JP7369520B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7369520B2
JP7369520B2 JP2018237859A JP2018237859A JP7369520B2 JP 7369520 B2 JP7369520 B2 JP 7369520B2 JP 2018237859 A JP2018237859 A JP 2018237859A JP 2018237859 A JP2018237859 A JP 2018237859A JP 7369520 B2 JP7369520 B2 JP 7369520B2
Authority
JP
Japan
Prior art keywords
evaporator
fan
compartment
refrigeration
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018237859A
Other languages
Japanese (ja)
Other versions
JP2020101300A (en
Inventor
晴樹 額賀
良二 河井
慎一郎 岡留
大 板倉
広海 星野
拳司 伊藤
浩俊 渡邊
真申 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018237859A priority Critical patent/JP7369520B2/en
Priority to CN201910831067.2A priority patent/CN111351293B/en
Publication of JP2020101300A publication Critical patent/JP2020101300A/en
Application granted granted Critical
Publication of JP7369520B2 publication Critical patent/JP7369520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0683Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans the fans not of the axial type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Description

本発明は、家庭用の冷凍冷蔵庫に関する。 The present invention relates to a household refrigerator-freezer.

本技術分野の背景技術として、例えば特開2007-309634号公報(特許文献1)がある。 Background art in this technical field includes, for example, Japanese Patent Application Laid-Open No. 2007-309634 (Patent Document 1).

特許文献1には、本体である外郭が断熱箱体で構成されており、この断熱箱体の内部空間(すなわち庫内)は、冷蔵室と冷凍室を左右でわけて備え、前記冷蔵室及び前記冷凍室それぞれに蒸発器と遠心ファンとを備えた冷蔵庫が開示されている(例えば特許文献1の図1参照)。 In Patent Document 1, the outer shell, which is the main body, is composed of a heat insulating box, and the internal space of the heat insulating box (i.e., the inside of the refrigerator) is divided into a left and right refrigerator compartment and a freezer compartment. A refrigerator is disclosed in which each of the freezer compartments is provided with an evaporator and a centrifugal fan (see, for example, FIG. 1 of Patent Document 1).

特開2007-309634号公報Japanese Patent Application Publication No. 2007-309634

特許文献1記載の冷蔵庫では、冷蔵室と冷凍室とで略同一サイズの異なる遠心ファンと蒸発器とが備えられた冷却システム構成となっている。また、冷蔵庫では、常温の食品を冷蔵室に入れた場合の必要冷却量は食品の顕熱となるが、常温の食品を冷凍室に入れた場合の必要冷却量は食品の顕熱と潜熱となり多くなる。このため、従来の冷却システムでは、遠心ファンの回転数(風量)を調整するだけでは冷凍室の冷却能力が不足する場合がある、ことが課題であった。 The refrigerator described in Patent Document 1 has a cooling system configuration in which the refrigerating compartment and the freezing compartment are provided with centrifugal fans and evaporators that are different in size and have substantially the same size. In addition, in a refrigerator, the amount of cooling required when food at room temperature is placed in the refrigerator compartment is the sensible heat of the food, but the amount of cooling required when food at room temperature is placed in the freezer compartment is the sensible heat and latent heat of the food. There will be more. For this reason, in conventional cooling systems, a problem has been that simply adjusting the rotation speed (air volume) of the centrifugal fan may result in insufficient cooling capacity of the freezer compartment.

冷蔵温度帯の冷蔵貯蔵室と、冷凍温度帯の冷凍貯蔵室とを備え、前記冷蔵貯蔵室を冷却する冷蔵用蒸発器と、該冷蔵用蒸発器と熱交換した空気を前記冷蔵貯蔵室に送風する冷蔵用遠心型ファンと、前記冷蔵用蒸発器と前記冷蔵用遠心型ファンが収納される冷蔵用蒸発器室と、前記冷凍貯蔵室を冷却する冷凍用蒸発器と、該冷凍用蒸発器と熱交換した空気を前記冷凍貯蔵室に送風する冷凍用遠心型ファンと、前記冷凍用蒸発器と前記冷凍用遠心型ファンが収納される冷凍用蒸発器室とを備え、該冷凍用遠心型ファンの吐出面積を、前記冷蔵用遠心型ファンの吐出面積より大きくし、前記冷蔵用遠心型ファンは、吸込口が前面側を向くように配置された後向きファンであり、前記冷蔵用遠心型ファンの前面側端部が、前記冷蔵用蒸発器の前面側端部よりも背面側に配置され、前記冷凍用遠心型ファンを前記冷凍用蒸発器室内に略垂直に備え、前記冷凍用遠心型ファンの吸込口を、前記冷凍用蒸発器室の背面側に向けることを特徴とする。その他の解決手段は発明を実施するための形態において後記する。 comprising a refrigerated storage compartment in a refrigerated temperature range and a frozen storage compartment in a frozen temperature range, a refrigerated evaporator for cooling the refrigerated storage compartment, and blowing air heat exchanged with the refrigerated evaporator to the refrigerated storage compartment. a refrigerating centrifugal fan; a refrigerating evaporator chamber in which the refrigerating evaporator and the refrigerating centrifugal fan are housed; a refrigerating evaporator that cools the freezing storage compartment; A refrigeration centrifugal fan that blows heat-exchanged air to the refrigeration storage chamber, and a refrigeration evaporator chamber in which the refrigeration evaporator and the refrigeration centrifugal fan are housed, the refrigeration centrifugal fan has a discharge area larger than the discharge area of the refrigerating centrifugal fan, and the refrigerating centrifugal fan is a backward-facing fan with a suction port facing the front side. A front end portion of the refrigerating centrifugal fan is disposed on the back side of the refrigerating evaporator than the front end thereof, and the refrigerating centrifugal fan is provided substantially vertically within the refrigerating evaporator chamber. It is characterized in that the suction port is directed toward the back side of the refrigeration evaporator chamber . Other solutions will be described later in the detailed description.

本発明によれば、食品収納容積を極力減らさずに、冷凍室の冷却能力を向上させる冷蔵庫を提供できる。 According to the present invention, it is possible to provide a refrigerator that improves the cooling capacity of the freezer compartment without reducing the food storage volume as much as possible.

実施例に係わる冷蔵庫の正面図Front view of a refrigerator according to an example 図1のA-A断面図AA sectional view in Figure 1 (a)は図1のドア、容器、吐出口を外した状態の正面図、(b)は図1のドア、容器を外した状態の正面図(a) is a front view of Figure 1 with the door, container, and discharge port removed; (b) is a front view of Figure 1 with the door and container removed. 実施例に係る製氷室、冷凍室、第一切替室、及び第二切替室の冷気の流れを示す風路構造の概略図Schematic diagram of the air passage structure showing the flow of cold air in the ice making compartment, freezing compartment, first switching compartment, and second switching compartment according to the example 実施例に係る冷蔵庫の冷凍サイクルの構成図Configuration diagram of a refrigeration cycle of a refrigerator according to an example (a)は実施例に係る冷蔵用蒸発器の構成図、(b)は実施例に係る冷凍用蒸発器の構成図(a) is a configuration diagram of a refrigeration evaporator according to an example, and (b) is a configuration diagram of a freezing evaporator according to an example. (a)は実施例に係る冷蔵用ファン翼の斜視図、(b)は実施例に係る冷凍用ファン翼の斜視図(a) is a perspective view of a refrigeration fan blade according to an example, and (b) is a perspective view of a refrigeration fan blade according to an example. 実施例に係る冷蔵室にターボファンを鉛直に実装した場合の側断面図A side cross-sectional view when a turbo fan is vertically mounted in a refrigerator compartment according to an example. 図2の冷凍用ファン近傍の拡大図Enlarged view of the vicinity of the refrigeration fan in Figure 2 図9(a)の冷凍用ファンの翼直径を拡大した場合の図Diagram when the blade diameter of the refrigeration fan in Figure 9(a) is expanded 図9(a)の冷凍用ファンの形態をプロペラファンとした図A diagram in which the form of the refrigeration fan in Fig. 9(a) is changed to a propeller fan. 図10(a)のプロペラファンの翼直径を拡大した場合の図An enlarged view of the blade diameter of the propeller fan in Figure 10(a) 図3(a)の冷蔵室以外の拡大図Enlarged view of the area other than the refrigerator compartment in Figure 3(a) 図11の第一切替室を冷凍モード、第二切替室を冷蔵モードとした場合のダンパの開閉状態を示す図A diagram showing the open/closed state of the damper when the first switching chamber in FIG. 11 is set to freezing mode and the second switching chamber is set to refrigeration mode. 実施例に係る抵抗曲線とファン単体特性の関係図Relationship diagram between resistance curve and individual fan characteristics according to the example 実施例に係る冷凍用ファンの斜視図A perspective view of a refrigeration fan according to an embodiment 実施例に係る冷凍用ファンの中央断面の詳細図Detailed view of the central cross section of the refrigeration fan according to the example 実施例に係る運転パターンの一例を示す図A diagram showing an example of a driving pattern according to an embodiment

以下、本発明の実施形態である。 The following are embodiments of the present invention.

本発明に関する冷蔵庫の実施例について説明する。図1は実施例に係わる冷蔵庫の正面図、図2は図1のA-A断面図である。 An example of a refrigerator related to the present invention will be described. FIG. 1 is a front view of a refrigerator according to an embodiment, and FIG. 2 is a sectional view taken along line AA in FIG.

図1に示すように、冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と冷凍室4、第一切替室5、第二切替室6の順番で貯蔵室を有している。 As shown in FIG. 1, the box body 10 of the refrigerator 1 consists of a refrigerator compartment 2, an ice-making compartment 3 and a freezing compartment 4 installed on the left and right sides, a first switching compartment 5, and a second switching compartment 6, in that order from above. have.

冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、冷凍室4、第一切替室5、第二切替室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aである。これら複数のドアの内部材料は主にウレタンで構成されている。 The refrigerator 1 includes doors that open and close the openings of each storage compartment. These doors are divided into left and right rotary refrigerator doors 2a and 2b that open and close the opening of the refrigerator compartment 2, an ice making compartment 3, a freezer compartment 4, a first switching compartment 5, and a second switching compartment 6. These are a pull-out ice making compartment door 3a, a freezer compartment door 4a, a first switching compartment door 5a, and a second switching compartment door 6a, each of which opens and closes. The interior material of these multiple doors is primarily composed of urethane.

冷蔵室2の高さH1は冷凍室4と第一切替室5をあわせた高さH2より大きい構成(H1>H2)となっている。 The height H1 of the refrigerator compartment 2 is larger than the height H2 of the freezer compartment 4 and the first switching compartment 5 (H1>H2).

また、床から冷蔵室2のドア2a、ドア2bの下端までの距離をH3、製品高さをH4としたとき、H3は800~1200mm、H4は1700~2100mmとなるように、それぞれH3=950mm、H4=1820mmとしている。これにり、使用者が立った状態で冷蔵室2を使えるため、使い勝手を向上している。 Furthermore, when the distance from the floor to the lower ends of the doors 2a and 2b of the refrigerator compartment 2 is H3, and the product height is H4, H3 is 800 to 1200 mm, H4 is 1700 to 2100 mm, and H3 = 950 mm, respectively. , H4=1820 mm. This improves usability because the user can use the refrigerator compartment 2 while standing.

ドア2aには庫内の温度設定の操作を行う操作部200を設けている。ドア2a、2bを冷蔵庫1に固定するために、ドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。 The door 2a is provided with an operation section 200 for controlling the temperature inside the refrigerator. In order to fix the doors 2a and 2b to the refrigerator 1, door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2, and the upper door hinge is covered with a door hinge cover 16.

冷蔵室2は庫内を冷蔵温度帯(0℃以上)の例えば平均的に4℃程度にした冷蔵貯蔵室であり、製氷室3及び冷凍室4は、庫内を冷凍温度帯(0℃未満)の例えば平均的に-18℃程度にした冷凍貯蔵室でありる。第一切替室5、及び第二切替室6は冷凍温度帯もしくは冷蔵温度帯に設定可能な切替貯蔵室で、例えば、平均的に4℃程度にする冷蔵モードと、平均的に-20℃程度にする冷凍モードとを切り替えられる。なお、本実施例の冷蔵庫1では、さらに冷蔵モードと冷凍モードの間の温度となる強冷蔵モードや弱冷凍モード、また冷蔵モードよりも高温にする弱冷蔵モード、冷凍モードよりも低温にする強冷凍モードといった、複数の運転モードを設けており、これらの運転モードは操作部200を操作することで選択できる。 The refrigerator compartment 2 is a refrigerated storage room whose interior is kept within the refrigerating temperature range (above 0°C), for example, approximately 4°C on average, and the ice making compartment 3 and the freezer compartment 4 are kept within the freezing temperature range (below 0°C ), for example, a frozen storage room kept at an average temperature of about -18°C. The first switching room 5 and the second switching room 6 are switchable storage rooms that can be set to a freezing temperature range or a refrigerating temperature range, for example, a refrigeration mode where the temperature is set to about 4°C on average, and a refrigeration mode where the temperature is set to about -20°C on average. You can switch between freezing mode and freezing mode. In addition, the refrigerator 1 of this embodiment further has a strong refrigerating mode and a weak freezing mode, which have a temperature between the refrigerating mode and the freezing mode, a weak refrigerating mode, which has a higher temperature than the refrigerating mode, and a strong refrigerating mode, which has a temperature lower than the freezing mode. A plurality of operation modes such as a freezing mode are provided, and these operation modes can be selected by operating the operation unit 200.

