JP7267673B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7267673B2
JP7267673B2 JP2017206769A JP2017206769A JP7267673B2 JP 7267673 B2 JP7267673 B2 JP 7267673B2 JP 2017206769 A JP2017206769 A JP 2017206769A JP 2017206769 A JP2017206769 A JP 2017206769A JP 7267673 B2 JP7267673 B2 JP 7267673B2
Authority
JP
Japan
Prior art keywords
evaporator
temperature zone
refrigerating
chamber
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206769A
Other languages
Japanese (ja)
Other versions
JP2019078494A (en
Inventor
良二 河井
晴樹 額賀
慎一郎 岡留
真申 小川
智史 小沼
福太郎 岡田
大 板倉
謙治 塩野
陽平 門傳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66253826&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7267673(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2017206769A priority Critical patent/JP7267673B2/en
Priority to CN201811030636.5A priority patent/CN109708378B/en
Publication of JP2019078494A publication Critical patent/JP2019078494A/en
Priority to JP2022026984A priority patent/JP7254227B2/en
Application granted granted Critical
Publication of JP7267673B2 publication Critical patent/JP7267673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は,冷蔵庫に関する。 The present invention relates to refrigerators.

本技術分野の背景技術として,例えば特開2006-64256号公報(特許文献1)及び特開2006-250406号公報(特許文献2)がある。 As background art in this technical field, there are, for example, Japanese Patent Application Laid-Open No. 2006-64256 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-250406 (Patent Document 2).

特許文献1には,本体である外郭が断熱箱体で構成されており,この断熱箱体の内部空間(すなわち庫内)は,上方から冷蔵室,アイス室,冷凍や冷蔵を選べるセレクト室,冷凍室,野菜室を備え,冷蔵室は冷蔵室用蒸発器である第一蒸発器で,また,アイス室,セレクト室および冷凍室は冷凍室用蒸発器である第二蒸発器で冷却され,野菜室は,冷凍室との間の隔壁などを介して,冷凍室の冷気で間接的に冷却される冷蔵庫が開示されている(例えば特許文献1の図3)。 In Patent Document 1, the outer shell, which is the main body, is composed of a heat-insulating box body, and the internal space of this heat-insulating box body (i.e., the inside of the refrigerator) is divided into a refrigerator compartment, an ice compartment, a selection compartment where you can select freezing or refrigeration from above, Equipped with a freezer compartment and a vegetable compartment, the refrigerator compartment is cooled by the first evaporator, which is the evaporator for the refrigerator compartment, and the ice compartment, select compartment, and freezer compartment are cooled by the second evaporator, which is the evaporator for the freezer compartment, A refrigerator is disclosed in which the vegetable compartment is indirectly cooled by cold air in the freezer compartment via a partition or the like between the vegetable compartment and the freezer compartment (for example, FIG. 3 of Patent Document 1).

特許文献2には,上から冷蔵室 ,冷凍室,野菜室が形成され,冷蔵室に設けられた冷却器で,冷蔵室及び野菜室を冷却する冷蔵庫が開示されている(例えば特許文献2の段落0011)。 Patent Document 2 discloses a refrigerator in which a refrigerating compartment, a freezing compartment, and a vegetable compartment are formed from above, and a cooler provided in the refrigerating compartment cools the refrigerating compartment and the vegetable compartment. Paragraph 0011).

特開2006-64256号公報JP 2006-64256 A 特開2006-250406号公報Japanese Patent Application Laid-Open No. 2006-250406

特許文献1に記載の冷蔵庫は,冷蔵室用蒸発器によって冷蔵室を冷却し,冷凍室用蒸発器によって,アイス室,セレクト室および冷凍室を冷却し,冷凍室の下方に設けられた野菜室は,冷凍室との間の隔壁などを介して,冷凍室の冷気で間接的に冷却する。 The refrigerator described in Patent Document 1 cools the refrigerating compartment with the evaporator for the refrigerating compartment, cools the ice compartment, the select compartment and the freezing compartment with the evaporator for the freezing compartment, and cools the vegetable compartment provided below the freezing compartment. is indirectly cooled by the cold air in the freezer compartment through a partition wall, etc., between it and the freezer compartment.

野菜室を間接的に冷却する場合,野菜室の冷却能力を高めるためには隔壁を介した熱移動を促進する必要がある。一般に隔壁を介した熱移動の促進には,隔壁によって隔てられた空間(冷凍室と野菜室)の温度差を拡大することが有効となる。したがって,周囲環境温度が高い,野菜室に温度が高い食品を収納した,あるいは,食品等を挟み込むことにより野菜室扉と箱体の間に隙間が生じているといった事由により野菜室の負荷が大きく,冷却能力を十分高める必要がある場合には,冷凍室を過度に低温に維持する必要があり,省エネルギー性能が低下するといった問題が生じていた。 When cooling the vegetable compartment indirectly, it is necessary to promote heat transfer through the partition wall in order to increase the cooling capacity of the vegetable compartment. In general, increasing the temperature difference between the spaces (the freezer compartment and the vegetable compartment) separated by the partition wall is effective in promoting heat transfer through the partition wall. Therefore, the load on the vegetable compartment is increased due to factors such as the surrounding environment temperature being high, food with a high temperature being stored in the vegetable compartment, or food being sandwiched between the vegetable compartment door and the box body. However, when it is necessary to increase the cooling capacity sufficiently, it is necessary to maintain the freezer compartment at an excessively low temperature.

また,特許文献2に記載の冷蔵庫は,冷蔵室に設けられた冷却器で,冷蔵室及び野菜室を冷却するので,冷蔵室からの冷気を野菜室に送るための経路や,野菜室から冷蔵室に冷気を戻す経路が必要になるため,スペース効率が低い,すなわち,内容積が減少することが問題となっていた。 In addition, the refrigerator described in Patent Document 2 cools the refrigerator compartment and the vegetable compartment with a cooler provided in the refrigerator compartment. Since a path for returning cool air to the room is required, the space efficiency is low, that is, the internal volume is reduced.

本発明は上記課題に鑑みてなされたものであり,外気温度の高低によらず高い省エネルギー性能を発揮でき,さらにスペース効率も高い冷蔵庫を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a refrigerator that can exhibit high energy-saving performance regardless of whether the outside temperature is high or low, and which also has high space efficiency.

上記課題を解決するために,例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,温度を冷凍温度帯に固定した冷凍温度帯室の上方に第一冷蔵温度帯室,前記冷凍温度帯室の下方に温度を冷蔵温度帯に固定した第二冷蔵温度帯室を備え,前記第一冷蔵温度帯室の略背部に位置する第一蒸発器と,該第一蒸発器を収納する第一蒸発器収納室と,前記第一蒸発器と熱交換した空気を前記第一蒸発器収納室から前記第一冷蔵温度帯室に導く第一送風経路と,前記第一冷蔵温度帯室から前記第一蒸発器収納室に空気を導く第一戻り経路と,前記第一冷蔵温度帯室に循環気流を形成する第一送風機と,冷媒を圧縮する圧縮機,及び,該圧縮機からの冷媒流れを制御する冷媒流制御手段と,を備え,前記冷凍温度帯室の略背部に位置し前記第一蒸発器よりも低温となる第二蒸発器と,該第二蒸発器を収納する第二蒸発器収納室と,前記第二蒸発器と熱交換した空気を前記第二蒸発器収納室から前記冷凍温度帯室に導く第二送風経路と,前記冷凍温度帯室から前記第二蒸発器収納室に空気を導く第二戻り経路と,前記冷凍温度帯室に循環気流を形成する第二送風機と,を有し,前記冷媒流制御手段は,前記第一蒸発器への冷媒の第一流出口,及び,前記第二蒸発器への冷媒の第二流出口を備え,前記第一流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第一蒸発器のみを冷却して前記圧縮機へ戻り,前記第二流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第二蒸発器のみを冷却して前記圧縮機へ戻り,前記第二蒸発器に流れる冷媒を減圧する第二減圧器と,前記第一蒸発器に流れる冷媒を前記第二減圧器の減圧量よりも少なく減圧する第一減圧器と,を備え,前記第二蒸発器収納室,前記第二送風経路,前記冷凍温度帯室または前記第二戻り経路の何れかと,前記第二冷蔵温度帯室とが,連通していることを特徴とする。その他の解決手段は発明を実施するための形態において後記する。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present application includes a plurality of means for solving the above problems. To give one example, a first refrigerating temperature zone chamber above a freezing temperature zone chamber whose temperature is fixed to a freezing temperature zone, and the above freezing temperature zone chamber. A second refrigerating temperature zone chamber whose temperature is fixed to the refrigerating temperature zone is provided below, a first evaporator located substantially behind the first refrigerating temperature zone chamber, and a first evaporator housing the first evaporator an evaporator storage chamber, a first ventilation path that guides the air heat-exchanged with the first evaporator from the first evaporator storage chamber to the first refrigerating temperature zone chamber, and from the first refrigerating temperature zone chamber to the first A first return path leading air to the evaporator storage chamber, a first blower forming a circulating airflow in the first refrigerating temperature zone chamber, a compressor for compressing the refrigerant, and controlling the refrigerant flow from the compressor a second evaporator positioned substantially behind the freezing temperature zone chamber and having a lower temperature than the first evaporator; and a second evaporator housing the second evaporator. a storage chamber, a second ventilation path that guides the air heat-exchanged with the second evaporator from the second evaporator storage chamber to the freezing temperature zone chamber, and from the freezing temperature zone chamber to the second evaporator storage chamber. a second return path for introducing air; and a second blower for forming a circulating airflow in the freezing temperature zone chamber , wherein the refrigerant flow control means comprises a first outlet for the refrigerant to the first evaporator, and , provided with a second outlet for the refrigerant to the second evaporator, and the refrigerant flowing through the first outlet cools only the first evaporator of the first evaporator and the second evaporator. The refrigerant that has flowed through the second outlet cools only the second evaporator of the first evaporator and the second evaporator, returns to the compressor, and cools the second evaporator. a second pressure reducer that reduces the pressure of refrigerant flowing through the second evaporator; and a first pressure reducer that reduces the pressure of the refrigerant flowing through the first evaporator to an amount less than the pressure reduction amount of the second pressure reducer, wherein the second evaporator Any one of the vessel storage chamber, the second air blowing path, the freezing temperature zone chamber, or the second return path, and the second refrigerating temperature zone chamber are in communication with each other. Other solutions will be described later in the detailed description.

本発明によれば,外気温度の高低によらず高い省エネルギー性能を発揮でき,さらにスペース効率も高い冷蔵庫を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the refrigerator which can exhibit high energy-saving performance regardless of the degree of outside air temperature, and also has high space efficiency can be provided.

実施例1に係る冷蔵庫の正面図Front view of the refrigerator according to the first embodiment 図1のA-A断面図AA sectional view of FIG. 図2のB-B断面図BB sectional view of FIG. 実施例1に係る冷蔵庫の冷凍サイクル構成を表す概略図Schematic diagram showing the refrigeration cycle configuration of the refrigerator according to the first embodiment 実施例1に係る冷蔵庫の制御を表すフローチャート4 is a flowchart representing control of the refrigerator according to the first embodiment; 実施例1に係る冷蔵庫の制御を表すタイムチャートの一例An example of a time chart representing control of the refrigerator according to the first embodiment 実施例1に係る冷蔵庫の冷媒の状態を示すモリエル線図A Mollier diagram showing the state of the refrigerant in the refrigerator according to the first embodiment. 比較例の冷蔵庫の構成を表す模式図。The schematic diagram showing the structure of the refrigerator of a comparative example. 実施例2の冷蔵庫の構成を表す模式図Schematic diagram showing the configuration of the refrigerator of Example 2 実施例3の冷蔵庫の構成を表す模式図Schematic diagram showing the configuration of the refrigerator of Example 3

以下,本発明の実施例について,適宜図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with appropriate reference to the drawings.

本発明に係る冷蔵庫の第一の実施例(実施例1)について説明する。まず,実施例1に係る冷蔵庫の構成を図1~図4を参照しながら説明する。図1は実施例1に係る冷蔵庫の正面図,図2は図1のA-A断面図,図3は図2のB-B断面図,図4は実施例1に係る冷蔵庫の冷凍サイクルの構成を表す概略図である。冷蔵庫1の箱体10は,前方に開口しており,上方から冷蔵室2(第一冷蔵温度帯室),左右に並設された製氷室3と上段冷凍室4,下段冷凍室5,野菜室6(第二冷蔵温度帯室)の順に貯蔵室を形成している。冷蔵室2の前方の開口は,左右に分割された回転式の冷蔵室扉2a,2bにより開閉され,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6の前方の開口は,引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aによってそれぞれ開閉される。各扉は庫内側外周にパッキン(不図示)を備えており,扉を閉状態とした場合に,箱体10の前縁部と接触することにより庫内外の空気の流通を抑制するようにしている。以下では,製氷室3,上段冷凍室4,下段冷凍室5は,まとめて冷凍温度帯室7と呼ぶ。 A first embodiment (Embodiment 1) of a refrigerator according to the present invention will be described. First, the configuration of the refrigerator according to the first embodiment will be described with reference to FIGS. 1 to 4. FIG. 1 is a front view of the refrigerator according to the first embodiment, FIG. 2 is a cross-sectional view along line AA in FIG. 1, FIG. 3 is a cross-sectional view along line BB in FIG. 2, and FIG. 1 is a schematic diagram representing a configuration; FIG. The box body 10 of the refrigerator 1 is open to the front, and from above, the refrigerating chamber 2 (first refrigerating temperature zone chamber), the ice making chamber 3 and the upper freezing chamber 4, the lower freezing chamber 5, and the vegetables A storage room is formed in order of the room 6 (second refrigerating temperature zone room). The front opening of the refrigerating compartment 2 is opened and closed by rotating refrigerating compartment doors 2a and 2b divided into left and right. It is opened and closed by a drawer-type ice making compartment door 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Each door is provided with a packing (not shown) on the inner periphery of the chamber, and when the door is closed, it contacts the front edge of the box body 10 to suppress the circulation of air inside and outside the chamber. there is The ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are hereinafter collectively referred to as a freezing temperature zone chamber 7.

冷蔵庫1の外形寸法は幅685mm,奥行き738mm,高さ1833mmであり,JIS9801-3:2015に基づく定格内容積は,冷蔵室308L,冷凍室180L,野菜室114Lである。 The external dimensions of the refrigerator 1 are 685 mm in width, 738 mm in depth, and 1833 mm in height, and the rated internal volume based on JIS9801-3:2015 is a refrigerator compartment of 308 L, a freezer compartment of 180 L, and a vegetable compartment of 114 L.

冷凍温度帯室7は,基本的に庫内を冷凍温度帯(0℃未満)の例えば平均的に-18℃程度にした貯蔵室であり,冷蔵室2及び野菜室は庫内を冷蔵温度帯(0℃以上)とし,例えば冷蔵室2は平均的に4℃程度,野菜室は平均的に7℃程度にした貯蔵室である。 The freezing temperature zone compartment 7 is basically a storage compartment in which the interior is set to a freezing temperature zone (below 0°C), for example, about -18°C on average. (0° C. or higher), for example, the refrigerating compartment 2 is a storage compartment with an average temperature of about 4° C., and the vegetable compartment with an average temperature of about 7° C.

ドア2aには庫内の温度設定の操作を行う操作部26を設けている。冷蔵庫1とドア2a,2bを固定するためにドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり,上部のドアヒンジはドアヒンジカバー16で覆われている。 The door 2a is provided with an operation unit 26 for setting the temperature inside the refrigerator. Door hinges (not shown) are provided above and below the refrigerator compartment 2 to fix the refrigerator 1 and the doors 2a and 2b.

