが可能となる。或いは、金属製伝熱管16を、上記のJIS A1050、JIS A1100、JIS A1200、JIS A3003のうちの何れか1種の材質により構成すると共に、フィン12を構成する金属板の材質を、これらのアルミニウム若しくはアルミニウム合金より電気化学的に卑なる、Zn含有のJIS A7072の材質とすることによって、伝熱管の耐食性を向上させることが出来るのである。 That is, the metal heat transfer tube 16 is made of any one of aluminum or aluminum alloy of JIS A1050, JIS A1100, JIS A1200, and JIS A3003 as described above, and the outer surface thereof is zinc sprayed and contains zinc. It is possible to improve the corrosion resistance of the heat transfer tube by forming a sacrificial anode material layer by flux (KZnF 4 ), zinc plating or the like on the outer surface of the heat transfer tube and imparting the sacrificial anode effect by zinc. Alternatively, the metal heat transfer tube 16 is made of any one of the materials of JIS A1050, JIS A1100, JIS A1200, and JIS A3003, and the metal plate constituting the fin 12 is made of these aluminum. Alternatively, the corrosion resistance of the heat transfer tube can be improved by using Zn-containing JIS A7072 material that is electrochemically lower than the aluminum alloy.
 また、かかる伝熱管16を、径方向において内側の心材層と外側の皮材層とからなる二重の管壁構造のクラッド管にて、構成することも可能である。そこで、心材層の材質としては、上記のJIS A1050、JIS A1100、JIS A1200、JIS A3003等が採用され、また皮材層の材質としては、JIS A7072等が採用されて、上記と同様な効果が併せて実現されることとなる。なお、外側の皮材層の厚さとなるクラッド率としては、管壁全厚さの3~20%となるような値が採用される。このクラッド率が3%よりも小さくなると、皮材の犠牲陽極効果が少なく、貫通孔が空き易くなって、耐食性が劣る問題を生じ、またクラッド率が20%を超えるようになると、管壁厚さに対して心材層の占める割合が低くなって、強度が低下する等の問題を惹起し易くなる。 Further, the heat transfer tube 16 can be constituted by a clad tube having a double tube wall structure composed of an inner core material layer and an outer skin material layer in the radial direction. Therefore, the JIS A1050, JIS A1100, JIS A1200, JIS A3003, etc. are adopted as the material of the core material layer, and JIS A7072 etc. are adopted as the material of the skin material layer, and the same effect as above is obtained. It will be realized together. As the cladding rate, which is the thickness of the outer skin material layer, a value that is 3 to 20% of the total thickness of the tube wall is employed. If this cladding ratio is less than 3%, the sacrificial anode effect of the skin material is small, the through-holes are likely to be vacant, causing a problem of poor corrosion resistance, and if the cladding ratio exceeds 20%, the tube wall thickness On the other hand, the ratio of the core material layer becomes low, and problems such as a decrease in strength are likely to occur.
 一方、上記した金属製伝熱管16を、銅若しくは銅合金にて構成する場合にあっては、伝熱性の観点から、JIS H3300 C1220やJIS H3300 C5010等の材質が、有利に採用されることとなる。なお、ここで用いられている「JIS H3300」と「C+四桁の数字」との組合せからなる記号も、JIS規格にて規定されている銅若しくは銅合金材質を示している。 On the other hand, when the metal heat transfer tube 16 is made of copper or a copper alloy, a material such as JIS H3300 C1220 or JIS H3300 C5010 is advantageously employed from the viewpoint of heat transfer. Become. In addition, the symbol consisting of the combination of “JIS H3300” and “C + four-digit number” used here also indicates the copper or copper alloy material defined in the JIS standard.
 そして、そのような所定の金属材料からなる金属製伝熱管16において、その外径は、目的とするサーペンタイン熱交換器10に対する小型化の要求と熱交換性能とを両立させるべく、適宜に決定されるものではあるが、好ましくは3~13mmとされる。これは、外径が3mm未満の伝熱管は、管として製造することが困難であり、また、外径が13mmを超えるものは、そのような太い伝熱管を採用する熱交換器についても大型化する必要が生じてしまい、実用的ではないためである。 In the metal heat transfer tube 16 made of such a predetermined metal material, the outer diameter is appropriately determined so as to satisfy both the demand for downsizing the target serpentine heat exchanger 10 and the heat exchange performance. However, it is preferably 3 to 13 mm. This is because heat transfer tubes with an outer diameter of less than 3 mm are difficult to manufacture as tubes, and those with an outer diameter of more than 13 mm are larger for heat exchangers employing such thick heat transfer tubes. This is because it is not practical.
 また、そのような1本の金属製伝熱管16の直線部が、前述したフィン群14を構成する複数枚のフィン12のそれぞれの略中央部位に形成された組付孔を順次貫通し、金属製伝熱管16の外周面とそれら複数のフィン12の組付孔周縁のカラー内周面とが密着せしめられて、固定(結合)されている。なお、このようなフィン12と金属製伝熱管16との結合は、従来から公知の各種の方法が、適宜選択されて、用いられることとなるが、特に、フィン12の中央部位に、金属製伝熱管16の外径よりも僅かに大きな内径となるカラー付きの組付孔を開けておき、そのような組付孔内に金属製伝熱管16を挿通せしめた後、金属製伝熱管16内に拡管プラグを挿入して、金属製伝熱管16の外径を拡大することによって、金属製伝熱管16の外周面とフィン12に設けられた組付孔の内周面(カラー内周面)とを密着せしめる方法が、好適に採用されることとなる。 In addition, the straight portion of such a single metal heat transfer tube 16 sequentially passes through the assembly holes formed in the substantially central portions of the plurality of fins 12 constituting the fin group 14 described above, and the metal The outer peripheral surface of the heat transfer tube 16 and the collar inner peripheral surface of the peripheral edge of the assembly hole of the plurality of fins 12 are brought into close contact with each other and fixed (coupled). It should be noted that, for such a connection between the fin 12 and the metal heat transfer tube 16, various conventionally known methods are appropriately selected and used. An assembly hole with a collar having an inner diameter slightly larger than the outer diameter of the heat transfer tube 16 is opened, and after inserting the metal heat transfer tube 16 into such an assembly hole, the inside of the metal heat transfer tube 16 By inserting a tube expansion plug into the metal heat transfer tube 16 to increase the outer diameter of the metal heat transfer tube 16, the outer peripheral surface of the metal heat transfer tube 16 and the inner peripheral surface of the assembly hole provided in the fin 12 (collar inner peripheral surface) The method of adhering to each other is preferably employed.
 このようにして、金属製伝熱管16が、図1に示されるように、熱交換流体である空気の流通方向(x方向)及び多数枚のフィン12の配列方向(y方向)に対して直角な方向(z方向)に配列された複数のフィン群14を、順次貫通するように、そして蛇行形態を呈するように、換言すれば、サーペンタイン状に配設されていることによって、全体として略平板形状を呈する空気調和機用のサーペンタイン熱交換器10が、構成されているのである。 In this way, as shown in FIG. 1, the metal heat transfer tube 16 is perpendicular to the flow direction (x direction) of the air that is the heat exchange fluid and the arrangement direction (y direction) of the multiple fins 12. So as to penetrate through a plurality of fin groups 14 arranged in a certain direction (z direction) in order, and in a meandering form, in other words, by being arranged in a serpentine shape, the entire plate is substantially flat. A serpentine heat exchanger 10 for an air conditioner having a shape is configured.
 ところで、金属製伝熱管16を蛇行形状として、目的とする熱交換器10の形状とするには、以下のような方法を例示することが出来る。即ち、先ず、1本の長い直線状の金属製伝熱管16に対して、複数のフィン群14を、それぞれ所定間隔を隔てて、配設する。その後、金属製伝熱管16のフィン群14が配設されていない箇所を、U字形状に曲げ加工することによって、曲げ部18を形成して、蛇行形状とすることによって、図1に示される如く、目的とする熱交換器10の形状を形成する方法である。 By the way, the following methods can be exemplified to make the metal heat transfer tube 16 meandering and to have the desired shape of the heat exchanger 10. That is, first, a plurality of fin groups 14 are arranged at a predetermined interval with respect to one long straight metal heat transfer tube 16. Thereafter, a portion where the fin group 14 of the metal heat transfer tube 16 is not disposed is bent into a U shape, thereby forming a bent portion 18 to have a meandering shape, as shown in FIG. Thus, this is a method of forming the desired shape of the heat exchanger 10.
 なお、ここで例示した略平板状を呈する空気調和機用サーペンタイン熱交換器10は、例えば、図2に示されるような、空気調和機の室外機用の熱交換器として、好適に採用されることとなる。即ち、かかる図2においては、空気調和機の室外機20が、断面図の形態において概略的に示されており、そこでは、室外機20内に配置された空気調和機用サーペンタイン熱交換器10に対して、ファン22によって熱交換流体である空気を流通させることによって、冷媒と空気との間で熱交換が行われるようになっている。 In addition, the serpentine heat exchanger 10 for air conditioners which exhibits the substantially flat shape illustrated here is suitably employ | adopted as a heat exchanger for outdoor units of an air conditioner as shown, for example in FIG. It will be. That is, in FIG. 2, the outdoor unit 20 of the air conditioner is schematically shown in the form of a sectional view, in which the serpentine heat exchanger 10 for an air conditioner disposed in the outdoor unit 20. On the other hand, heat is exchanged between the refrigerant and the air by circulating air as a heat exchange fluid by the fan 22.
 また、かかる空気調和機用サーペンタイン熱交換器10を、その側面視がL字形状となるように、平板を折り曲げた形態を呈する熱交換器として、用いた例が、図3に示されている。そこでは、そのようなL字形状の熱交換器の二つ(10、10’)を用いて、それら熱交換器10、10’が、平面視において矩形形状を呈するように、組み合わせて、配置されていると共に、その矩形形状の上方に位置するように、ファン22が室外機20の上部に設置されている。そして、かかるファン22の作動によって、熱交換流体である空気が、矢印で示されるように、矩形の筒体形状において組み合わされた二つの熱交換器10、10’を流通せしめられ、以て、冷媒と空気との間の熱交換が行われ得るようになっているのである。 Moreover, the example which used this serpentine heat exchanger 10 for air conditioners as a heat exchanger which takes the form which bent the flat plate so that the side view may become L shape is shown by FIG. . There, two such L-shaped heat exchangers (10, 10 ′) are used in combination so that the heat exchangers 10, 10 ′ have a rectangular shape in plan view. In addition, the fan 22 is installed on the upper part of the outdoor unit 20 so as to be positioned above the rectangular shape. Then, by the operation of the fan 22, the air as the heat exchange fluid is circulated through the two heat exchangers 10 and 10 ′ combined in a rectangular cylindrical shape as indicated by arrows, Heat exchange between the refrigerant and the air can be performed.
 従って、上述の如き、本発明に従う構造とされた空気調和機用サーペンタイン熱交換器10にあっては、フィン12が、金属製伝熱管16上に0.6~5.0mmの間隔(フィンピッチ)にて配設せしめられて、フィン群14を構成していることにより、空気調和機において用いた場合にあっても、結露による熱交換性能の低下が、効果的に抑制されることとなる。即ち、フィンピッチが0.6mm未満とされると、フィンに後述する塗膜層が設けられている場合であっても、結露により生ずる水(結露液)がフィン表面から落ちにくくなるため、熱交換性能が低下すると共に、そのような結露液が送風の空気によって押し出されて、室内に水飛びが発生する恐れがある。一方、フィンピッチが5.0mmを超えると、フィンピッチが大き過ぎることから、同じ大きさの熱交換器では必然的にフィン数が少なくなり、熱交換性能の低下を招く恐れがあるのである。 Therefore, in the serpentine heat exchanger 10 for an air conditioner having a structure according to the present invention as described above, the fins 12 are spaced on the metal heat transfer tube 16 at intervals of 0.6 to 5.0 mm (fin pitch). ) To form the fin group 14, even when used in an air conditioner, a decrease in heat exchange performance due to condensation is effectively suppressed. . That is, if the fin pitch is less than 0.6 mm, water (condensation liquid) generated by dew condensation is unlikely to fall from the fin surface even when the film layer described later is provided on the fin. While the exchange performance is degraded, such condensed liquid may be pushed out by the air blown to cause water splashing in the room. On the other hand, if the fin pitch exceeds 5.0 mm, the fin pitch is too large. Therefore, in the heat exchanger of the same size, the number of fins is inevitably reduced, and the heat exchange performance may be deteriorated.
 また、かかる熱交換器10にあっては、独立したフィン群14の複数によって、熱交換器が構成されているところから、1枚のフィンに多数の伝熱管が組み付けられて構成されているフィン・アンド・チューブ式熱交換器よりも、フィン効率が有利に高められ得ると共に、隣り合う伝熱管のフィンを介した熱干渉(伝導)を効果的に抑制乃至は遮断することが出来、その結果、熱交換性能を有利に向上させることが可能となり、以て、熱交換器10のコンパクト化を実現することが出来るのである。 Further, in the heat exchanger 10, the heat exchanger is configured by a plurality of independent fin groups 14, and the fins are configured by assembling a large number of heat transfer tubes on one fin.・ Fin efficiency can be increased more favorably than an and-tube heat exchanger, and thermal interference (conduction) through the fins of adjacent heat transfer tubes can be effectively suppressed or cut off. Thus, the heat exchange performance can be advantageously improved, so that the heat exchanger 10 can be made compact.