図2に示すように、冷蔵庫1は、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により、庫外と庫内は隔てられて構成されている。箱体10には発泡断熱材に加えて、比較的熱伝導率の低い真空断熱材を外箱10aと内箱10bとの間に実装することで、食品収納容積を低下させることなく断熱性能を高めている。ここで、真空断熱材は、グラスウールやウレタン等の芯材を、外包材で包んで構成される。外包材はガスバリア性を確保するために金属層(例えばアルミニウム)を含む。また、真空断熱材は製造性から一般的に各面形状が平面で形成される。 As shown in FIG. 2, the refrigerator 1 has a box body 10 formed by filling an outer box 10a made of steel plate and an inner box 10b made of synthetic resin with a foamed heat insulating material (for example, urethane foam). The outside and inside of the warehouse are separated. In addition to the foam insulation material, the box body 10 is equipped with a vacuum insulation material with relatively low thermal conductivity between the outer box 10a and the inner box 10b, thereby improving insulation performance without reducing the food storage volume. It's increasing. Here, the vacuum insulation material is constructed by wrapping a core material such as glass wool or urethane with an outer wrapping material. The outer packaging material includes a metal layer (for example, aluminum) to ensure gas barrier properties. Further, each surface of the vacuum heat insulating material is generally formed to have a flat surface shape for ease of manufacture.

本実施例では、箱体10の背部、下部に真空断熱材25f、25gを、箱体10の両側部に真空断熱材25h(図示せず)を設けることで、冷蔵庫1の断熱性能を高めている。 In this embodiment, the insulation performance of the refrigerator 1 is improved by providing vacuum insulation materials 25f and 25g on the back and lower part of the box body 10, and vacuum insulation materials 25h (not shown) on both sides of the box body 10. There is.

同様に、本実施例では、第一切替室ドア5a、第二切替室ドア6aに真空断熱材25d、25eを設けることで、冷蔵庫1の断熱性能を高めている。上記の断熱構成は、特に各切替室5、6を冷凍モードとし、庫外と切替室5、6との温度差が大きく、外気から侵入する熱量が多い場合に、省エネルギー性能を大きく向上できる。 Similarly, in this embodiment, the insulation performance of the refrigerator 1 is improved by providing vacuum insulation materials 25d and 25e on the first switching room door 5a and the second switching room door 6a. The above-mentioned heat insulation configuration can greatly improve energy saving performance, especially when each of the switching chambers 5 and 6 is in the freezing mode, there is a large temperature difference between the outside of the refrigerator and the switching chambers 5 and 6, and a large amount of heat enters from the outside air.

冷蔵室2と、製氷室3及び冷凍室4は断熱仕切壁28によって隔てられている。また、製氷室3及び冷凍室4と、第一切替室5は断熱仕切壁29によって隔てられ、第一切替室5と第二切替室6は断熱仕切壁30によって隔てられている。本実施例の冷蔵庫1では断熱仕切壁29の内部に真空断熱材25bを、断熱仕切壁30内部に真空断熱材25cを設けることで、貯蔵室間の熱移動を抑制して冷蔵庫1の断熱性能を高めている。 The refrigerator compartment 2, the ice making compartment 3, and the freezing compartment 4 are separated by a heat insulating partition wall 28. Further, the ice making compartment 3 and the freezing compartment 4 are separated from the first switching compartment 5 by a heat insulating partition wall 29, and the first switching compartment 5 and the second switching compartment 6 are separated by a heat insulating partition wall 30. In the refrigerator 1 of this embodiment, by providing the vacuum heat insulating material 25b inside the heat insulating partition wall 29 and the vacuum heat insulating material 25c inside the heat insulating partition wall 30, heat transfer between storage compartments is suppressed and the heat insulation performance of the refrigerator 1 is improved. is increasing.

さらに、本実施例の冷蔵庫1では、後述するF蒸発器14b及びその周辺風路(F蒸発器室8b、冷凍室風路12、及び冷凍室戻り風路12d)と、第一切替室5との間に断熱仕切壁27を設けており、この断熱仕切壁27にも真空断熱材25aを設けることで、冷蔵庫1の断熱性能を高めている。上記の断熱構成は、特に第一切替室5を冷蔵モードとし、第二切替室6を冷凍モードとした場合の冷蔵庫1の省エネルギー性能を向上できる。冷蔵温度帯の第一切替室5は、隣接する部屋が冷凍温度帯である上面(断熱仕切壁29)、背面(断熱仕切壁27)、さらに底面(断熱仕切壁30)から吸熱され、第一切替室5が過度に冷却されるため、冷蔵温度帯を保つためにヒータ(図示せず)での加熱が必要となる場合がある。本実施例の冷蔵庫では、断熱仕切壁27、29、30の内部に真空断熱材25a、25b、25cを設け、第一切替室5の上面、背面、及び底面からの過度な吸熱を抑えることで、第一切替室5を冷蔵温度帯に保ちやすくなり、ヒータでの加熱を抑えて省エネルギー性能を向上している。 Furthermore, in the refrigerator 1 of this embodiment, the F evaporator 14b and its surrounding air passages (the F evaporator chamber 8b, the freezer air passage 12, and the freezer return air passage 12d), which will be described later, and the first switching chamber 5, A heat insulating partition wall 27 is provided between them, and a vacuum heat insulating material 25a is also provided on this heat insulating partition wall 27 to improve the heat insulation performance of the refrigerator 1. The above-mentioned heat insulation configuration can improve the energy saving performance of the refrigerator 1, especially when the first switching compartment 5 is set to the refrigeration mode and the second switching compartment 6 is set to the freezing mode. The first change room 5 in the refrigerating temperature zone absorbs heat from the top (insulating partition wall 29), back (insulating partition wall 27), and bottom (insulating partition wall 30) where the adjacent room is in the freezing temperature zone. Since the switching chamber 5 is excessively cooled, heating with a heater (not shown) may be necessary to maintain the refrigerated temperature range. In the refrigerator of this embodiment, vacuum heat insulating materials 25a, 25b, and 25c are provided inside the heat insulating partition walls 27, 29, and 30, and excessive heat absorption from the top, back, and bottom of the first switching chamber 5 can be suppressed. This makes it easier to maintain the first switching chamber 5 in the refrigerated temperature range, suppresses heating by the heater, and improves energy saving performance.

冷蔵室ドア2a、2bの庫内側には複数のドアポケット33a、33b、33cを設け、また棚34a、34b、34c、34dを設けることで、冷蔵室2内は複数の貯蔵スペースに区画されている。製氷室ドア3a、冷凍室ドア4a、第一切替室ドア5a、第二切替室ドア6aには、一体に引き出される製氷室容器3b、冷凍室容器4b、第一切替室容器5b、第二切替室容器6bを備えている。 By providing a plurality of door pockets 33a, 33b, 33c on the inside of the refrigerator compartment doors 2a, 2b, and providing shelves 34a, 34b, 34c, 34d, the inside of the refrigerator compartment 2 is divided into a plurality of storage spaces. There is. The ice-making compartment door 3a, the freezer compartment door 4a, the first switching compartment door 5a, and the second switching compartment door 6a include an ice-making compartment container 3b, a freezer compartment container 4b, a first switching compartment container 5b, and a second switching compartment that are pulled out as one unit. It is equipped with a chamber container 6b.

冷蔵室2、冷凍室4、第一切替室5、第二切替室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室4、第一切替室5、第二切替室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気温度センサ37と外気湿度センサ38を設け、外気(庫外空気)の温度と湿度を検知している。その他にも、ドアセンサ(図示せず)を設けることで、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知している。 A refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, a first switching compartment temperature sensor 43, and a second switching compartment temperature sensor 41, a freezer compartment temperature sensor 42, a second switching compartment temperature sensor 43, and a second switching compartment temperature sensor 41 are installed on the back side of the refrigerator compartment 2, the freezing compartment 4, the first switching compartment 5, and the second switching compartment 6, respectively. A switching room temperature sensor 44 is provided, an R evaporator temperature sensor 40a is provided above the R evaporator 14a, and an F evaporator temperature sensor 40b is provided above the F evaporator 14b. The temperatures of the chamber 4, the first switching chamber 5, the second switching chamber 6, the R evaporator 14a, and the F evaporator 14b are detected. Furthermore, an outside air temperature sensor 37 and an outside air humidity sensor 38 are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1 to detect the temperature and humidity of outside air (air outside the refrigerator). In addition, door sensors (not shown) are provided to detect the open and closed states of the doors 2a, 2b, 3a, 4a, 5a, and 6a, respectively.

冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。また、制御基板31は、外気温度センサ37、外気湿度センサ38、冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44、R蒸発器温度センサ40a、F蒸発器温度センサ40b等と電気配線(図示せず)で接続されている。 A control board 31 is disposed on the top of the refrigerator 1, which is equipped with a CPU, memory such as ROM and RAM, an interface circuit, etc., which are part of the control device. The control board 31 also includes an outside air temperature sensor 37, an outside air humidity sensor 38, a refrigerator room temperature sensor 41, a freezer room temperature sensor 42, a first switching room temperature sensor 43, a second switching room temperature sensor 44, and an R evaporator temperature sensor. 40a, F evaporator temperature sensor 40b, etc., are connected by electrical wiring (not shown).

制御基板31では、各センサの出力値や操作部26の設定、ROMに予め記録されたプログラム等を基に、後述する圧縮機24やRファン9a、Fファン9b、ダンパ101a、101b、102a、102b、冷媒制御弁52の制御を行っている。 The control board 31 controls the compressor 24, the R fan 9a, the F fan 9b, the dampers 101a, 101b, 102a, 102b, controls the refrigerant control valve 52.

図3(a)は、図1のドア、容器、後述する吐出口を外した状態の正面図である。図2および図3(a)を用いて、冷蔵室2内の風路および冷気の流れを説明する。 FIG. 3(a) is a front view of the device shown in FIG. 1 with the door, container, and discharge port, which will be described later, removed. The air path and the flow of cold air inside the refrigerator compartment 2 will be explained using FIG. 2 and FIG. 3(a).

図2および図3(a)に示すように、冷蔵用蒸発器であるR蒸発器14aは、冷蔵室2の背部にあるR蒸発器室8aの内部に設けてある。R蒸発器14aと熱交換して低温になった空気(冷気)は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。ここで、Rファン9aの形態は、遠心型ファンであるターボファンとしている。冷蔵室2に送風された空気は冷蔵室戻り口15a(図2参照)及び冷蔵室戻り口15b(図3(a)参照)からR蒸発器室8aへと戻り、再びR蒸発器14aにより冷却される。 As shown in FIGS. 2 and 3(a), the R evaporator 14a, which is a refrigerating evaporator, is provided inside the R evaporator chamber 8a at the back of the refrigerator compartment 2. The air (cold air) that has become low temperature through heat exchange with the R evaporator 14a is passed through the refrigerator compartment air path 11 and the refrigerator compartment discharge port 11a by the R fan 9a, which is a refrigeration fan provided above the R evaporator 14a. Air is blown into the refrigerator compartment 2 through the air, and the inside of the refrigerator compartment 2 is cooled. Here, the form of the R fan 9a is a turbo fan which is a centrifugal fan. The air blown into the refrigerator compartment 2 returns to the R evaporator chamber 8a through the refrigerator compartment return port 15a (see FIG. 2) and the refrigerator compartment return port 15b (see FIG. 3(a)), and is cooled again by the R evaporator 14a. be done.

冷蔵室2の冷蔵室吐出口11aは冷蔵室2の上部に設けており、本実施例では最上段の棚34aと二段目の棚34bの上方に空気が吐出するように設けている。また、冷蔵室戻り口15a、15bは冷蔵室2の下部に設けており、本実施例では冷蔵室戻り口15bは冷蔵室2の下から2番目の段(棚34cと棚34dの間)に設け、冷蔵室戻り口15aは冷蔵室2の最下段(棚34dと断熱仕切壁28の間)で、後述する第二間接冷却室36の略背部に設けている。 The refrigerator compartment discharge port 11a of the refrigerator compartment 2 is provided in the upper part of the refrigerator compartment 2, and in this embodiment, it is provided so that air is discharged above the uppermost shelf 34a and the second shelf 34b. Furthermore, the refrigerator compartment return ports 15a and 15b are provided at the lower part of the refrigerator compartment 2, and in this embodiment, the refrigerator compartment return port 15b is located at the second stage from the bottom of the refrigerator compartment 2 (between the shelves 34c and 34d). The refrigerating chamber return port 15a is provided at the lowest stage of the refrigerating chamber 2 (between the shelf 34d and the heat insulating partition wall 28), and approximately at the back of a second indirect cooling chamber 36, which will be described later.