図2に示すように,外箱10aと内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により,冷蔵庫1の庫外と庫内は隔てられている。箱体10には発泡断熱材に加えて複数の真空断熱材36を,鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と,上段冷凍室4及び製氷室3は断熱仕切壁28によって隔てられ,同様に下段冷凍室5と野菜室6は断熱仕切壁29によって隔てられている。また,製氷室3,上段冷凍室4,及び下段冷凍室5の各貯蔵室の前面側には,ドア3a,4a,5aの隙間を介した庫内外の空気の流通を防ぐために,断熱仕切壁30を設けている。 As shown in FIG. 2, the outside and inside of the refrigerator 1 are separated from each other by a box 10 formed by filling a foamed heat insulating material (for example, urethane foam) between an outer box 10a and an inner box 10b. there is In addition to the foamed heat insulating material, the box body 10 has a plurality of vacuum heat insulating materials 36 mounted between the outer box 10a made of steel plate and the inner box 10b made of synthetic resin. The refrigerator compartment 2 is separated from the upper freezer compartment 4 and the ice making compartment 3 by a heat insulating partition wall 28 , and the lower freezer compartment 5 and the vegetable compartment 6 are similarly separated by a heat insulating partition wall 29 . In addition, on the front side of each storage compartment of the ice making compartment 3, the upper freezer compartment 4, and the lower freezer compartment 5, a heat insulating partition wall is installed in order to prevent the circulation of air inside and outside the compartment through the gaps between the doors 3a, 4a, and 5a. 30 is provided.

冷蔵室2のドア2a,2bの庫内側には複数のドアポケット33a,33b,33cと,複数の棚34a,34b,34c,34dを設け,複数の貯蔵スペースに区画されている。冷凍温度帯室7及び野菜室6には,それぞれドア3a,4a,5a,6aと一体に引き出される製氷室容器(図示せず),上段冷凍室容器4b,下段冷凍室容器5b,野菜室容器6bを備えている。野菜室容器6bは,上下2段に分かれており,下段側の前方には飲料のボトル類を収納できるボトル収納スペース6cを備えている。ボトル収納スペース6cの高さ寸法は,1.5Lや2Lの飲料のボトルを立てて収納できるように305mm以上確保している(本実施例では315mm)。また,飲料用のボトルを収納可能なことは,カタログや取扱説明書,広告媒体等の文面,図,写真,映像を通じてユーザーに周知される。 A plurality of door pockets 33a, 33b, 33c and a plurality of shelves 34a, 34b, 34c, 34d are provided inside the doors 2a, 2b of the refrigerating chamber 2 to partition into a plurality of storage spaces. In the freezing temperature zone compartment 7 and the vegetable compartment 6, an ice making compartment container (not shown), an upper freezer compartment container 4b, a lower freezer compartment container 5b, a vegetable compartment container (not shown), which can be pulled out integrally with the doors 3a, 4a, 5a, and 6a, respectively. 6b. The vegetable compartment container 6b is divided into upper and lower tiers, and a bottle storage space 6c for storing beverage bottles is provided in front of the lower tier. The height dimension of the bottle storage space 6c is ensured to be 305 mm or more (315 mm in this embodiment) so that a 1.5 L or 2 L beverage bottle can be stored in an upright position. In addition, the fact that beverage bottles can be stored is made known to users through text, drawings, photographs, and images in catalogs, instruction manuals, advertising media, and the like.

断熱仕切壁28の上方には,冷蔵室2の温度帯より低めに設定可能なチルドルーム35を設けている。チルドルーム35は,ユーザーが操作部26を介して設定温度を選択することができる。例えば後述する冷蔵用蒸発器14aと冷蔵用ファン9aの制御,及び断熱仕切壁28内に設けたヒータ(図示せず)により,冷蔵温度帯の例えば約0~3℃にするモードと冷凍温度帯の例えば約-3~0℃にするモードに切換えることができる。 A chilled room 35 that can be set to a temperature lower than that of the refrigerating room 2 is provided above the heat insulating partition wall 28 . The user can select the set temperature of the chilled room 35 via the operation unit 26 . For example, by controlling the refrigeration evaporator 14a and the refrigeration fan 9a, which will be described later, and a heater (not shown) provided in the heat insulating partition wall 28, the refrigeration temperature range, for example, about 0 to 3 ° C., and the freezing temperature range , for example, about -3 to 0°C.

冷蔵室2の略背部には冷蔵用蒸発器室8aを備えており,冷蔵用蒸発器室8a内には,冷蔵用蒸発器14a(第一蒸発器)が収納されている。冷蔵用蒸発器14aの上方には冷蔵用ファン9aを備えている。また,冷蔵室2背部の幅方向の略中心には冷蔵室送風路11を備えており,冷蔵室送風路11の上部には冷蔵室2への冷気が吹き出す冷蔵室吐出口11aを備えている。冷蔵用蒸発器室8aの下部前方と右側上方には冷蔵室2に送られた空気が戻る冷蔵室戻り口15a及び15b(図3参照)を備えている。冷蔵用蒸発器14aと熱交換して低温になった空気は,冷蔵用ファン9aを駆動することにより,冷蔵室送風路11,冷蔵室吐出口11aを介して冷蔵室2に送風され,冷蔵室2内を冷却する。冷蔵室2に送られた空気は,第一戻り経路を構成する冷蔵室戻り口15a及び15b(図3参照)から冷蔵用蒸発器室8aに戻る。 A refrigerating evaporator chamber 8a is provided substantially at the back of the refrigerating chamber 2, and a refrigerating evaporator 14a (first evaporator) is accommodated in the refrigerating evaporator chamber 8a. A cooling fan 9a is provided above the cooling evaporator 14a. In addition, a refrigerating chamber air passage 11 is provided substantially at the center in the width direction of the rear portion of the refrigerating chamber 2, and a refrigerating chamber outlet 11a for blowing cold air to the refrigerating chamber 2 is provided above the refrigerating chamber air duct 11. . Refrigerating chamber return ports 15a and 15b (see FIG. 3) through which the air sent to the refrigerating chamber 2 returns are provided in the lower front and right upper portions of the refrigerating evaporator chamber 8a. By driving the refrigerating fan 9a, the air whose temperature has been reduced by heat exchange with the refrigerating evaporator 14a is sent to the refrigerating chamber 2 through the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a. 2 to cool. The air sent to the refrigerating compartment 2 returns to the refrigerating evaporator compartment 8a through the refrigerating compartment return ports 15a and 15b (see FIG. 3) forming the first return path.

冷凍温度帯室7の略背部には冷凍用蒸発器室8bを備えており,冷凍用蒸発器室8b内には,冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bを備えている。また,冷凍温度帯室7の背部には冷凍室送風路12を備えており,冷凍用ファン9bの前方の冷凍室送風路12には複数の冷凍室吐出口12aを備えている。冷凍室用蒸発器室8bの下部前方には冷凍温度帯室7に送られた空気が戻る冷凍室戻り口17(図2及び図3参照)を備えている。 A freezing evaporator chamber 8b is provided substantially behind the freezing temperature zone chamber 7, and a freezing evaporator 14b (second evaporator) is accommodated in the freezing evaporator chamber 8b. A freezing fan 9b is provided above the freezing evaporator 14b. A freezer compartment air passage 12 is provided at the back of the freezing temperature zone chamber 7, and a plurality of freezer compartment discharge ports 12a are provided in the freezer compartment air passage 12 in front of the freezing fan 9b. A freezer compartment return port 17 (see FIGS. 2 and 3) through which the air sent to the freezing temperature zone compartment 7 returns is provided in front of the lower portion of the freezer compartment evaporator compartment 8b.

野菜室6への風路となる野菜室送風路13(第一連通経路)は,冷凍室送風路12の右下から分岐形成され,断熱仕切壁29を通過している。野菜室送風路13の出口となる野菜室吐出口13aは,野菜室6背部右上の断熱仕切壁29下面の高さと略一致するように設けられ,下方に開口している。野菜室送風路13には,野菜室6の冷却制御手段である野菜室ダンパ19を備えている(図3参照)。野菜室6と冷凍温度帯室7の間の断熱仕切壁29の左下部前方には,野菜室戻り流入口18aを備えており,断熱仕切壁29内を通過する野菜室戻り風路18(第二連通経路)を介して冷凍用蒸発器室8bの下部前方に設けられた野菜室戻り流出口18bに至る流路が形成されている。 A vegetable compartment air duct 13 (first communication path) serving as an air duct to the vegetable compartment 6 is branched from the lower right of the freezer compartment air duct 12 and passes through the heat insulating partition wall 29 . A vegetable compartment discharge port 13a serving as an outlet of the vegetable compartment air duct 13 is provided so as to be substantially aligned with the lower surface of the heat insulating partition wall 29 on the upper right of the back of the vegetable compartment 6, and is open downward. The vegetable compartment air duct 13 is provided with a vegetable compartment damper 19 as cooling control means for the vegetable compartment 6 (see FIG. 3). A vegetable compartment return air inlet 18a is provided in front of the left lower part of the heat insulating partition wall 29 between the vegetable compartment 6 and the freezing temperature zone room 7, and the vegetable compartment return air passage 18 (second A flow path is formed to reach the vegetable compartment return outlet 18b provided in front of the lower part of the freezing evaporator compartment 8b via the two communication paths.

冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍温度帯室7に送風され,冷凍温度帯室7内を冷却する。冷凍温度帯室7に送られた空気は,第二戻り経路を構成する冷凍室戻り口17から冷凍用蒸発器室8bに戻る。また,野菜室ダンパ19が開放状態の場合には,冷凍室送風路12に流入した冷気の一部が野菜室送風路13を流れ,野菜室吐出口13aを介して野菜室6に至り,野菜室6内を冷却する。野菜室6に送られた空気は,第三戻り経路を構成する野菜室戻り流入口18aから野菜室戻り風路18に入り,野菜室戻り流出口18bから冷凍用蒸発器室8bに戻る。 By driving the freezing fan 9b, the air whose temperature has been reduced by heat exchange with the freezing evaporator 14b is sent to the freezing temperature zone chamber 7 through the freezing compartment air passage 12 and the freezing compartment discharge port 12a. The inside of the freezing temperature zone chamber 7 is cooled. The air sent to the freezing temperature zone chamber 7 returns to the freezing evaporator chamber 8b from the freezing chamber return port 17 forming the second return path. When the vegetable compartment damper 19 is open, part of the cold air flowing into the freezer compartment air passage 12 flows through the vegetable compartment air passage 13 and reaches the vegetable compartment 6 through the vegetable compartment discharge port 13a. The inside of the chamber 6 is cooled. The air sent to the vegetable compartment 6 enters the vegetable compartment return air passage 18 through the vegetable compartment return inlet 18a forming the third return path, and returns to the freezing evaporator compartment 8b through the vegetable compartment return outlet 18b.

本実施例の冷蔵庫では,冷蔵用ファン9aは翼径が100mmの遠心ファン(後向きファン)であり,冷凍用ファン9bは翼径が110mmの軸流ファン(プロペラファン)である。通常の冷却運転時における冷蔵室ファンの回転速度は1000min-1以上であり,冷蔵室2を冷却する空気の風量は0.3m/min以上である。また,冷凍室ファン9bの回転速度は約1300min-1であり,野菜室ダンパ19が開放状態では,冷凍温度帯室7を冷却する空気の風量は約0.6m/minであり,野菜室6を冷却する空気の風量は約0.1m/minである。遠心ファンは軸方向から吸込んだ空気を90度転向して径方向に吹き出す特性を有する。一方,軸流ファンは軸方向から吸込んだ空気を軸方向に吹き出す特性を有する。したがって,軸方向に吸込んだ流れを90度転向させる風路では,遠心ファンが実装性に優れ,軸方向に吸込んだ流れを軸方向に吹き出す風路では軸流ファンが実装性に優れる。従って,冷蔵用ファン9aとしては,前方から吸込んだ空気を,90度転向して上方の冷蔵室送風路11に吹き出す構成となるため,遠心ファンである後向きファンを採用し,冷凍用ファン9bとしては,後方から吸込んだ空気を前方の冷凍室送風路12に吹き出す構成となるために,軸流ファンであるプロペラファンを採用してスペース効率が高い冷蔵庫としている。 In the refrigerator of this embodiment, the cooling fan 9a is a centrifugal fan (backward fan) with a blade diameter of 100 mm, and the freezing fan 9b is an axial fan (propeller fan) with a blade diameter of 110 mm. During normal cooling operation, the rotation speed of the refrigerating compartment fan is 1000 min -1 or more, and the air volume for cooling the refrigerating compartment 2 is 0.3 m 3 /min or more. The rotation speed of the freezer compartment fan 9b is approximately 1300 min −1 , and when the vegetable compartment damper 19 is open, the volume of air cooling the freezing temperature zone compartment 7 is approximately 0.6 m 3 /min. The flow rate of air for cooling 6 is about 0.1 m 3 /min. A centrifugal fan has the characteristic of turning the air taken in from the axial direction by 90 degrees and blowing it out in the radial direction. On the other hand, an axial fan has the characteristic of blowing out the air taken in from the axial direction. Therefore, a centrifugal fan is excellent in mountability in an air passage in which the flow drawn in the axial direction is turned 90 degrees, and an axial fan is excellent in mountability in the air passage in which the flow drawn in the axial direction is blown out in the axial direction. Therefore, as the refrigerating fan 9a, the air sucked from the front is turned 90 degrees and blown out into the refrigerating compartment air passage 11 above. Since the air taken in from the rear is blown out to the freezer compartment air passage 12 in the front, a propeller fan, which is an axial fan, is adopted to make the refrigerator high in space efficiency.

冷蔵室2,冷凍温度帯室7,野菜室6の庫内背面側には,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43を備え,それぞれ冷蔵室2,冷凍温度帯室7,野菜室6の温度を検知している。また,冷蔵用蒸発器14aの上部には冷蔵用蒸発器温度センサ40a,冷凍用蒸発器14bの上部には冷凍用蒸発器温度センサ40bを備え,冷蔵用蒸発器14a,及び冷凍用蒸発器14bの温度を検知している。また,冷蔵庫1の天井部のドアヒンジカバー16の内部には,外気(庫外空気)の温度,湿度を検知する外気温湿度センサ37を備え,ドア2a,2b,3a,4a,5a,6aには,開閉状態をそれぞれ検知するドアセンサ(不図示)を備えている。 A refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, and a vegetable compartment temperature sensor 43 are provided on the inside rear side of the refrigerator compartment 2, the freezer temperature zone compartment 7, and the vegetable compartment 6, respectively. 7, The temperature of the vegetable compartment 6 is detected. A refrigerating evaporator temperature sensor 40a is provided above the refrigerating evaporator 14a, and a freezing evaporator temperature sensor 40b is provided above the freezing evaporator 14b. temperature is detected. Inside the door hinge cover 16 on the ceiling of the refrigerator 1, an outside air temperature and humidity sensor 37 for detecting the temperature and humidity of the outside air (external air) is provided. is equipped with a door sensor (not shown) that detects the open/closed state.

図2及び図3に示すように,冷凍用蒸発器室8bの下部には,冷凍用蒸発器14bを加熱する除霜ヒータ21を備えている。除霜ヒータ21は,例えば50W~200Wの電気ヒータで,本実施例では150Wのラジアントヒータを設けている。冷凍用蒸発器14bの除霜時に発生した除霜水(融解水)は,冷凍用蒸発器室8bの下部に備えた樋23bに流下し,排水口22b,冷凍用排水管27bを介して冷蔵庫1の後方(背面側)下部に設けられた機械室39に至り、機械室39内に設置された圧縮機24の上部の蒸発皿32に排出される。 As shown in FIGS. 2 and 3, a defrosting heater 21 for heating the freezing evaporator 14b is provided below the freezing evaporator chamber 8b. The defrosting heater 21 is, for example, an electric heater of 50 W to 200 W, and in this embodiment, a radiant heater of 150 W is provided. Defrosted water (melted water) generated during defrosting of the freezing evaporator 14b flows down into a gutter 23b provided at the bottom of the freezing evaporator chamber 8b, and flows into the refrigerator through a drain port 22b and a freezing drain pipe 27b. 1, and is discharged to the evaporating dish 32 above the compressor 24 installed in the machine room 39 .