 さらに、フィン12の表面には、単層若しくは複層の塗膜層が形成されており、かかる塗膜層のうちの少なくとも最外層は、親水性樹脂若しくは撥水性樹脂にて形成されているところから、空気調和機の設定温度と外気温との温度差が著しく、フィン表面に結露が発生するような状況下においても、熱交換器10の熱交換性能を有利に維持することが出来るのである。即ち、親水性樹脂からなる塗膜層が最外層として設けられている場合には、かかる最外層の表面において、結露により生じた水が膜状となることから、結露水による通風抵抗(空気がフィン間を通過する際の抵抗)の増加を効果的に抑制し、安定して高い熱交換性能を維持することが可能となるのである。一方、撥水性樹脂からなる塗膜層が最外層として設けられている場合にあっても、かかる最外層の表面において、結露により生じた水が微細な水滴となってフィン表面から円滑に落下し、効果的にフィン外へと排出され得るようになるところから、親水性樹脂からなる塗膜層が最外層として設けられている場合と同様に、結露水による通風抵抗の増加が効果的に抑制され、熱交換性能を維持することが可能となるのである。 Furthermore, a single-layer or multiple-layer coating layer is formed on the surface of the fin 12, and at least the outermost layer of the coating layer is formed of a hydrophilic resin or a water-repellent resin. Therefore, the heat exchange performance of the heat exchanger 10 can be advantageously maintained even in a situation where the temperature difference between the set temperature of the air conditioner and the outside air temperature is significant and dew condensation occurs on the fin surface. . That is, when a coating layer made of a hydrophilic resin is provided as the outermost layer, water generated by condensation forms a film on the surface of the outermost layer. It is possible to effectively suppress an increase in resistance when passing between the fins and stably maintain high heat exchange performance. On the other hand, even when a coating layer made of a water-repellent resin is provided as the outermost layer, the water generated by condensation on the surface of the outermost layer falls smoothly from the fin surface as fine water droplets. Since it can be effectively discharged out of the fin, the increase in ventilation resistance due to condensed water is effectively suppressed, as in the case where a coating layer made of hydrophilic resin is provided as the outermost layer. Thus, the heat exchange performance can be maintained.
 なお、親水性樹脂若しくは撥水性樹脂からなる単一の塗膜層が設けられてなるプレコート金属板を、フィン12として用いることは、勿論、可能であるが、好ましくは、基板となる金属板の表面に、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂等からなる耐食性の塗膜層を先ずは形成し、更にその表面に、上述の親水性樹脂等からなる塗膜層を形成して得られた、複数層の塗膜層が設けられているプレコート金属板が用いられるのである。即ち、基板となる金属板の表面に、そのような耐食性の塗膜層を設けることによって、フィン12の耐食性を向上せしめることが、可能となるのである。なお、このように金属板の表面に形成される各塗膜層の厚さは、単層当たり、0.1~5.0μmであることが好ましい。これは、各塗膜層の厚さが0.1μm未満となる場合には、各塗膜層の効果を有利に享受し得ない恐れがあるためである。一方、厚さが5.0μmを超える塗膜層を設けても、各塗膜層の効果は既に飽和状態であるため、そのような塗膜層を形成するために、徒にコストがかかるだけとなる。 Of course, it is possible to use a pre-coated metal plate provided with a single coating layer made of a hydrophilic resin or a water-repellent resin as the fins 12, but preferably, a metal plate serving as a substrate is used. First, a corrosion-resistant coating layer made of epoxy resin, urethane resin, polyester resin, vinyl chloride resin or the like is formed on the surface, and further, a coating layer made of the above-mentioned hydrophilic resin or the like is formed on the surface. A pre-coated metal plate provided with a plurality of coating layers obtained by forming is used. That is, it is possible to improve the corrosion resistance of the fins 12 by providing such a corrosion-resistant coating layer on the surface of the metal plate to be the substrate. The thickness of each coating layer formed on the surface of the metal plate in this manner is preferably 0.1 to 5.0 μm per single layer. This is because when the thickness of each coating layer is less than 0.1 μm, the effects of each coating layer may not be enjoyed advantageously. On the other hand, even if a coating layer having a thickness of more than 5.0 μm is provided, the effect of each coating layer is already in a saturated state, so it is only costly to form such a coating layer. It becomes.
 また、フィン12を構成する金属板の表面に、親水性樹脂や撥水性樹脂からなる塗膜層若しくは耐食性塗膜層を設ける際には、金属板30の表面に、予め下地処理層32が形成されていることが好ましい(図4参照)。このような下地処理層32を設けることによって、金属板と上述した各塗膜層(34,36)との密着性を向上することが可能となる。ここで、かかる下地処理層としては、リン酸クロメート、クロム酸クロメート等を用いたクロメート処理や、クロム化合物以外の、リン酸チタン、リン酸ジルコニウム、リン酸モリブデン、リン酸亜鉛、酸化チタン、酸化ジルコニウム等を用いたノンクロメート処理等の、化学皮膜処理(化成処理)により得られる皮膜層等を、例示することが出来る。なお、化学皮膜処理方法には、反応型及び塗布型があるが、本発明においては、その何れの手法であっても採用することが可能である。 In addition, when a coating layer made of a hydrophilic resin or a water-repellent resin or a corrosion-resistant coating layer is provided on the surface of the metal plate constituting the fin 12, a base treatment layer 32 is previously formed on the surface of the metal plate 30. It is preferable that this is done (see FIG. 4). By providing such a base treatment layer 32, it is possible to improve the adhesion between the metal plate and each of the coating layers (34, 36) described above. Here, as such a base treatment layer, chromate treatment using phosphate chromate, chromate chromate, etc., and other than chromium compounds, titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate, titanium oxide, oxidation Examples thereof include a film layer obtained by a chemical film treatment (chemical conversion treatment) such as non-chromate treatment using zirconium or the like. The chemical film treatment method includes a reaction type and a coating type. In the present invention, any method can be adopted.
 以上、本発明に係る熱交換器の代表的な実施形態の一つと、その製作方法について詳述してきたが、それらは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。 As described above, one of the typical embodiments of the heat exchanger according to the present invention and the manufacturing method thereof have been described in detail. However, these are merely examples, and the present invention is not limited to such implementation. It should be understood that the present invention is not construed as being limited in any way by the specific description of the forms.
 例えば、前述の実施形態においては、隣り合うフィン12,12の間隔(フィンピッチ)は、全て等間隔とされていたが、一つの熱交換器10内において、フィン群14の配設部位やフィン群14中のフィン12配設部位によって、フィン群14間において或いは一つのフィン群14中において、異なるフィンピッチとすることも、勿論可能である。 For example, in the above-described embodiment, the intervals (fin pitches) between the adjacent fins 12 and 12 are all equally spaced. Of course, it is possible to set different fin pitches between the fin groups 14 or within one fin group 14 depending on the fin 12 arrangement site in the group 14.
 具体的には、金属製伝熱管16内を流通する冷媒にあっては、冷媒出入口付近の気相域および液相域は、冷媒中間部の気液二相域と比較すると、冷媒自体の熱交換性が低く、明らかに熱伝達率が低いために、そのような部位におけるフィンピッチを狭めることによって、熱交換面積を広げて、熱交換効率を上げることが可能となる。 Specifically, in the refrigerant flowing through the metal heat transfer tube 16, the gas phase region and the liquid phase region in the vicinity of the refrigerant inlet / outlet are compared with the gas / liquid two-phase region in the intermediate portion of the refrigerant. Since the exchangeability is low and the heat transfer coefficient is clearly low, it is possible to increase the heat exchange efficiency by expanding the heat exchange area by narrowing the fin pitch at such a part.
 また、図3に示される如き空気調和機の室外機20において、ファン22によって、熱交換器10、10’に空気を流通せしめる場合において、そのようなファン22に最も近接する領域となる上段領域Aに位置するフィン群14のフィン12間を流通する空気の流速は、ファン22から最も離隔する領域となる下段領域Bに位置するフィン群14のフィン12間を流通する空気の流速よりも大きくなる。 Further, in the outdoor unit 20 of the air conditioner as shown in FIG. 3, when air is circulated to the heat exchangers 10, 10 ′ by the fan 22, the upper region that is the closest region to the fan 22. The flow velocity of the air flowing between the fins 12 of the fin group 14 located at A is larger than the flow velocity of the air flowing between the fins 12 of the fin group 14 located in the lower region B, which is the region farthest from the fan 22. Become.
 例えば、上段領域Aのフィン群14におけるフィン12間を流通する空気の流速:Vaは、下段領域Bのフィン群14におけるフィン12間を流通する空気の流速:Vbの1.5倍~2倍程度となることがあり、そのような場合においては、上段領域Aのフィン群14における、隣り合うフィン12、12間の間隔(フィンピッチ:p)を、熱交換性能を向上させる目的で狭くする一方、下段領域Bのフィン群14における、隣り合うフィン間12、12の間隔(フィンピッチ:p)も、上記のフィンピッチ:pと同じフィンピッチにすると、下段領域Bのフィン群14においては、通風抵抗が大きくなり過ぎて、全体として熱交換性能が低下してしまうという問題が生じるのである。 For example, the flow velocity Va of air flowing between the fins 12 in the fin group 14 in the upper region A is 1.5 to 2 times the flow velocity of air flowing between the fins 12 in the fin group 14 in the lower region B: Vb. In such a case, the interval between the adjacent fins 12 and 12 (fin pitch: p 1 ) in the fin group 14 in the upper region A is narrowed for the purpose of improving the heat exchange performance. On the other hand, if the spacing (fin pitch: p 2 ) between adjacent fins 12 in the fin group 14 in the lower region B is also set to the same fin pitch as the fin pitch: p 1 , the fin group in the lower region B In 14, the ventilation resistance becomes too large, and the problem arises that the heat exchange performance as a whole deteriorates.
 そして、そのような問題の発生を回避するには、ファン22から遠い下段領域Bに位置するフィン群14のフィンピッチ:pを、ファン22に近接した上段領域Aに位置するフィン群14のフィンピッチ:pに対して、適切な比率にて拡げるのが、好ましいのである。そこで、本発明にあっては、それら領域A、Bにおける熱交換流体である空気の流速(風速)に着目して、ファン22による空気流通時の風速が大なる上段領域A(第一の領域)に位置するフィン群14における複数のフィン部位のフィンピッチ:pと、該上段領域Aにおける風速に対して0.7以下の風速となる、風速の小さな下段領域B(第二の領域)に位置するフィン群14におけるフィンピッチ:pとの関係を規制することとして、それらの比:p/pが1.5以上、3.0以下となるように(1.5≦p/p≦3.0)、それぞれの領域におけるフィン群14のフィンピッチを調整して、通風抵抗を制御し、全体としての熱交換性能の向上を図るようにした構成が、有利に採用されることとなる。 Then, to avoid the occurrence of such a problem, the fin pitch of the fin group 14 located farther lower region B from the fan 22: the p 2, the fin group 14 located in the upper region A close to the fan 22 It is preferable to expand the fin pitch at an appropriate ratio with respect to p 1 . Therefore, in the present invention, paying attention to the flow velocity (wind velocity) of the air that is the heat exchange fluid in the regions A and B, the upper region A (first region) in which the wind velocity during air circulation by the fan 22 is large. a plurality of fins sites fin pitch in the group of fins 14 located) and p 1, is 0.7 or less of the wind against the wind speed at the upper stage region a, a small lower region B of the wind speed (second region) By restricting the relationship between the fin pitch 14 in the fin group 14 located at p 2 and p 2 , the ratio p 2 / p 1 is 1.5 or more and 3.0 or less (1.5 ≦ p 2 / p 1 ≦ 3.0), advantageously adopting a configuration that adjusts the fin pitch of the fin group 14 in each region to control the ventilation resistance and improve the overall heat exchange performance Will be.
 なお、かかるp/pの値が1.5未満となると、それら二つのフィンピッチの比率を変化させることによる効果が不充分となり、熱交換性能の向上は、期待し難くなる。また、このp/pの値が3.0を超えるようになると、各熱交換器10、10’の上段領域Aに位置するフィン群14の隣り合うフィン12、12間の間隔:pを、フィンピッチとして適切な範囲の下限である0.6mmとした時、暖房運転時の各フィン12における結露水の付着による通風抵抗の増大が、空気側熱伝達率の低下を招くようになる問題があり、更に、空気側熱伝達率が低下して、熱交換性能低下の原因となるのである。 When the value of p 2 / p 1 is less than 1.5, the effect of changing the ratio of the two fin pitches becomes insufficient, and it is difficult to expect improvement in heat exchange performance. When the value of p 2 / p 1 exceeds 3.0, the interval between adjacent fins 12 and 12 of the fin group 14 located in the upper region A of each heat exchanger 10 and 10 ′: p When 1 is 0.6 mm, which is the lower limit of the appropriate range for the fin pitch, an increase in ventilation resistance due to the attachment of condensed water on each fin 12 during heating operation causes a decrease in air-side heat transfer coefficient In addition, the air-side heat transfer coefficient is reduced, which causes a reduction in heat exchange performance.
 また、ここでは、上記したフィンピッチ:pは、ファン22に最も近接した領域である上段領域Aに位置する、少なくとも1段のフィン群14における、隣り合うフィン間の間隔として、設定されるものであるが、一般に、そのような、ファン22に近接した上段領域Aには、z方向に配列された複数段(n段)のフィン群14のうちの、ファン22に近接して位置するn/4の段数のフィン群14が含まれることとなる。同様に、フィンピッチ:pは、ファン22から最も離隔した領域である下段領域Bに位置する、少なくとも1段のフィン群における隣り合うフィン間の間隔として、採用されるものではあるが、一般に、熱交換器10、10’を構成する複数段(n段)のフィン群14のうちの、ファン22から最も離隔した領域に位置するn/4段の段数のフィン群14に対して、有利に適用されることとなる。加えて、上段領域Aと下段領域Bの間に位置する中間領域のフィン群14(n/2段)にあっても、それらフィン群14の風速が上段領域Aにおける風速の0.7倍以下となる場合にあっては、前記したp/pに係る不等式を満足するように、そのフィンピッチ(p)が規定されることとなる。なお、かかるpは、上段領域Aに位置する少なくとも1段のフィン群14の平均フィンピッチとして示されるものであり、更に、pは、下段領域Bに位置する少なくとも1段のフィン群14における平均フィンピッチとして示されるものである。 Here, the above-described fin pitch: p 1 is set as an interval between adjacent fins in at least one fin group 14 located in the upper region A that is the region closest to the fan 22. In general, however, the upper region A close to the fan 22 is positioned close to the fan 22 among the plurality of (n-step) fin groups 14 arranged in the z direction. The fin group 14 having n / 4 stages is included. Similarly, the fin pitch: p 2 is adopted as an interval between adjacent fins in at least one fin group located in the lower region B, which is the region farthest from the fan 22. Among the plurality of (n-stage) fin groups 14 constituting the heat exchangers 10 and 10 ′, it is advantageous to the n / 4-stage fin group 14 located in the region farthest from the fan 22. It will be applied to. In addition, even in the fin region 14 (n / 2 steps) in the intermediate region located between the upper region A and the lower region B, the wind speed of the fin group 14 is 0.7 times or less than the wind speed in the upper region A. In this case, the fin pitch (p 2 ) is defined so as to satisfy the inequality related to p 2 / p 1 described above. The p 1 is shown as an average fin pitch of at least one fin group 14 located in the upper region A, and p 2 is at least one fin group 14 located in the lower region B. It is shown as the average fin pitch at.