図3(b)は、図1のドア及び容器を外した状態の正面図である。また、図4は、実施例1に係る第一間接冷却室35を構成するケース35aの斜視図である。図3(b)および図4を用いて、第一間接冷却室35の構成および、そのまわりの冷気の流れを説明し、図2を用いて第二間接冷却室36の構成および、そのまわりの冷気の流れを説明する。 FIG. 3(b) is a front view of FIG. 1 with the door and container removed. Moreover, FIG. 4 is a perspective view of the case 35a that constitutes the first indirect cooling chamber 35 according to the first embodiment. The structure of the first indirect cooling chamber 35 and the flow of cold air around it will be explained using FIG. 3(b) and FIG. 4, and the structure of the second indirect cooling chamber 36 and the surroundings thereof will be explained using FIG. Explain the flow of cold air.

図3(b)に示すように、冷蔵室2内にある棚34dの上方には第一間接冷却室35を設けている。第一間接冷却室35は、ケース35aを備えており、また、第一間接冷却室35に冷気を直接送風する吐出口を設けていない構成としている。 As shown in FIG. 3(b), a first indirect cooling chamber 35 is provided above the shelf 34d in the refrigerator compartment 2. The first indirect cooling chamber 35 includes a case 35a, and has a configuration in which the first indirect cooling chamber 35 is not provided with an outlet for directly blowing cold air.

図2に示すように、冷蔵室2の内部である、断熱仕切壁28の上方には第二間接冷却室36を設けている。第二間接冷却室36は、ドア36aと収納部36bが接触して密閉される構造としている。これにより、低温低湿な空気が第二間接冷却室36内の食品に直接入らないようにして、第二間接冷却室36内の食品の乾燥を抑制している。さらに本実施例の冷蔵庫1の第二間接冷却室36は、ドア36aを閉じると、例えばパッキングによりドア36aと収納部36bが隙間なく接触し、密閉される構造としている。加えて、第二間接冷却室36には、ポンプ(図示せず)が接続されており、ポンプを動作させることで、第二間接冷却室36内部を、例えば0.8気圧に減圧し、第二間接冷却室36内に設けた食品の酸化を抑制している。 As shown in FIG. 2, a second indirect cooling chamber 36 is provided inside the refrigerator compartment 2, above the heat insulating partition wall 28. The second indirect cooling chamber 36 has a structure in which the door 36a and the storage section 36b are in contact with each other to be sealed. This prevents low-temperature, low-humidity air from directly entering the food in the second indirect cooling chamber 36, thereby suppressing drying of the food in the second indirect cooling chamber 36. Furthermore, the second indirect cooling chamber 36 of the refrigerator 1 of this embodiment has a structure in which when the door 36a is closed, the door 36a and the storage section 36b are brought into contact with each other without a gap, for example, by packing, and are sealed. In addition, a pump (not shown) is connected to the second indirect cooling chamber 36, and by operating the pump, the pressure inside the second indirect cooling chamber 36 is reduced to, for example, 0.8 atm. Oxidation of the food provided in the double indirect cooling chamber 36 is suppressed.

第二間接冷却室36は、断熱仕切壁28を介して製氷室3及び冷凍室4と隣接させており、製氷室3及び冷凍室4による吸熱により、冷蔵室2よりも低温な氷温モード(例えば約-3~0℃)にできるようにしている。また、断熱仕切り壁28内にはヒータ(図示せず)を設けており、ヒータを動作させることで冷蔵室2の温度に近いチルドモード(例えば約0~3℃)にも設定できる。なお、これらの運転モードは操作部200を操作することで切替えられる。 The second indirect cooling compartment 36 is adjacent to the ice making compartment 3 and the freezing compartment 4 via the heat insulating partition wall 28, and is in an ice temperature mode (lower temperature than the refrigerator compartment 2) due to heat absorption by the ice making compartment 3 and the freezing compartment 4. For example, it can be heated to temperatures between approximately -3°C and 0°C. Further, a heater (not shown) is provided in the heat insulating partition wall 28, and by operating the heater, a chilled mode (for example, about 0 to 3° C.), which is close to the temperature of the refrigerator compartment 2, can be set. Note that these operation modes can be switched by operating the operation unit 200.

図4は、実施例1に係る製氷室3、冷凍室4、第一切替室5、及び第二切替室6の冷気の流れを示す風路構造の概略図である。図2および図4を用いて、冷蔵室2以外の庫内の風路構成と、冷気の流れを説明する。 FIG. 4 is a schematic diagram of an air passage structure showing the flow of cold air in the ice making compartment 3, the freezing compartment 4, the first switching compartment 5, and the second switching compartment 6 according to the first embodiment. The air passage configuration inside the refrigerator compartment other than the refrigerator compartment 2 and the flow of cold air will be explained using FIGS. 2 and 4.

図2および図4に示すように、冷凍用蒸発器であるF蒸発器14bは第一切替室5、第二切替室6の背部のF蒸発器室8b内に設けてある。F蒸発器14bと熱交換して低温になった空気(冷気)は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12、冷凍室吐出口12a、12bを介して製氷室3及び冷凍室4に送風され、製氷室3の製氷皿3c内の水、容器3b内の氷、冷凍室4の容器4b内の食品等を冷却する。ここで、Rファン9aの形態は、遠心型ファンであるターボファンとしている。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口12cより冷凍室戻り風路12dを介して、F蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 As shown in FIGS. 2 and 4, the F evaporator 14b, which is a freezing evaporator, is provided in the F evaporator chamber 8b at the back of the first switching chamber 5 and the second switching chamber 6. The air (cold air) that has become low temperature by exchanging heat with the F evaporator 14b is transferred to the freezer compartment air passage 12, the freezer compartment outlet 12a, Air is blown to the ice making compartment 3 and the freezing compartment 4 through the ice making compartment 3, cooling the water in the ice tray 3c of the ice making compartment 3, the ice in the container 3b, the food in the container 4b of the freezing compartment 4, etc. Here, the form of the R fan 9a is a turbo fan which is a centrifugal fan. The air that has cooled the ice making compartment 3 and the freezing compartment 4 returns to the F evaporator compartment 8b from the freezing compartment return port 12c via the freezing compartment return air path 12d, and is cooled again by the F evaporator 14b.

本実施例の冷蔵庫1では、第一切替室5、及び第二切替室6もF蒸発器14bで低温にした空気(冷気)で冷却する。第一切替室5及び第二切替室6への冷気の送風は、送風制御部であるダンパ101a、101b、102a、及び102bにより制御する。 In the refrigerator 1 of this embodiment, the first switching chamber 5 and the second switching chamber 6 are also cooled with air (cold air) made low in temperature by the F evaporator 14b. The blowing of cold air to the first switching chamber 5 and the second switching chamber 6 is controlled by dampers 101a, 101b, 102a, and 102b, which are blowing control sections.

まず、第一切替室5への冷気の流れを説明する。第一切替室5の冷気の流れは、冷凍モードと冷蔵モードとで異なる。第一切替室5が冷凍モードの際は、ダンパ101aを開けて、ダンパ101bを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101a、そして第一切替室5の直接冷却用吐出口である第一切替室吐出口111aを介して、第一切替室5に設けた第一切替室容器5b内に送風され、第一切替室容器5b内の食品を冷却する。冷気は第一切替室容器5b内の食品を直接冷却するため、比較的短時間で第一切替室容器5b内の食品を冷却できる。 First, the flow of cold air to the first switching chamber 5 will be explained. The flow of cold air in the first switching chamber 5 differs between freezing mode and refrigeration mode. When the first switching chamber 5 is in the freezing mode, the damper 101a is opened and the damper 101b is closed. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezer air passage 12, the damper 101a, and the first switching chamber outlet 111a, which is a direct cooling outlet of the first switching chamber 5, to the first switching chamber 5. Air is blown into the first changing room container 5b provided in the first changing room 5, and the food in the first changing room container 5b is cooled. Since the cold air directly cools the food in the first changing chamber container 5b, the food in the first changing chamber container 5b can be cooled in a relatively short time.

第一切替室5が冷蔵モードの際は、ダンパ101aを閉じて、ダンパ101bを開ける。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ101b、そして第一切替室5の間接冷却用吐出口である第一切替室吐出口111bを介して、第一切替室容器5bの外側(外周)に送風される。冷気は第一切替室容器5b内の食品に直接到達し難くなり、すなわち食品は第一切替室容器5bを介して間接冷却されるため、食品の乾燥を抑えつつ冷却できる。第一切替室吐出口111a、又は第一切替室吐出口111bより吐出し、第一切替室5内を冷却した空気は、第一切替室戻り口111cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 When the first switching chamber 5 is in the refrigerating mode, the damper 101a is closed and the damper 101b is opened. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezer air passage 12, the damper 101b, and the first switching chamber outlet 111b, which is an indirect cooling outlet of the first switching chamber 5, to the first switching chamber 5. All air is blown to the outside (outer periphery) of the changeable chamber container 5b. It becomes difficult for the cold air to directly reach the food in the first changing chamber container 5b, that is, the food is indirectly cooled through the first changing chamber container 5b, so that the food can be cooled while suppressing drying. The air discharged from the first switching chamber discharge port 111a or the first switching chamber discharge port 111b and cooling the inside of the first switching chamber 5 is passed from the first switching chamber return port 111c through the freezing chamber return air path 12d to the F It returns to the evaporator chamber 8b and is cooled again by the F evaporator 14b.

次に、第二切替室6への冷気の流れを説明する。第二切替室6の構成は、第一の切替室5と同様で、運転モードによってダンパの開閉を変更している。第二切替室6が冷凍モードの際は、ダンパ102aを開け、ダンパ102bを閉じる。F蒸発器14bで冷却された空気(冷気)は、Fファン9b、冷凍室風路12、ダンパ102a、そして第二切替室6の直接冷却用吐出口である第二切替室吐出口112aを介して、第二切替室容器6b内に送風され、第二切替室容器6b上の食品を冷却する。冷気は第二切替室容器5bの食品を直接冷却するため、比較的短時間で第二切替室容器6b内の食品を冷却できる。 Next, the flow of cold air to the second switching chamber 6 will be explained. The configuration of the second switching chamber 6 is similar to that of the first switching chamber 5, and the opening and closing of the damper is changed depending on the operation mode. When the second switching chamber 6 is in the freezing mode, the damper 102a is opened and the damper 102b is closed. The air (cold air) cooled by the F evaporator 14b is passed through the F fan 9b, the freezer air passage 12, the damper 102a, and the second switching chamber outlet 112a, which is a direct cooling outlet of the second switching chamber 6. Then, air is blown into the second switching chamber container 6b to cool the food on the second switching chamber container 6b. Since the cold air directly cools the food in the second switching chamber container 5b, the food in the second switching chamber container 6b can be cooled in a relatively short time.

第二切替室6が冷蔵モードの際は、ダンパ102bを開け、ダンパ102aを閉じる。F蒸発器14bで冷却された空気は、Fファン9b、冷凍室風路12、ダンパ102b、そして第二切替室6の間接冷却用吐出口である第二切替室吐出口111bを介して、第二切替室容器6bの外側(外周)に送風し、間接冷却として、食品の乾燥を抑えつつ冷却する。第二切替室6内を冷却した空気は、第二切替室戻り口112cより冷凍室戻り風路12dを介してF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 When the second switching chamber 6 is in the refrigerating mode, the damper 102b is opened and the damper 102a is closed. The air cooled by the F evaporator 14b passes through the F fan 9b, the freezer air passage 12, the damper 102b, and the second switching chamber outlet 111b, which is an indirect cooling outlet for the second switching chamber 6, to the second switching chamber 6. Air is blown to the outside (outer periphery) of the two-switchable chamber container 6b to indirectly cool the food while suppressing drying of the food. The air that has cooled the second switching chamber 6 returns to the F evaporator chamber 8b from the second switching chamber return port 112c via the freezing chamber return air path 12d, and is cooled again by the F evaporator 14b.