また,冷蔵用蒸発器14aの除霜方法については後述するが,冷蔵用蒸発器14aの除霜時に発生した除霜水は,冷蔵用蒸発器室8aの下部に備えた樋23aに流下し,排水口22a,冷蔵用排水管27aを介して圧縮機24の上部に備えた蒸発皿32に排出される。 A method of defrosting the refrigerating evaporator 14a will be described later, but the defrosted water generated when defrosting the refrigerating evaporator 14a flows down into a gutter 23a provided at the bottom of the refrigerating evaporator chamber 8a, It is discharged to an evaporating plate 32 provided above the compressor 24 through a drain port 22a and a refrigerating drain pipe 27a.

機械室39内には、上述の圧縮機24、蒸発皿32とともに、フィンチューブ式熱交換器である庫外放熱器50a、庫外ファン26を備えている。庫外ファン26の駆動により圧縮機24、庫外放熱器50a蒸発皿32に空気が流れ、圧縮機24と庫外放熱器50aからの放熱が促進され、省エネルギー性能を高めるとともに、蒸発皿32に通風することで、蒸発皿32に溜まった除霜水の蒸発を促進して溢水を抑制し、信頼性を高めている。 In the machine room 39, along with the compressor 24 and the evaporating dish 32, an outside radiator 50a and an outside fan 26, which are fin-tube heat exchangers, are provided. By driving the outside fan 26, air flows through the compressor 24 and the outside radiator 50a to the evaporating dish 32, promoting heat dissipation from the compressor 24 and the outside radiator 50a, improving energy saving performance, and Ventilation accelerates the evaporation of the defrosted water accumulated in the evaporating dish 32, suppresses water overflow, and enhances reliability.

図3に示すように,樋23aには,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101を備えている。また,冷蔵用排水管27aには排水管上部ヒータ102及び排水管下部ヒータ103を備えている。なお,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103は,何れも除霜ヒータ21よりも容量が低いヒータであり,本実施例では樋ヒータ101を6W,排水管上部ヒータ102を3W,排水管下部ヒータ103を1Wとしている。 As shown in FIG. 3, the gutter 23a is provided with a gutter heater 101 for melting defrosted water frozen in the gutter 23a. In addition, the refrigerating drain pipe 27a is provided with a drain pipe upper heater 102 and a drain pipe lower heater 103. As shown in FIG. The gutter heater 101, the drain pipe upper heater 102, and the drain pipe lower heater 103 are all heaters with a capacity lower than that of the defrosting heater 21. 3W, and the drain pipe lower heater 103 is 1W.

ここで,冷蔵用ファン9aを駆動すると,冷蔵用蒸発器室8aの右上に設けられた冷蔵室戻り口15bを介して,冷蔵室2からの戻り空気を樋23aに向けて下方に流し,樋23aを加熱して温度を上げるようにしている。これにより,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101の加熱量を低減する効果が得られ,省エネルギー性能を高めることができる。 Here, when the refrigerating fan 9a is driven, the return air from the refrigerating chamber 2 flows downward toward the gutter 23a through the refrigerating chamber return port 15b provided at the upper right of the refrigerating evaporator chamber 8a. 23a is heated to raise the temperature. As a result, it is possible to obtain the effect of reducing the heating amount of the gutter heater 101 that melts the defrosted water frozen in the gutter 23a, thereby improving the energy saving performance.

また,排水管27a下部は,冷凍温度帯室7及び冷凍用蒸発器室8bよりも外箱10aに近接させている。これにより,排水管27aにおいて凍結した除霜水を融解させる排水管下部ヒータ103の加熱量を低減することができ,省エネルギー性能が高くなる。 Also, the lower part of the drain pipe 27a is closer to the outer casing 10a than the freezing temperature zone chamber 7 and the freezing evaporator chamber 8b. As a result, the heating amount of the drain pipe lower heater 103 for melting the defrosted water frozen in the drain pipe 27a can be reduced, and the energy saving performance is enhanced.

冷蔵庫1の天井部(図2参照)には,制御装置の一部であるCPU,ROMやRAM等のメモリ,インターフェース回路等を搭載した制御基板31を配置している。制御基板31は,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43,蒸発器温度センサ40a,40b等と接続され,前述のCPUは,これらの出力値や操作部26の設定,前述のROMに予め記録されたプログラム等を基に,圧縮機24や冷蔵用ファン9a,冷凍用ファン9bのON/OFFや回転速度制御,除霜ヒータ21,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103,及び,後述する三方弁52の制御等を行っている。 A control board 31 is arranged on the ceiling of the refrigerator 1 (see FIG. 2). The control board 31 is connected to a refrigerating compartment temperature sensor 41, a freezing compartment temperature sensor 42, a vegetable compartment temperature sensor 43, evaporator temperature sensors 40a and 40b, and the like. , ON/OFF and rotational speed control of the compressor 24, the refrigerating fan 9a, and the freezing fan 9b, the defrosting heater 21, the gutter heater 101, and the drain pipe upper heater 102, the drain pipe lower heater 103, and a three-way valve 52, which will be described later, are controlled.

図4は,実施例1に係る冷蔵庫の冷凍サイクル(冷媒流路)である。本実施例の冷蔵庫1では,圧縮機24,冷媒の放熱を行う庫外放熱器50aと壁面放熱配管50b,断熱仕切壁28,29,30の前縁部への結露を抑制する結露抑制配管50c(庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを放熱手段と呼ぶ),冷媒流制御手段である三方弁52,冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53b,冷媒と庫内の空気を熱交換させて,庫内の熱を吸熱する冷蔵用蒸発器14a,及び,冷凍用蒸発器14bを備えている。また,三方弁52の上流には,冷凍サイクル中の水分を除去するドライヤ51を備え,冷蔵用蒸発器14aの下流と,冷凍用蒸発器14bの下流には,それぞれ液冷媒が圧縮機24に流入するのを防止する気液分離器54a,54bをそれぞれ備えている。さらに気液分離器54bの下流には逆止弁56を備えている。これらの構成要素を冷媒配管により接続することで冷凍サイクルを構成している。 なお本実施例の冷蔵庫は,冷媒に可燃性冷媒のイソブタンを用いており,冷媒量封入量は88gである。 FIG. 4 is a refrigerating cycle (refrigerant flow path) of the refrigerator according to the first embodiment. In the refrigerator 1 of the present embodiment, the compressor 24, the external heat radiator 50a that dissipates heat from the refrigerant, the wall heat radiation pipe 50b, and the condensation suppression pipe 50c that suppresses condensation on the front edges of the heat insulating partition walls 28, 29, and 30 (The outside radiator 50a, the outside radiator 50b, and the dew condensation suppression pipe 50c are called heat dissipation means), the three-way valve 52 as the refrigerant flow control means, the refrigerating capillary tube 53a as the pressure reducing means for reducing the refrigerant pressure, and the freezing It is provided with a capillary tube 53b, a refrigerating evaporator 14a for absorbing heat in the refrigerator by exchanging heat between the refrigerant and the air in the refrigerator, and an evaporator 14b for freezing. In addition, upstream of the three-way valve 52, a dryer 51 for removing moisture in the refrigerating cycle is provided, and downstream of the refrigerating evaporator 14a and downstream of the freezing evaporator 14b, liquid refrigerant is supplied to the compressor 24, respectively. They are provided with gas-liquid separators 54a and 54b, respectively, for preventing inflow. Furthermore, a check valve 56 is provided downstream of the gas-liquid separator 54b. A refrigeration cycle is configured by connecting these components with refrigerant pipes. The refrigerator of this embodiment uses isobutane, which is a flammable refrigerant, as a refrigerant, and the amount of refrigerant charged is 88 g.

三方弁52は,流出口52aと,流出口52bを備えており,流出口52aを開放状態,流出口52bを閉鎖状態として,冷蔵用キャピラリチューブ53a側に冷媒を流す状態1(冷蔵モード),流出口52aを閉鎖状態,流出口52bを開放状態として,冷凍用キャピラリチューブ53b側に冷媒を流す状態2(冷凍モード),及び,流出口52a,52bの何れも閉鎖状態とする状態3(全閉モード)を備えた冷媒流制御弁である。 The three-way valve 52 has an outflow port 52a and an outflow port 52b. State 1 (refrigerating mode) in which the refrigerant flows to the refrigerating capillary tube 53a side with the outflow port 52a in an open state and the outflow port 52b in a closed state. State 2 (refrigerating mode) in which the refrigerant flows toward the freezing capillary tube 53b with the outlet 52a closed and the outlet 52b opened, and state 3 (full state) in which both the outlets 52a and 52b are closed. Refrigerant flow control valve with closed mode).

三方弁52が状態1(冷蔵モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態1(流出口52aが開放状態,流出口52bが閉鎖状態)となっているため,続いて,冷媒は冷蔵用キャピラリチューブ53aを流れて減圧され冷蔵用蒸発器14aに至り,冷蔵室2の戻り空気と熱交換する。冷蔵用蒸発器14aを出た冷媒は,気液分離器54aを通り,キャピラリチューブ53aとの接触部57aを流れることでキャピラリチューブ53a内を流れる冷媒と熱交換した後に圧縮機24に戻る。 When the three-way valve 52 is controlled to state 1 (refrigeration mode), the refrigerant discharged from the compressor 24 flows through the outside radiator 50a, the outside radiator 50b, and the dew condensation suppression pipe 50c to radiate heat. to the three-way valve 52. Since the three-way valve 52 is in state 1 (the outflow port 52a is in an open state and the outflow port 52b is in a closed state), the refrigerant subsequently flows through the refrigerating capillary tube 53a, is depressurized, and reaches the refrigerating evaporator 14a. It exchanges heat with the return air of the refrigerator compartment 2. The refrigerant exiting the refrigerating evaporator 14a passes through the gas-liquid separator 54a, flows through the contact portion 57a with the capillary tube 53a, exchanges heat with the refrigerant flowing inside the capillary tube 53a, and then returns to the compressor 24.

三方弁52が状態2(冷凍モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態2(流出口52aが閉鎖状態,流出口52bが開放状態)となっているため,続いて,冷媒は冷凍用キャピラリチューブ53bを流れて減圧されて低温化し,冷凍用蒸発器14bで,冷凍温度帯室7の戻り空気及び野菜室6の戻り空気(野菜室ダンパ19が開放状態の場合)と熱交換する。冷凍用蒸発器14bを出た冷媒は,気液分離器54bを通り,キャピラリチューブ53bとの接触部57bを流れることでキャピラリチューブ53b内を流れる冷媒と熱交換した後に圧縮機24に戻る。 When the three-way valve 52 is controlled to state 2 (freezing mode), the refrigerant discharged from the compressor 24 flows through the outside radiator 50a, the outside radiator 50b, and the condensation suppression pipe 50c to radiate heat. to the three-way valve 52. Since the three-way valve 52 is in state 2 (the outflow port 52a is in a closed state and the outflow port 52b is in an open state), the refrigerant subsequently flows through the freezing capillary tube 53b, is decompressed, becomes low temperature, and reaches the freezing evaporator. At 14b, heat is exchanged with the return air from the freezing temperature zone chamber 7 and the return air from the vegetable chamber 6 (when the vegetable chamber damper 19 is in the open state). The refrigerant exiting the freezing evaporator 14b passes through the gas-liquid separator 54b and flows through the contact portion 57b with the capillary tube 53b, thereby exchanging heat with the refrigerant flowing inside the capillary tube 53b, and then returns to the compressor 24.

三方弁52が状態3(全閉モード)に制御されている場合,圧縮機24を駆動すると,冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53bから冷媒が供給されない状態となるため,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒が放熱手段側に回収される(詳細は後述)。 When the three-way valve 52 is controlled to state 3 (fully closed mode), when the compressor 24 is driven, the refrigerant is not supplied from the refrigerating capillary tube 53a and the freezing capillary tube 53b. The refrigerant in 14a or the refrigerant in the refrigerating evaporator 14b is recovered to the heat radiating means (details will be described later).

本実施例の冷蔵庫は,三方弁52を状態1(冷蔵モード)に制御し,圧縮機24を駆動状態,冷蔵用ファン9aを駆動状態,冷凍用ファン9bを停止状態とすることで冷蔵室2を冷却する「冷蔵運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を開放状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍温度帯室7と野菜室6を冷却する「冷凍野菜運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を閉鎖状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍温度帯室7を冷却する「冷凍運転」,三方弁52を状態3(全閉モード)に制御し,圧縮機24を駆動状態として,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する「冷媒回収運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを停止状態,冷凍用ファン9bを停止状態とする「運転停止」,三方弁52を状態2(冷凍モード)且つ圧縮機24を駆動状態に制御,または,三方弁52を状態3(全閉モード)且つ圧縮機24を停止状態に制御して,冷蔵用蒸発器14aに冷媒が流れない状態として冷蔵用ファンを駆動状態として,冷蔵用蒸発器14aの表面に成長した霜や蒸発器自体の蓄冷熱で冷蔵室2を冷却しつつ冷蔵用蒸発器14aの除霜を行う「冷蔵用蒸発器除霜運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを停止状態,除霜ヒータ21を通電状態とすることで,冷凍用蒸発器14bの除霜を行う「冷凍用蒸発器除霜運転」の各運転を適宜実施することで,冷蔵庫1の庫内各貯蔵室を良好に冷却するようにしている。 In the refrigerator of this embodiment, the three-way valve 52 is controlled to state 1 (refrigerating mode), the compressor 24 is driven, the refrigerating fan 9a is driven, and the freezing fan 9b is stopped. The three-way valve 52 is controlled to state 2 (freezing mode), the compressor 24 is driven, the vegetable compartment damper 19 is opened, the refrigeration fan 9a is driven or stopped, and the refrigeration fan 9a is driven or stopped. "Frozen vegetable operation" that cools the freezing temperature zone chamber 7 and the vegetable compartment 6 by driving the fan 9b, controls the three-way valve 52 to state 2 (freezing mode), drives the compressor 24, and controls the vegetable compartment. The damper 19 is closed, the refrigerating fan 9a is driven or stopped, and the freezing fan 9b is driven to cool the freezing temperature zone chamber 7 in a "freezing operation". mode), the compressor 24 is driven, and the refrigerant in the refrigerating evaporator 14a or the refrigerant in the freezing evaporator 14b is recovered to the heat dissipation means side. In state 3 (fully closed mode), the compressor 24 is stopped, the refrigerating fan 9a is stopped, and the freezing fan 9b is stopped. 24 is controlled to the driving state, or the three-way valve 52 is controlled to state 3 (fully closed mode) and the compressor 24 is controlled to the stop state, so that the refrigerant does not flow to the refrigerating evaporator 14a and the refrigerating fan is driven. as a "refrigerating evaporator defrosting operation" in which the refrigerating evaporator 14a is defrosted while cooling the refrigerating compartment 2 with the frost grown on the surface of the refrigerating evaporator 14a and the stored cold heat of the evaporator itself, a three-way valve 52 is set to state 3 (fully closed mode), the compressor 24 is stopped, the refrigerating fan 9a is driven or stopped, the freezing fan 9b is stopped, and the defrosting heater 21 is energized. Each storage compartment in the refrigerator 1 is cooled well by appropriately performing each operation of the "freezing evaporator defrosting operation" for defrosting the evaporator 14b.

以上で,本実施例に係る冷蔵庫の構成を説明したが,次に本実施例に係る冷蔵庫の制御について,図5及び図6を参照しながら説明する。図5は,本実施例に係る冷蔵庫の制御を表すフローチャート,図6は,本実施例に係る冷蔵庫の制御を表すタイムチャートである。 The configuration of the refrigerator according to this embodiment has been described above. Next, the control of the refrigerator according to this embodiment will be described with reference to FIGS. 5 and 6. FIG. FIG. 5 is a flowchart representing control of the refrigerator according to this embodiment, and FIG. 6 is a time chart representing control of the refrigerator according to this embodiment.