 さらに、各熱交換器10、10’における、z方向に配列された複数段(n段)のフィン群の、上段領域Aと下段領域Bとの間の中間領域に位置するフィン群14における空気の流速:Vcは、Vb≦Vc≦Vaの関係にあることから、そのような、複数段のフィン群14の中間領域の段(一般に、n/2の段数)のフィン群14のフィンピッチ:pは、p≦p≦pとすることが好ましい。 Furthermore, the air in the fin group 14 located in the intermediate region between the upper region A and the lower region B of the plurality of (n stages) fin groups arranged in the z direction in each heat exchanger 10, 10 ′. Since Vc has a relationship of Vb ≦ Vc ≦ Va, the fin pitch of the fin group 14 of the intermediate region of the plurality of fin groups 14 (generally, the number of stages of n / 2) is: p 3 is preferably p 1 ≦ p 3 ≦ p 2 .
 なお、上記のような熱交換流体(空気)の流速(風速)の変化は、z方向における異なる段に位置するフィン群14、14間において生じる他、同一の段のフィン群14における異なるフィン配設部位、換言すれば伝熱管16の管軸方向における異なる位置に配設された一つのフィン群14のフィン12間においても生じるところから、上記したフィンピッチp、pの関係は、それら何れの場合においても、適用されることとなる。 The change in the flow velocity (wind speed) of the heat exchange fluid (air) as described above occurs between the fin groups 14 and 14 located at different stages in the z direction, and different fin arrangements in the fin groups 14 of the same stage. The relationship between the fin pitches p 1 and p 2 described above is that they occur also between the fins 12 of one fin group 14 arranged at different positions in the tube axis direction of the heat transfer tubes 16. In either case, it will be applied.
 また、かかる実施形態における熱交換器10にあっては、1枚のフィン12に対して1本の金属製伝熱管16が貫通するように構成されていたが、図5に示される如く、1枚のフィン42に対して2本の金属製伝熱管16,16を貫通させて、それぞれのフィン群44を形成した構造の熱交換器40としても何等差し支えない。 Moreover, in the heat exchanger 10 in this embodiment, although the one metal heat exchanger tube 16 penetrated with respect to the one fin 12, as shown in FIG. The heat exchanger 40 having a structure in which the two fins 44 are formed by passing the two metal heat transfer tubes 16 and 16 through the fins 42 may be used.
 さらに、熱交換器10を、熱交換流体(空気)の流通方向に対して複数重ね合わせた形状、例えば、図6や図7に示されるように、二つの平板形状の熱交換器10を所定間隔を隔てて重ね合わせて、一つの空気調和機用サーペンタイン熱交換器46,48を構成することも可能である。このように、平板形状の熱交換器10の複数を空気の流通方向に対して重ね合わせる場合にあっては、図6に示される熱交換器46のように、隣り合う熱交換器10のフィン12が碁盤目状となるように、換言すれば、熱交換流体の流通方向において、前段の熱交換器10のフィン群14の一つが後段の熱交換器10のフィン群14の一つと隣接するように配置される他に、図7に示される熱交換器48のように、前段の熱交換器10のフィン群14の一つが後段の熱交換器10の二つのフィン群14と隣接するように配置して、隣り合う熱交換器10のフィン12が千鳥状となるようにすることも可能である。但し、熱交換性能の観点からすると、図7に示される如く、千鳥状に重ね合わせる方が、良好な熱交換効率が期待できるものである。更に、このように熱交換器10を熱交換流体である空気の流通方向に複数重ねた場合にあっては、高い熱交換効率が期待できない部位においてフィンピッチを広げることにより、通風抵抗を下げることも可能である。このように通風抵抗を下げることによって、熱交換流体である空気の流れが良好になり、空気の流通方向に対して後ろ側に配置された熱交換器10にも充分な空気が流れるため、熱交換器全体の熱交換効率を向上せしめることが可能となる。 Furthermore, a shape in which a plurality of heat exchangers 10 are overlapped with respect to the flow direction of the heat exchange fluid (air), for example, as shown in FIGS. It is also possible to constitute one serpentine heat exchanger 46, 48 for an air conditioner by overlapping each other at intervals. Thus, in the case where a plurality of flat plate-shaped heat exchangers 10 are overlapped with respect to the air flow direction, the fins of adjacent heat exchangers 10, such as the heat exchanger 46 shown in FIG. 6, are used. In other words, one of the fin groups 14 of the front heat exchanger 10 is adjacent to one of the fin groups 14 of the rear heat exchanger 10 in the flow direction of the heat exchange fluid. 7, so that one of the fin groups 14 of the front heat exchanger 10 is adjacent to the two fin groups 14 of the rear heat exchanger 10, as in the heat exchanger 48 shown in FIG. 7. It is also possible to arrange them so that the fins 12 of the adjacent heat exchangers 10 are staggered. However, from the viewpoint of heat exchange performance, as shown in FIG. 7, it is expected that better heat exchange efficiency can be expected by overlapping in a zigzag pattern. Further, in the case where a plurality of heat exchangers 10 are stacked in the flow direction of the air that is the heat exchange fluid in this way, the ventilation resistance is lowered by widening the fin pitch in a portion where high heat exchange efficiency cannot be expected. Is also possible. By reducing the ventilation resistance in this way, the flow of air, which is a heat exchange fluid, is improved, and sufficient air also flows through the heat exchanger 10 disposed on the rear side with respect to the air flow direction. It becomes possible to improve the heat exchange efficiency of the whole exchanger.
 なお、かかる熱交換器10(40,46,48)を構成するフィンとしては、例示した略平坦な矩形形状を呈するフィン12(42)の他にも、例えば、図8に示される如く、フィン表面に、フィンの厚み方向に突出し、底部外形が円形又は楕円形を呈するエンボス部52を複数有するフィン50が、好適に用いられることとなる。このようにフィン表面にエンボス部52を形成することにより、積層されたフィン50の間を通過する熱交換用の空気が、エンボス部52に接触した後、フィン50の積層方向(縦方向)とその積層方向に直行する方向(横方向)へと転換され、これらが適度な縦方向の渦巻き流(以下、縦渦という)及び横方向の渦巻き流(以下、横渦という)となる。このような適度な渦巻き流によって、フィン間の空気が適度に撹乱され、その結果、熱交換性能を向上させることが可能となる。また、フィン・アンド・チューブ式熱交換器(サーペンタイン熱交換器)を、寒冷地における室外機として低温環境下において蒸発器として使用する場合にあっては、このような適度な渦巻き流、特に縦渦が、フィン表面近傍に比較的低温の空気が滞留することを抑制し、フィン間の中央部位に滞留しやすい比較的高温の空気をフィン表面に接触させることが出来、以て、フィン表面における着霜の抑制、或いは着霜した霜の成長を、効果的に抑制することが出来るのである。 As the fins constituting the heat exchanger 10 (40, 46, 48), in addition to the illustrated fin 12 (42) having a substantially flat rectangular shape, for example, as shown in FIG. A fin 50 having a plurality of embossed portions 52 protruding on the surface in the thickness direction of the fin and having a bottom or outer shape of a circle or an ellipse is preferably used. By forming the embossed portion 52 on the fin surface in this manner, after the heat exchange air passing between the stacked fins 50 comes into contact with the embossed portion 52, the stacking direction (longitudinal direction) of the fins 50 and It is converted into a direction (lateral direction) perpendicular to the stacking direction, and these become an appropriate longitudinal spiral (hereinafter referred to as longitudinal vortex) and lateral spiral (hereinafter referred to as lateral vortex). The air between the fins is appropriately disturbed by such an appropriate spiral flow, and as a result, the heat exchange performance can be improved. When a fin-and-tube heat exchanger (serpentine heat exchanger) is used as an evaporator in a low-temperature environment as an outdoor unit in a cold region, such an appropriate swirl flow, particularly a vertical flow The vortex suppresses the retention of relatively low temperature air in the vicinity of the fin surface, and allows relatively high temperature air that tends to stay in the central part between the fins to contact the fin surface. Suppression of frost formation or growth of frost that has formed frost can be effectively suppressed.
 かくの如きエンボス部52の存在による熱交換性能の向上は、また、スリット加工やルーバー加工によって形成される切り起こしスリットやルーバースリットによっても、同様に、実現可能である。従って、そのようなスリット加工やルーバー加工は、エンボス部52を形成するためのエンボス加工と共に、或いは、それに代えて、常法に従って、フィン(12、42)に対して施されることとなる。 Such an improvement in heat exchange performance due to the presence of the embossed portion 52 can also be realized by a cut-and-raised slit or a louver slit formed by slit processing or louver processing. Accordingly, such slit processing and louver processing are performed on the fins (12, 42) in accordance with a conventional method together with or instead of the embossing for forming the embossed portion 52.
 また、金属製伝熱管16の管径は、管内を流通する冷媒の流動特性に応じて、熱交換器10の部位により、異なる外径を用いてもよい。例えば、液相域においては比較的小さな外径の伝熱管とする一方、気相域においては比較的大きな外径の伝熱管を用いることによって、管内熱伝達率の向上や圧力損失の低減が、有利に図り得られることとなる。なお、そのような熱交換器の部位によって異なる管径の金属製伝熱管を採用するに際しては、管径が、管軸方向における所望の部位において適宜に変化する一本の長い金属製伝熱管を用いる他、例えばフィン群14毎に適宜に選択した管径の金属製伝熱管を用い、それらをUベンド管等で接続して、蛇行形状を呈する金属製伝熱管とすることも可能である。 Further, the pipe diameter of the metal heat transfer pipe 16 may be different depending on the part of the heat exchanger 10 depending on the flow characteristics of the refrigerant flowing in the pipe. For example, a heat transfer tube with a relatively small outer diameter is used in the liquid phase region, while a heat transfer tube with a relatively large outer diameter is used in the gas phase region, thereby improving the heat transfer coefficient in the tube and reducing the pressure loss. This can be advantageously achieved. When adopting a metal heat transfer tube having a different pipe diameter depending on the part of such a heat exchanger, a single long metal heat transfer pipe whose pipe diameter is appropriately changed at a desired part in the tube axis direction is used. In addition to using, for example, a metal heat transfer tube having a pipe diameter appropriately selected for each fin group 14 may be connected by a U-bend tube or the like to form a metal heat transfer tube having a meandering shape.
 さらに、先に例示した実施形態においては、金属製伝熱管16として、その内面を平滑とした管体(図9(a)参照)が用いられているが、伝熱管の内面に、長手方向に平行なストレート溝、捩れ角を有する螺旋溝、或いは溝が所定の角度をもって交差する溝形態を有するクロス溝を形成した、所謂内面溝付伝熱管を採用することも可能である。このようにして、伝熱管内面の伝熱面積を増大させ、更には伝熱管の中を流通する冷媒の流れを複雑化することによって、熱交換器10の熱交換性能を、より高めることが可能となる。なお、このように内面溝付伝熱管を採用したサーペンタイン熱交換器10において、その全体を、同じ溝タイプの内面溝付伝熱管を採用するようにしても良いが、それ以外にも、例えば、フィン群14を構成するパス毎に、溝形状が異なるタイプの内面溝付伝熱管とすることも可能である。なお、このように伝熱管の内面に形成される溝は、その溝深さが、好ましくは0.05~1.0mmとされ、溝条数が、伝熱管の長手方向に対する直角断面において、好ましくは15~150条とされることにより、効果的に熱交換性能を高めることが可能となる。 Further, in the embodiment exemplified above, a tubular body (see FIG. 9A) having a smooth inner surface is used as the metal heat transfer tube 16, but in the longitudinal direction on the inner surface of the heat transfer tube. It is also possible to employ a so-called internally grooved heat transfer tube in which parallel straight grooves, spiral grooves having a twist angle, or cross grooves having a groove shape in which the grooves intersect at a predetermined angle are formed. In this way, it is possible to further increase the heat exchange performance of the heat exchanger 10 by increasing the heat transfer area on the inner surface of the heat transfer tube and further complicating the flow of the refrigerant flowing through the heat transfer tube. It becomes. In addition, in the serpentine heat exchanger 10 that employs the inner surface grooved heat transfer tube as described above, the entire groove type inner surface grooved heat transfer tube may be employed, but other than that, for example, It is also possible to use an internally grooved heat transfer tube of a type having a different groove shape for each path constituting the fin group 14. The groove formed on the inner surface of the heat transfer tube in this manner preferably has a groove depth of 0.05 to 1.0 mm, and the number of grooves is preferably in a cross section perpendicular to the longitudinal direction of the heat transfer tube. By setting the length to 15 to 150, it is possible to effectively enhance the heat exchange performance.
 更にまた、本発明で用いる金属製伝熱管16は、外面が略円形形状を呈するものであればよく、例えば、図9(b),(c),(d)に示される如き、断面が1枚の仕切板55、2枚の平行な仕切板57、57、2枚の交差した仕切板59、59にて仕切られた多穴管54,56,58の他、公知の各種の多穴管が、好適に採用され得るものである。 Furthermore, the metal heat transfer tube 16 used in the present invention only needs to have an outer surface having a substantially circular shape. For example, as shown in FIGS. 9B, 9C, and 9D, the cross section is 1. In addition to the multi-hole pipes 54, 56, and 58 partitioned by two partition boards 55, two parallel partition boards 57 and 57, and two crossing partition boards 59 and 59, various known multi-hole pipes Can be suitably employed.