図5は、実施例1に係る冷蔵庫の冷凍サイクルの構成図である。本実施例の冷蔵庫1では、圧縮機24、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、仕切り壁28、29、30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53aと冷凍用キャピラリチューブ53b、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14bを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機24に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、逆止弁56、冷媒流を接続する冷媒合流部55も備えており、これらを冷媒配管59により接続することで冷凍サイクルを構成している。 FIG. 5 is a configuration diagram of the refrigeration cycle of the refrigerator according to the first embodiment. In the refrigerator 1 of this embodiment, the compressor 24, the external radiator 50a which is a heat radiating means for radiating heat from the refrigerant, the wall heat radiation pipe 50b, and the dew condensation prevention that suppresses dew condensation on the front parts of the partition walls 28, 29, and 30. Piping 50c, a refrigerating capillary tube 53a and a freezing capillary tube 53b, which are depressurizing means for reducing the pressure of the refrigerant, and an R evaporator 14a and an F evaporator that exchange heat between the refrigerant and the air inside the refrigerator to absorb heat inside the refrigerator. 14b, and these cool the inside of the refrigerator. It also includes a dryer 51 that removes moisture in the refrigeration cycle, gas-liquid separators 54a and 54b that prevent liquid refrigerant from flowing into the compressor 24, and a three-way valve 52 that controls the refrigerant flow path, and a check valve. It also includes a valve 56 and a refrigerant merging section 55 that connects the refrigerant flow, and these are connected by a refrigerant pipe 59 to constitute a refrigeration cycle.

なお本実施例の冷蔵庫1は、冷媒にイソブタンを用いている。また、本実施例の圧縮機24はインバータを備えて回転速度を変えることができる。 Note that the refrigerator 1 of this embodiment uses isobutane as a refrigerant. Furthermore, the compressor 24 of this embodiment is equipped with an inverter so that the rotation speed can be changed.

三方弁52は、52a、52bで示す2つの流出口を備え、流出口52a側に冷媒を流す冷蔵モードと、流出口52b側に冷媒を流す冷凍モードを備え、これらを切換えできる部材である。また、本実施例の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないようにする全閉、また何れも冷媒が流れるようにする全開のモードも備え、これらにも切換え可能である。 The three-way valve 52 is a member that is provided with two outlet ports 52a and 52b, and has a refrigeration mode in which the refrigerant flows through the outlet port 52a side and a freezing mode in which the refrigerant flows in the outlet port 52b side, and is capable of switching between these modes. Furthermore, the three-way valve 52 of this embodiment has a fully closed mode in which refrigerant does not flow through either the outlet 52a or the outlet 52b, and a fully open mode in which the refrigerant flows in both, and can be switched to either of these modes. It is possible.

本実施例の冷蔵庫1では、冷媒は以下のように流れる。圧縮機24から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露防止配管50c、ドライヤ51の順に流れ、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介して冷蔵用キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して冷凍用キャピラリチューブ53bと接続されている。 In the refrigerator 1 of this embodiment, the refrigerant flows as follows. The refrigerant discharged from the compressor 24 flows in this order through the external radiator 50a, the external radiator 50b, the condensation prevention piping 50c, and the dryer 51, and reaches the three-way valve 52. An outlet 52a of the three-way valve 52 is connected to a refrigerating capillary tube 53a via a refrigerant pipe, and an outlet 52b is connected to a freezing capillary tube 53b via a refrigerant pipe.

冷蔵室2を冷却する場合は、流出口52a側に冷媒が流れるようにする。流出口52aから流出した冷媒は、冷蔵用キャピラリチューブ53a、R蒸発器14a、気液分離機54a、冷媒合流部55の順に流れた後、圧縮機24に戻る。冷蔵用キャピラリチューブ53aで低圧低温になった冷媒がR蒸発器14aを流れることでR蒸発器14aが低温となり、このR蒸発器14bにより冷却された空気をRファン9a(図2参照)で送風することで冷蔵室2を冷却する。 When cooling the refrigerator compartment 2, the refrigerant is made to flow toward the outlet 52a. The refrigerant flowing out from the outlet 52a flows through the refrigerating capillary tube 53a, the R evaporator 14a, the gas-liquid separator 54a, and the refrigerant confluence section 55 in this order, and then returns to the compressor 24. The refrigerant that has become low pressure and low temperature in the refrigeration capillary tube 53a flows through the R evaporator 14a, and the R evaporator 14a becomes low temperature.The air cooled by the R evaporator 14b is blown by the R fan 9a (see FIG. 2). By doing so, the refrigerator compartment 2 is cooled.

製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する際は、流出口52b側に冷媒が流れるようにする。流出口52bから流出した冷媒は、冷凍用キャピラリチューブ53b、F蒸発器14b、気液分離機54b、逆止弁56、冷媒合流部55の順に流れた後、圧縮機24に戻る。逆止弁56は気液分離機54bから冷媒合流部55側には冷媒が流れ、冷媒合流部55から気液分離機54b側へは流れないように配設している。冷凍用キャピラリチューブ53bで低圧低温になった冷媒がF蒸発器14bを流れることでF蒸発器14bが低温となり、F蒸発器14bにより冷却された空気をFファン9b(図2参照)で送風することで製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する。 When cooling the ice making compartment 3, the freezing compartment 4, the first switching compartment 5, and the second switching compartment 6, the refrigerant is made to flow toward the outlet 52b. The refrigerant flowing out from the outlet 52b flows through the freezing capillary tube 53b, the F evaporator 14b, the gas-liquid separator 54b, the check valve 56, and the refrigerant merging section 55 in this order, and then returns to the compressor 24. The check valve 56 is arranged so that the refrigerant flows from the gas-liquid separator 54b to the refrigerant confluence section 55, but does not flow from the refrigerant confluence section 55 to the gas-liquid separator 54b. The refrigerant, which has become low pressure and low temperature in the freezing capillary tube 53b, flows through the F evaporator 14b, so that the F evaporator 14b becomes low temperature, and the air cooled by the F evaporator 14b is blown by the F fan 9b (see FIG. 2). This cools the ice making compartment 3, the freezing compartment 4, the first switching compartment 5, and the second switching compartment 6.

本実施例の冷蔵庫1では、冷蔵室2はR蒸発器14aを用いて冷却し、製氷室3、冷凍室4、第一切替室5、第二切替室6はF蒸発器14bを用いて冷却する構成としているが、このような構成とすることで、R蒸発器14aとF蒸発器14bのそれぞれに異なる蒸発器温度を設定できる。具体的には、冷凍温度帯である、又は冷凍温度帯に設定可能な製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却するF蒸発器14bに冷媒を流す際は、これらの貯蔵室よりも低温な蒸発器温度(例えば-25℃)とする。一方、冷蔵温度帯の冷蔵室2を冷却するR蒸発器14aに冷媒を流す際は、冷媒の蒸発器温度を比較的高くする(例えば-10℃)。一般的に、蒸発器の温度が高いほど、冷凍サイクルの冷却効率を高めることができ、省エネルギー性能向上に有効である。また、蒸発器の温度が高いほど、空気が蒸発器を通過する際の空気中の水分の着霜が抑えられ、すなわち空気の除湿が抑えられ、庫内を高湿に保つことができる。従って、R蒸発器14aの温度が高い状態で冷蔵室2を冷却することで、冷凍温度帯の貯蔵室と共通の蒸発器で冷却する場合に比べ、冷蔵室2冷却時の省エネルギー性能を高められるとともに、冷蔵室2内を高湿に保つことができる。 In the refrigerator 1 of this embodiment, the refrigerator compartment 2 is cooled using the R evaporator 14a, and the ice making compartment 3, the freezing compartment 4, the first switching compartment 5, and the second switching compartment 6 are cooled using the F evaporator 14b. However, with such a configuration, different evaporator temperatures can be set for each of the R evaporator 14a and the F evaporator 14b. Specifically, when the refrigerant is passed through the F evaporator 14b that cools the ice making compartment 3, the freezing compartment 4, the first switching compartment 5, and the second switching compartment 6, which are in the freezing temperature range or can be set to the freezing temperature range. The temperature of the evaporator is lower than that of these storage chambers (for example, −25° C.). On the other hand, when the refrigerant is passed through the R evaporator 14a that cools the refrigerator compartment 2 in the refrigeration temperature range, the evaporator temperature of the refrigerant is set relatively high (for example, -10° C.). Generally, the higher the temperature of the evaporator, the higher the cooling efficiency of the refrigeration cycle, which is effective in improving energy saving performance. Furthermore, the higher the temperature of the evaporator, the more frost formation of moisture in the air when the air passes through the evaporator is suppressed, that is, the dehumidification of the air is suppressed, and the inside of the refrigerator can be kept at high humidity. Therefore, by cooling the refrigerator compartment 2 while the temperature of the R evaporator 14a is high, the energy saving performance when cooling the refrigerator compartment 2 can be improved compared to the case where the refrigerator compartment 2 is cooled by a common evaporator with a storage compartment in the freezing temperature range. At the same time, the inside of the refrigerator compartment 2 can be kept at high humidity.

また、冷蔵室2のみを冷却するR蒸発器14aと、その他の貯蔵室を冷却するF蒸発器14bとを分けることで、R蒸発器14aの除霜方式をオフサイクル除霜とし、さらなる省エネルギー性能向上と、冷蔵室2の高湿化を図っている。 In addition, by separating the R evaporator 14a that cools only the refrigerator compartment 2 and the F evaporator 14b that cools other storage compartments, the defrosting method of the R evaporator 14a is set to off-cycle defrosting, resulting in further energy-saving performance. The aim is to increase the humidity of the refrigerator compartment 2.

まず、F蒸発器14bの下部には、F蒸発器14bを加熱するラジアントヒータ21を設けている。ラジアントヒータ21は、例えば50W~200Wの電気ヒータで、本実施例では150Wのとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部のFトイ23bからF排水管26を介して圧縮機24の上部に設けたF蒸発皿32に排出される。 First, a radiant heater 21 for heating the F evaporator 14b is provided below the F evaporator 14b. The radiant heater 21 is, for example, an electric heater of 50W to 200W, and is 150W in this embodiment. Defrosting water (melted water) generated during defrosting of the F evaporator 14b is sent from the F toy 23b at the bottom of the F evaporator chamber 8b to the F evaporation tray 32 provided at the top of the compressor 24 via the F drain pipe 26. be discharged.

一方、R蒸発器14aの除霜にはオフサイクル除霜方式を採用しており、R蒸発器14aに冷媒を流さない状態で、Rファン9aを駆動させる。Rファン9aにより、冷蔵室2の空気が冷蔵室戻り口15a、15bを介してR蒸発器14aに流れ(図2、図3(a)参照)、霜の融点よりも高温の冷蔵温度(0℃以上)の冷蔵室2の空気によりR蒸発器14aの霜を加熱して除霜する。R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたRトイ23a(図2参照)から、R排水管(図示なし)を介して機械室39に設けた図示しないR蒸発皿に排出される。 On the other hand, an off-cycle defrosting method is adopted for defrosting the R evaporator 14a, and the R fan 9a is driven without flowing refrigerant to the R evaporator 14a. The air in the refrigerator compartment 2 flows through the refrigerator compartment return ports 15a and 15b to the R evaporator 14a by the R fan 9a (see FIGS. 2 and 3(a)), and the refrigerator temperature (0 The frost in the R evaporator 14a is heated and defrosted by the air in the refrigerator compartment 2 (at a temperature of 15°C or higher). Defrosting water generated during defrosting of the R evaporator 14a is supplied to the machine room 39 from the R toy 23a (see FIG. 2) provided at the bottom of the R evaporator chamber 8a via an R drain pipe (not shown). The liquid is discharged to an R evaporating dish (not shown).

オフサイクル除霜方式を用いると、電気ヒータ(約150W)を用いることなくファン(0.5~3W)のみでR蒸発器14aの除霜が行えるため、電気ヒータを用いる除霜方式に比べ消費電力を抑えられる。また、オフサイクル除霜中に通過する空気(約4℃)は、低温なR蒸発器14a及びR蒸発器14aに付着した霜(約0℃)により冷却されるため、R蒸発器14aを除霜すると同時に、冷蔵室2を冷却できる。従って省エネルギー性能の高い除霜方式である。さらに、オフサイクル除霜中はR蒸発器14aの温度が高いため、R蒸発器14aを通過する空気の除湿が抑えられ、或いは加湿されるため、冷蔵室2を高湿に保つ効果をさらに高めることができる。 When using the off-cycle defrosting method, the R evaporator 14a can be defrosted using only a fan (0.5 to 3 W) without using an electric heater (approximately 150 W), so it consumes less power than a defrosting method that uses an electric heater. You can save electricity. In addition, the air (approximately 4°C) passing through during off-cycle defrosting is cooled by the low temperature R evaporator 14a and the frost (approximately 0°C) adhering to the R evaporator 14a. The refrigerator compartment 2 can be cooled at the same time as frosting. Therefore, it is a defrosting method with high energy-saving performance. Furthermore, since the temperature of the R evaporator 14a is high during off-cycle defrosting, dehumidification of the air passing through the R evaporator 14a is suppressed or humidified, which further enhances the effect of keeping the refrigerator compartment 2 at high humidity. be able to.

このように、冷蔵温度帯の貯蔵室である冷蔵室2を冷却するR蒸発器14aを備え、冷蔵室2冷却時の蒸発器温度を高め、また、オフサイクル除霜方式を採用することで、省エネルギー性能を高め、また冷蔵室2を高湿にしている。 In this way, by providing the R evaporator 14a that cools the refrigerator compartment 2, which is a storage compartment in the refrigeration temperature range, and increasing the evaporator temperature when cooling the refrigerator compartment 2, and by adopting an off-cycle defrosting method, It improves energy saving performance and also makes the refrigerator compartment 2 highly humid.