図5に示すように,本実施例の冷蔵庫は,電源の投入により(スタート),三方弁52を状態1(冷蔵モード),圧縮機24を低速駆動(800min-1),冷蔵用ファン9aを駆動,冷凍用ファン9bを停止,野菜室ダンパ19を閉鎖して,冷蔵運転を開始する(ステップS101)。続いて,冷蔵運転終了条件が成立しているか否かが判定され(ステップS102),ステップS102が成立するまで冷蔵運転が継続される。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転終了温度TRoff以下(T≦TRoff)の場合にステップS102が成立する。ステップS102が成立した場合(Yes),圧縮機24を低速駆動(継続),三方弁52を状態3(全閉モード)として,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS103)。このとき,冷蔵用ファン9aは駆動を継続し,冷媒回収運転中も冷蔵室2の冷却を行う。冷媒回収運転を所定時間実施し(本実施例の冷蔵庫では2分間)(ステップS104),続いて三方弁を状態2(冷凍モード),圧縮機24を高速駆動(1400min-1),冷蔵用ファン9aを駆動(継続),冷凍用ファン9bを駆動,野菜室ダンパ19を開放して,冷凍野菜運転,及び,冷蔵用蒸発器除霜運転を実施する(ステップS105)。 As shown in FIG. 5, when the refrigerator of this embodiment is turned on (start), the three-way valve 52 is set to state 1 (refrigerating mode), the compressor 24 is driven at low speed (800 min -1 ), and the refrigerating fan 9a is turned on. The drive/freezing fan 9b is stopped, the vegetable compartment damper 19 is closed, and the refrigerating operation is started (step S101). Subsequently, it is determined whether or not the refrigerating operation end condition is satisfied (step S102), and the refrigerating operation is continued until step S102 is satisfied. In the refrigerator of this embodiment, step S102 is established when the refrigerating chamber temperature T R detected by the refrigerating chamber temperature sensor 41 is equal to or lower than the refrigerating operation end temperature T Roff (T R ≦T Roff ). If step S102 is satisfied (Yes), the compressor 24 is driven at low speed (continued), the three-way valve 52 is set to state 3 (fully closed mode), and the refrigerant in the refrigeration evaporator 14a is recovered to the heat dissipation means side. Run (step S103). At this time, the refrigerating fan 9a continues to be driven to cool the refrigerating chamber 2 even during the refrigerant recovery operation. Refrigerant recovery operation is performed for a predetermined time (2 minutes in the refrigerator of this embodiment) (step S104), then the three-way valve is set to state 2 (freezing mode), the compressor 24 is driven at high speed (1400 min-1), and the refrigeration fan 9a is driven (continued), the freezing fan 9b is driven, the vegetable compartment damper 19 is opened, and the frozen vegetable operation and the refrigerator evaporator defrosting operation are performed (step S105).

次に,野菜室ダンパ閉条件が成立しているか否かが判定される(ステップS106)。本実施例の冷蔵庫では,野菜室温度センサ43が検知する野菜室温度Tが,野菜室ダンパ閉温度TVoff以下(TV≦TVoff)の場合にステップS106が成立する。ステップS106が成立していない場合(No),続いて冷蔵用蒸発器除霜運転終了条件が成立しているか否かが判定される(ステップS107)。ステップS106が成立した場合(Yes),野菜室ダンパ19が閉鎖され(ステップS201),冷凍運転に移行後,ステップS107の判定に移る。本実施例の冷蔵庫では,冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器温度TRevpが冷蔵用蒸発器除霜運転終了温度TRDoff以上(TRevp≧TRDoff)の場合にステップS107が成立する。ステップS107が成立していない場合(No),続いて冷凍運転終了条件が成立しているか否かが判定される(ステップS108)。ステップS107が成立した場合(Yes),冷蔵用ファン9aが停止され(ステップS202),冷蔵用蒸発器除霜運転終了後,ステップS108の判定に移る。本実施例の冷蔵庫では,野菜室ダンパ19が閉鎖状態,且つ,冷凍室温度Tが冷凍運転終了温度TFoff以下(T≧TFoff)の場合にステップS108が成立する。ステップS108が成立していない場合(No),ステップS106の判定に戻る。ステップS108が成立した場合(Yes),圧縮機24を高速駆動(継続),三方弁52を状態3(全閉モード)として,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS109)。このとき,冷凍用ファン9bは駆動を継続し,冷媒回収運転中も冷凍温度帯室7の冷却を行う。 Next, it is determined whether or not the vegetable compartment damper closing condition is satisfied (step S106). In the refrigerator of this embodiment, when the vegetable compartment temperature TV detected by the vegetable compartment temperature sensor 43 is equal to or lower than the vegetable compartment damper closing temperature TVoff ( TV≤TVoff ), step S106 is established . If step S106 is not satisfied (No), then it is determined whether or not the refrigerating evaporator defrosting operation end condition is satisfied (step S107). If step S106 is established (Yes), the vegetable compartment damper 19 is closed (step S201), and after shifting to the freezing operation, the process proceeds to the determination of step S107. In the refrigerator of this embodiment, when the refrigerating evaporator temperature T Revp detected by the refrigerating evaporator temperature sensor 40a is equal to or higher than the refrigerating evaporator defrosting operation end temperature T RDoff (T Revp ≧T RDoff ), step S107 is executed. To establish. If step S107 is not satisfied (No), then it is determined whether or not the freezing operation termination condition is satisfied (step S108). If step S107 is satisfied (Yes), the refrigerating fan 9a is stopped (step S202), and after the refrigerating evaporator defrosting operation is completed, the process proceeds to step S108. In the refrigerator of this embodiment, step S108 is established when the vegetable compartment damper 19 is closed and the freezer compartment temperature TF is equal to or lower than the freezing operation end temperature TFoff ( TFTFoff ). If step S108 is not established (No), the process returns to step S106. If step S108 is established (Yes), the compressor 24 is driven at high speed (continued), the three-way valve 52 is set to state 3 (fully closed mode), and the refrigerant in the refrigerating evaporator 14b is recovered to the heat dissipation means side. Operation is performed (step S109). At this time, the freezing fan 9b continues to be driven to cool the freezing temperature zone chamber 7 even during the refrigerant recovery operation.

冷媒回収運転を所定時間実施し(本実施例の冷蔵庫では1.5分間)(ステップS110),続いて冷蔵運転開始条件が成立しているか否かが判定される(ステップS111)。本実施例の冷蔵庫では,冷蔵室温度Tが冷蔵運転開始温度TRon以上(T≧TRon)の場合にステップS111が成立する。ステップS111が成立した場合(Yes),ステップS101に戻り,冷蔵運転が行われる。ステップS111が成立していない場合(No),圧縮機24を停止,冷凍用ファン9bを停止し(ステップS112),冷蔵用蒸発器除霜運転終了条件の判定に移行する(ステップS113)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TRevpが冷蔵用蒸発器除霜運転終了温度TRDoff以上(TRevp≧TRDoff)の場合に成立する(ステップS107と同様の条件)。ステップS113が成立していない場合(No),続いて冷蔵運転開始条件が成立しているか否かが判定される(ステップS114)。ステップS113が成立した場合(Yes),冷蔵用ファン9aが停止され(ステップS203),冷蔵用蒸発器除霜運転終了後ステップS114の判定に移行する。ステップS114は冷蔵室温度Tが冷蔵運転開始温度TRon以上(T≧TRon)の場合に成立する(ステップS111と同様の条件)。ステップS114が成立していない場合(No),ステップS113の判定に戻り,ステップS114が成立した場合,ステップS101に戻り冷蔵運転が行われる。 The refrigerant recovery operation is performed for a predetermined time (1.5 minutes in the refrigerator of this embodiment) (step S110), and then it is determined whether or not the conditions for starting the refrigeration operation are satisfied (step S111). In the refrigerator of this embodiment, step S111 is established when the refrigerator compartment temperature TR is equal to or higher than the refrigerating operation start temperature TRon ( TRTRon ). If step S111 is established (Yes), the process returns to step S101 and the refrigerating operation is performed. If step S111 is not established (No), the compressor 24 is stopped, the freezing fan 9b is stopped (step S112), and the process proceeds to determination of the refrigeration evaporator defrosting operation end condition (step S113). The refrigerating evaporator defrosting operation end condition is established when the refrigerating evaporator temperature T Revp is equal to or higher than the refrigerating evaporator defrosting operation end temperature T RDoff (T Revp ≥ T RDoff ) (same condition as step S107). ). If step S113 is not satisfied (No), then it is determined whether or not the refrigerating operation start condition is satisfied (step S114). If step S113 is established (Yes), the refrigerating fan 9a is stopped (step S203), and after the refrigerating evaporator defrosting operation is completed, the process proceeds to step S114. Step S114 is established when the refrigerator compartment temperature TR is equal to or higher than the refrigerator operation start temperature TRon ( TRTRon ) (same condition as step S111). If step S114 is not established (No), the process returns to step S113, and if step S114 is established, the process returns to step S101 and refrigeration operation is performed.

図6は本実施例に係る冷蔵庫を,32℃,相対湿度70%に設置した場合の運転状態を表すタイムチャートである。時刻tは冷蔵室2を冷却する冷蔵運転を開始(図5のステップS101)した時刻である。冷蔵運転では,三方弁52を状態1(冷蔵モード)に制御し,圧縮機24を低速(800min-1)で駆動して冷蔵用蒸発器14aに冷媒を流し,冷蔵用蒸発器14aを低温にする。この状態で冷蔵用ファン9aを運転することで,冷蔵用蒸発器14aを通過して低温になった空気により冷蔵室2を冷却する。ここで,冷蔵運転中の冷蔵用蒸発器14aの温度は,後述する冷凍運転中の冷凍用蒸発器14bの温度よりも高くしている。一般に蒸発器の温度(蒸発温度)が高い方が,冷凍サイクル成績係数(圧縮機24の入力に対する吸熱量の割合)が高く,省エネルギー性能が高い。冷凍温度帯室7は冷凍温度に維持するために冷凍用蒸発器14bの温度を低温にする必要があるが,冷蔵室2は冷蔵温度に維持すれば良いので,冷蔵用蒸発器14aの温度を高めて省エネルギー性能を向上している。なお,本実施例の冷蔵庫1では,冷蔵運転中の冷蔵用蒸発器14aの温度が高くなるよう,冷蔵運転中の圧縮機24の回転速度を冷凍運転中よりも低速(800min-1)にしている。 FIG. 6 is a time chart showing the operating state when the refrigerator according to this embodiment is installed at 32° C. and a relative humidity of 70%. Time t0 is the time when the refrigerating operation for cooling the refrigerating chamber 2 is started (step S101 in FIG. 5). In the refrigerating operation, the three-way valve 52 is controlled to state 1 (refrigerating mode), the compressor 24 is driven at a low speed (800 min -1 ), the refrigerant flows to the refrigerating evaporator 14a, and the refrigerating evaporator 14a is cooled to a low temperature. do. By operating the refrigerating fan 9a in this state, the refrigerating chamber 2 is cooled by the air that has passed through the refrigerating evaporator 14a and has become low temperature. Here, the temperature of the refrigerating evaporator 14a during the refrigerating operation is made higher than the temperature of the freezing evaporator 14b during the freezing operation, which will be described later. In general, the higher the evaporator temperature (evaporation temperature), the higher the refrigeration cycle coefficient of performance (the ratio of the amount of heat absorbed to the input of the compressor 24) and the higher the energy saving performance. In order to maintain the freezing temperature in the freezing temperature zone chamber 7, the temperature of the freezing evaporator 14b must be lowered, but in the refrigerating chamber 2, the temperature of the refrigerating evaporator 14a must be kept at the refrigerating temperature. and improve energy saving performance. In the refrigerator 1 of this embodiment, the rotational speed of the compressor 24 during the refrigerating operation is set to a lower speed (800 min -1 ) than during the refrigerating operation so that the temperature of the refrigerating evaporator 14a during the refrigerating operation becomes higher. there is

冷蔵運転により冷蔵室2が冷却され,時刻tで冷蔵室温度センサ42により検知する冷蔵室温度TRが冷蔵運転終了温度TRoffまで低下したことで,冷蔵運転から冷媒回収運転に切換わる(図5のステップS102)。冷媒回収運転では三方弁52を状態3(全閉モード)に制御し,圧縮機24を低速駆動状態(800min-1)で,冷蔵用蒸発器14a内の冷媒を2分間回収する(図5のステップS103,S104)。これにより,次の冷凍野菜運転及び冷凍運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷蔵用ファン9aを駆動させることで,冷蔵用蒸発器14a内の残留冷媒を冷蔵室2の冷却に活用するとともに,冷蔵室2内の空気による加熱で,冷蔵用蒸発器14a内の圧力低下が緩和される。これにより,圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 The refrigerating compartment 2 is cooled by the refrigerating operation, and when the refrigerating compartment temperature TR detected by the refrigerating compartment temperature sensor 42 at time t1 drops to the refrigerating operation end temperature TRoff , the refrigerating operation is switched to the refrigerant recovery operation ( Step S102 in FIG. 5). In the refrigerant recovery operation, the three-way valve 52 is controlled to state 3 (fully closed mode), the compressor 24 is driven at a low speed (800 min -1 ), and the refrigerant in the refrigeration evaporator 14a is recovered for 2 minutes (Fig. 5 Steps S103, S104). As a result, it is possible to suppress a decrease in cooling efficiency due to insufficient refrigerant in the next frozen vegetable operation and freezing operation. At this time, by driving the refrigeration fan 9a, the residual refrigerant in the refrigeration evaporator 14a is utilized for cooling the refrigeration compartment 2, and the air in the refrigeration compartment 2 heats the inside of the refrigeration evaporator 14a. pressure drop is alleviated. As a result, an increase in the specific volume of the refrigerant sucked into the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short period of time, and the cooling efficiency can be improved.

冷媒回収運転が終わると(時刻t),続いて冷凍温度帯室7を冷却する冷凍野菜運転に切換わる(図5のステップS105)。冷凍野菜運転では,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を高速駆動状態(1400min-1)とし,冷凍用蒸発器14bに冷媒を流し,冷凍用蒸発器14bを低温にする。この状態で野菜室ダンパ19を開放して,冷凍用ファン9bを運転することで,冷凍用蒸発器14bを通過して低温になった空気で冷凍温度帯室7と野菜室6を冷却する。このとき冷蔵用ファン9aの運転を継続することで,冷蔵用蒸発器除霜運転を実施している。これにより冷蔵用蒸発器14aの温度が上昇するとともに,霜や冷蔵用蒸発器の蓄冷熱による冷却効果によって,冷蔵室2の温度上昇が緩和される。 When the refrigerant recovery operation ends (time t2 ), the operation is then switched to the frozen vegetable operation for cooling the freezing temperature zone chamber 7 (step S105 in FIG. 5). In the frozen vegetable operation, the three-way valve 52 is controlled to state 2 (freezing mode), the compressor 24 is set to a high-speed driving state (1400 min -1 ), the refrigerant is supplied to the freezing evaporator 14b, and the freezing evaporator 14b is kept at a low temperature. to In this state, the vegetable compartment damper 19 is opened and the freezing fan 9b is operated, so that the freezing temperature zone compartment 7 and the vegetable compartment 6 are cooled by the low temperature air that has passed through the freezing evaporator 14b. At this time, the refrigerating evaporator defrosting operation is performed by continuing the operation of the refrigerating fan 9a. As a result, the temperature of the refrigerating evaporator 14a rises, and the temperature rise of the refrigerating compartment 2 is moderated by the cooling effect of the frost and the cold heat stored in the refrigerating evaporator.