 加えて、サーペンタイン熱交換器10を構成する金属製伝熱管16としては、その表面に樹脂製の塗膜層が形成されたものが、好適に用いられることとなる。これは、前述してきたサーペンタイン熱交換器10は、金属製伝熱管16とフィン12とを機械拡管法等の手法によって密着させて、それらを組み付けることによって、組み立てられているが、それらフィンと伝熱管の接触部分を微視的に見れば、金属製伝熱管16とフィン12の各々との間には、ある程度の空隙が存在している。しかし、このような空隙が存在していると、フィンと伝熱管との接触熱抵抗が高くなってしまい、熱交換性能が低下してしまう恐れが惹起されるのである。そこで、それらの間の接触熱抵抗を低くし、熱交換器の性能を効果的に発揮させるためには、金属製伝熱管16とフィン12との間の空隙が存在しないことが好ましいのであり、そのために、金属製伝熱管16の表面に樹脂製塗膜層を形成することによって、そのような空隙の発生が有利に抑制されるのである。 In addition, as the metal heat transfer tube 16 constituting the serpentine heat exchanger 10, one having a resin coating layer formed on its surface is preferably used. The serpentine heat exchanger 10 described above is assembled by bringing the metal heat transfer tubes 16 and the fins 12 into close contact with each other by a method such as a mechanical tube expansion method, and assembling them. If the contact portion of the heat tube is viewed microscopically, a certain amount of air gap exists between the metal heat transfer tube 16 and each of the fins 12. However, if such voids are present, the contact thermal resistance between the fins and the heat transfer tubes is increased, and the heat exchange performance may be degraded. Therefore, in order to reduce the contact thermal resistance between them and effectively exhibit the performance of the heat exchanger, it is preferable that there is no gap between the metal heat transfer tubes 16 and the fins 12, Therefore, by forming a resin coating layer on the surface of the metal heat transfer tube 16, the generation of such voids is advantageously suppressed.
 そして、そのような樹脂製塗膜層を構成する樹脂としては、例えば、ポリエチレン樹脂等の熱可塑性樹脂の他、前述したフィン12表面に形成されるものと同様な親水性樹脂及び撥水性樹脂や、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂等を、例示することが出来る。これら各種の樹脂からなる塗膜層を、金属製伝熱管16の表面に形成せしめることによって、以下のような効果を享受することが出来るのである。即ち、ポリエチレン樹脂等の熱可塑性樹脂については、ポリエチレン樹脂等の熱可塑性樹脂からなる塗膜層を最外層として有する金属製伝熱管16に、カラー付き孔が設けられたフィン12を組み付けた後、ポリエチレン樹脂等の熱可塑性樹脂の融点以上に加熱し、その後、冷却すると、カラー付き孔周縁に形成されたカラーのすその部分と金属製伝熱管との隙間がポリエチレン樹脂等の熱可塑性樹脂によって有利に埋められ、フィン12と金属製伝熱管16との接触面積がより大きく確保され得ることとなる為、熱交換器の熱交換性能をより向上させることが可能となる。また、親水性樹脂又は撥水性樹脂からなる塗膜層を最外層として金属製伝熱管16に形成せしめることにより、金属製伝熱管16の露出部(フィンが組み付けられていない部分)に、フィン12と同様の機能を持たせることが可能となる。更に、金属製伝熱管16の表面に、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂等からなる塗膜層を設けることによって、金属製伝熱管16の耐食性を向上せしめることが可能である。 And as resin which comprises such a resin-made coating-film layer, other than thermoplastic resins, such as a polyethylene resin, the hydrophilic resin and water-repellent resin similar to what is formed in the fin 12 surface mentioned above, And epoxy resins, urethane resins, polyester resins, vinyl chloride resins, and the like. By forming a coating layer made of these various resins on the surface of the metal heat transfer tube 16, the following effects can be obtained. That is, for a thermoplastic resin such as a polyethylene resin, after assembling the fins 12 provided with collared holes to the metal heat transfer tube 16 having a coating layer made of a thermoplastic resin such as a polyethylene resin as the outermost layer, When heated above the melting point of a thermoplastic resin such as polyethylene resin and then cooled, the gap between the collar skirt formed on the periphery of the hole with the collar and the metal heat transfer tube is advantageous by the thermoplastic resin such as polyethylene resin. Since the contact area between the fins 12 and the metal heat transfer tubes 16 can be ensured larger, the heat exchange performance of the heat exchanger can be further improved. Further, by forming a coating film layer made of a hydrophilic resin or a water repellent resin on the metal heat transfer tube 16 as an outermost layer, the exposed portions (portions where no fins are assembled) of the metal heat transfer tube 16 are formed on the fin 12. It is possible to have the same function as. Furthermore, by providing a coating layer made of epoxy resin, urethane resin, polyester resin, vinyl chloride resin or the like on the surface of the metal heat transfer tube 16, the corrosion resistance of the metal heat transfer tube 16 can be improved. Is possible.
 また、かかる樹脂製塗膜層は、熱伝導性を向上せしめる観点から、熱伝導性フィラーを含むものであることが好ましい。そのような熱伝導性フィラーとしては、窒化ホウ素、窒化アルミ、窒化ケイ素、炭化ケイ素、アルミナ、ジルコニア、酸化チタン、カーボンの微細な粉末等を、例示することが出来る。 Moreover, it is preferable that this resin coating layer contains a heat conductive filler from a viewpoint of improving heat conductivity. Examples of such thermally conductive fillers include boron nitride, aluminum nitride, silicon nitride, silicon carbide, alumina, zirconia, titanium oxide, fine carbon powder, and the like.
 なお、本発明においては、金属製伝熱管16の表面に、上述の如き各種の樹脂からなる単一の塗膜層が設けられてなる構造が、採用され得るものではあるが、好ましくは、金属製伝熱管16の表面に、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂等からなる耐食性の塗膜層を先ずは形成し、更にその上に、ポリエチレン樹脂等の熱可塑性樹脂、親水性樹脂又は撥水性樹脂からなる樹脂製塗膜層を形成する構成が採用される。また、かかる樹脂製塗膜層の厚さは、単層当たり0.1~5.0μmであることが好ましい。樹脂製塗膜層の厚さが0.1μm未満では、上述した各樹脂製塗膜層の効果を享受できない恐れがあり、その一方、厚さが5.0μmを超える樹脂製塗膜層を設けても、各塗膜層の効果は既に飽和状態であって、徒にコストがかかるだけとなるからである。 In the present invention, a structure in which a single coating layer made of various resins as described above is provided on the surface of the metal heat transfer tube 16 can be employed. First, a corrosion-resistant coating layer made of epoxy resin, urethane resin, polyester resin, vinyl chloride resin, or the like is formed on the surface of the heat transfer tube 16, and a thermoplastic resin such as polyethylene resin is further formed thereon. The structure which forms the resin-made coating-film layer which consists of hydrophilic resin or water-repellent resin is employ | adopted. Further, the thickness of the resin coating layer is preferably 0.1 to 5.0 μm per single layer. If the thickness of the resin coating layer is less than 0.1 μm, the effects of each of the resin coating layers described above may not be enjoyed. On the other hand, a resin coating layer having a thickness exceeding 5.0 μm is provided. However, the effect of each coating layer is already in a saturated state, and it is only costly.
 更にまた、金属製伝熱管16の表面に、上述の樹脂からなる樹脂製塗膜層を設ける際には、金属製伝熱管16の表面に、予め下地処理層が形成されていることが好ましい。かかる下地処理層を設けることによって、金属製伝熱管16と上述した各塗膜層との密着性を向上することができる。ここで、下地処理層としては、リン酸クロメート、クロム酸クロメート等を用いたクロメート処理や、クロム化合物以外の、リン酸チタン、リン酸ジルコニウム、リン酸モリブデン、リン酸亜鉛、酸化チタン、酸化ジルコニウム等を用いたノンクロメート処理等の化学皮膜処理(化成処理)により得られる皮膜層等を、例示することが出来る。なお、化学皮膜処理方法には、反応型及び塗布型があるが、本発明においては、何れの手法であっても採用することが可能である。 Furthermore, when a resin coating layer made of the above-mentioned resin is provided on the surface of the metal heat transfer tube 16, it is preferable that a base treatment layer is formed on the surface of the metal heat transfer tube 16 in advance. By providing such a base treatment layer, the adhesion between the metal heat transfer tube 16 and each coating layer described above can be improved. Here, as the base treatment layer, chromate treatment using phosphate chromate, chromate chromate, etc., and other than chromium compounds, titanium phosphate, zirconium phosphate, molybdenum phosphate, zinc phosphate, titanium oxide, zirconium oxide Examples thereof include a film layer obtained by chemical film treatment (chemical conversion treatment) such as non-chromate treatment using the like. The chemical film treatment method includes a reaction type and a coating type. In the present invention, any method can be adopted.
 その他、一々列挙はしないが、本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施されるものであり、またそのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。 In addition, although not listed one by one, the present invention is implemented in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that any one of them falls within the scope of the present invention without departing from the spirit of the invention.
 以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。 Hereinafter, representative examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by the description of such examples. It goes without saying.
-実験例1-
 先ず、本発明に従う空気調和機用のサーペンタイン熱交換器を構成するために用いる伝熱管として、多数条の内面溝が管軸に対して所定のリード角をもって延びる螺旋溝として形成された、りん脱酸銅(JIS H3300 C1220)からなる、内面溝付伝熱管を用意した。かかる内面溝付伝熱管の各寸法は、外径:6.35mm、底肉厚:0.23mm、溝深さ:0.15mm、溝条数:58条、リード角:30°とした。
-Experimental example 1-
First, as a heat transfer tube used to construct a serpentine heat exchanger for an air conditioner according to the present invention, a plurality of inner surface grooves are formed as spiral grooves extending at a predetermined lead angle with respect to the tube axis. An internally grooved heat transfer tube made of acid copper (JIS H3300 C1220) was prepared. The dimensions of the internally grooved heat transfer tube were as follows: outer diameter: 6.35 mm, bottom wall thickness: 0.23 mm, groove depth: 0.15 mm, number of grooves: 58, lead angle: 30 °.
 一方、フィン材料としては、板厚:0.13mmの、純アルミニウム(JIS A1050)の板材を準備し、そのフィン材料の表面に、図4に示されるような、3層からなる表面処理を施した。即ち、先ず、前記アルミニウム材料の基板30に対してリン酸クロメート浸漬処理を施すことにより、アルミニウム基板の表面にリン酸クロメートよりなる化成皮膜32を形成した。次いで、かかる化成皮膜32の上に、ロールコーターを用いてエポキシ樹脂を塗布して、220℃の温度で10秒間加熱することにより、膜厚1μmの耐食性塗膜34を形成した。そして、空冷の後、ポリビニルアルコール樹脂(PVA樹脂)よりなる親水性塗膜用の塗料を耐食性塗膜34の上に塗布し、220℃の温度で10秒間加熱することにより、膜厚1.5μmの親水性塗膜36が形成されたフィン材料とした。更に、耐食性塗膜34の表面に塗布する樹脂として、前述の親水性塗膜36の代わりに、エポキシ系樹脂よりなる撥水性塗膜用の塗料を用いて、それを耐食性塗膜34の表面に塗布し、220℃の温度で10秒間加熱することにより、膜厚1.5μmの撥水性塗膜36が形成された別のフィン材料を準備した。 On the other hand, as a fin material, a plate material of 0.13 mm thick pure aluminum (JIS A1050) is prepared, and the surface of the fin material is subjected to a surface treatment consisting of three layers as shown in FIG. did. That is, first, a chemical conversion film 32 made of phosphoric acid chromate was formed on the surface of the aluminum substrate by subjecting the aluminum material substrate 30 to a phosphoric acid chromate dipping treatment. Next, an epoxy resin was applied on the chemical conversion film 32 using a roll coater and heated at a temperature of 220 ° C. for 10 seconds to form a corrosion-resistant coating film 34 having a thickness of 1 μm. And after air cooling, the coating film for hydrophilic coatings which consist of polyvinyl alcohol resin (PVA resin) is apply | coated on the corrosion-resistant coating film 34, and it heats for 10 seconds at the temperature of 220 degreeC, and film thickness is 1.5 micrometers. The fin material having the hydrophilic coating film 36 was formed. Furthermore, as a resin to be applied to the surface of the corrosion-resistant coating film 34, a coating for a water-repellent coating film made of an epoxy resin is used instead of the hydrophilic coating film 36 described above, and this is applied to the surface of the corrosion-resistant coating film 34. It was applied and heated at a temperature of 220 ° C. for 10 seconds to prepare another fin material on which a water-repellent coating film 36 having a film thickness of 1.5 μm was formed.
 そして、このように準備した2種類のフィン材料を、それぞれ、図1におけるx方向で12mm、z方向で16mmとなる大きさの矩形状に切断し、更にその略中央部に、伝熱管を挿通するための貫通孔(周縁に0.5mmのカラーを立てた貫通孔)を設けることにより、2種類のフィンを多数用意した。 Then, the two types of fin materials prepared in this way are each cut into a rectangular shape having a size of 12 mm in the x direction and 16 mm in the z direction in FIG. 1, and a heat transfer tube is inserted through the substantially central portion thereof. A large number of two types of fins were prepared by providing through holes (through holes with a 0.5 mm collar on the periphery).