図6は実施例に係る冷蔵庫の蒸発器の構成図であり、図6(a)は冷蔵用蒸発器の構成図、図6(b)は冷凍用蒸発器の構成図を示している。図6に示すように、R蒸発器14aおよびF蒸発器14bは、クロスフィンチューブ式熱交換器であり、複数枚のアルミニウム製のフィン57を、複数回に曲げられたアルミニウム製の伝熱管58が貫くように構成されている。 FIG. 6 is a block diagram of the evaporator of the refrigerator according to the embodiment, FIG. 6(a) is a block diagram of the refrigeration evaporator, and FIG. 6(b) is a block diagram of the freezing evaporator. As shown in FIG. 6, the R evaporator 14a and the F evaporator 14b are cross-fin tube heat exchangers, in which a plurality of aluminum fins 57 are connected to an aluminum heat transfer tube 58 that is bent a plurality of times. It is structured so that it penetrates.

本実施例では、R蒸発器14aの平均フィン積層間隔Pf1とF蒸発器14bの平均フィン積層間隔Pf2の関係はPf1≦Pf2となるように構成し、さらに、R蒸発器14aの高さH5とF蒸発器14bの高さH6の関係はH5≦H6となるように構成することで、食品収納容積の拡大と冷却性能の低下の抑制を両立している。 In this embodiment, the relationship between the average fin stack spacing Pf1 of the R evaporator 14a and the average fin stack spacing Pf2 of the F evaporator 14b is configured to be Pf1≦Pf2, and further, the height H5 of the R evaporator 14a and By configuring the height H6 of the F evaporator 14b to satisfy H5≦H6, it is possible to both expand the food storage volume and suppress a decrease in cooling performance.

R蒸発器14aでは、除霜方式にオフサイクル除霜方式を用いているため、Pf1を狭めて霜詰まりが起きやすくなった場合に消費電力が増大しにくい。したがって、R蒸発器14aは高さH1を比較的小さくし、かつPf1を比較的狭めるコンパクト実装により、冷却性能を極力低下させずに、冷蔵室2の食品収納容積を拡大している。 In the R evaporator 14a, since an off-cycle defrosting method is used for the defrosting method, power consumption is unlikely to increase when Pf1 is narrowed and frost clogging becomes more likely to occur. Therefore, the R evaporator 14a is compactly mounted with a relatively small height H1 and a relatively narrow Pf1, thereby expanding the food storage capacity of the refrigerator compartment 2 without reducing cooling performance as much as possible.

F蒸発器では14b、除霜方式にヒータ除霜方式を用いているため、Pf2を比較的狭めて霜詰まりが起きやすくなった場合に冷却性能が低下しやすい。したがって、Pf2広げることで冷却性能が低下する回数を低減している。 In the F evaporator 14b, since a heater defrosting method is used for the defrosting method, the cooling performance tends to deteriorate when Pf2 is relatively narrowed and frost clogging is likely to occur. Therefore, by widening Pf2, the number of times the cooling performance deteriorates is reduced.

本実施例ではPf1を約3mm、Pf2を約5mm、H5を約90mm、H6を約150mmとしているが、本実施例で使用した寸法以外の場合でも、Pf1≦Pf2とH5≦H6の関係が成り立てば同様な効果を得ることができる。 In this example, Pf1 is approximately 3 mm, Pf2 is approximately 5 mm, H5 is approximately 90 mm, and H6 is approximately 150 mm, but the relationships Pf1≦Pf2 and H5≦H6 hold true even in the case of dimensions other than those used in this example. A similar effect can be obtained.

図7(a)は実施例に係る冷蔵用ファン翼の斜視図である。図7(a)に示すように、Rファン9aの形態は、遠心型ファンであるターボファン(後向きファン)とし、翼直径D1=100mm、翼高さL1=25mm、翼枚数は10枚としている。また、回転数を1000~1800rpm程度で運転している。 FIG. 7(a) is a perspective view of a refrigeration fan blade according to an embodiment. As shown in FIG. 7(a), the configuration of the R fan 9a is a turbo fan (backward-facing fan) which is a centrifugal fan, and has a blade diameter D1 = 100 mm, a blade height L1 = 25 mm, and the number of blades is 10. . Further, the rotation speed is approximately 1000 to 1800 rpm.

図8は、実施例に係る冷蔵室にターボファンを鉛直に実装した場合の側断面図である。本実施例の冷蔵庫では、Rファン9aの形態として、遠心型ファンであるターボファンを略鉛直に配置している。また、Rファン9aの前面側端部は、R蒸発器14aの前面側端部よりも背面側に位置する。そして、Rファン9aの鉛直投影と蒸発器14aの鉛直投影とは少なくとも一部が重なっており、本実施例では、Rファン9aの鉛直投影は蒸発器14aの鉛直投影内に含まれる配置となっている。 FIG. 8 is a side sectional view of the case where a turbo fan is vertically mounted in the refrigerator compartment according to the embodiment. In the refrigerator of this embodiment, a turbo fan, which is a centrifugal fan, is arranged substantially vertically as the R fan 9a. Further, the front end of the R fan 9a is located closer to the back side than the front end of the R evaporator 14a. The vertical projection of the R fan 9a and the vertical projection of the evaporator 14a at least partially overlap, and in this embodiment, the vertical projection of the R fan 9a is located within the vertical projection of the evaporator 14a. ing.

ターボファンをはじめとする遠心型ファンでは、軸方向に吸込んだ流れを径方向に吹出す特性を有するため、本実施例では、Rファン9a吸込口側(冷蔵庫の前面側)には空間が必要であるが、Rファン9aの背面側に風路空間を設ける必要がない。そのため、Rファン9a周辺の送風路の奥行き寸法60を、R蒸発器14aの奥行き寸法61と同等あるいは同等以下にできるため、食品収納容積の拡大に寄与できる。ここでの「同等」とは、Rファン9a周辺の送風路の奥行き寸法60が、R蒸発器14aの奥行寸法61に対して、±20%以内、望ましくは±10%以内のことを指す。なお、仕切り62が鉛直方向に真っ直ぐでない場合、送風路の奥行き寸法60は、Rファン9aの上端から下端までの高さ範囲における平均とする。 Centrifugal fans such as turbo fans have the characteristic of blowing out the flow sucked in in the axial direction in the radial direction, so in this embodiment, a space is required on the R fan 9a suction port side (front side of the refrigerator). However, there is no need to provide an air passage space on the back side of the R fan 9a. Therefore, the depth dimension 60 of the air passage around the R fan 9a can be made equal to or less than the depth dimension 61 of the R evaporator 14a, which can contribute to expanding the food storage volume. "Equivalent" here means that the depth dimension 60 of the air passage around the R fan 9a is within ±20%, preferably within ±10%, with respect to the depth dimension 61 of the R evaporator 14a. In addition, when the partition 62 is not straight in the vertical direction, the depth dimension 60 of the air passage is an average in the height range from the upper end to the lower end of the R fan 9a.

また、ターボファンは高静圧タイプの送風機のため、冷蔵庫で一般的に用いられるプロペラファンと比較して高静圧(風路抵抗が大きい)時に風量を増大させやすい特性を持っている。本実施例では、R蒸発器14aのPf1をF蒸発器14bのPf2より狭め、かつオフサイクル除霜を採用しているため、R蒸発器14aで霜が成長して風路抵抗が大きくなる頻度が多くなるが、このような運転条件においても、風量を極端に低下させることなく、霜の潜熱を利用して冷却ができる。 Additionally, since turbo fans are high static pressure type blowers, they have the ability to easily increase air volume when static pressure is high (air resistance is high) compared to propeller fans commonly used in refrigerators. In this embodiment, Pf1 of the R evaporator 14a is narrower than Pf2 of the F evaporator 14b, and off-cycle defrosting is adopted, so the frequency at which frost grows in the R evaporator 14a and increases air path resistance However, even under such operating conditions, cooling can be performed using the latent heat of frost without significantly reducing the air volume.

図7(b)は実施例に係る冷凍用ファン翼の斜視図である。図7(b)に示すように、Fファン9bの形態は、遠心型ファンであるターボファン(後向きファン)とし、翼直径D2=120mm、翼高さL2=26mm、翼枚数は10枚としている。また、回転数を1000~1800rpm程度で運転している。 FIG. 7(b) is a perspective view of the refrigeration fan blade according to the embodiment. As shown in FIG. 7(b), the form of the F fan 9b is a turbo fan (rearward-facing fan) that is a centrifugal fan, with blade diameter D2 = 120 mm, blade height L2 = 26 mm, and the number of blades is 10. . Further, the rotation speed is approximately 1000 to 1800 rpm.

図8(a)(b)に示すように、Rファン9aの吐出面積(A1=D1×π×L1)よりもFファン9bの吐出面積(A2=D2×π×L2)が大きくなるように構成している。ここで、吐出面積とは、翼高さと翼直径で規定される面積を指し、翼以外の部品は含まないものとする。冷蔵温度帯の冷蔵室2と、冷凍温度帯の冷凍室3に同一の食品(冷却負荷)を投入した場合を考えると、冷蔵室2に比べて冷凍室3の必要冷却量が多くなるが、例えばRファン9aとFファン9bの回転数を同程度として、かつA1<A2の関係とすることで、冷蔵室2への送風量<冷凍室3への送風量となるため、各貯蔵室の必要冷却量に適した冷気風量を送風しやすくなる。上記の効果は、第一切替室5が冷凍モードの場合と、第二切替室6が冷凍モードの場合に効果が高くなる。 As shown in FIGS. 8(a) and 8(b), the discharge area of the F fan 9b (A2=D2×π×L2) is made larger than the discharge area of the R fan 9a (A1=D1×π×L1). It consists of Here, the discharge area refers to the area defined by the blade height and blade diameter, and does not include parts other than the blades. Considering the case where the same food (cooling load) is put into the refrigerator compartment 2 in the refrigeration temperature range and the freezer compartment 3 in the freezing temperature range, the amount of cooling required in the freezer compartment 3 will be greater than that in the refrigerator compartment 2. For example, by setting the rotation speed of the R fan 9a and the F fan 9b to be about the same and making the relationship A1 < A2, the amount of air blown to the refrigerator compartment 2 will be less than the amount of air blown to the freezer compartment 3. It becomes easier to blow the amount of cold air suitable for the required amount of cooling. The above effect becomes more effective when the first switching chamber 5 is in the freezing mode and when the second switching chamber 6 is in the freezing mode.

本実施例では、2つのファンの回転数が同程度の場合を想定したが、例えば冷凍側の必要冷却量が想定より多くなる場合は冷凍側ファンの回転数を増大させてもよく、また、冷蔵側の必要冷却量が想定より多くなる場合は冷蔵側ファンの回転数を増大させても同様な効果が得られる。 In this embodiment, it is assumed that the rotation speeds of the two fans are about the same, but for example, if the required cooling amount on the refrigeration side becomes larger than expected, the rotation speed of the refrigeration side fan may be increased. If the required cooling amount on the refrigeration side is larger than expected, the same effect can be obtained by increasing the rotation speed of the refrigeration side fan.

図2、図7(a)(b)に示すように、使用者の顔の高さから近い貯蔵室にあるファンの吐出面積A1より、使用者の顔の高さから遠いファンの吐出面積A2を大きくしている。これにより、吐出面積A2の増大によって騒音が増大した場合であっても、使用者とFファン9bとの距離が比較的遠いため、使用者が騒音の増大に気づきにくくなり、快適性が向上する。 As shown in FIGS. 2, 7(a) and 7(b), the discharge area A2 of the fan that is farther from the user's face level is greater than the fan discharge area A1 located in the storage room that is closer to the user's face level. is increasing. As a result, even if noise increases due to an increase in the discharge area A2, since the distance between the user and the F fan 9b is relatively long, the user is less likely to notice the increase in noise, improving comfort. .

図7(b)に示すように、Fファン9aの形態は、遠心型ファンであるターボファンとしている。ターボファンは他の遠心型ファン(例えばシロッコファン、ラジアルファン)よりも翼枚数が比較的少なく設計できる。これは、風路として使える有効な面積が広いため、狭い吸込開口近傍で霜が成長した場合であっても風量が極端に低下しにくくなることを意味しており、言い換えると、冷却能力の低下が起きにくくなるため、冷蔵庫を長時間運転した場合の風量(冷却能力)を向上できる。 As shown in FIG. 7(b), the F fan 9a is a turbo fan that is a centrifugal fan. Turbofans can be designed with a relatively smaller number of blades than other centrifugal fans (eg, sirocco fans, radial fans). This means that the effective area that can be used as an air path is large, so even if frost grows near the narrow suction opening, the air volume is less likely to drop drastically.In other words, the cooling capacity will decrease. This makes it less likely that this will occur, so the air volume (cooling capacity) can be improved when the refrigerator is operated for a long time.