時刻tで野菜室温度センサ43により検知する野菜室温度Tが野菜室ダンパ閉温度TVoffに到達したことにより,野菜室ダンパ19が閉鎖され(図5のステップS106,S201),冷凍運転に移行している。 When the vegetable compartment temperature TV detected by the vegetable compartment temperature sensor 43 reaches the vegetable compartment damper closing temperature T Voff at time t3 , the vegetable compartment damper 19 is closed (steps S106 and S201 in FIG. 5), and the freezing operation is started. are moving to

続いて時刻tに冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器14aの温度TRevpが冷蔵用蒸発器除霜運転終了温度TRDoffに到達したことにより,冷蔵用ファン9aが停止され,冷蔵用蒸発器除霜運転が終了している(図5のステップS107,S202)。 Subsequently, at time t4 , the temperature T Revp of the refrigerating evaporator 14a detected by the refrigerating evaporator temperature sensor 40a reaches the refrigerating evaporator defrosting operation end temperature TRDoff , and the refrigerating fan 9a is stopped. , the refrigerating evaporator defrosting operation has ended (steps S107 and S202 in FIG. 5).

時刻tで冷凍室温度センサ41が検知する冷凍室温度Tが冷凍運転終了温度TFoffに到達し,且つ,野菜室ダンパ19が閉鎖されていることから,冷凍運転が終了し(図5のステップS108),三方弁52を状態3(全閉モード)に制御し,圧縮機24を高速駆動状態(1400min-1)で,冷凍用蒸発器14b内の冷媒を1.5分間回収する(図5のステップS109,S110)。これにより,次の冷蔵運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷凍用ファン9bを駆動させることで,冷凍用蒸発器14b内の残留冷媒を冷凍温度帯室7の冷却に活用するとともに,冷凍温度帯室7内の空気による加熱で,冷凍用蒸発器14b内の圧力低下が緩和される。これにより圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 At time t5 , the freezer compartment temperature T F detected by the freezer compartment temperature sensor 41 reaches the freezer operation end temperature T Foff and the vegetable compartment damper 19 is closed, so the freezer operation ends (Fig. 5 step S108), the three-way valve 52 is controlled to state 3 (fully closed mode), the compressor 24 is driven at high speed (1400 min -1 ), and the refrigerant in the refrigerating evaporator 14b is recovered for 1.5 minutes ( Steps S109 and S110 in FIG. 5). As a result, it is possible to suppress a decrease in cooling efficiency due to insufficient refrigerant in the next refrigerating operation. At this time, by driving the freezing fan 9b, the residual refrigerant in the freezing evaporator 14b is utilized for cooling the freezing temperature zone chamber 7, and the air in the freezing temperature zone chamber 7 heats the freezing temperature zone chamber 7. The pressure drop inside the evaporator 14b is alleviated. As a result, an increase in the specific volume of the refrigerant sucked into the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short period of time, and the cooling efficiency can be improved.

冷媒回収運転が終了した時刻tにおいて,冷蔵室温度TRが冷蔵運転開始温度TRon以上に達していることから,冷蔵運転開始条件が成立し(図7のステップS111),再び冷蔵運転が開始される(図7のステップS101)。 At time t6 when the refrigerant recovery operation ends, the refrigerating chamber temperature TR reaches the refrigerating operation start temperature T Ron or higher, so the refrigerating operation start condition is satisfied (step S111 in FIG. 7), and the refrigerating operation starts again. is started (step S101 in FIG. 7).

以上で,本実施例の冷蔵庫の構成と,制御方法の説明をしたが,次に,本実施形態の冷蔵庫の奏する効果について説明する。 The configuration and control method of the refrigerator of this embodiment have been described above. Next, the effects of the refrigerator of this embodiment will be described.

本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備え,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7及び野菜室6を冷却している。これにより高い省エネルギー性能を発揮でき,さらにスペース効率も高い冷蔵庫を提供することができる。理由を,図7及び図8を参照しながら以下で説明する。 The refrigerator of this embodiment comprises, from above, a refrigerating compartment 2 (first refrigerating temperature zone compartment), a freezing temperature zone compartment 7, and a vegetable compartment 6 (second refrigerating temperature zone compartment). An evaporator 14a (first evaporator) and a refrigerating fan 9a, and a refrigerating evaporator 14b (second evaporator) and a refrigerating fan 9b at the back of the freezer compartment. The cooling fan 9a is driven to blow air to cool the refrigerator compartment 2, and the air heat-exchanged with the freezing evaporator 14b is blown by the driving of the freezing fan 9b to cool the freezing temperature zone compartment 7 and the vegetable compartment 6. are doing. As a result, it is possible to provide refrigerators with high energy-saving performance and high space efficiency. The reason is explained below with reference to FIGS. 7 and 8. FIG.

図7は本実施例の冷蔵庫に係る蒸発器の温度と成績係数の関係を示すモリエル線図,図8は比較例を示す冷蔵庫の模式図である。 FIG. 7 is a Mollier diagram showing the relationship between the temperature of the evaporator and the coefficient of performance of the refrigerator of this embodiment, and FIG. 8 is a schematic diagram of a refrigerator showing a comparative example.

まず,図4及び図7を参照しながら本実施例の冷蔵庫における冷凍サイクルの冷媒状態を説明する。本実施例の冷蔵庫では,冷蔵運転においては,圧縮機24の入口における低圧の冷媒(状態R1)が圧縮機24により圧縮され,高圧の状態R2で吐出される。その後,圧縮機24の筐体からの放熱及び放熱手段である庫外放熱器50a,庫外放熱器50b,結露抑制配管50cにおける放熱によって比エンタルピが低下し,状態R3(液状態)となる。冷蔵運転では,三方弁は状態1(冷蔵モード)となっているので,続いて,冷蔵用キャピラリチューブ53aを流れて減圧され,低温低圧の状態R4となって冷蔵用蒸発器14aに流入する。冷蔵用蒸発器14aでは,冷蔵室2からの戻り空気と熱交換して比エンタルピが上昇し冷蔵用蒸発器14aの出口において状態R5(ガス状態)となる。冷蔵用蒸発器14aから流れ出た冷媒は,冷蔵用キャピラリチューブ53aを流れる冷媒と熱交換することで比エンタルピが上昇し圧縮機24の入口(状態R1)に至る。冷蔵運転における冷蔵用蒸発器14aの吸熱量をQ1,冷蔵運転における圧縮機動力をW1,冷蔵運転時の冷凍サイクル成績係数COP1は,COP1=Q1/W1となる。 First, referring to FIGS. 4 and 7, the state of the refrigerant in the refrigerating cycle of the refrigerator of this embodiment will be described. In the refrigerator of this embodiment, in the refrigerating operation, the low-pressure refrigerant (state R1) at the inlet of the compressor 24 is compressed by the compressor 24 and discharged in the high-pressure state R2. After that, the specific enthalpy decreases due to the heat radiation from the housing of the compressor 24 and heat radiation in the outside radiator 50a, the outside radiator 50b, and the dew condensation suppression pipe 50c, which are heat dissipation means, and the state R3 (liquid state) is reached. In the refrigerating operation, the three-way valve is in state 1 (refrigerating mode), so the refrigerant then flows through the refrigerating capillary tube 53a, is decompressed, and enters the refrigerating evaporator 14a in a low-temperature, low-pressure state R4. In the refrigerating evaporator 14a, heat is exchanged with the return air from the refrigerating chamber 2, the specific enthalpy increases, and the state R5 (gas state) occurs at the outlet of the refrigerating evaporator 14a. The refrigerant flowing out of the refrigerating evaporator 14a exchanges heat with the refrigerant flowing through the refrigerating capillary tube 53a, thereby increasing the specific enthalpy and reaching the inlet of the compressor 24 (state R1). The amount of heat absorbed by the refrigerating evaporator 14a during refrigerating operation is Q1, the compressor power during refrigerating operation is W1, and the refrigerating cycle coefficient of performance COP1 during refrigerating operation is COP1=Q1/W1.

また,冷凍温度帯室7を冷却する冷凍運転または冷凍野菜運転においては,圧縮機24の入口における低圧の冷媒(状態F1)が圧縮機24により圧縮され,高圧の状態F2で吐出される。その後,圧縮機24の筐体からの放熱及び放熱手段である庫外放熱器50a,庫外放熱器50b,結露抑制配管50cにおける放熱によって比エンタルピが低下し,状態F3(液状態)となる。冷凍運転または冷凍野菜運転では,三方弁は状態2(冷凍モード)となっているので,続いて,冷凍用キャピラリチューブ53bを流れて減圧され,低温低圧の状態F4となって冷凍用蒸発器14bに流入する。冷凍用蒸発器14bでは,冷凍温度帯室7あるいは野菜室6からの戻り空気と熱交換して比エンタルピが上昇し冷凍用蒸発器14bの出口において状態F5(ガス状態)となる。冷凍用蒸発器14bから流れ出た冷媒は,冷凍用キャピラリチューブ53bを流れる冷媒と熱交換することで比エンタルピが上昇し圧縮機24の入口(状態F1)に至る。冷凍運転または冷凍野菜運転における冷凍用蒸発器14bの吸熱量をQ2,冷凍運転または冷凍野菜運転における圧縮機動力をW2とすると,冷凍運転時の冷凍サイクル成績係数COP2は,COP2=Q2/W2となる。 Further, in the freezing operation or the frozen vegetables operation for cooling the freezing temperature zone chamber 7, the low pressure refrigerant (state F1) at the inlet of the compressor 24 is compressed by the compressor 24 and discharged in the high pressure state F2. After that, the specific enthalpy is lowered by the heat radiation from the housing of the compressor 24 and the heat radiation in the outside heat radiator 50a, the outside heat radiator 50b, and the dew condensation control pipe 50c, and the state F3 (liquid state) is reached. In the freezing operation or the frozen vegetable operation, the three-way valve is in state 2 (freezing mode), so the pressure is reduced by flowing through the freezing capillary tube 53b, and the low temperature and low pressure state F4 is reached, and the freezing evaporator 14b flow into In the freezing evaporator 14b, heat is exchanged with return air from the freezing temperature zone chamber 7 or the vegetable compartment 6, the specific enthalpy rises, and the state F5 (gas state) occurs at the outlet of the freezing evaporator 14b. The refrigerant flowing out of the freezing evaporator 14b exchanges heat with the refrigerant flowing through the freezing capillary tube 53b, thereby increasing the specific enthalpy and reaching the inlet of the compressor 24 (state F1). Assuming that the amount of heat absorbed by the freezing evaporator 14b during the freezing operation or the frozen vegetables operation is Q2, and the compressor power during the freezing operation or the frozen vegetables operation is W2, the refrigeration cycle coefficient of performance COP2 during the freezing operation is COP2=Q2/W2. Become.

このとき,冷蔵室2を冷却する冷蔵運転における冷蔵用蒸発器14aの温度(蒸発温度)と,冷凍温度帯室7を冷却する冷凍運転または冷凍野菜運転における冷凍用蒸発器14bの温度(蒸発温度)を比較すると,冷蔵運転における冷蔵用蒸発器14aの温度が高くなるようにしている。これは,冷蔵温度帯に維持される冷蔵室2を流れる空気の循環経路と,低温の冷凍温度帯に維持される冷凍温度帯室7を流れる空気の循環経路を分離することによって,冷蔵用蒸発器14aに低温の冷凍温度帯室7の空気が戻らないようにすることにより実現している。このように,冷蔵用蒸発器14aの温度を高くすることで,冷凍サイクル成績係数が向上するので,省エネルギー性能が高い冷蔵庫となる。 At this time, the temperature (evaporation temperature) of the refrigerating evaporator 14a in the refrigerating operation for cooling the refrigerating chamber 2 and the temperature (evaporating temperature) of the freezing evaporator 14b in the freezing operation or frozen vegetable operation for cooling the freezing temperature zone chamber 7 ), the temperature of the refrigerating evaporator 14a in the refrigerating operation is made higher. This is achieved by separating the circulation path of the air flowing through the refrigerating chamber 2 maintained in the refrigerating temperature zone and the circulating path of the air flowing through the freezing temperature zone chamber 7 maintained in the low freezing temperature zone. This is achieved by preventing air from the low-temperature freezing temperature zone chamber 7 from returning to the container 14a. By increasing the temperature of the refrigerating evaporator 14a in this manner, the coefficient of performance of the refrigerating cycle is improved, so that the refrigerator has high energy saving performance.

図8(a),(b)は比較例の冷蔵庫であり,何れも上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵温度帯に維持される冷蔵室2を流れる空気の循環経路と,低温の冷凍温度帯に維持される冷凍温度帯室7を流れる空気の循環経路が分離され,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備えた冷蔵庫である。 8(a) and 8(b) are refrigerators of comparative examples, in which, from the top, refrigerating compartment 2 (first refrigerating temperature zone compartment), freezing temperature compartment 7, and vegetable compartment 6 (second refrigerating temperature zone compartment). is provided, the circulation path of air flowing through the refrigerating chamber 2 maintained in the refrigerating temperature zone and the circulation path of air flowing through the freezing temperature zone chamber 7 maintained in the low freezing temperature zone are separated, and the back of the refrigerating chamber 2 The refrigerator is equipped with a refrigerating evaporator 14a (first evaporator) and a refrigerating fan 9a in the back, and a freezing evaporator 14b (second evaporator) and a refrigerating fan 9b in the back of the freezer compartment.

図8(a)は,特許文献1に記載の冷蔵庫の構成を採用するものであり,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7を冷却するものである。野菜室6は,冷凍温度帯室7の冷気により断熱仕切壁29を介して間接的に冷却される。一般に,仕切壁を介した熱移動量は温度差に比例するため,熱移動量を増加させ,野菜室6の冷却能力を高める必要がある場合は,温度差を拡大するように制御することが有効となる。従って,外気温度が高い場合や,野菜室に温度が高い食品を収納した場合,あるいは,食品等を挟み込むことにより野菜室扉と箱体の間に隙間が生じている等により野菜室の負荷が大きく,冷却能力を十分高める必要がある場合には,冷凍室を過度に低温に維持する必要があり,省エネルギー性能が低下するといった問題が生じる。尚,野菜室の負荷が大きい条件に合わせて仕切壁の断熱性能を低くすることも考えられるが,この場合は,外気温度が低く負荷が小さくなった場合に,野菜室6が過度に冷却され野菜が凍結するといった不具合が生じるため,電気ヒータによる加温(温度補償)が必要となり省エネルギー性能が低下する。 FIG. 8(a) adopts the configuration of the refrigerator described in Patent Document 1, in which the air heat-exchanged with the refrigerating evaporator 14a is blown by driving the refrigerating fan 9a to cool the refrigerating chamber 2. Then, the air heat-exchanged with the refrigerating evaporator 14b is driven by the refrigerating fan 9b to cool the refrigerating temperature zone chamber 7. FIG. The vegetable compartment 6 is indirectly cooled by the cold air from the freezing temperature zone compartment 7 via the heat insulating partition wall 29 . In general, the amount of heat transfer through the partition wall is proportional to the temperature difference, so if it is necessary to increase the amount of heat transfer and improve the cooling capacity of the vegetable compartment 6, the temperature difference can be controlled to increase. becomes valid. Therefore, when the outside temperature is high, when food with a high temperature is stored in the vegetable compartment, or when a gap is created between the vegetable compartment door and the box body due to food being sandwiched, etc., the load on the vegetable compartment is increased. If the size is large and the cooling capacity needs to be sufficiently increased, the freezer compartment must be maintained at an excessively low temperature, resulting in a problem of reduced energy saving performance. It is also conceivable to reduce the insulation performance of the partition wall according to the condition of the large load on the vegetable compartment. Because of the problem of frozen vegetables, heating with an electric heater (temperature compensation) is required, which reduces energy saving performance.