 そして、このように用意された伝熱管とフィンを用いて、目的とするフィン群を、1本の伝熱管上に、次のようにして形成した。即ち、かかるフィンの複数を、それぞれの貫通孔が所定間隔を隔てて平行に位置するように配列し、そしてその貫通孔に伝熱管が順次貫通するように挿通させた後に、伝熱管を拡管することにより、伝熱管とフィンとを一体化させて、かかる伝熱管上にフィン群を形成した。このとき、拡管後の伝熱管の管径(D)は6.75mmとし、フィン1枚に対して伝熱管1本が、その略中央を貫通させた形態となるようにした。また、伝熱管の直管部に対して、下記表1の如くフィン間隔(フィンピッチ)やフィン枚数となるように、それぞれ順にフィンを平行に配列させて、接合することによって、全て同じ幅からなる、目的とするフィン群を形成した。なお、フィンピッチが本発明に従う範囲である1.0mm、3.0mmのものを実施例1~実施例4とし、本発明の範囲外である0.5mm、8mmのものを比較例1~4とした。 Then, using the heat transfer tubes and fins prepared in this way, a target fin group was formed on one heat transfer tube as follows. That is, a plurality of such fins are arranged so that the respective through holes are parallel to each other with a predetermined interval, and the heat transfer tubes are sequentially inserted through the through holes, and then the heat transfer tubes are expanded. Thus, the heat transfer tubes and the fins were integrated to form a fin group on the heat transfer tubes. At this time, the tube diameter (D) of the heat transfer tube after the tube expansion was 6.75 mm, so that one heat transfer tube penetrated the substantial center of one fin. In addition, by arranging and joining the fins in parallel in order so that the fin interval (fin pitch) and the number of fins are as shown in Table 1 below and joined to the straight pipe portion of the heat transfer tube, all from the same width The target fin group was formed. Examples having fin pitches in the range of 1.0 mm and 3.0 mm according to the present invention are designated as Examples 1 to 4, and those having a fin pitch outside the scope of the present invention are 0.5 to 8 mm as Comparative Examples 1 to 4. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、比較のために、表面に表面処理を施していない純アルミニウム(JIS A1050)の板材(板厚:0.13mm)を準備し、これを上記と同様な寸法のフィンに加工し、それを実施例1~4及び比較例1~4と同様の伝熱管に組み付けて、それらと同じ幅となるフィン群を形成し、これを比較例5とした。かかる比較例5のフィンピッチ及びフィン枚数は、上記表1に併せ示した通り、フィンピッチ:3.0mm、フィン枚数100枚とした。 Furthermore, for comparison, a plate material (plate thickness: 0.13 mm) of pure aluminum (JIS A1050) whose surface is not subjected to surface treatment is prepared, and this is processed into fins having the same dimensions as described above. A fin group having the same width as that of the heat transfer tubes similar to those in Examples 1 to 4 and Comparative Examples 1 to 4 was formed. As shown in Table 1 above, the fin pitch and the number of fins of Comparative Example 5 were set to fin pitch: 3.0 mm and the number of fins of 100.
 次いで、そのように形成したフィン群を、伝熱管の長さ方向に、所定間隔を隔てて16個形成した後に、伝熱管のフィン群が形成されていない箇所に対して曲げ加工を施して、伝熱管がU字形態となるように構成し、フィン群が所定間隔を隔てて配列されると共に、それら配列されたフィン群を伝熱管が順次貫通するように、蛇行形態において配されている、図1に示される如きサーペンタイン熱交換器を作製した。尚、平行に曲げられた伝熱管の間隔(中心間距離)は18mmであり、フィン間の隙間は1mmである。 Next, after forming 16 fin groups so formed in the length direction of the heat transfer tubes at a predetermined interval, the heat transfer tube fin groups are subjected to bending processing, The heat transfer tubes are configured to be U-shaped, the fin groups are arranged at a predetermined interval, and the heat transfer tubes are arranged in a meandering form so that the heat transfer tubes sequentially pass through the arranged fin groups. A serpentine heat exchanger as shown in FIG. 1 was produced. In addition, the space | interval (distance between centers) of the heat exchanger tube bent in parallel is 18 mm, and the clearance gap between fins is 1 mm.
 このようにして得られた9種類の熱交換器を、各々、図2に示すように所定の室外機にセットし、伝熱管に冷媒(R410A)を通し、ファン回転による冷房運転を実施し、水飛びの有無を観察した。その結果、比較例5のフィンに表面処理が施されていない熱交換器は水飛びの発生が確認され、更に、フィン間隔が0.5mmである比較例1及び比較例3の熱交換器にあっても、フィン表面に親水性樹脂又は撥水性樹脂の塗膜層が設けられているにもかかわらず、水飛びの発生が認められた。一方、フィン間隔が1.0mm以上である実施例1~4及び比較例2,4の熱交換器においては、水飛びは全く認められず、良好な運転状態が確認された。 Each of the nine types of heat exchangers thus obtained was set in a predetermined outdoor unit as shown in FIG. 2, the refrigerant (R410A) was passed through the heat transfer tube, and the cooling operation by rotating the fan was performed. The presence or absence of water splash was observed. As a result, in the heat exchanger in which the surface treatment was not applied to the fins of Comparative Example 5, the occurrence of water splash was confirmed, and furthermore, in the heat exchangers of Comparative Examples 1 and 3 in which the fin interval was 0.5 mm. Even in such a case, spattering of water was observed even though a hydrophilic resin or water-repellent resin coating layer was provided on the fin surface. On the other hand, in the heat exchangers of Examples 1 to 4 and Comparative Examples 2 and 4 in which the fin interval was 1.0 mm or more, no water splashing was observed at all and a good operation state was confirmed.
 さらに、実施例1~4及び比較例2,4の、フィン間隔が1.0mm以上となる熱交換器(計6種類)については、その熱交換性能を比較するために、それぞれ、以下の実験を行なった。具体的には、図2に示すように、所定の室外機にセットした状態で、ファンで空気を一定速度及び風速で流し、冷媒側の出入口条件を全て一定として、冷媒質量流量(kg/s)を測定した。そして、その測定された冷媒質量流量に、冷媒出入口の比エンタルピ差(J/kg)を乗じて、熱交換量(W)を算出した。 Furthermore, for the heat exchangers (total 6 types) in Examples 1 to 4 and Comparative Examples 2 and 4 in which the fin interval is 1.0 mm or more, in order to compare the heat exchange performance, Was done. Specifically, as shown in FIG. 2, in a state where it is set in a predetermined outdoor unit, air is flowed at a constant speed and wind speed with a fan, and all the inlet / outlet conditions on the refrigerant side are constant, and the refrigerant mass flow rate (kg / s ) Was measured. Then, the heat exchange amount (W) was calculated by multiplying the measured refrigerant mass flow rate by the specific enthalpy difference (J / kg) at the refrigerant inlet / outlet.
 その結果、フィン間隔が1.0mmである実施例1及び実施例3に係る熱交換器にあっては、それらの熱交換量は、何れも約1500Wであり、またフィン間隔が3.0mmである実施例2及び実施例4の各熱交換器では、何れも約750Wであって、このことから、それらの熱交換器は、何れも、空気調和機として実用に耐え得る熱交換量であることを認めた。しかしながら、フィン間隔が8mmである比較例2及び比較例4の熱交換器では、熱交換量が約100Wと低く、それらは、空気調和機として実用困難な熱交換器であるものと認められた。 As a result, in the heat exchangers according to Example 1 and Example 3 in which the fin interval is 1.0 mm, the heat exchange amount thereof is about 1500 W, and the fin interval is 3.0 mm. In each of the heat exchangers of Example 2 and Example 4, both are about 750 W, and therefore, these heat exchangers are heat exchange amounts that can withstand practical use as an air conditioner. Admitted. However, in the heat exchangers of Comparative Example 2 and Comparative Example 4 in which the fin interval is 8 mm, the heat exchange amount is as low as about 100 W, and it was recognized that these are heat exchangers that are difficult to practically use as an air conditioner. .
 また、これら実施例1~4の熱交換器においては、伝熱管の外径によって規定される断面積と、フィンの投影面積とを求めると、それぞれ、断面積(ST):31.7mm2 、投影面積(SF):192mm2 であるため、その面積比(SF/ST)は6.1倍となり、本発明で規定する適切な範囲内(3~30倍)にあり、熱交換性能と熱交換器の小型化の両立を図る観点から好ましいものとなっていることが確認された。 In the heat exchangers of Examples 1 to 4, when the cross-sectional area defined by the outer diameter of the heat transfer tube and the projected area of the fin are obtained, the cross-sectional area (ST) is 31.7 mm 2 , respectively. Since the projected area (SF) is 192 mm 2 , the area ratio (SF / ST) is 6.1 times, which is within the appropriate range defined by the present invention (3 to 30 times). It was confirmed that it was preferable from the viewpoint of achieving both miniaturization of the exchanger.
-実験例2-
 フィン材料として、板厚:0.12mmの純アルミニウム(JIS A1050)の板材を用い、その表面に形成した膜厚:0.1μmのリン酸クロメートよりなる化成皮膜(下地処理層)の上に、更に、フッ素系樹脂からなる撥水性塗膜層、ポリウレタン系樹脂からなる親水性塗膜層、又はシリコン系樹脂からなる撥水性塗膜層を、1μmの厚さでプレコートする一方、伝熱管として、外径が7.00mmであるリン脱酸銅(JIS H3300 C1220)からなる内面溝付伝熱管を用いること以外は、先の実験例1と同様にして、フィン間隔が3.0mmであるフィン群(1フィン群当たりのフィン数:100枚)を16個配列してなる、各種のサーペンタイン熱交換器を作製した。
-Experimental example 2-
As a fin material, a plate material of 0.12 mm pure aluminum (JIS A1050) was used, and a film thickness formed on the surface: on a chemical conversion film (undercoat layer) made of 0.1 μm phosphoric acid chromate, Furthermore, while pre-coating a water-repellent coating layer made of a fluorine-based resin, a hydrophilic coating layer made of a polyurethane-based resin, or a water-repellent coating layer made of a silicon-based resin with a thickness of 1 μm, A fin group having a fin interval of 3.0 mm, similar to Experimental Example 1, except that an inner grooved heat transfer tube made of phosphorous deoxidized copper (JIS H3300 C1220) having an outer diameter of 7.00 mm is used. Various serpentine heat exchangers having 16 (number of fins per fin group: 100) arranged were produced.
 次いで、その得られた各種の熱交換器を、図2に示されるように所定の室外機にセットし、実験例1と同様にして、冷房運転を実施したところ、水飛びの発生は何等認められなかった。また、それらのサーペンタイン熱交換器の熱交換量を、乾球温度:20℃、湿球温度:15℃、全面風速:1.0m/s、冷媒:R410A、熱交換器入口圧力:2.3MPaの条件下で、実験例1と同様にして測定したところ、フィン表面に、フッ素系樹脂からなる撥水性塗膜層、ポリウレタン系樹脂からなる親水性塗膜層、又はシリコン系樹脂からなる撥水性塗膜層が形成されたサーペンタイン熱交換器は、それぞれ、約700W、約700W、又は約720Wの熱交換量を有するものであって、何れも、空気調和機として実用可能であることが認められた。 Next, the various heat exchangers thus obtained were set in a predetermined outdoor unit as shown in FIG. 2 and the cooling operation was performed in the same manner as in Experimental Example 1. I couldn't. Further, the heat exchange amount of these serpentine heat exchangers is as follows: dry bulb temperature: 20 ° C., wet bulb temperature: 15 ° C., overall wind speed: 1.0 m / s, refrigerant: R410A, heat exchanger inlet pressure: 2.3 MPa When measured in the same manner as in Experimental Example 1 under the above conditions, a water-repellent coating layer made of a fluorine-based resin, a hydrophilic coating layer made of a polyurethane-based resin, or a water-repellent coating made of a silicon-based resin was measured on the fin surface. Each of the serpentine heat exchangers with the coating layer formed has a heat exchange amount of about 700 W, about 700 W, or about 720 W, and it is recognized that any of them can be used as an air conditioner. It was.
-実験例3-
 前述した実施例2と同様の、表面に親水性樹脂塗膜が形成されたフィン材料と内面溝付伝熱管を準備し、フィンの寸法を12mm×50mm(フィン投影面積:600mm2 )とし、かかるフィン1枚に対して伝熱管の貫通する本数を2本とした、図5に示される如き形状のサーペンタイン熱交換器を作製した。なお、フィンピッチやフィン枚数、フィン群の段数等は、実施例2の熱交換器と同様とした。このような熱交換器を、実施例2の熱交換器と同様に所定の室外機にセットし、水飛びの有無の確認と熱交換性能の確認を行ったところ、共に良好な結果が得られることを確認した。
-Experiment Example 3-
Similar to Example 2 described above, a fin material having a hydrophilic resin coating film formed on the surface and an internally grooved heat transfer tube were prepared, and the fin dimensions were set to 12 mm × 50 mm (fin projection area: 600 mm 2 ). A serpentine heat exchanger having a shape as shown in FIG. 5 was prepared in which the number of the heat transfer tubes penetrating into one fin was two. The fin pitch, the number of fins, the number of fin groups, and the like were the same as in the heat exchanger of Example 2. When such a heat exchanger was set in a predetermined outdoor unit in the same manner as the heat exchanger of Example 2, and the presence or absence of water splashing and the heat exchange performance were confirmed, good results were obtained for both. It was confirmed.
-実験例4-
 前述した実施例2と同様のフィン材料(板厚:0.12mm)と伝熱管(外径:8.00mm)を準備し、フィン形状を、図8に示される如く、フィン表面にエンボス加工を施した形状として、それ以外の表面処理や寸法等は実施例2と同等としたサーペンタイン熱交換器を作製した。エンボス部は、高さ(h):1.0mm、通風方向Aに直行する方向の底部幅(d):2.8mm、個数:20個とした。
-Experimental example 4-
The same fin material (thickness: 0.12 mm) and heat transfer tube (outer diameter: 8.00 mm) as in Example 2 were prepared, and the fin shape was embossed on the fin surface as shown in FIG. As the applied shape, a serpentine heat exchanger having the same surface treatment and dimensions as those of Example 2 was produced. The embossed portion had a height (h): 1.0 mm, a bottom width (d) in a direction perpendicular to the ventilation direction A: 2.8 mm, and a number: 20 pieces.
 かくして得られたサーペンタイン熱交換器を、図2に示されるように、所定の室外機にセットして、冷房運転を実施したところ、水飛びの発生は何等認められず、また、その熱交換量を、先の実験例2と同様にして測定したところ、約800Wであった。このことから、このようなエンボス加工をフィンに施すことにより、寒冷地における室外機として低温環境下において蒸発器として使用する場合、かかるエンボス部によって発生する適度な渦巻き流、特に縦渦によって、フィン表面近傍に比較的低温の空気が滞留することを抑制し、フィン間の中央部位に滞留しやすい比較的高温の空気をフィン表面に接触させることが出来、フィン表面における着霜の抑制、或いは着霜した霜の成長を抑制する効果が発揮されることが期待される。 When the serpentine heat exchanger thus obtained was set in a predetermined outdoor unit as shown in FIG. 2 and cooling operation was carried out, no occurrence of water splash was observed, and the amount of heat exchange Was measured in the same manner as in Experimental Example 2 and was about 800 W. Therefore, by applying such embossing to the fins, when used as an evaporator in a low-temperature environment as an outdoor unit in a cold region, the fins are caused by an appropriate swirl flow generated by such embossed parts, particularly longitudinal vortices. Relatively low temperature air can be prevented from staying near the surface, and relatively high temperature air that tends to stay in the central part between the fins can be brought into contact with the fin surface. It is expected that the effect of suppressing the growth of frosted frost is exhibited.