図7(a)(b)に示すように、Rファン9aとFファン9bの形態をターボファンとし、Rファン9aの翼高さL1とFファン9bの翼高さL2が略同等で、Rファン9aの翼直径D1よりFファン9bの翼直径D2が大きくなるように、言い換えると、D2/D1>L2/L1の関係が成り立つように構成している。上記のような関係とすることで、Fファン9bの吐出面積A2の拡大にあわせてF蒸発器室の奥行き63(後述する図10参照)を拡大せずに済むため、食品収納容積の拡大と冷凍側の冷却性能の向上を両立できる。上記の効果を図9、図10を用いて詳細に説明する。 As shown in FIGS. 7(a) and 7(b), the R fan 9a and the F fan 9b are turbofans, and the blade height L1 of the R fan 9a and the blade height L2 of the F fan 9b are approximately the same, and The configuration is such that the blade diameter D2 of the F fan 9b is larger than the blade diameter D1 of the fan 9a, in other words, the relationship D2/D1>L2/L1 holds true. By establishing the above relationship, the depth 63 of the F evaporator chamber (see FIG. 10 described later) does not need to be expanded in accordance with the expansion of the discharge area A2 of the F fan 9b, so that the food storage capacity can be expanded. It is possible to improve the cooling performance on the freezing side. The above effects will be explained in detail using FIGS. 9 and 10.

図9(a)は図2の冷凍用ファン近傍の拡大図で、図9(b)は図9(a)の冷凍用ファンの翼直径を拡大した場合の図である。また、図10(a)は図9の冷凍用ファンの形態をプロペラファンとした図で、図10(b)は図10(a)のプロペラファンの翼直径を拡大した場合の図である。 9(a) is an enlarged view of the vicinity of the refrigeration fan in FIG. 2, and FIG. 9(b) is an enlarged view of the blade diameter of the refrigeration fan in FIG. 9(a). Moreover, FIG. 10(a) is a diagram in which the form of the refrigeration fan in FIG. 9 is a propeller fan, and FIG. 10(b) is a diagram in which the blade diameter of the propeller fan in FIG. 10(a) is enlarged.

図10(a)(b)に示すように、Fファン9bの形態には、軸流型ファンであるプロペラファンが用いられることが多い。Fファン9bの形態をプロペラファンとした場合は、ファン流入と流出に空間を確保するために水平あるいは傾斜させて設置するため、ファン翼直径D2を大きくした場合は、F蒸発器室の奥行き63を拡大して実装するため、食品収納容積が縮小してしまう。 As shown in FIGS. 10A and 10B, a propeller fan that is an axial fan is often used as the F fan 9b. When the F fan 9b is a propeller fan, it is installed horizontally or inclined to ensure space for the inflow and outflow of the fan, so if the fan blade diameter D2 is increased, the depth of the F evaporator chamber is 63. Since the food storage space is expanded and implemented, the food storage capacity is reduced.

そのため、本実施例では、図9(a)(b)に示すように、Fファン9bの形態を遠心型ファンであるターボファンとすることで、Fファン9bを略垂直に設置でき、これにより、風量を増大させることを目的にファン翼直径D2を大きく設計した場合でも、F蒸発器室の奥行き63を拡大せずに実装できる。 Therefore, in this embodiment, as shown in FIGS. 9(a) and 9(b), the F fan 9b is configured as a turbo fan, which is a centrifugal fan, so that the F fan 9b can be installed approximately vertically. Even if the fan blade diameter D2 is designed to be large for the purpose of increasing the air volume, it can be implemented without enlarging the depth 63 of the F evaporator chamber.

図9(a)に示すように、ターボファンは流入口近傍で渦が生成されるために、Fファン9b流出口の風速分布64は、冷蔵庫1の前面側が速くなるような特性を持つ。そのため、Fファン9bの流入口が冷蔵庫1の背面側になるように配置することで、風速の大きい流れが吐出口111a、112aに比較的短い距離で届くため、風路損失を低減して、比較的内容積が大きい第一切替室5の冷却能力を向上できる。 As shown in FIG. 9A, since the turbo fan generates a vortex near the inlet, the wind speed distribution 64 at the outlet of the F fan 9b has a characteristic that the wind speed is faster on the front side of the refrigerator 1. Therefore, by arranging the inflow port of the F fan 9b on the back side of the refrigerator 1, the flow with high wind speed reaches the discharge ports 111a and 112a in a relatively short distance, reducing air path loss. The cooling capacity of the first switching chamber 5, which has a relatively large internal volume, can be improved.

図11は、図3(a)の冷蔵室以外の拡大図である。また、図11は、第一切替室5と第二切替室6とを冷凍モードとした場合のダンパ101a、101b、102a、102bの開閉状態も示している。図11に示すように、Fファン9bから吐出された空気は、ファン径方向(左右上下)にあるダンパ101a、102a、に向かって流れる。そのため、ファン径方向に形成される風路にファン径方向に吹出す遠心型ファンを搭載することで、Fファン9bから流出される冷気を大きく指向させずに吐出口まで運ぶことができるため、風路損失を小さくできる。上記の効果により、Fファン9bを通過する風量を増大できる。 FIG. 11 is an enlarged view of the parts other than the refrigerator compartment in FIG. 3(a). Moreover, FIG. 11 also shows the open and closed states of the dampers 101a, 101b, 102a, and 102b when the first switching chamber 5 and the second switching chamber 6 are set to the freezing mode. As shown in FIG. 11, air discharged from the F fan 9b flows toward dampers 101a and 102a located in the fan radial direction (left, right, top, and bottom). Therefore, by installing a centrifugal fan that blows out in the fan radial direction in the air path formed in the fan radial direction, the cold air flowing out from the F fan 9b can be carried to the discharge port without being directed greatly. Air path loss can be reduced. Due to the above effects, the amount of air passing through the F fan 9b can be increased.

本実施例では、ダンパ101aとファンの中心とを結んだ直線と、ダンパ102aとファンの中心とを結んだ直線のなす角(開状態のダンパとファン中心を結んだ2つ直線のなす角の最大値)が約120゜となっており、この角度が約90゜以上の場合に大きな効果が期待できる。 In this embodiment, the angle formed by the straight line connecting the damper 101a and the center of the fan and the straight line connecting the damper 102a and the center of the fan (the angle formed by the two straight lines connecting the damper in the open state and the center of the fan), The maximum value) is about 120 degrees, and a great effect can be expected when this angle is about 90 degrees or more.

また、本実施例は、ダンパ101a、101b、102a、102bといった複数のダンパを有し、ダンパの開閉により運転モードを切替えている。このように、複数のダンパの開閉によって運転モードを切替える冷蔵庫では、Fファン9bから流出した冷気が吐出口111a、111b、112a、112bに至るまでに、ダンパ101a、101b、102a、102bの開閉状態によって風路抵抗が極端に増大する場合がある。 Further, this embodiment has a plurality of dampers such as dampers 101a, 101b, 102a, and 102b, and the operation mode is switched by opening and closing the dampers. In this way, in a refrigerator in which the operation mode is switched by opening and closing a plurality of dampers, the open and closed states of the dampers 101a, 101b, 102a, and 102b are changed before the cold air flowing out from the F fan 9b reaches the discharge ports 111a, 111b, 112a, and 112b. In some cases, the wind path resistance increases dramatically.

図12は図11の第一切替室と第二切替室を冷蔵モードとした場合のダンパの開閉状態を示す図である。図12に示すように、第一切替室5と第二切替室6を冷蔵モードとした場合は、ダンパ101a、102aを開き、ダンパ101b、102bを閉じる。このため、開状態のダンパとファン中心を結んだ2つ直線のなす角の最大値が約30゜となるため、図12の約120゜に対して風路面積が縮小して風路抵抗が増大するため、結果的に風量が低下してしまう。そのため、風路抵抗が増えた場合であっても風量が低下しにくいファン形態を選定することが望ましい。 FIG. 12 is a diagram showing the open/closed state of the damper when the first switching chamber and the second switching chamber in FIG. 11 are set to the refrigeration mode. As shown in FIG. 12, when the first switching chamber 5 and the second switching chamber 6 are set to the refrigeration mode, the dampers 101a and 102a are opened and the dampers 101b and 102b are closed. Therefore, the maximum value of the angle formed by the two straight lines connecting the damper in the open state and the center of the fan is approximately 30°, so the air passage area is reduced compared to approximately 120° in Figure 12, and the air passage resistance is reduced. As a result, the air volume decreases. Therefore, it is desirable to select a fan configuration that does not easily reduce the air volume even when the air path resistance increases.

図13に第1の実施例に係る抵抗曲線とファン単体特性の関係図を示す。図13では、一般的に用いられる送風機の代表例としてプロペラファン約110mmを1500rpmで駆動した場合のファン特性と、本実施例で用いるターボファン約120mmを1500rpmで駆動した場合のファン特性、そして、ダンパ101a、102aを開いてダンパ101b、102bを閉じた場合の第一の抵抗曲線(図11の運転モード)と、ダンパ101b、102bを開いて、ダンパ101a、102aを閉じた場合の第二の抵抗曲線(図12の運転モード)を示している。ここで、第一の抵抗曲線は、第一切替室5と第二切替室6とが冷凍モードの場合であり、風路抵抗が比較的小さくなる。また、第二の抵抗曲線は、第一切替室5と第二切替室6とが冷凍モードの場合であり、風路抵抗が比較的大きくなる。このように、風路抵抗に明らかな差が生じる場合に、Fファン9bの形態としてプロペラファンを用いると、運転モードの違いで風量は約30%低下する。一方で、本実施例のようにターボファンを用いると、運転モードの違いで風量は約20%低下に留められる。さらに、最も風量が必要となる、第一切替室5と第二切替室6とが冷凍モードの場合、言い換えると第一の抵抗曲線での、プロペラファンを搭載した場合の風量と、ターボファンを搭載した場合の風量を比較すると、ターボファンのほうが約10%多くなる。 FIG. 13 shows a relationship diagram between the resistance curve and the fan unit characteristics according to the first embodiment. FIG. 13 shows fan characteristics when a propeller fan of approximately 110 mm is driven at 1500 rpm as a representative example of a commonly used blower, fan characteristics when a turbo fan of approximately 120 mm used in this embodiment is driven at 1500 rpm, and The first resistance curve when the dampers 101a and 102a are opened and the dampers 101b and 102b are closed (operating mode in FIG. 11), and the second resistance curve when the dampers 101b and 102b are opened and the dampers 101a and 102a are closed. 12 shows a resistance curve (operating mode of FIG. 12). Here, the first resistance curve is when the first switching chamber 5 and the second switching chamber 6 are in the freezing mode, and the air path resistance is relatively small. Moreover, the second resistance curve is a case where the first switching chamber 5 and the second switching chamber 6 are in the freezing mode, and the air path resistance is relatively large. In this way, if a propeller fan is used as the F fan 9b when there is a clear difference in air path resistance, the air volume will decrease by about 30% due to the difference in operation mode. On the other hand, if a turbo fan is used as in this embodiment, the air volume will only decrease by about 20% depending on the operating mode. Furthermore, when the first switching chamber 5 and the second switching chamber 6, which require the most air volume, are in the freezing mode, in other words, the air volume when a propeller fan is installed and the turbo fan at the first resistance curve. When comparing the air volume when installed, the turbo fan has about 10% more air volume.

図14は実施例に係る冷凍用ファンの斜視図で、図15は図14の中央断面図である。本実施例において、Fファン9bは翼70、ブラシレスモータ71、ファンを断熱仕切壁27に固定するための固定部76、固定部76に設けられてブラシレスモータ71を制御する基板77、基板77に設けられたFファン温度センサ78、基板77に接続される電気配線(図示なし)により構成されている。また、ブラシレスモータ71は、モータ軸72、軸受け73、ローター74、ステータ75などにより構成されるアウターローター型である。 FIG. 14 is a perspective view of the refrigeration fan according to the embodiment, and FIG. 15 is a central sectional view of FIG. 14. In this embodiment, the F fan 9b includes a blade 70, a brushless motor 71, a fixing part 76 for fixing the fan to the heat insulating partition wall 27, a board 77 provided on the fixing part 76 to control the brushless motor 71, and a board 77 for controlling the brushless motor 71. It is composed of an F fan temperature sensor 78 provided and electrical wiring (not shown) connected to the board 77. Further, the brushless motor 71 is an outer rotor type that includes a motor shaft 72, a bearing 73, a rotor 74, a stator 75, and the like.