図8(b)は,特許文献2に記載の冷蔵庫の構成を採用するものであり,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2及び野菜室6を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7を冷却するものである。この構成では,冷蔵用ファン9aにより送り出された空気を野菜室6に送風する野菜室送風路13と,野菜室6を冷却した空気を冷蔵室用蒸発器室8aに戻す野菜室戻り風路18が低温の冷凍室2または冷凍用蒸発器室8bを通過する。野菜室送風路13及び野菜室戻り風路18を流れる空気の温度は比較的高いため,絶対湿度も高くなりやすく,野菜室送風路13及び野菜室戻り風路18内には霜が成長しやすい。霜による風路の閉塞を防ぐためには,野菜室送風路13及び野菜室戻り風路18と冷凍室2または冷凍用蒸発器室8bの間に断熱壁(断熱部材)を設けて,野菜室送風路13及び野菜室戻り風路18の内側表面の温度が低下しすぎないようにする必要がある。従って風路のスペースと,断熱壁(断熱部材)のスペースが必要となるため冷凍室2または冷凍用蒸発器室8bの縮小を伴う。冷凍室2を縮小する場合,有効内容積が減少するためスペース効率が悪化し,冷凍用蒸発器室8bを縮小する場合,収納される冷凍用蒸発器14bの縮小を伴うため,熱交換性能低下による省エネルギー性能の低下を招く。 FIG. 8(b) adopts the configuration of the refrigerator described in Patent Document 2, in which the air heat-exchanged with the refrigerating evaporator 14a is driven by the refrigerating fan 9a to blow the refrigerating chamber 2 and the vegetables. The cooling fan 9b drives the cooling fan 9b to cool the freezing temperature zone chamber 7 by cooling the chamber 6 and exchanging heat with the freezing evaporator 14b. In this configuration, a vegetable compartment air passage 13 that blows the air sent by the refrigerator fan 9a to the vegetable compartment 6, and a vegetable compartment return air path 18 that returns the air that has cooled the vegetable compartment 6 to the refrigerator compartment evaporator compartment 8a. passes through the cold freezer compartment 2 or the freezing evaporator compartment 8b. Since the temperature of the air flowing through the vegetable room air duct 13 and the vegetable room return air duct 18 is relatively high, the absolute humidity tends to increase, and frost tends to grow in the vegetable room air duct 13 and the vegetable room return air duct 18. . In order to prevent blockage of the air passage due to frost, a heat insulating wall (heat insulating member) is provided between the vegetable compartment air passage 13 and the vegetable room return air passage 18 and the freezer compartment 2 or the freezing evaporator chamber 8b to prevent the vegetable compartment from blowing air. It is necessary to prevent the temperature of the inner surfaces of the passage 13 and the vegetable compartment return air passage 18 from dropping too much. Therefore, a space for the air passage and a space for the heat insulating wall (heat insulating member) are required, which entails a reduction in the size of the freezer compartment 2 or the freezing evaporator compartment 8b. When the freezer compartment 2 is reduced, the space efficiency deteriorates because the effective internal volume is reduced, and when the freezer evaporator chamber 8b is reduced, the heat exchange performance is reduced because the freezer evaporator 14b to be housed is also reduced. This causes a decrease in energy saving performance due to

一方,本実施例の冷蔵庫は,図3に示すように,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7及び野菜室6を冷却している。これにより,冷蔵室2は冷蔵用ファン9a,冷凍温度帯室7及び野菜室6は冷凍用ファン9bにより冷却能力を制御できるので,野菜室の負荷の大小に依らず冷蔵室2,冷凍温度帯室7及び野菜室6を効率良く冷却でき,省エネルギー性能が高い冷蔵庫となる。また,冷蔵温度帯の貯蔵室を流れる空気が冷凍室2または冷凍用蒸発器室8bを通過する構成とならないため,スペース効率が高くなる。すなわち省エネルギー性能が高く,スペース効率も高い冷蔵庫となる。 On the other hand, in the refrigerator of this embodiment, as shown in FIG. 3, the air heat-exchanged with the refrigerating evaporator 14a is driven by the refrigerating fan 9a to cool the refrigerating chamber 2, and the refrigerating evaporator 14b is cooled. The freezing temperature zone chamber 7 and the vegetable compartment 6 are cooled by blowing the air heat-exchanged with the refrigerator by driving the freezing fan 9b. As a result, the cooling capacity of the refrigerating compartment 2 can be controlled by the refrigerating fan 9a, and the freezing temperature zone compartment 7 and the vegetable compartment 6 can be controlled by the freezing fan 9b. The refrigerator can efficiently cool the compartment 7 and the vegetable compartment 6 and has high energy saving performance. In addition, since the air flowing through the storage compartment in the refrigerating temperature zone does not pass through the freezer compartment 2 or the freezing evaporator compartment 8b, space efficiency is improved. In other words, the refrigerator has high energy-saving performance and high space efficiency.

本実施例の冷蔵庫は,野菜室送風路13が断熱仕切壁29を通過するように設けている。これにより,冷凍用蒸発器室8b,冷凍室送風路12,冷凍温度帯室7または冷凍室戻り口17の何れかと野菜室6とが連通される。その結果,送風経路の長さを短く抑えることができ,スペース効率を高めることができるとともに,風路抵抗も低く抑えることができるので,送風効率が高く省エネルギー性能に優れた冷蔵庫になる。 The refrigerator of this embodiment is provided so that the vegetable compartment ventilation path 13 passes through the heat insulating partition wall 29 . As a result, any one of the freezing evaporator chamber 8b, the freezing chamber air passage 12, the freezing temperature zone chamber 7, or the freezing chamber return port 17 is communicated with the vegetable chamber 6. FIG. As a result, the length of the ventilation path can be shortened, the space efficiency can be improved, and the air path resistance can be kept low, resulting in a refrigerator with high ventilation efficiency and excellent energy saving performance.

本実施例の冷蔵庫は,野菜室戻り風路18が断熱仕切壁29内を流れるように設けている。これにより,冷蔵温度帯の野菜室6からの温度が比較的高い戻り冷気が冷凍温度帯室7に影響することを抑制するための断熱手段として,別体の断熱部材を用いる必要がなくなるため,スペース効率に優れた冷蔵庫となる。
本実施例の冷蔵庫は,野菜室送風路13の下端の開口(野菜室吐出口13a)の高さ位置を,断熱仕切壁29の高さ位置と略一致させ,野菜室6の上方から冷却空気を吹き出すようにしている(図3参照)。冷凍用蒸発器14bと熱交換した低温冷気を野菜室6内(例えば背面)に導く場合は,風路の野菜室6側の表面が低温となり,結露が生じやすくなるため,野菜室6と風路の間に断熱壁(断熱部材)を設ける必要がある。また,低温空気は密度が大きいことから,下方に向かって流れる性質があるため,上方の空間に低温空気を供給することが冷却効率向上には有効となる。本実施例の冷蔵庫では,野菜室送風路13の下端の開口(野菜室吐出口13a)の高さ位置を,断熱仕切壁29の高さ位置と略一致させることで,野菜室送風路13の下端近傍の断熱壁を断熱仕切壁29で兼ね,送風経路の長さも短く抑えることで,野菜室6内に断熱壁(断熱部材)や風路を設けることによるスペース効率低下を抑制しつつ,野菜室6の上方から冷却空気を吹き出すことで,野菜室6の冷却効率を高めている。
In the refrigerator of this embodiment, the vegetable compartment return air path 18 is provided so as to flow through the heat insulating partition wall 29 . As a result, there is no need to use a separate heat insulating member as a heat insulating means for suppressing the influence of the relatively high temperature returning cold air from the vegetable compartment 6 in the refrigerating temperature zone on the freezing temperature zone compartment 7. A space-efficient refrigerator.
In the refrigerator of this embodiment, the height position of the opening at the lower end of the vegetable compartment air passage 13 (vegetable compartment discharge port 13a) is substantially aligned with the height position of the heat insulating partition wall 29, and the cooling air is blown from above the vegetable compartment 6. is blown out (see Fig. 3). When the low-temperature cold air that has exchanged heat with the freezing evaporator 14b is guided into the vegetable compartment 6 (for example, the back), the surface of the air passage on the vegetable compartment 6 side becomes low temperature and condensation is likely to occur. It is necessary to provide a heat insulating wall (heat insulating member) between the paths. In addition, since low-temperature air has a high density and tends to flow downward, supplying low-temperature air to the upper space is effective in improving cooling efficiency. In the refrigerator of this embodiment, the height position of the opening (vegetable compartment discharge port 13a) at the lower end of the vegetable compartment air passage 13 is substantially aligned with the height position of the heat insulating partition wall 29, so that the vegetable compartment air passage 13 is closed. The heat insulation partition wall 29 serves as the heat insulation wall near the lower end, and the length of the ventilation path is also kept short. By blowing cooling air from above the compartment 6, the cooling efficiency of the vegetable compartment 6 is enhanced.

本実施例の冷蔵庫は野菜室6の温度を検知する野菜室温度センサ43を備え,野菜室送風路13に野菜室ダンパ19を備えている。これにより,野菜室の冷却の過不足に応じて,野菜室ダンパ19を開閉して野菜室への送風を制御することができるので,冷却効率が高い省エネ性に優れた冷蔵庫となる。 The refrigerator of this embodiment includes a vegetable compartment temperature sensor 43 for detecting the temperature of the vegetable compartment 6 and a vegetable compartment damper 19 in the vegetable compartment air passage 13 . As a result, the vegetable compartment damper 19 can be opened and closed to control the blowing of air to the vegetable compartment depending on whether the cooling of the vegetable compartment is excessive or insufficient.

本実施例の冷蔵庫は,野菜室ダンパ19を野菜室送風路13の下端近傍に設けている。例えば,野菜室送風路13の上端近傍(冷凍室6の内部)に野菜室ダンパ19を設けた場合,野菜室ダンパ19を閉鎖状態としても野菜室ダンパ19より下流(野菜室6側)の空気が冷凍室6によって冷却されて低温になり,下降流を形成することがある。このように野菜室ダンパ19を閉塞しても野菜室6に低温空気が供給されると,特に野菜室6の負荷が小さい場合などには野菜室6の温度が下がりすぎる場合があるため,本実施例の冷蔵庫では,野菜室ダンパ19を野菜室送風路13の下端近傍に設けることで,野菜室ダンパ19を閉鎖状態としても野菜室送風路13から低温空気が野菜室6に流れ込み野菜室6が冷えすぎることを抑制できるので,野菜室6を効率良く冷却できる。 In the refrigerator of this embodiment, the vegetable compartment damper 19 is provided near the lower end of the vegetable compartment air passage 13 . For example, when the vegetable compartment damper 19 is provided near the upper end of the vegetable compartment air passage 13 (inside the freezer compartment 6), even if the vegetable compartment damper 19 is closed, the air downstream of the vegetable compartment damper 19 (on the side of the vegetable compartment 6) is is cooled by the freezer compartment 6 to a low temperature and may form a downward flow. Even if the vegetable compartment damper 19 is closed in this way, if low-temperature air is supplied to the vegetable compartment 6, the temperature of the vegetable compartment 6 may drop too much, especially when the load on the vegetable compartment 6 is small. In the refrigerator of the embodiment, the vegetable compartment damper 19 is provided in the vicinity of the lower end of the vegetable compartment air passage 13, so that even when the vegetable compartment damper 19 is closed, low-temperature air flows into the vegetable compartment 6 from the vegetable compartment air passage 13. Since the cooling of the vegetable compartment 6 can be suppressed, the vegetable compartment 6 can be efficiently cooled.

本実施例の冷蔵庫は,野菜室6内に飲料のボトルを収納するボトル収納スペース6cを備えており,野菜室6に低温の冷凍室6からの冷気を供給するようにしている。これにより飲料のボトルを効率良く冷却することができる。 The refrigerator of this embodiment is provided with a bottle storage space 6c for storing beverage bottles in the vegetable compartment 6, and cold air from the low-temperature freezer compartment 6 is supplied to the vegetable compartment 6. As shown in FIG. This allows the beverage bottle to be efficiently cooled.

本発明に係る冷蔵庫の第二の実施例を,図9を参照しながら説明する。なお,実施例1と同様の構成については説明を省略する。図9は本実施例の冷蔵庫の構成を表す模式図である。 A second embodiment of the refrigerator according to the present invention will be described with reference to FIG. It should be noted that the description of the configuration similar to that of the first embodiment will be omitted. FIG. 9 is a schematic diagram showing the configuration of the refrigerator of this embodiment.

図9に示すように,本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)の順に貯蔵室を形成している。冷蔵室2の略背部には冷蔵用蒸発器室8aが備えられており,冷蔵用蒸発器室8a内には,冷蔵用蒸発器14a(第一蒸発器)が収納されている。冷蔵用蒸発器14aの上方には冷蔵用ファン9aが設けられている。冷蔵用蒸発器14aと熱交換して低温になった空気は,冷蔵用ファン9aを駆動することにより,冷蔵室送風路11,冷蔵室吐出口11aを介して冷蔵室2に送風され,冷蔵室2内を冷却する。冷蔵室2に送られた空気は冷蔵室戻り口15aから冷蔵用蒸発器室8aに戻る。 As shown in FIG. 9, the refrigerator of this embodiment has storage compartments in the order from top to bottom: refrigerating compartment 2 (first refrigerating temperature zone compartment), freezing temperature zone compartment 7, and vegetable compartment 6 (second refrigerating temperature zone compartment). forming. A refrigerating evaporator chamber 8a is provided substantially at the back of the refrigerating chamber 2, and a refrigerating evaporator 14a (first evaporator) is accommodated in the refrigerating evaporator chamber 8a. A cooling fan 9a is provided above the cooling evaporator 14a. By driving the refrigerating fan 9a, the air whose temperature has been reduced by heat exchange with the refrigerating evaporator 14a is sent to the refrigerating chamber 2 through the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a. 2 to cool. The air sent to the refrigerating chamber 2 returns to the refrigerating evaporator chamber 8a through the refrigerating chamber return port 15a.

冷凍温度帯室7の略背部には冷凍用蒸発器室8bが備えられており,冷凍用蒸発器室8b内には,冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bが設けられている。また,冷凍用ファン9bの下流には,冷凍温度帯室7への送風量を制御する手段である冷凍室ダンパ20が設けられている。また,野菜室6への風路となる野菜室送風路13は,冷凍室送風路12から分岐形成され,野菜室背部右上の野菜室吐出口13aに至る。野菜室送風路13には,野菜室6への送風量を制御する手段である野菜室ダンパ19が設けられている。このように,冷凍用ファン9bの下流における風路は,冷凍室ダンパ20へ向かう冷凍室送風路12と,野菜室ダンパ19へ向かう野菜室送風路13とに分岐している。野菜室6と冷凍温度帯室7の間の断熱仕切壁29には,野菜室戻り流入口18aが設けられており,野菜室戻り風路18を介して冷凍用蒸発器室8bの下部に空気が戻る流路が形成されている。 A freezing evaporator chamber 8b is provided substantially behind the freezing temperature zone chamber 7, and a freezing evaporator 14b (second evaporator) is accommodated in the freezing evaporator chamber 8b. A freezing fan 9b is provided above the freezing evaporator 14b. Further, a freezer compartment damper 20, which is means for controlling the amount of air blown to the freezer temperature zone compartment 7, is provided downstream of the freezer fan 9b. A vegetable compartment air passage 13 serving as an air passage to the vegetable compartment 6 is branched from the freezer compartment air passage 12 and reaches a vegetable compartment discharge port 13a on the upper right of the back of the vegetable compartment. A vegetable compartment damper 19 , which is means for controlling the amount of air blown to the vegetable compartment 6 , is provided in the vegetable compartment air passage 13 . In this manner, the air passage downstream of the freezing fan 9 b branches into the freezer compartment air passage 12 directed to the freezer compartment damper 20 and the vegetable compartment air passage 13 directed to the vegetable compartment damper 19 . A heat-insulating partition wall 29 between the vegetable compartment 6 and the freezing temperature zone compartment 7 is provided with a vegetable compartment return inlet 18a. A flow path is formed for the return of the

冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍室ダンパ20が開放状態の場合には,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍温度帯室7に送風され,冷凍温度帯室7内を冷却する。冷凍温度帯室7に送られた空気は冷凍室戻り口17から冷凍用蒸発器室8bに戻る。また,野菜室ダンパ19が開放状態の場合には,冷凍室送風路12に流入した冷気の一部が野菜室送風路13を流れ,野菜室吐出口13aを介して野菜室6に送風され,野菜室6内を冷却する。野菜室6に送られた空気は野菜室戻り流入口18aから野菜室戻り風路18に入り,野菜室戻り流出口18bから冷凍用蒸発器室8bに戻る。 When the freezer compartment damper 20 is in the open state, the air that has been heat-exchanged with the freezer evaporator 14b and has a low temperature is driven through the freezer compartment air passage 12 and the freezer compartment outlet 12a by driving the freezer fan 9b. The air is blown into the freezer temperature zone chamber 7 via the to cool the inside of the freezer temperature zone chamber 7 . The air sent to the freezing temperature zone chamber 7 returns from the freezing chamber return port 17 to the freezing evaporator chamber 8b. When the vegetable compartment damper 19 is open, part of the cold air flowing into the freezer compartment air passage 12 flows through the vegetable compartment air passage 13 and is sent to the vegetable compartment 6 through the vegetable compartment discharge port 13a. The inside of the vegetable compartment 6 is cooled. The air sent to the vegetable compartment 6 enters the vegetable compartment return air passage 18 through the vegetable compartment return inlet 18a and returns to the freezing evaporator compartment 8b through the vegetable compartment return outlet 18b.