 また、かかるエンボス加工によるエンボス部の形成に代えて、スリット加工によって平面視台形状の切り起こしスリット(高さ:0.7mm、個数:8個)を設けてなるフィンを用いて得られたサーペンタイン熱交換器にあっても、同様に、水飛びの発生は認められず、また熱交換量が約850Wとなる結果が得られた。 Moreover, it replaces with formation of the embossing part by this embossing, Serpentine obtained using the fin which provided the cut-and-raised slit (height: 0.7 mm, number: 8 pieces) of planar view by slit processing Similarly, even in the heat exchanger, no water splash was observed, and the heat exchange amount was about 850 W.
-実験例5-
 伝熱管として、純アルミニウム(JIS A1050)からなる、内面にストレート溝を有する内面溝付伝熱管を準備した。かかる内面溝付伝熱管においては、外径:6.35mm、底肉厚:0.4mm、溝深さ:0.15mm、溝条数:58条とした。そのような内面溝付伝熱管について、表面処理を施さないものと、外表面に亜鉛溶射処理を施したものの2種類の伝熱管を用意した。また、フィン材料として、純アルミニウム(JIS A1050)の板材と、アルミニウム合金(JIS A7072)の板材を準備し、前述の実施例2と同様にして、表面に化成処理を施した後に耐食性塗膜と親水性塗膜を形成して、フィン材料とした。更に、それら二つのフィン材料を、実施例2と同様のフィン形状に加工した。
-Experimental Example 5-
As the heat transfer tube, an internally grooved heat transfer tube made of pure aluminum (JIS A1050) and having a straight groove on the inner surface was prepared. In such an internally grooved heat transfer tube, the outer diameter was 6.35 mm, the bottom wall thickness was 0.4 mm, the groove depth was 0.15 mm, and the number of grooves was 58. Regarding such an internally grooved heat transfer tube, two types of heat transfer tubes were prepared, one not subjected to surface treatment and the other subjected to zinc spray treatment on the outer surface. Further, as a fin material, a plate material of pure aluminum (JIS A1050) and a plate material of aluminum alloy (JIS A7072) were prepared, and after the surface was subjected to chemical conversion treatment in the same manner as in Example 2 described above, A hydrophilic coating film was formed to obtain a fin material. Further, these two fin materials were processed into the same fin shape as in Example 2.
 このように用意されたフィンと伝熱管を用いて、先ず、その外表面に亜鉛溶射処理を施したアルミニウム製伝熱管と純アルミニウム(JIS A1050)からなるフィンを組み合わせて、フィンピッチやフィン枚数等の寸法が前述の実施例2と同様となるサーペンタイン熱交換器を作製した。一方、外表面に表面処理が施されていないアルミニウム製伝熱管と、アルミニウム合金(JIS A7072)からなるフィンを組み合わせて、同様にサーペンタイン熱交換器を作製した。この熱交換器においても、実施例2と同等な諸元となるようにした。フィン材質と伝熱管材質を、このような組み合わせとすることによって、伝熱管の耐食性の向上が期待される。 Using the fins and heat transfer tubes prepared in this way, first, combining the heat transfer tubes made of zinc with the outer surface subjected to zinc spraying and the fins made of pure aluminum (JIS A1050), the fin pitch, the number of fins, etc. A serpentine heat exchanger having the same dimensions as in Example 2 was prepared. On the other hand, a serpentine heat exchanger was similarly produced by combining an aluminum heat transfer tube whose outer surface was not surface-treated and a fin made of an aluminum alloy (JIS A7072). Also in this heat exchanger, the specifications are the same as those in Example 2. By using such a combination of the fin material and the heat transfer tube material, an improvement in the corrosion resistance of the heat transfer tube is expected.
-実験例6-
 伝熱管として、Al-Mn系アルミニウム合金(JIS A3003)からなる、外径:7.00mm、断面が円形形状とされた、長い直管状の管体を用意した。また、別の伝熱管として、材質及び外径が同じであって、内面溝として、実験例1又は実験例5に示される如き螺旋溝又はストレート溝が形成されてなる、内面溝付アルミニウム合金管も準備した。更に、フィン材料として、板厚が0.12mmの純アルミニウム(JIS A1050)の板材を準備し、その表面に、実験例1と同様にして、リン酸クロメート皮膜とPVA皮膜又はエポキシ樹脂皮膜を形成して、それぞれのフィンを作製した。
-Experimental Example 6-
As a heat transfer tube, a long straight tubular body made of an Al—Mn-based aluminum alloy (JIS A3003) and having an outer diameter of 7.00 mm and a circular cross section was prepared. Further, as another heat transfer tube, the material and the outer diameter are the same, and an inner surface grooved aluminum alloy tube in which a spiral groove or a straight groove as shown in Experimental Example 1 or Experimental Example 5 is formed as the inner surface groove. Also prepared. Furthermore, a pure aluminum (JIS A1050) plate material having a thickness of 0.12 mm was prepared as a fin material, and a phosphate chromate film and a PVA film or an epoxy resin film were formed on the surface in the same manner as in Experimental Example 1. And each fin was produced.
 次いで、かかる用意された各種のフィンと各種の伝熱管とを用いて、下記表2に示される如く組み合わせ、フィンピッチが0.5mm、1.0mm、又は3.0mmとなる、各種のサーペンタイン熱交換器を作製した。 Next, using the prepared various fins and the various heat transfer tubes, various serpentine heats are combined as shown in Table 2 below, and the fin pitch is 0.5 mm, 1.0 mm, or 3.0 mm. An exchanger was made.
 そして、この得られた各種のサーペンタイン熱交換器について、実験例2と同様にして、空気調和機の室外機における冷房運転を実施し、水飛びの有無を観察すると共に、熱交換量の測定を行なった。その結果を、下記表2に併せて示した。 Then, for each of the various serpentine heat exchangers obtained, the cooling operation was performed in the outdoor unit of the air conditioner in the same manner as in Experimental Example 2, and the presence or absence of water splash was observed, and the heat exchange amount was measured. I did it. The results are also shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
-実験例7-
 伝熱管として、リン脱酸銅(JIS H3300 C1220)又はAl-Mn系アルミニウム合金(JIS A3003)からなる、外径:7.00mm、断面が円形形状の平滑な内面を有する管材を準備した。また、そのような管材の管外表面をエポキシ樹脂被覆したものや、実験例5の如く亜鉛溶射被覆を施したものを準備し、更に、内側の心材層(JIS A3003)の外周面に皮材層(JIS A7072)をクラッド率:7%にて一体的に形成してなる、二重管構造のクラッド管(外径:7.00mm)も準備した。一方、フィン材料としては、板厚が0.12mmの純アルミニウム(JIS A1050)の板材の表面に、実験例1と同様にして、リン酸クロメート皮膜とPVA皮膜を形成してなるものを準備した。
-Experimental Example 7-
As a heat transfer tube, a tube material made of phosphorous deoxidized copper (JIS H3300 C1220) or an Al—Mn-based aluminum alloy (JIS A3003) and having a smooth inner surface with an outer diameter of 7.00 mm and a circular cross section was prepared. Also, an outer tube surface of such a tube material coated with an epoxy resin or a zinc sprayed coating as in Experimental Example 5 is prepared, and a skin material is provided on the outer peripheral surface of the inner core material layer (JIS A3003). A clad tube (outer diameter: 7.00 mm) having a double tube structure in which layers (JIS A7072) were integrally formed with a clad rate of 7% was also prepared. On the other hand, the fin material was prepared by forming a phosphate chromate film and a PVA film on the surface of a pure aluminum (JIS A1050) plate material having a thickness of 0.12 mm in the same manner as in Experimental Example 1. .
 次いで、かかる準備された各種の伝熱管と各種のフィンを用いて、フィンピッチ:1.0mm、フィン枚数;100枚のフィン群を16段において有するサーペンタイン熱交換器を、実験例1と同様にして作製した。 Then, using the prepared various heat transfer tubes and various fins, a serpentine heat exchanger having a fin pitch: 1.0 mm, the number of fins; Made.
 そして、このようにして得られた各種の熱交換器の耐食性を、それぞれ、SWAAT試験(ASTM G85-94)にて評価し、その結果を、下記表3に示した。なお、SWAAT試験は、試験液として人工海水(pH:2.8~3.0)を用い、温度:49℃、保持雰囲気:98%RHの条件下において、噴霧:30分と保持:90分のサイクルを繰り返し実施した。 The corrosion resistance of the various heat exchangers thus obtained was evaluated by the SWAAT test (ASTM G85-94), and the results are shown in Table 3 below. In the SWAAT test, artificial seawater (pH: 2.8 to 3.0) was used as a test solution, and the temperature was 49 ° C. and the holding atmosphere was 98% RH. Spraying was 30 minutes and holding was 90 minutes. The cycle was repeated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
-実験例8-
 16段のフィン群を有し、その上段領域Aや下段領域B及びその中間領域における、フィン群のフィンピッチを種々変化させたサーペンタイン熱交換器No.31~No.37を、実施例2と同様にして、製作した。それぞれの熱交換器における、上段領域Aに位置するフィン群は4段とし、また下段領域Bに位置するフィン群は4段とする一方、それらの間の中間領域には、8段のフィン群が位置するものとして、それぞれの領域のフィンピッチ(p、p、p)が、それぞれの位置における風速を考慮して、下記表4に示される値となるように、構成した。
-Experimental Example 8-
Serpentine heat exchanger No. having a fin group of 16 stages and having various fin pitches of the fin group in the upper region A, the lower region B and the intermediate region thereof. 31-No. 37 was produced in the same manner as in Example 2. In each heat exchanger, the fin group located in the upper stage area A has four stages, and the fin group located in the lower stage area B has four stages, while an intermediate stage between them has an eight-stage fin group. The fin pitches (p 1 , p 2 , p 3 ) of the respective regions are set to have the values shown in Table 4 below in consideration of the wind speed at the respective positions.
 次いで、かくの如く製作された熱交換器No.31~No.37について、その熱交換性能を比較するために、以下の実験を行った。具体的には、図3に示される如き形態において、各熱交換器を風洞装置にセットした状態で、ファンを所定の回転速度で運転して通風する一方、冷媒側の出入り口条件を全て一定として、冷媒質量流量(kg/s)を測定した。そして、その測定された冷媒質量流量に、冷媒出入り口の比エンタルピー差(J/kg)を乗じて、熱交換量(W)を算出した。なお、かかる実験において、熱交換器No.31における上段領域Aの風速は3.0m/sであり、下段領域Bでは、1.0m/sであり、中間領域では1.5m/sであった。また、この実験では、フィン枚数の違いにより、空気側伝熱面積が異なるものとなるところから、算出した熱交換量を空気側伝熱面積で割った値を用いて、熱交換器No.31の値を1.0としたときの、それぞれの性能比として算出した。その結果を、下記表4に併わせ示した。 Next, heat exchanger no. 31-No. In order to compare the heat exchange performance of 37, the following experiment was conducted. Specifically, in the configuration shown in FIG. 3, with each heat exchanger set in the wind tunnel device, the fan is operated at a predetermined rotational speed to ventilate, while all the inlet / outlet conditions on the refrigerant side are constant. The refrigerant mass flow rate (kg / s) was measured. And the heat exchange amount (W) was calculated by multiplying the measured refrigerant mass flow rate by the specific enthalpy difference (J / kg) at the refrigerant inlet / outlet. In this experiment, heat exchanger No. The wind speed of the upper region A at 31 was 3.0 m / s, the lower region B was 1.0 m / s, and the middle region was 1.5 m / s. In this experiment, the air-side heat transfer area varies depending on the number of fins, and the heat exchanger no. It was calculated as the performance ratio when the value of 31 was 1.0. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 かかる表4の結果から明らかなように、熱交換器No.31は、フィンピッチが上段領域Aから下段領域Bまで全て3.0mmとされており、空気調和機として実用に耐え得る熱交換量のものであった。また、熱交換器No.32、35及び36は、p/pの値が本発明にて規定される好ましい範囲にあり、熱交換器全体としても通風抵抗が過大にならず、熱交換性能は特に好ましいことが確認された。更に、熱交換器No.33、34は、熱交換器No.31と同様、p/pの値が好ましい範囲から外れており、そのため、上段のフィン群における適正な運転条件を設定した際に、下段のフィン群において通風抵抗が過度に増大し、空気調和機としての実用には耐え得るものの、熱交換器全体としての熱交換性能の向上効果は、充分とは認められなかった。また、熱交換器No.37は、p/pの値が大きくなり過ぎていると共に、下段領域のフィンピッチ(p)が適正なフィンピッチよりも大きくなっているため、熱交換性能が低くなっていることが認められる。 As is apparent from the results in Table 4, the heat exchanger No. No. 31 had a fin pitch of 3.0 mm from the upper region A to the lower region B, and had a heat exchange amount that could withstand practical use as an air conditioner. In addition, heat exchanger No. As for 32, 35 and 36, it is confirmed that the value of p 2 / p 1 is in a preferable range specified in the present invention, and the ventilation resistance is not excessive as the whole heat exchanger, and the heat exchange performance is particularly preferable. It was done. Furthermore, heat exchanger No. 33 and 34 are heat exchangers No. Similar to 31, the value of p 2 / p 1 is out of the preferred range. Therefore, when appropriate operating conditions are set in the upper fin group, the ventilation resistance increases excessively in the lower fin group, and the air Although it can withstand practical use as a conditioner, the effect of improving the heat exchange performance of the heat exchanger as a whole has not been recognized as sufficient. In addition, heat exchanger No. 37, the value of p 2 / p 1 is too large, and the fin pitch (p 2 ) in the lower region is larger than the appropriate fin pitch, so that the heat exchange performance is low. Is recognized.
  10 熱交換器
  12 フィン
  14 フィン群
  16 金属製伝熱管
  18 曲げ部
  20 室外機
  22 ファン
                                                                                