図15に示すように、本実施例では、除霜完了を確認するための第一の温度センサとしてF蒸発器の上部に設けたF蒸発器温度センサ40bに加えて、第二の温度センサとしてFファン温度センサ78を備えている。また、F蒸発器温度センサ40bはFファン9bよりもF蒸発器14bに近く、Fファン温度センサ78はF蒸発器14bよりFファン9bに近くなるように実装している。このように配置することで、第一の温度センサでF蒸発器14bに付着した霜が融解したかどうかを確認しやすく、第二の温度センサでFファン9bに付着した霜が融解したかどうかを確認しやすいため、第一の温度センサのみで除霜状態を検知した場合に比べて信頼性の高い除霜が可能となる。 As shown in FIG. 15, in this embodiment, in addition to the F evaporator temperature sensor 40b provided at the top of the F evaporator as a first temperature sensor for confirming the completion of defrosting, a second temperature sensor is also provided. An F fan temperature sensor 78 is provided. Further, the F evaporator temperature sensor 40b is mounted closer to the F evaporator 14b than the F fan 9b, and the F fan temperature sensor 78 is mounted closer to the F fan 9b than the F evaporator 14b. By arranging it in this way, it is easy to check whether the frost attached to the F evaporator 14b has melted using the first temperature sensor, and whether the frost attached to the F fan 9b has melted using the second temperature sensor. Since it is easy to check, more reliable defrosting is possible than when the defrosting state is detected using only the first temperature sensor.

図15に示すように、Fファン9aの形態は、遠心型ファンであるターボファンとしている。ターボファンは他の遠心型ファン(例えばシロッコファン、ラジアルファン)よりも翼枚数が比較的少なく設計できる。これは、風路として使える有効な面積が広いため、吸込開口近傍で霜が成長した場合であっても風量が極端に低下しにくくなる。 As shown in FIG. 15, the F fan 9a is a turbo fan that is a centrifugal fan. Turbofans can be designed with a relatively smaller number of blades than other centrifugal fans (eg, sirocco fans, radial fans). This is because the effective area that can be used as an air path is wide, so even if frost grows near the suction opening, the air volume is unlikely to drop significantly.

さらに、Fファン温度センサ78を翼の回転軸方向投影領域79に実装していれば、翼70やその周辺に付着した霜の融解状態をより効率よく検知できる。 Furthermore, if the F fan temperature sensor 78 is mounted in the projection area 79 of the blade in the rotational axis direction, the melting state of the frost attached to the blade 70 and its surroundings can be detected more efficiently.

加えて、本実施例のように、Fファン温度センサ76の一部を、Fファン9bを構成する部品(翼70、ブラシレスモータ71、固定部76、基板77)の一部に接触させることで、翼71とその周辺風路に付着した霜の状態を熱伝導により検知しやすくできる。 In addition, as in this embodiment, by bringing a part of the F fan temperature sensor 76 into contact with a part of the parts (blade 70, brushless motor 71, fixed part 76, board 77) that constitute the F fan 9b, , the state of frost adhering to the blades 71 and the surrounding air passages can be easily detected by heat conduction.

図15に示すように、第一の除霜ヒータであるラジアントヒータ21(図2参照)に加えて、第二の除霜ヒータとしてプレートヒータ80を実装している。また、ラジアントヒータ21はFファン9bよりもF蒸発器14bに近く、プレートヒータ80はF蒸発器14bよりFファン9bに近くなるように実装している。このように配置することで、第一の除霜ヒータであるラジアントヒータ21と第二の除霜ヒータであるプレートヒータ80を駆動することで、ラジアントヒータ21だけで除霜したときよりも翼70やその周辺風路を除霜しやすくなるため、翼70や周辺風路での閉塞が起きにくくなり、信頼性の高い除霜が可能となる。 As shown in FIG. 15, in addition to the radiant heater 21 (see FIG. 2), which is the first defrosting heater, a plate heater 80 is installed as the second defrosting heater. Further, the radiant heater 21 is mounted closer to the F evaporator 14b than the F fan 9b, and the plate heater 80 is mounted closer to the F fan 9b than the F evaporator 14b. With this arrangement, by driving the radiant heater 21, which is the first defrosting heater, and the plate heater 80, which is the second defrosting heater, the blade 70 can Since it becomes easier to defrost the blades 70 and the surrounding air passages, blockage of the blades 70 and the surrounding air passages becomes less likely to occur, making it possible to defrost with high reliability.

また、本実施例のようにプレートヒータ80を翼の回転軸方向投影領域79に実装していれば、翼70や周辺に付着した霜をより効率よく融解できる。 Further, if the plate heater 80 is mounted in the rotation axis direction projection area 79 of the blade as in this embodiment, the frost attached to the blade 70 and its surroundings can be melted more efficiently.

さらに、本実施例のようにプレートヒータ80の一部を、Fファン9bを構成する部品(翼70、ブラシレスモータ71、固定部76、基板77)の一部に接触させることで、さらに高効率に翼70や周辺風路に付着した霜を融解できる。 Furthermore, as in this embodiment, by bringing a part of the plate heater 80 into contact with a part of the parts (blade 70, brushless motor 71, fixed part 76, board 77) constituting the F fan 9b, even higher efficiency can be achieved. Frost attached to the blades 70 and surrounding air channels can be melted.

くわえて、プレートヒータ80をFファン9bの裏に備えることで、モータ軸72を介して熱伝導で翼70を加熱しやすくなるため、翼70やその周辺の霜を融解しやすくなる。さらに、本実施例ではブラシレスモータ71の構成をアウターロータ型とすることで、インナーロータ型よりもモータ軸71を短くしやすくなり、言い換えるとプレートヒータ80から翼70までの距離を短くすることで、より融解しやすくしている。 In addition, by providing the plate heater 80 on the back side of the F fan 9b, it becomes easier to heat the blades 70 by heat conduction via the motor shaft 72, making it easier to melt frost on the blades 70 and the surrounding area. Furthermore, in this embodiment, the configuration of the brushless motor 71 is an outer rotor type, which makes it easier to shorten the motor shaft 71 than an inner rotor type.In other words, by shortening the distance from the plate heater 80 to the blades 70, , making it easier to melt.

また、図15に示すように、本実施例ではプレートヒータ80と貯蔵室(本実施例では切替室5)の間に真空断熱材25aを備えている。そのため、プレートヒータ80の熱が効率よくFファン9b側へ伝わり、翼70や周辺風路に付着した霜を融解しやすくなる。 Further, as shown in FIG. 15, in this embodiment, a vacuum heat insulating material 25a is provided between the plate heater 80 and the storage chamber (switching chamber 5 in this embodiment). Therefore, the heat of the plate heater 80 is efficiently transmitted to the F fan 9b side, making it easier to melt frost attached to the blades 70 and the surrounding air passages.

図16は実施例に関わる運転パターンの一例を示す図である。ここでは外気が比較的高温(例えば32℃)で、低湿でない場合(例えば60%RH)を表している。また、第一切替室5は冷凍運転モード、第二切り替室6は冷蔵運転モードとし、ラジアントヒータ21とプレートヒータ80、Fファン9b、圧縮機24の動作と、第一切替室5、第二切替室6、Fファン温度センサ78、F蒸発器温度センサ40bの温度を抜粋して示している。 FIG. 16 is a diagram showing an example of a driving pattern related to the embodiment. Here, a case where the outside air is relatively high temperature (for example, 32° C.) and not low humidity (for example, 60% RH) is shown. In addition, the first switching chamber 5 is set to the refrigeration operation mode, and the second switching chamber 6 is set to the refrigeration operation mode, and the operations of the radiant heater 21, plate heater 80, F fan 9b, and compressor 24 are controlled. Excerpted temperatures of the switching chamber 6, F fan temperature sensor 78, and F evaporator temperature sensor 40b are shown.

第一切替室5は冷凍運転モード、第二切り替室6は冷蔵運転モードとする冷却運転では、圧縮機24を駆動させてF蒸発器14bに冷媒を流して、F冷凍用蒸発器14bを低温にする。この状態でFファン9bを運転することで、F用蒸発器14bを通過して低温になった空気を送風することにより製氷室3、冷凍室4、そして第一切替室5を冷却する。時刻t(本実施例の冷蔵庫では、前回の除霜終了から所定の時間が経過し、再度除霜が入る時刻)になると、Fファン9bと圧縮機24を停止させ、ラジアントヒータ21とプレートヒータ80を起動することで除霜運転を開始する。この除霜運転により、F蒸発器14bに加えて、Fファン9bの翼70や周辺風路で成長した霜や氷も同様に融解できる。この除霜運転ではFファン温度センサ78の温度がTDR(本実施例の冷蔵庫ではTDR=3℃)に到達するとプレートヒータ80を停止させ(時刻t2)、また、F蒸発器温度センサ40bの温度がTDRに到達するとラジアントヒータ21を停止させ(時刻t3)、これら2つのヒータが停止するまで除霜運転が行われる(時刻t3)。ここで、プレートヒータ80とラジアントヒータ21の停止時刻を同一とせず、各ヒータ近傍のセンサ温度によって別々に停止させることで、ヒータ周辺の風路を加熱しすぎることを抑制して省エネルギー性能を向上している。 In the cooling operation in which the first switching chamber 5 is in the freezing operation mode and the second switching chamber 6 is in the refrigerating operation mode, the compressor 24 is driven to flow refrigerant to the F evaporator 14b, and the F freezing evaporator 14b is heated to a low temperature. Make it. By operating the F fan 9b in this state, the ice making compartment 3, the freezing compartment 4, and the first switching compartment 5 are cooled by blowing the low-temperature air that passes through the F evaporator 14b. At time t 1 (in the refrigerator of this embodiment, the predetermined time has passed since the end of the previous defrosting and the defrosting is started again), the F fan 9b and the compressor 24 are stopped, and the radiant heater 21 and plate are stopped. Defrosting operation is started by starting the heater 80. Through this defrosting operation, not only the F evaporator 14b but also the frost and ice that have grown on the blades 70 of the F fan 9b and the surrounding air passages can be melted as well. In this defrosting operation, when the temperature of the F fan temperature sensor 78 reaches T DR (T DR = 3° C. in the refrigerator of this embodiment), the plate heater 80 is stopped (time t 2 ), and the F evaporator temperature sensor When the temperature of 40b reaches TDR , the radiant heater 21 is stopped (time t3 ), and the defrosting operation is performed until these two heaters are stopped (time t3 ). Here, the plate heater 80 and the radiant heater 21 are not stopped at the same time, but are stopped separately depending on the sensor temperature near each heater, thereby suppressing excessive heating of the air passage around the heater and improving energy saving performance. are doing.

また、本実施例では、ラジアントヒータ21とプレートヒータ80を用いて除霜し、F蒸発器温度センサ40bとFファン温度センサ78を用いて除霜終了時間を制御することで、霜や氷の解け残りの少ない、確実性の高い除霜を実現している。 In addition, in this embodiment, the radiant heater 21 and the plate heater 80 are used for defrosting, and the F evaporator temperature sensor 40b and the F fan temperature sensor 78 are used to control the defrosting end time, thereby eliminating frost and ice. Achieves highly reliable defrosting with little thawed residue.

除霜運転の終了条件を満足すると、圧縮機24を駆動させてF用蒸発器14bに冷媒を流し低温にし、さらにFファン9bを起動させることで、ふたたび製氷室3、冷凍室4、そして第一切替室5を冷却する。 When the conditions for ending the defrosting operation are satisfied, the compressor 24 is driven to flow the refrigerant into the F evaporator 14b to bring it to a low temperature, and the F fan 9b is started again, so that the ice making compartment 3, the freezing compartment 4, and the The changing room 5 is completely cooled down.

本実施例の冷蔵庫では、周期的な制御における構成要素の平均温度を評価した際に、上記のような特性を有していればよく、局所的あるいは短期的に特性が異なった場合でも同様な効果が得られる。 The refrigerator of this embodiment only needs to have the above characteristics when evaluating the average temperature of the components in periodic control, and even if the characteristics differ locally or in the short term, the same characteristics will be maintained. Effects can be obtained.

以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above are examples showing this embodiment. Note that the present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to add, delete, or replace some of the configurations of the embodiments with other configurations.