以上のように本実施例の冷蔵庫は,本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備え,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍室ダンパ20が開放状態の場合には,冷凍用ファン9bの駆動により冷凍温度帯室7に送風し,野菜室ダンパ19が開放状態の場合には,冷凍用ファン9bの駆動により野菜室6に送風して冷却することができる。また,冷凍室ダンパ20と野菜室ダンパ19が何れも開放状態の場合には,冷凍用ファン9bの駆動により冷凍温度帯室7と野菜室6の双方に送風して冷却することができる。これにより,例えば冷凍温度帯室7のみに温度が高い食品を収納した,あるいは,野菜室6のみに温度が高い食品を収納したといった事由により,冷凍温度帯室7または野菜室6の一方の負荷が高く,他方は十分冷却されている場合においては,冷凍室ダンパ20または野菜室ダンパ19のうち負荷が高い側の貯蔵室に向かう送風路に設けられたダンパのみを開放状態として冷却を行うことができる。従って,十分冷却されている貯蔵室を過度に冷却することを抑制できるので,省エネルギー性能の高い冷蔵庫となる。 As described above, the refrigerator of this embodiment has a refrigerating compartment 2 (first refrigerating temperature zone compartment), a freezing temperature zone compartment 7, and a vegetable compartment 6 (second refrigerating temperature zone compartment) from above. Equipped with a refrigerating evaporator 14a (first evaporator) and a refrigerating fan 9a at the back of the refrigerating compartment 2, and a freezing evaporator 14b (second evaporator) and a refrigerating fan 9b at the back of the freezing compartment. The air heat-exchanged with the refrigerating evaporator 14a is driven by the refrigerating fan 9a to cool the refrigerating compartment 2, and the air heat-exchanged with the freezing evaporator 14b is sent to the freezer compartment damper 20 when the freezer compartment damper 20 is open. drives the freezing fan 9b to blow air into the freezing temperature zone chamber 7, and when the vegetable compartment damper 19 is in an open state, the driving of the freezing fan 9b blows air into the vegetable compartment 6 for cooling. Further, when both the freezer compartment damper 20 and the vegetable compartment damper 19 are in the open state, both the freezing temperature zone compartment 7 and the vegetable compartment 6 can be cooled by driving the freezing fan 9b. As a result, the load on either the freezing temperature zone chamber 7 or the vegetable compartment 6 is increased due to, for example, storing high temperature food only in the freezing temperature zone compartment 7 or storing high temperature food only in the vegetable compartment 6. is high and the other is sufficiently cooled, only the damper provided in the air duct leading to the storage compartment on the side with the higher load, either the freezer compartment damper 20 or the vegetable compartment damper 19, should be opened for cooling. can be done. Therefore, since it is possible to suppress excessive cooling of the sufficiently cooled storage compartment, the refrigerator has high energy saving performance.

本発明に係る冷蔵庫の第三の実施例を,図10を参照しながら説明する。なお,実施例1または実施例2と同様の構成については説明を省略する。図8は本実施例の冷蔵庫の構成を表す模式図である。 A third embodiment of the refrigerator according to the present invention will be described with reference to FIG. It should be noted that the description of the configuration similar to that of the first or second embodiment will be omitted. FIG. 8 is a schematic diagram showing the structure of the refrigerator of this embodiment.

図10に示すように,本実施例の冷蔵庫は,冷凍温度帯室7の略背部には冷凍用蒸発器室8bが備えられており,冷凍用蒸発器室8b内には,冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bが設けられている。冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍温度帯室7に送風され,冷凍温度帯室7内を冷却する。冷凍温度帯室7に送られた空気は冷凍室戻り口17から冷凍用蒸発器室8bに戻る。 As shown in FIG. 10, the refrigerator of this embodiment is provided with a freezing evaporator chamber 8b substantially behind the freezing temperature zone chamber 7, and a freezing evaporator chamber 8b is provided in the freezing evaporator chamber 8b. 14b (second evaporator) is accommodated. A freezing fan 9b is provided above the freezing evaporator 14b. By driving the freezing fan 9b, the air whose temperature has been reduced by heat exchange with the freezing evaporator 14b is sent to the freezing temperature zone chamber 7 through the freezing compartment air passage 12 and the freezing compartment discharge port 12a. The inside of the freezing temperature zone chamber 7 is cooled. The air sent to the freezing temperature zone chamber 7 returns from the freezing chamber return port 17 to the freezing evaporator chamber 8b.

また,断熱仕切壁29には冷凍温度帯室7と野菜室6が連通する風路25(連通経路)が備えられている。風路25内には,野菜室6の冷却制御手段である野菜室ダンパ19が設けられている。野菜室ダンパ19が開放状態の場合には,冷凍室の低温冷気が対流により風路25を介して野菜室6に流入し,野菜室6を冷却する。野菜室ダンパ19が閉鎖状態の場合には,風路25を介した対流が抑制されるので,野菜室6の冷却が抑えられる。 In addition, the heat insulating partition wall 29 is provided with an air passage 25 (communication passage) through which the freezing temperature zone chamber 7 and the vegetable chamber 6 communicate with each other. A vegetable compartment damper 19 , which is cooling control means for the vegetable compartment 6 , is provided in the air passage 25 . When the vegetable compartment damper 19 is open, low-temperature cold air from the freezer compartment flows into the vegetable compartment 6 through the air passage 25 due to convection to cool the vegetable compartment 6 . When the vegetable compartment damper 19 is closed, convection through the air passage 25 is suppressed, so cooling of the vegetable compartment 6 is suppressed.

以上のように本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備え,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により冷凍温度帯室7に送風して冷凍温度帯室7を冷却し,野菜室6は,冷凍温度帯室7と野菜室6が連通する風路25を介した対流により冷却するようにしている。風路25を介した空気の移動は,
冷凍温度帯室7内の低温の空気と,野菜室6内の温度が高い空気の密度差に起因する対流(自然対流)が主となるので,野菜室6内の負荷が大きく,温度が上昇した場合には,冷凍温度帯室7との温度差(空気の密度差)が拡大して積極的な冷気の流入が起きる。すなわち,風路25を介して野菜室6の負荷に応じた自己調整機能が働き,野菜室への送風動力を要さずに野菜室6内の冷却能力を調整できる。これにより省エネルギー性能に優れた冷蔵庫となる
本実施例の冷蔵庫は,風路25を断熱仕切壁29に設けている。これにより,新たな風路設置スペースを必要としないため,スペース効率にも優れた冷蔵庫となる。
As described above, the refrigerator of this embodiment comprises, from above, the refrigerating chamber 2 (first refrigerating temperature zone chamber), the freezing temperature zone chamber 7, and the vegetable compartment 6 (second refrigerating temperature zone chamber). A refrigerating evaporator 14a (first evaporator) and a refrigerating fan 9a are provided in the back of the freezer compartment, and a refrigerating evaporator 14b (second evaporator) and a refrigerating fan 9b are provided in the back of the freezer compartment to exchange heat with the refrigerating evaporator 14a. The cooled air is blown by driving the refrigerating fan 9a to cool the refrigerating chamber 2, and the air that has exchanged heat with the freezing evaporator 14b is blown to the freezing temperature zone chamber 7 by driving the freezing fan 9b to freeze. The temperature zone chamber 7 is cooled, and the vegetable compartment 6 is cooled by convection through an air passage 25 through which the freezing temperature zone chamber 7 and the vegetable compartment 6 communicate. The movement of air through the air passage 25 is
Convection (natural convection) due to the density difference between the low-temperature air in the freezing temperature zone compartment 7 and the high-temperature air in the vegetable compartment 6 is the main factor, so the load in the vegetable compartment 6 is large, and the temperature rises. In this case, the temperature difference (difference in density of air) with the freezing temperature zone chamber 7 increases, and cold air actively flows in. That is, a self-adjusting function according to the load of the vegetable compartment 6 works via the air passage 25, and the cooling capacity in the vegetable compartment 6 can be adjusted without requiring air blowing power to the vegetable compartment. As a result, the refrigerator of this embodiment is provided with the air duct 25 in the heat insulating partition wall 29 . As a result, the refrigerator does not require additional space for installation of an air duct, making it an excellent space-efficient refrigerator.

また,本実施例の冷蔵庫は,風路25に野菜室ダンパ19を設けている。これにより風路25を縮小または閉鎖するように制御することができるため,特に野菜室の負荷が小さい場合に過度に野菜室が冷やされることを抑制できるので,省エネルギー性能に優れた冷蔵庫となる。 In addition, the refrigerator of this embodiment is provided with a vegetable compartment damper 19 in the air passage 25 . As a result, the air duct 25 can be controlled to be reduced or closed, so that the vegetable compartment can be prevented from being excessively cooled especially when the load on the vegetable compartment is small, resulting in a refrigerator with excellent energy saving performance.

以上が,本実施の形態例を示す実施例である。なお,本発明は前述した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。また,実施例の構成の一部について,他の構成の追加・削除・置換をすることが可能である。 The above is an example showing the present embodiment. It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.

1 冷蔵庫
2 冷蔵室(第一冷蔵温度帯室)
2a,2b 冷蔵室ドア
3 製氷室
4 上段冷凍室
5 下段冷凍室冷凍室
3a,4a,5a 冷凍室ドア
6 野菜室(第二冷蔵温度帯室)
6a 野菜室ドア
7 冷凍温度帯室(3,4,5の総称)
8a 冷蔵用蒸発器室(第一蒸発器収納室)
8b 冷凍用蒸発器室(第二蒸発器収納室)
9a 冷蔵用ファン(第一送風機)
9b 冷凍用ファン(第二送風機)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室送風路(第一送風経路)
11a 冷蔵室吐出口
12 冷凍室送風路(第二送風経路)
12a 冷凍室吐出口
13 野菜室送風路(第三送風経路)
13a 野菜室吐出口
14a 冷蔵用蒸発器(第一蒸発器)
14b 冷凍用蒸発器(第二蒸発器)
15a,b 冷蔵室戻り口
16 ヒンジカバー
17 冷凍室戻り口
18 野菜室戻り風路
18a 野菜室戻り口
19 野菜室ダンパ
20 冷凍室ダンパ
21 ラジアントヒータ
22a,22b 排水口
23a,23b 樋
24 圧縮機
25 風路
26 庫外ファン
27a 冷蔵用排水管
27b 冷凍用排水管
28,29,30 断熱仕切壁
31 制御基板
32 蒸発皿
35 チルドルーム
39 機械室
40a 冷蔵用蒸発器温度センサ
40b 冷凍用蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 野菜室温度センサ
50a,50b 放熱器(放熱手段)
51 結露抑制パイプ(放熱手段)
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54b 冷蔵用気液分離器
54b 冷凍用気液分離器
55a,55b 熱交換部
56 逆止弁
101 樋部ヒータ
102 排水管上部ヒータ
103 排水管下部ヒータ
1 Refrigerator 2 Refrigerating room (first refrigerating temperature zone room)
2a, 2b refrigerator compartment door 3 ice making compartment 4 upper freezer compartment 5 lower freezer compartment freezer compartments 3a, 4a, 5a freezer compartment door 6 vegetable compartment (second refrigerator temperature zone compartment)
6a Vegetable compartment door 7 Freezing temperature zone compartment (collective term for 3, 4, 5)
8a Cold storage evaporator room (first evaporator storage room)
8b Freezing evaporator room (second evaporator storage room)
9a Cooling fan (first blower)
9b Refrigeration fan (second blower)
10 Thermal insulation box body 10a Outer box 10b Inner box 11 Refrigerating compartment ventilation path (first ventilation path)
11a Refrigerating compartment outlet 12 Freezing compartment ventilation path (second ventilation path)
12a Freezer compartment outlet 13 Vegetable compartment ventilation path (third ventilation path)
13a Vegetable compartment discharge port 14a Refrigeration evaporator (first evaporator)
14b refrigeration evaporator (second evaporator)
15a, b refrigerator compartment return port 16 hinge cover 17 freezer compartment return port 18 vegetable compartment return air passage 18a vegetable compartment return port 19 vegetable compartment damper 20 freezer compartment damper 21 radiant heaters 22a, 22b drain ports 23a, 23b gutter 24 compressor 25 Air passage 26 Outside fan 27a Cold storage drain pipe 27b Freezing drain pipe 28, 29, 30 Thermal insulation partition wall 31 Control board 32 Evaporation plate 35 Chilled room 39 Machine room 40a Cold storage evaporator temperature sensor 40b Freezing evaporator temperature sensor 41 refrigerator compartment temperature sensor 42 freezer compartment temperature sensor 43 vegetable compartment temperature sensor 50a, 50b radiator (radiating means)
51 Condensation suppression pipe (heat dissipation means)
52 three-way valve (refrigerant control means)
53a Capillary tube for refrigeration (decompression means)
53b Freezing capillary tube (decompression means)
54b gas-liquid separator for refrigeration 54b gas-liquid separator for freezing 55a, 55b heat exchange unit 56 check valve 101 gutter heater 102 drain pipe upper heater 103 drain pipe lower heater

Claims (8)