DESCRIPTION OF SYMBOLS 10 Heat exchanger 12 Fin 14 Fin group 16 Metal heat exchanger tube 18 Bending part 20 Outdoor unit 22 Fan

Claims (21)

  1.  熱交換流体の流通方向(x方向)に対して直角な方向(y方向)において互いに平行に且つ所定の間隔にて配される多数枚のフィンからなるフィン群の複数が、それらx方向及びy方向に対して直角な方向(z方向)に互いに一定距離を隔てて一列に配列されて、複数段のフィン群を構成すると共に、1枚のフィンに1本乃至2本の金属製伝熱管が貫通されてなる形態において、それら各段のフィン群を順次貫通するように、該金属製伝熱管が蛇行形態において配されてなる構造のサーペンタイン熱交換器において、
     前記フィン群を構成する各フィンが同一の形状を有し、且つ隣り合うフィンが0.6~5.0mmの間隔にて配列されていると共に、
     前記フィンが、金属板の少なくとも一方の面に単層若しくは複層の塗膜層が形成されてなるプレコート金属板からなり、且つ該塗膜層のうちの少なくとも最外層が親水性樹脂若しくは撥水性樹脂からなる塗膜層である、
    ことを特徴とする空気調和機用サーペンタイン熱交換器。
    A plurality of fin groups consisting of a plurality of fins arranged in parallel with each other at a predetermined interval in the direction (y direction) perpendicular to the flow direction (x direction) of the heat exchange fluid are the x direction and y A plurality of fin groups are arranged in a line at a certain distance from each other in a direction perpendicular to the direction (z direction), and one or two metal heat transfer tubes are formed in one fin. In the serpentine heat exchanger having a structure in which the metal heat transfer tubes are arranged in a meandering form so as to sequentially penetrate the fin groups of each stage in the form of being penetrated,
    The fins constituting the fin group have the same shape, and adjacent fins are arranged at intervals of 0.6 to 5.0 mm,
    The fin is composed of a pre-coated metal plate in which a single-layer or multi-layer coating layer is formed on at least one surface of the metal plate, and at least an outermost layer of the coating layer is a hydrophilic resin or a water-repellent It is a coating layer made of resin,
    A serpentine heat exchanger for an air conditioner.
  2.  前記金属板が、アルミニウム若しくはアルミニウム合金にて構成されている請求項1に記載の空気調和機用サーペンタイン熱交換器。 The serpentine heat exchanger for an air conditioner according to claim 1, wherein the metal plate is made of aluminum or an aluminum alloy.
  3.  前記伝熱管が、アルミニウム若しくはアルミニウム合金にて構成されている請求項1又は請求項2に記載の空気調和機用サーペンタイン熱交換器。 The serpentine heat exchanger for an air conditioner according to claim 1 or 2, wherein the heat transfer tube is made of aluminum or an aluminum alloy.
  4.  前記伝熱管が、アルミニウム若しくはアルミニウム合金にて構成され、その外表面に、亜鉛による犠牲陽極効果が付与されていることを特徴とする請求項1乃至請求項3の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The air according to any one of claims 1 to 3, wherein the heat transfer tube is made of aluminum or an aluminum alloy, and a sacrificial anode effect by zinc is imparted to an outer surface thereof. Serpentine heat exchanger for harmonic machines.
  5.  前記金属板の材質が、JIS A1050、JIS A1100、JIS A1200、JIS A7072、及びJIS A1050、JIS A1100若しくはJIS A1200に0.1~0.5質量%のMn及び/又は0.1~1.8質量%のZnを含有せしめたもののうちの何れか1種からなるアルミニウム若しくはアルミニウム合金であり、且つ前記伝熱管の材質が、JIS A1050、JIS A1100、JIS A1200、及びJIS A3003のうちの何れか1種からなるアルミニウム若しくはアルミニウム合金であることを特徴とする請求項1乃至請求項4の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The material of the metal plate is JIS A1050, JIS A1100, JIS A1200, JIS A7072, and JIS A1050, JIS A1100 or JIS A1200, 0.1 to 0.5 mass% of Mn and / or 0.1 to 1.8. Aluminum or aluminum alloy made of any one of those containing Zn of mass%, and the material of the heat transfer tube is any one of JIS A1050, JIS A1100, JIS A1200, and JIS A3003. The serpentine heat exchanger for an air conditioner according to any one of claims 1 to 4, wherein the serpentine heat exchanger is made of aluminum or aluminum alloy composed of seeds.
  6.  前記伝熱管が、銅若しくは銅合金にて構成されている請求項1又は請求項2に記載の空気調和機用サーペンタイン熱交換器。 The serpentine heat exchanger for an air conditioner according to claim 1 or 2, wherein the heat transfer tube is made of copper or a copper alloy.
  7.  前記伝熱管の材質が、JIS H3300 C1220又はJIS H3300 C5010である請求項6に記載の空気調和機用サーペンタイン熱交換器。 The material for the heat transfer tube is JIS H3300 C1220 or JIS H3300 C5010. The serpentine heat exchanger for an air conditioner according to claim 6.
  8.  前記金属製伝熱管の内面に、管軸方向に平行なストレート溝、管軸に対して所定の捩れ角を有する螺旋溝、若しくは管軸方向において交叉する溝にて構成されるクロス溝の何れか1種もしくは2種以上を有することを特徴とする請求項1乃至請求項7の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 Either a straight groove parallel to the tube axis direction, a spiral groove having a predetermined twist angle with respect to the tube axis, or a cross groove configured by a groove intersecting in the tube axis direction on the inner surface of the metal heat transfer tube The serpentine heat exchanger for an air conditioner according to any one of claims 1 to 7, wherein the serpentine heat exchanger has one type or two or more types.
  9.  前記フィンは、厚み方向に突出して底部外形が円形又は楕円形を呈するエンボス部の複数を有することを特徴とする請求項1乃至請求項8の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The serpentine heat for an air conditioner according to any one of claims 1 to 8, wherein the fin has a plurality of embossed portions protruding in a thickness direction and having a bottom or outer shape of a circle or an ellipse. Exchanger.
  10.  前記フィンに、スリット加工あるいはルーバー加工が施されていることを特徴とする請求項1乃至請求項9の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 10. The serpentine heat exchanger for an air conditioner according to any one of claims 1 to 9, wherein the fin is subjected to slit processing or louver processing.
  11.  前記フィンの投影面積が、前記伝熱管の外径によって規定される断面積の3~30倍であることを特徴とする請求項1乃至請求項10の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The air conditioner according to any one of claims 1 to 10, wherein a projected area of the fin is 3 to 30 times a cross-sectional area defined by an outer diameter of the heat transfer tube. Serpentine heat exchanger.
  12.  前記フィンの投影面積が、200~1000mmであることを特徴とする請求項1乃至請求項11の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The serpentine heat exchanger for an air conditioner according to any one of claims 1 to 11, wherein a projected area of the fin is 200 to 1000 mm 2 .
  13.  前記金属製伝熱管の外径が、3~13mmであることを特徴とする請求項1乃至請求項12の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 13. The serpentine heat exchanger for an air conditioner according to claim 1, wherein the outer diameter of the metal heat transfer tube is 3 to 13 mm.
  14.  前記金属板の表面に、下地処理層が設けられ、この下地処理層の上に、前記単層若しくは複層の塗膜層が形成されている請求項1乃至請求項13の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The ground treatment layer is provided on the surface of the metal plate, and the single-layer or multiple-layer coating layer is formed on the foundation treatment layer. The serpentine heat exchanger for air conditioners as described.
  15.  前記親水性樹脂が、ポリビニルアルコール系樹脂、ポリアクリルアミド系樹脂、ポリアクリル酸系樹脂、セルロース系樹脂、及びポリエチレングリコール系樹脂からなる群より選択される請求項1乃至請求項14の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The hydrophilic resin is selected from the group consisting of a polyvinyl alcohol resin, a polyacrylamide resin, a polyacrylic acid resin, a cellulose resin, and a polyethylene glycol resin. Serpentine heat exchanger for air conditioner as described in 2.
  16.  前記撥水性樹脂が、エポキシ系樹脂、ポリウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、フッ素系樹脂、シリコン系樹脂、及びポリエステル系樹脂からなる群より選択される請求項1乃至請求項15の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The water-repellent resin is selected from the group consisting of an epoxy resin, a polyurethane resin, an acrylic resin, a melamine resin, a fluorine resin, a silicon resin, and a polyester resin. The serpentine heat exchanger for air conditioners as described in any one.
  17.  前記金属製伝熱管の表面に、樹脂製の塗膜層が形成されていることを特徴とする請求項1乃至請求項16の何れか一つに記載の空気調和機用サーペンタイン熱交換器。 The serpentine heat exchanger for an air conditioner according to any one of claims 1 to 16, wherein a resin coating layer is formed on a surface of the metal heat transfer tube.
  18.  前記樹脂製の塗膜層が熱伝導性フィラーを含むものであることを特徴とする請求項17に記載の空気調和機用サーペンタイン熱交換器。 The serpentine heat exchanger for an air conditioner according to claim 17, wherein the resin coating layer contains a heat conductive filler.
  19.  請求項1乃至請求項18の何れか一つに記載のサーペンタイン熱交換器と、前記z方向に配列された複数段のフィン群に前記x方向に熱交換流体を流通せしめるファン手段を備えた空気調和機において、
     該ファン手段による熱交換流体流通時の風速が大なる第一の領域に位置するフィン群又はその一部における隣り合うフィン間の間隔をpとし、該第一の領域における風速に対して0.7以下の風速となる、風速の小さな第二の領域に位置するフィン群又はその一部における隣り合うフィン間の間隔をpとしたとき、次式:
       1.5≦p/p≦3.0
    を満足するように、それらフィン群又はその一部におけるフィン間隔が規定されていることを特徴とする空気調和機。
    An air comprising a serpentine heat exchanger according to any one of claims 1 to 18 and fan means for circulating a heat exchange fluid in the x direction through a plurality of fin groups arranged in the z direction. In the harmony machine,
    An interval between adjacent fins in the fin group located in the first region where the wind speed during circulation of the heat exchange fluid by the fan means is large or a part thereof is defined as p 1, and 0 with respect to the wind speed in the first region. a .7 following wind speed, when the interval between adjacent fins in the fin group or a portion thereof located in a small second region of the wind speed was p 2, the following formula:
    1.5 ≦ p 2 / p 1 ≦ 3.0
    An air conditioner characterized in that the fin interval in the fin group or a part thereof is defined so as to satisfy the above.
  20.  前記第一の領域に位置するフィン群又はその一部と前記第二の領域に位置するフィン群又はその一部とが、前記z方向において異なる段に位置している請求項19に記載の空気調和機。 The air according to claim 19, wherein the fin group or a part thereof located in the first region and the fin group or a part thereof located in the second region are located at different stages in the z direction. Harmony machine.
  21.  前記第一の領域に位置するフィン群又はその一部と前記第二の領域に位置するフィン群又はその一部とが、前記z方向において同一の段に位置している請求項19又は請求項20に記載の空気調和機。
                                                                                    