1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室ドア
3 製氷室
3a 製氷室ドア
3b 製氷室容器
3c 製氷皿
4 冷凍室
4a 冷凍室ドア
4b 冷凍室容器
5 第一切替室
5a 第一切替室ドア
5b 第一切替室容器
6 第二切替室
6a 第二切替室ドア
6b 第二切替室容器
8a R蒸発器室(冷蔵用蒸発器室)
8b F蒸発器室(冷凍用蒸発器室)
9a Rファン(冷蔵用ファン)
9b Fファン(冷凍用ファン)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室風路
11a 冷蔵室吐出口
12 冷凍室風路
12a 製氷室吐出口
12b 冷凍室吐出口
12c 冷凍室戻り口
12d 冷凍室戻り風路
14a R蒸発器(冷蔵用蒸発器)
14b F蒸発器(冷凍用蒸発器)
15a、b 冷蔵室戻り口
16 ヒンジカバー
21 ラジアントヒータ
23a Rトイ
23b Fトイ
24 圧縮機
25a、25b、25c、25d、25e、25f、25g、25h 真空断熱材
26 F排水管
27、28、29、30 断熱仕切壁
31 制御基板
32a R蒸発皿
32b F蒸発皿
34a R棚最上段
34b R棚2段目
34c R棚3段目
34d R棚最下段
35 第一間接冷却室
36 第二間接冷却室
37 製氷タンク
39 機械室
40a R蒸発器温度センサ
40b F蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 第一切替室温度センサ
44 第二切替室温度センサ
45 トイ温度センサ
50a、50b 放熱器
51 ドライヤ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54a 冷蔵用気液分離器
54b 冷凍用気液分離器
55 冷媒合流部
56 逆止弁
57 フィン
58 伝熱管
59 冷媒配管
60 Rファン9a周辺の送風路の奥行き寸法
61 R蒸発器14aの奥行寸法
62 仕切り
63 F蒸発器室の奥行き
64 開状態のダンパとファン中心を結んだ2つ直線のなす角の最大値
65 風速分布
70 翼
71 ブラシレスモータ
72 モータ軸
73 軸受け
74 ステーター
75 ロータ
76 固定部
77 基板
78 Fファン温度センサ
79 Fファン9b投影面上の風路空間
80 プレートヒータ
101a、101b、102a、102b ダンパ(送風制御部)
111a、111b 第一切替室吐出口
111c 第一切替室戻り口
112a、112b 第二切替室吐出口
112c 第二切替室戻り口
200 操作部
1 Refrigerator 2 Refrigerator compartment 2a, 2b Refrigerator compartment door 3 Ice making compartment 3a Ice making compartment door 3b Ice making compartment container 3c Ice tray 4 Freezer compartment 4a Freezer compartment door 4b Freezer compartment container 5 First changing room 5a First changing room door 5b First Switching chamber container 6 Second switching chamber 6a Second switching chamber door 6b Second switching chamber container 8a R evaporator room (refrigeration evaporator room)
8b F evaporator room (refrigeration evaporator room)
9a R fan (refrigeration fan)
9b F fan (refrigeration fan)
10 Insulating box body 10a Outer box 10b Inner box 11 Refrigerator room air path 11a Refrigerator room outlet 12 Freezer room air path 12a Ice making room outlet 12b Freezer room outlet 12c Freezer room return port 12d Freezer room return air path 14a R evaporator (refrigeration evaporator)
14b F evaporator (refrigeration evaporator)
15a, b Refrigerator compartment return port 16 Hinge cover 21 Radiant heater 23a R toy 23b F toy 24 Compressor 25a, 25b, 25c, 25d, 25e, 25f, 25g, 25h Vacuum insulation material 26 F drain pipe 27, 28, 29, 30 Heat insulating partition wall 31 Control board 32a R evaporation tray 32b F evaporation tray 34a R shelf top 34b R shelf 2nd tier 34c R shelf 3rd tier 34d R shelf bottom 35 First indirect cooling chamber 36 Second indirect cooling chamber 37 Ice making tank 39 Machine room 40a R evaporator temperature sensor 40b F evaporator temperature sensor 41 Refrigerator room temperature sensor 42 Freezer room temperature sensor 43 First switching room temperature sensor 44 Second switching room temperature sensor 45 Toy temperature sensor 50a, 50b radiator 51 Dryer 52 Three-way valve (refrigerant control means)
53a Refrigeration capillary tube (decompression means)
53b Freezing capillary tube (decompression means)
54a Refrigeration gas-liquid separator 54b Refrigeration gas-liquid separator 55 Refrigerant confluence section 56 Check valve 57 Fin 58 Heat transfer tube 59 Refrigerant piping 60 Depth dimension of air passage around R fan 9a 61 Depth dimension of R evaporator 14a 62 Partition 63 Depth of F evaporator chamber 64 Maximum value of the angle between two straight lines connecting the open damper and the center of the fan 65 Wind speed distribution 70 Blades 71 Brushless motor 72 Motor shaft 73 Bearing 74 Stator 75 Rotor 76 Fixed part 77 Board 78 F fan temperature sensor 79 Air path space 80 on the projection surface of F fan 9b Plate heaters 101a, 101b, 102a, 102b Damper (air blow control section)
111a, 111b First switching chamber discharge port 111c First switching chamber return port 112a, 112b Second switching chamber discharge port 112c Second switching chamber return port 200 Operation section

Claims (5)

冷蔵温度帯の冷蔵貯蔵室と、冷凍温度帯の冷凍貯蔵室とを備え、前記冷蔵貯蔵室を冷却する冷蔵用蒸発器と、該冷蔵用蒸発器と熱交換した空気を前記冷蔵貯蔵室に送風する冷蔵用遠心型ファンと、前記冷蔵用蒸発器と前記冷蔵用遠心型ファンが収納される冷蔵用蒸発器室と、前記冷凍貯蔵室を冷却する冷凍用蒸発器と、該冷凍用蒸発器と熱交換した空気を前記冷凍貯蔵室に送風する冷凍用遠心型ファンと、前記冷凍用蒸発器と前記冷凍用遠心型ファンが収納される冷凍用蒸発器室とを備え、該冷凍用遠心型ファンの吐出面積を、前記冷蔵用遠心型ファンの吐出面積より大きくし、前記冷蔵用遠心型ファンは、吸込口が前面側を向くように配置された後向きファンであり、前記冷蔵用遠心型ファンの前面側端部が、前記冷蔵用蒸発器の前面側端部よりも背面側に配置され、前記冷凍用遠心型ファンを前記冷凍用蒸発器室内に略垂直に備え、前記冷凍用遠心型ファンの吸込口を、前記冷凍用蒸発器室の背面側に向けることを特徴とする冷蔵庫。 comprising a refrigerated storage compartment in a refrigerated temperature range and a frozen storage compartment in a frozen temperature range, a refrigerated evaporator for cooling the refrigerated storage compartment, and blowing air heat exchanged with the refrigerated evaporator to the refrigerated storage compartment. a refrigerating centrifugal fan; a refrigerating evaporator chamber in which the refrigerating evaporator and the refrigerating centrifugal fan are housed; a refrigerating evaporator that cools the freezing storage compartment; A refrigeration centrifugal fan that blows heat-exchanged air to the refrigeration storage chamber, and a refrigeration evaporator chamber in which the refrigeration evaporator and the refrigeration centrifugal fan are housed, the refrigeration centrifugal fan has a discharge area larger than the discharge area of the refrigerating centrifugal fan, and the refrigerating centrifugal fan is a backward-facing fan with a suction port facing the front side. A front end portion of the refrigerating centrifugal fan is disposed on the back side of the refrigerating evaporator than the front end thereof, and the refrigerating centrifugal fan is provided substantially vertically within the refrigerating evaporator chamber. A refrigerator characterized in that a suction port is directed toward the back side of the evaporator chamber for freezing . 請求項1記載の冷蔵庫において、前記冷凍用遠心型ファンの翼直径がD2、翼高さがL2、前記冷蔵用遠心型ファンの翼直径がD1、翼高さがL1のとき、D2/D1>L2/L1の関係が成り立つことを特徴とする冷蔵庫。 In the refrigerator according to claim 1, when the centrifugal fan for refrigeration has a blade diameter of D2 and a blade height of L2, and the centrifugal fan for refrigeration has a blade diameter of D1 and a blade height of L1, then D2/D1> A refrigerator characterized in that an L2/L1 relationship holds. 請求項1又は2記載の冷蔵庫において、前記冷凍用遠心型ファンの形態が後向きファンであることを特徴とする冷蔵庫。 3. The refrigerator according to claim 1, wherein the freezing centrifugal fan is a backward-facing fan. 請求項1~の何れか1項に記載の冷蔵庫において、前記冷蔵用蒸発器の平均フィンピッチPf1と前記冷凍用蒸発器の平均フィンピッチPf2の関係がPf1≦Pf2で、かつ前記冷蔵用蒸発器の高さH1と前記冷凍用蒸発器の高さH2の関係がH1≦H2であることを特徴とする冷蔵庫。 In the refrigerator according to any one of claims 1 to 3 , the relationship between the average fin pitch Pf1 of the refrigeration evaporator and the average fin pitch Pf2 of the freezing evaporator is Pf1≦Pf2, and the refrigeration evaporator A refrigerator characterized in that a relationship between a height H1 of the container and a height H2 of the freezing evaporator satisfies H1≦H2. 請求項記載の冷蔵庫において、前記冷蔵貯蔵室の除霜方式はオフサイクル除霜方式とすることを特徴とする冷蔵庫。
5. The refrigerator according to claim 4 , wherein the defrosting method of the refrigerated storage compartment is an off-cycle defrosting method.
JP2018237859A 2018-12-20 2018-12-20 refrigerator Active JP7369520B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018237859A JP7369520B2 (en) 2018-12-20 2018-12-20 refrigerator
CN201910831067.2A CN111351293B (en) 2018-12-20 2019-09-04 Refrigerator with a door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237859A JP7369520B2 (en) 2018-12-20 2018-12-20 refrigerator

Publications (2)

Publication Number Publication Date
JP2020101300A JP2020101300A (en) 2020-07-02
JP7369520B2 true JP7369520B2 (en) 2023-10-26

Family

ID=71139292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237859A Active JP7369520B2 (en) 2018-12-20 2018-12-20 refrigerator

Country Status (2)

Country Link
JP (1) JP7369520B2 (en)
CN (1) CN111351293B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279119A1 (en) 2002-12-24 2005-12-22 Jae-Seng Sim Refrigerator, and method for controlling operation of the same
JP2007309634A (en) 2006-05-19 2007-11-29 Lg Electronics Inc Refrigerator
US20090113920A1 (en) 2007-11-05 2009-05-07 Jun Hoe Bae Apparatus for storing food
JP2011080368A (en) 2009-10-02 2011-04-21 Shinko Kogyo Co Ltd Double plug fan structure of air conditioner
WO2015159366A1 (en) 2014-04-15 2015-10-22 三菱電機株式会社 Refrigerator
WO2018163886A1 (en) 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 Refrigerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912834A (en) * 1957-01-08 1959-11-17 Gen Motors Corp Refrigerating apparatus
US5531267A (en) * 1994-08-24 1996-07-02 Emerson Electric Co. Refrigeration centrifugal blower system
JPH11257822A (en) * 1998-03-16 1999-09-24 Matsushita Refrig Co Ltd Refrigerator
KR100420518B1 (en) * 2001-08-28 2004-03-02 엘지전자 주식회사 A fan housing
KR101203975B1 (en) * 2006-05-19 2012-11-23 엘지전자 주식회사 Refrigerator
JP6554867B2 (en) * 2015-03-30 2019-08-07 日本電産株式会社 Centrifugal fan
CN105157322B (en) * 2015-09-15 2017-06-16 合肥美菱股份有限公司 A kind of frostless wind cooling refrigerator comprising defrost rule
CN206192029U (en) * 2016-10-26 2017-05-24 合肥华凌股份有限公司 Refrigerator
CN207635701U (en) * 2017-11-22 2018-07-20 合肥华凌股份有限公司 Box liner assembly for refrigeration equipment and the refrigeration equipment with it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279119A1 (en) 2002-12-24 2005-12-22 Jae-Seng Sim Refrigerator, and method for controlling operation of the same
JP2007309634A (en) 2006-05-19 2007-11-29 Lg Electronics Inc Refrigerator
US20090113920A1 (en) 2007-11-05 2009-05-07 Jun Hoe Bae Apparatus for storing food
JP2011080368A (en) 2009-10-02 2011-04-21 Shinko Kogyo Co Ltd Double plug fan structure of air conditioner
WO2015159366A1 (en) 2014-04-15 2015-10-22 三菱電機株式会社 Refrigerator
WO2018163886A1 (en) 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 Refrigerator

Also Published As

Publication number Publication date
CN111351293B (en) 2022-03-04
JP2020101300A (en) 2020-07-02
CN111351293A (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP2020101299A (en) refrigerator
CN111076477A (en) Refrigerator with a door
JP6934433B2 (en) refrigerator
JP7369520B2 (en) refrigerator
JP2019138481A (en) refrigerator
JP2019132506A (en) refrigerator
JP7364459B2 (en) refrigerator
CN111076478B (en) Refrigerator with a door
JP6975735B2 (en) refrigerator
JP7374141B2 (en) refrigerator
JP7223581B2 (en) refrigerator
JP6762149B2 (en) refrigerator
JP7312148B2 (en) refrigerator
JP7254227B2 (en) refrigerator
JP7267673B2 (en) refrigerator
JP7454458B2 (en) refrigerator
JP7473390B2 (en) refrigerator
JP7191715B2 (en) refrigerator
WO2024122126A1 (en) Refrigerator
JP2023112855A (en) refrigerator
JP6807882B2 (en) refrigerator
JP6985167B2 (en) refrigerator
JP7028661B2 (en) refrigerator
JP2023007615A (en) refrigerator
JP2023068192A (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7369520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150