温度を冷凍温度帯に固定した冷凍温度帯室の上方に第一冷蔵温度帯室,前記冷凍温度帯室の下方に温度を冷蔵温度帯に固定した第二冷蔵温度帯室を備え,
前記第一冷蔵温度帯室の略背部に位置する第一蒸発器と,該第一蒸発器を収納する第一蒸発器収納室と,前記第一蒸発器と熱交換した空気を前記第一蒸発器収納室から前記第一冷蔵温度帯室に導く第一送風経路と,前記第一冷蔵温度帯室から前記第一蒸発器収納室に空気を導く第一戻り経路と,前記第一冷蔵温度帯室に循環気流を形成する第一送風機と,
冷媒を圧縮する圧縮機,及び,該圧縮機からの冷媒流れを制御する冷媒流制御手段と,を備え,
前記冷凍温度帯室の略背部に位置し前記第一蒸発器よりも低温となる第二蒸発器と,該第二蒸発器を収納する第二蒸発器収納室と,前記第二蒸発器と熱交換した空気を前記第二蒸発器収納室から前記冷凍温度帯室に導く第二送風経路と,前記冷凍温度帯室から前記第二蒸発器収納室に空気を導く第二戻り経路と,前記冷凍温度帯室に循環気流を形成する第二送風機と,を有し,
前記冷媒流制御手段は,前記第一蒸発器への冷媒の第一流出口,及び,前記第二蒸発器への冷媒の第二流出口を備え,前記第一流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第一蒸発器のみを冷却して前記圧縮機へ戻り,前記第二流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第二蒸発器のみを冷却して前記圧縮機へ戻り,
前記第二蒸発器に流れる冷媒を減圧する第二減圧器と,
前記第一蒸発器に流れる冷媒を前記第二減圧器の減圧量よりも少なく減圧する第一減圧器と,を備え,
前記第二蒸発器収納室,前記第二送風経路,前記冷凍温度帯室または前記第二戻り経路の何れかと,前記第二冷蔵温度帯室とが,連通している
ことを特徴とする冷蔵庫。
A first refrigerating temperature zone chamber above the freezing temperature zone chamber whose temperature is fixed to the freezing temperature zone , and a second refrigerating temperature zone room below the freezing temperature zone chamber whose temperature is fixed to the refrigerating temperature zone,
A first evaporator located substantially behind the first refrigerating temperature zone chamber, a first evaporator storage chamber that stores the first evaporator, and air that has undergone heat exchange with the first evaporator to the first evaporator. a first airflow path leading from the evaporator storage chamber to the first refrigeration temperature zone chamber; a first return path leading air from the first refrigeration temperature zone chamber to the first evaporator storage chamber; and the first refrigeration temperature zone A first blower that forms a circulating airflow in the room;
a compressor for compressing a refrigerant; and refrigerant flow control means for controlling the flow of refrigerant from the compressor,
a second evaporator located substantially behind the freezing temperature zone chamber and having a lower temperature than the first evaporator; a second evaporator storage chamber that houses the second evaporator; and the second evaporator. a second blowing path that guides the heat-exchanged air from the second evaporator storage chamber to the freezing temperature zone chamber; a second return path that guides air from the freezing temperature zone chamber to the second evaporator storage chamber; a second blower for forming a circulating airflow in the freezing temperature zone chamber;
The refrigerant flow control means has a first outlet for refrigerant to the first evaporator and a second outlet for refrigerant to the second evaporator, and the refrigerant flowing through the first outlet is Of the first evaporator and the second evaporator, only the first evaporator is cooled and returned to the compressor, and the refrigerant that has flowed through the second outlet is of which, only the second evaporator is cooled and returned to the compressor,
a second pressure reducer that reduces the pressure of the refrigerant flowing to the second evaporator;
a first decompressor that decompresses the refrigerant flowing to the first evaporator to be less than the decompression amount of the second decompressor;
A refrigerator, wherein any one of the second evaporator housing chamber, the second blowing path, the freezing temperature zone chamber, or the second return path, and the second refrigerating temperature zone chamber are in communication with each other.
前記冷凍温度帯室と前記第一冷蔵温度帯室を隔てる第一の断熱仕切壁と,前記冷凍温度帯室と前記第二冷蔵温度帯室を隔てる第二の断熱仕切壁を備え,
前記第二冷蔵温度帯室と連通する風路を,前記第二の断熱仕切壁を通過するように設けたことを特徴とする請求項1に記載の冷蔵庫。
a first heat insulating partition wall separating the freezing temperature zone chamber and the first refrigerating temperature zone chamber, and a second heat insulating partition wall separating the freezing temperature zone chamber and the second refrigerating temperature zone chamber,
2. The refrigerator according to claim 1, wherein an air passage communicating with said second refrigerating temperature zone chamber is provided so as to pass through said second heat insulating partition wall.
前記第二冷蔵温度帯室と連通する風路の出口開口の少なくとも一つを,前記第二の断熱仕切壁の下面に略一致するように設けたことを特徴とする請求項2に記載の冷蔵庫。 3. The refrigerator according to claim 2, wherein at least one of the outlet openings of the air passage communicating with the second refrigerating temperature zone chamber is provided so as to substantially match the lower surface of the second heat insulating partition wall. . 前記第二冷蔵温度帯室と連通する風路に,該風路を流れる気流の量を制御する送風量制御手段を備えたことを特徴とする請求項1乃至請求項3の何れかに記載の冷蔵庫。 4. The apparatus according to any one of claims 1 to 3, wherein the air passage communicating with the second refrigerating temperature zone chamber is provided with a blowing amount control means for controlling the amount of air flowing through the air passage. refrigerator. 温度を冷凍温度帯に固定した冷凍温度帯室の上方に第一冷蔵温度帯室,前記冷凍温度帯室の下方に温度を冷蔵温度帯に固定した第二冷蔵温度帯室を備え,
前記第一冷蔵温度帯室の略背部に位置する第一蒸発器と,該第一蒸発器を収納する第一蒸発器収納室と,前記第一蒸発器と熱交換した空気を前記第一蒸発器収納室から前記第一冷蔵温度帯室に導く第一送風経路と,前記第一冷蔵温度帯室から前記第一蒸発器収納室に空気を導く第一戻り経路と,前記第一冷蔵温度帯室に循環気流を形成する第一送風機と,
冷媒を圧縮する圧縮機,及び,該圧縮機からの冷媒流れを制御する冷媒流制御手段と,を備え,
前記冷凍温度帯室の略背部に位置する第二蒸発器と,該第二蒸発器を収納する第二蒸発器収納室と,前記第二蒸発器と熱交換した空気を前記第二蒸発器収納室から前記冷凍温度帯室に導く第二送風経路と,前記冷凍温度帯室から前記第二蒸発器収納室に空気を導く第二戻り経路と,
前記第二送風経路から前記第二冷蔵温度帯室に空気を導く第三送風経路と,前記第二冷蔵温度帯室から前記第二蒸発器収納室に空気を導く第三戻り経路と,
前記冷凍温度帯室及び前記第二冷蔵温度帯室に循環気流を形成する第二送風機と,
前記冷媒流制御手段は,前記第一蒸発器への冷媒の第一流出口,及び,前記第二蒸発器への冷媒の第二流出口を備え,前記第一流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第一蒸発器のみを冷却して前記圧縮機へ戻り,前記第二流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第二蒸発器のみを冷却して前記圧縮機へ戻り,
前記第二蒸発器に流れる冷媒を減圧する第二減圧器と,
前記第一蒸発器に流れる冷媒を前記第二減圧器の減圧量よりも少なく減圧する第一減圧器と,を備えことを特徴とする冷蔵庫。
A first refrigerating temperature zone chamber above the freezing temperature zone chamber whose temperature is fixed to the freezing temperature zone , and a second refrigerating temperature zone room below the freezing temperature zone chamber whose temperature is fixed to the refrigerating temperature zone,
A first evaporator located substantially behind the first refrigerating temperature zone chamber, a first evaporator storage chamber that stores the first evaporator, and air that has undergone heat exchange with the first evaporator to the first evaporator. a first airflow path leading from the evaporator storage chamber to the first refrigeration temperature zone chamber; a first return path leading air from the first refrigeration temperature zone chamber to the first evaporator storage chamber; and the first refrigeration temperature zone A first blower that forms a circulating airflow in the room;
a compressor for compressing a refrigerant; and refrigerant flow control means for controlling the flow of refrigerant from the compressor,
a second evaporator located substantially behind the freezing temperature zone chamber; a second evaporator storage chamber that stores the second evaporator; a second airflow path leading from the room to the freezing temperature zone chamber; a second return path leading air from the freezing temperature zone room to the second evaporator storage compartment;
a third air-blowing path that guides air from the second air-blowing path to the second refrigerating temperature zone chamber; a third return path that guides air from the second refrigerating temperature zone chamber to the second evaporator storage chamber;
a second blower that forms a circulating airflow in the freezing temperature zone chamber and the second refrigerating temperature zone chamber;
The refrigerant flow control means has a first outlet for refrigerant to the first evaporator and a second outlet for refrigerant to the second evaporator, and the refrigerant flowing through the first outlet is Of the first evaporator and the second evaporator, only the first evaporator is cooled and returned to the compressor, and the refrigerant that has flowed through the second outlet is of which, only the second evaporator is cooled and returned to the compressor,
a second pressure reducer that reduces the pressure of the refrigerant flowing to the second evaporator;
and a first decompressor that decompresses the refrigerant flowing through the first evaporator to be less than the amount of decompression of the second decompressor .
温度を冷凍温度帯に固定した冷凍温度帯室の上方に第一冷蔵温度帯室,前記冷凍温度帯室の下方に温度を冷蔵温度帯に固定した第二冷蔵温度帯室を備え,
第一蒸発器の下方に,第一蒸発器よりも低温となる第二蒸発器を備え,
前記第一蒸発器と熱交換した空気を前記第一冷蔵温度帯室へ送風する第一送風機と,
冷媒を圧縮する圧縮機,及び,該圧縮機からの冷媒流れを制御する冷媒流制御手段と,を備え,
前記冷媒流制御手段は,前記第一蒸発器への冷媒の第一流出口,及び,前記第二蒸発器への冷媒の第二流出口を備え,前記第一流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第一蒸発器のみを冷却して前記圧縮機へ戻り,前記第二流出口を流れた冷媒は,前記第一蒸発器及び前記第二蒸発器のうち,前記第二蒸発器のみを冷却して前記圧縮機へ戻り,
前記第二蒸発器に流れる冷媒を減圧する第二減圧器と,
前記第一蒸発器に流れる冷媒を前記第二減圧器の減圧量よりも少なく減圧する第一減圧器と,を備え,
前記第二蒸発器と熱交換した空気を前記冷凍温度帯室へ送風する第二送風機を有し,
前記第二蒸発器と熱交換した空気は,前記第二冷蔵温度帯室へも供給されことを特徴とする冷蔵庫。
A first refrigerating temperature zone chamber above the freezing temperature zone chamber whose temperature is fixed to the freezing temperature zone , and a second refrigerating temperature zone room below the freezing temperature zone chamber whose temperature is fixed to the refrigerating temperature zone,
A second evaporator having a lower temperature than the first evaporator is provided below the first evaporator,
a first blower that blows the air heat-exchanged with the first evaporator to the first refrigerating temperature zone chamber;
a compressor for compressing a refrigerant; and refrigerant flow control means for controlling the flow of refrigerant from the compressor,
The refrigerant flow control means has a first outlet for refrigerant to the first evaporator and a second outlet for refrigerant to the second evaporator, and the refrigerant flowing through the first outlet is Of the first evaporator and the second evaporator, only the first evaporator is cooled and returned to the compressor, and the refrigerant that has flowed through the second outlet is of which, only the second evaporator is cooled and returned to the compressor,
a second pressure reducer that reduces the pressure of the refrigerant flowing to the second evaporator;
a first decompressor that decompresses the refrigerant flowing to the first evaporator to be less than the decompression amount of the second decompressor;
a second blower for blowing the air heat-exchanged with the second evaporator to the freezing temperature zone chamber;
The refrigerator, wherein the air heat-exchanged with the second evaporator is also supplied to the second refrigerating temperature zone chamber.
前記第二冷蔵温度帯室に供給される風量は前記冷凍温度帯室に供給される風量より少ないことを特徴とする請求項16の何れか一項に記載の冷蔵庫。 7. The refrigerator according to claim 1 , wherein the volume of air supplied to said second refrigerating temperature zone chamber is smaller than the volume of air supplied to said freezing temperature zone chamber. 前記第二冷蔵温度帯室は前記冷凍温度帯室と前記第二冷蔵温度帯室を隔てる第二の断熱仕切壁を介して前記冷凍温度帯室の前記第二蒸発器と熱交換した空気により冷却されると共に前記第二冷蔵温度帯室の冷却の過不足に応じて前記第二蒸発器と熱交換した空気が送風されることを特徴とする請求項16の何れか一項に記載の冷蔵庫。 The second refrigerating temperature zone chamber is heat-exchanged with the second evaporator of the freezing temperature zone chamber via a second heat insulating partition wall that separates the freezing temperature zone chamber and the second refrigerating temperature zone chamber . 7. The air that has been cooled and has exchanged heat with the second evaporator according to the excess or deficiency of cooling in the second refrigerating temperature zone chamber is blown . Refrigerator as described in section.
JP2017206769A 2017-10-26 2017-10-26 refrigerator Active JP7267673B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017206769A JP7267673B2 (en) 2017-10-26 2017-10-26 refrigerator
CN201811030636.5A CN109708378B (en) 2017-10-26 2018-09-05 Refrigerator with a door
JP2022026984A JP7254227B2 (en) 2017-10-26 2022-02-24 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206769A JP7267673B2 (en) 2017-10-26 2017-10-26 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022026984A Division JP7254227B2 (en) 2017-10-26 2022-02-24 refrigerator

Publications (2)

Publication Number Publication Date
JP2019078494A JP2019078494A (en) 2019-05-23
JP7267673B2 true JP7267673B2 (en) 2023-05-02

Family

ID=66253826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206769A Active JP7267673B2 (en) 2017-10-26 2017-10-26 refrigerator

Country Status (2)

Country Link
JP (1) JP7267673B2 (en)
CN (1) CN109708378B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329353A (en) 2002-05-14 2003-11-19 Fujitsu General Ltd Refrigerator
JP2005257237A (en) 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Refrigeration unit
JP4269459B2 (en) 2000-01-14 2009-05-27 パナソニック株式会社 Freezer refrigerator
US20090173086A1 (en) 2006-04-05 2009-07-09 Bsh Bosch Und Siemens Hausgerate Gmbh Method for operating a refrigerating device comprising evaporators which are connected in parallel and refrigerating device therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3636602B2 (en) * 1998-09-16 2005-04-06 株式会社東芝 refrigerator
JP2000146400A (en) * 1998-11-10 2000-05-26 Toshiba Corp Refrigerator
JP2006010162A (en) * 2004-06-24 2006-01-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2006090686A (en) * 2004-08-26 2006-04-06 Toshiba Corp Refrigerator
JP5909427B2 (en) * 2012-08-23 2016-04-26 日立アプライアンス株式会社 refrigerator
CN204006895U (en) * 2014-06-30 2014-12-10 青岛海尔股份有限公司 Refrigerator
JP6248013B2 (en) * 2014-08-22 2017-12-13 日立アプライアンス株式会社 refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269459B2 (en) 2000-01-14 2009-05-27 パナソニック株式会社 Freezer refrigerator
JP2003329353A (en) 2002-05-14 2003-11-19 Fujitsu General Ltd Refrigerator
JP2005257237A (en) 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Refrigeration unit
US20090173086A1 (en) 2006-04-05 2009-07-09 Bsh Bosch Und Siemens Hausgerate Gmbh Method for operating a refrigerating device comprising evaporators which are connected in parallel and refrigerating device therefor

Also Published As

Publication number Publication date
JP2019078494A (en) 2019-05-23
CN109708378B (en) 2022-01-04
CN109708378A (en) 2019-05-03

Similar Documents

Publication Publication Date Title
JP5530852B2 (en) refrigerator
JP5178642B2 (en) refrigerator
TWI716636B (en) refrigerator
CN111351300A (en) Refrigerator with a door
JP6890502B2 (en) refrigerator
JP6934433B2 (en) refrigerator
CN112378146B (en) Refrigerator with a door
JP7254227B2 (en) refrigerator
JP7267673B2 (en) refrigerator
JP2019138481A (en) refrigerator
JP2019138514A (en) refrigerator
JP2019132506A (en) refrigerator
JP6975735B2 (en) refrigerator
JP2023068192A (en) refrigerator
JP7369520B2 (en) refrigerator
JP2021042865A (en) refrigerator
JP2020034205A (en) refrigerator
JP7454458B2 (en) refrigerator
JP2014240710A (en) Refrigerator
JP2019132503A (en) refrigerator
JP6807882B2 (en) refrigerator
CN111473574B (en) Refrigerator with a door
JP7374141B2 (en) refrigerator
JP7473390B2 (en) refrigerator
JP7028661B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210625

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220307

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220308

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220401

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220405

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220510

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221213

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230314

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230411

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230420

R150 Certificate of patent or registration of utility model

Ref document number: 7267673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150