    The fin group or a part thereof located in the first region and the fin group or a part thereof located in the second region are located in the same step in the z direction. 20. The air conditioner according to 20.
PCT/JP2011/067087 2010-07-27 2011-07-27 Serpentine heat exchanger for an air conditioner WO2012014934A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180036442.6A CN103026165B (en) 2010-07-27 2011-07-27 Serpentine heat exchanger for an air conditioner
KR1020137003572A KR20130036762A (en) 2010-07-27 2011-07-27 Serpentine heat exchanger for an air conditioner
JP2012526532A JPWO2012014934A1 (en) 2010-07-27 2011-07-27 Serpentine heat exchanger for air conditioner
KR20157002584A KR20150029728A (en) 2010-07-27 2011-07-27 Serpentine heat exchanger for an air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-168118 2010-07-27
JP2010168118 2010-07-27

Publications (1)

Publication Number Publication Date
WO2012014934A1 true WO2012014934A1 (en) 2012-02-02

Family

ID=45530138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067087 WO2012014934A1 (en) 2010-07-27 2011-07-27 Serpentine heat exchanger for an air conditioner

Country Status (4)

Country Link
JP (1) JPWO2012014934A1 (en)
KR (2) KR20130036762A (en)
CN (1) CN103026165B (en)
WO (1) WO2012014934A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155355A1 (en) * 2012-04-12 2013-10-17 Carrier Corporation Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
WO2015033542A1 (en) * 2013-09-04 2015-03-12 パナソニックIpマネジメント株式会社 Heat exchanger and cooling device using same
EP2929269A4 (en) * 2012-12-10 2016-07-13 Lg Electronics Inc Heat exchanger and method of manufacturing the same
WO2017070093A1 (en) * 2015-10-23 2017-04-27 Carrier Corporation Hydrophobic heat exchangers
KR20180057487A (en) * 2016-11-22 2018-05-30 도쿄 덴료쿠 홀딩스 가부시키가이샤 Heat exchanger
US10151537B2 (en) 2015-04-02 2018-12-11 DOOSAN Heavy Industries Construction Co., LTD Heat exchanger unit
WO2019034450A1 (en) * 2017-08-16 2019-02-21 Helmholtz-Zentrum Dresden - Rossendorf E. V. Heat exchanger
WO2019159520A1 (en) * 2018-02-13 2019-08-22 株式会社Uacj Heat exchanger for refrigerator-freezer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307907A (en) * 2013-06-26 2013-09-18 德州贝诺风力机械设备有限公司 Corrugated tube heat exchanger with heat-dissipation film pieces
CN104532529B (en) * 2014-12-24 2017-03-22 常州市常蒸热交换器科技有限公司 Radiator for dryer in washing machine
CN104896968A (en) * 2015-06-16 2015-09-09 中国石油大学(华东) Metal foam finned tube heat exchanger
WO2018145253A1 (en) * 2017-02-07 2018-08-16 玖鼎材料股份有限公司 Fin-type heat exchanger
CN108332582B (en) * 2018-01-26 2020-09-22 南京新奥环保技术有限公司 Frost-free air-temperature vaporizer
JP6747488B2 (en) * 2018-10-29 2020-08-26 ダイキン工業株式会社 Heat exchanger fin manufacturing method
JP6943893B2 (en) * 2019-01-09 2021-10-06 古河電気工業株式会社 Heat pipe structure, heat sink, heat pipe structure manufacturing method and heat sink manufacturing method
KR102200863B1 (en) * 2019-06-05 2021-01-12 (주)삼익브리즈 Heat Exchanger with Hydrophobicity Coated By Carbon Black

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249591A (en) * 1993-02-26 1994-09-06 Hitachi Ltd Evaporator
JPH11159984A (en) * 1997-12-01 1999-06-15 Hitachi Ltd Heat exchanger
JPH11166798A (en) * 1997-12-03 1999-06-22 Sanyo Electric Co Ltd Functional unit coated with water slippery material
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2007046869A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Evaporator
WO2007108386A1 (en) * 2006-03-23 2007-09-27 Matsushita Electric Industrial Co., Ltd. Fin-tube heat exchanger, fin for heat exchanger, and heat pump device
JP2009250562A (en) * 2008-04-09 2009-10-29 Panasonic Corp Heat exchanger
JP2010112668A (en) * 2008-11-10 2010-05-20 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger and heat exchanger using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2873695B2 (en) * 1989-07-04 1999-03-24 三菱アルミニウム株式会社 Heat exchanger manufacturing method
JPH08313191A (en) * 1995-03-16 1996-11-29 Furukawa Electric Co Ltd:The Aluminum fin material for heat exchanger
JPH1054683A (en) * 1996-08-08 1998-02-24 Hitachi Ltd Heat exchanger
NZ532668A (en) * 2001-10-22 2004-09-24 Showa Denko K Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger
JP2004294049A (en) * 2002-11-26 2004-10-21 Daikin Ind Ltd Air heat exchanger and refrigerating apparatus
KR20050002569A (en) * 2003-06-27 2005-01-07 마츠시타 덴끼 산교 가부시키가이샤 Heat exchanger
JP2005118857A (en) * 2003-10-20 2005-05-12 Furukawa Sky Kk Coating apparatus for member for heat exchanger made of aluminum alloy and method for manufacturing the heat exchanger using the same
US6997247B2 (en) * 2004-04-29 2006-02-14 Hewlett-Packard Development Company, L.P. Multiple-pass heat exchanger with gaps between fins of adjacent tube segments
JP4164049B2 (en) * 2004-06-01 2008-10-08 株式会社神戸製鋼所 Hydrophilic surface treatment fin material for heat exchanger
CN101469922B (en) * 2007-12-27 2011-11-16 Tcl集团股份有限公司 Condenser for outdoor unit of air conditioner and method for producing the same
JP4969471B2 (en) * 2008-01-29 2012-07-04 三菱電機株式会社 Manufacturing method of aluminum tube for heat exchanger and heat exchanger
JP5138408B2 (en) * 2008-02-14 2013-02-06 住友軽金属工業株式会社 Fin and tube heat exchanger
JP5427382B2 (en) * 2008-03-25 2014-02-26 富士フイルム株式会社 Hydrophilic member, fin material, aluminum fin material, heat exchanger and air conditioner
JP2009250510A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Heat exchanger and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249591A (en) * 1993-02-26 1994-09-06 Hitachi Ltd Evaporator
JPH11159984A (en) * 1997-12-01 1999-06-15 Hitachi Ltd Heat exchanger
JPH11166798A (en) * 1997-12-03 1999-06-22 Sanyo Electric Co Ltd Functional unit coated with water slippery material
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2007046869A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Evaporator
WO2007108386A1 (en) * 2006-03-23 2007-09-27 Matsushita Electric Industrial Co., Ltd. Fin-tube heat exchanger, fin for heat exchanger, and heat pump device
JP2009250562A (en) * 2008-04-09 2009-10-29 Panasonic Corp Heat exchanger
JP2010112668A (en) * 2008-11-10 2010-05-20 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger and heat exchanger using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204711B (en) * 2012-04-12 2018-11-06 开利公司 The sacrifice aluminum fin-stock that failure mode for aluminum heat exchanger is protected
CN104204711A (en) * 2012-04-12 2014-12-10 开利公司 Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
US10422593B2 (en) 2012-04-12 2019-09-24 Carrier Corporation Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
WO2013155355A1 (en) * 2012-04-12 2013-10-17 Carrier Corporation Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
EP2929269A4 (en) * 2012-12-10 2016-07-13 Lg Electronics Inc Heat exchanger and method of manufacturing the same
US9566672B2 (en) 2012-12-10 2017-02-14 Lg Electronics Inc. Method of manufacturing a heat exchanger
WO2015033542A1 (en) * 2013-09-04 2015-03-12 パナソニックIpマネジメント株式会社 Heat exchanger and cooling device using same
JPWO2015033542A1 (en) * 2013-09-04 2017-03-02 パナソニックIpマネジメント株式会社 Heat exchanger and cooling device using the same
US10151537B2 (en) 2015-04-02 2018-12-11 DOOSAN Heavy Industries Construction Co., LTD Heat exchanger unit
WO2017070093A1 (en) * 2015-10-23 2017-04-27 Carrier Corporation Hydrophobic heat exchangers
KR20180057487A (en) * 2016-11-22 2018-05-30 도쿄 덴료쿠 홀딩스 가부시키가이샤 Heat exchanger
KR102454219B1 (en) * 2016-11-22 2022-10-14 도쿄 덴료쿠 홀딩스 가부시키가이샤 Heat exchanger
WO2019034450A1 (en) * 2017-08-16 2019-02-21 Helmholtz-Zentrum Dresden - Rossendorf E. V. Heat exchanger
WO2019159520A1 (en) * 2018-02-13 2019-08-22 株式会社Uacj Heat exchanger for refrigerator-freezer

Also Published As

Publication number Publication date
KR20130036762A (en) 2013-04-12
JPWO2012014934A1 (en) 2013-09-12
CN103026165B (en) 2015-02-18
CN103026165A (en) 2013-04-03
KR20150029728A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2012014934A1 (en) Serpentine heat exchanger for an air conditioner
WO2013069358A1 (en) Serpentine heat exchanger for air conditioner
CN104285119B (en) Heat exchanger and air conditioner
KR100365639B1 (en) Heat exchanger
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
US20120103583A1 (en) Heat exchanger and fin for the same
WO2011096124A1 (en) Fin and tube heat exchanger
EP3021064B1 (en) Heat pump device
US10422588B2 (en) Heat exchanger coil with offset fins
CN101280938B (en) Air conditioner and method for manufacturing the air conditioner
JP2012052747A (en) Heat transfer tube for fin and tube type heat exchanger, fin and tube type heat exchanger using the same, and method of manufacturing the same
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
JP2009250562A (en) Heat exchanger
JP2011220554A (en) Heat-transfer tube for fin-and-tube type heat exchanger, fin-and-tube type heat exchanger using the heat-transfer tube, and manufacturing method for the fin-and-tube type heat exchanger
JP2011185589A (en) Serpentine heat exchanger for air conditioner
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2008215670A (en) Heat transfer fin, fin tube-type heat exchanger and refrigerating cycle device
JP2011257084A (en) All-aluminum heat exchanger
CN104956175A (en) Heat exchanger and cooling device using same
JP2009121738A (en) Air-cooled heat exchanger
JP2010230304A (en) Fin and tube type heat exchanger for air conditioner
JP5066709B2 (en) Manufacturing method of flat tube
JP2009204278A (en) Heat exchanger
JP2012202572A (en) Fin-and-tube heat exchanger
WO2022206765A1 (en) Heat exchanger and air conditioner system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036442.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812523

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012526532

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003572

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11812523

Country of ref document: EP

Kind code of ref document: A1