JP2019132503A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2019132503A
JP2019132503A JP2018014312A JP2018014312A JP2019132503A JP 2019132503 A JP2019132503 A JP 2019132503A JP 2018014312 A JP2018014312 A JP 2018014312A JP 2018014312 A JP2018014312 A JP 2018014312A JP 2019132503 A JP2019132503 A JP 2019132503A
Authority
JP
Japan
Prior art keywords
refrigeration
refrigerator
compartment
temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018014312A
Other languages
Japanese (ja)
Inventor
真子 國分
Masako Kokubu
真子 國分
Original Assignee
日立グローバルライフソリューションズ株式会社
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社, Hitachi Global Life Solutions Inc filed Critical 日立グローバルライフソリューションズ株式会社
Priority to JP2018014312A priority Critical patent/JP2019132503A/en
Publication of JP2019132503A publication Critical patent/JP2019132503A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a refrigerator suppressed in drying of a refrigeration temperature zone chamber.SOLUTION: A refrigerator including a refrigeration chamber, a freezing chamber and a vegetable chamber, further includes a first evaporator for cooling the refrigeration chamber, a second evaporator for cooling the freezing chamber and the vegetable chamber, a first blower for distributing the air cooled by the first evaporator, a second blower for distributing the air cooled by the second evaporator, a first air channel for distributing the air exchanging heat with the first evaporator to the refrigeration chamber again to return the air to the refrigeration chamber again, and a second air channel for distributing the air exchanging heat with the second evaporator to the freezing chamber and the vegetable chamber again and to return the air to the second evaporator again. A refrigeration chamber damper for controlling a distribution amount of the air to the vegetable chamber is disposed on the way of the second air channel.SELECTED DRAWING: Figure 3

Description

本発明は、冷蔵庫に関するものである。   The present invention relates to a refrigerator.
本技術分野の背景技術として、例えば特開2015−64197号公報(特許文献1)がある。この特許文献1には、上から冷蔵室、野菜室、冷凍室を有する冷蔵庫において、冷蔵室の下部の背部に冷蔵用冷却器を設け、冷凍室の背部に冷凍用冷却器を設けることが開示されている。   As background art of this technical field, for example, there is JP-A-2015-64197 (Patent Document 1). This Patent Document 1 discloses that in a refrigerator having a refrigerator compartment, a vegetable compartment, and a freezer compartment from above, a refrigerator for refrigeration is provided on the back of the lower portion of the refrigerator compartment, and a refrigerator for freezing is provided on the back of the refrigerator compartment. Has been.
特開2015−64197号公報Japanese Patent Laying-Open No. 2015-64197
しかし、特許文献1の冷蔵庫では、冷蔵室だけでなく、野菜室についても、冷蔵用冷却器により冷却された空気を供給している。この冷蔵用冷却器により冷却された空気は比較的高い温度であるため、冷蔵室と野菜室を設定温度まで冷却するためには、冷蔵室と野菜室に流入させる冷気の量を増やしたり、冷気を流入させる時間を長くしたりする必要がある。その結果、冷蔵室と野菜室の内部が乾燥しやすくなる。   However, in the refrigerator of Patent Document 1, not only the refrigerator compartment but also the vegetable compartment is supplied with air cooled by a refrigerator for refrigerator. Since the air cooled by this refrigeration cooler has a relatively high temperature, in order to cool the refrigerator compartment and the vegetable compartment to the set temperature, the amount of cold air flowing into the refrigerator compartment and the vegetable compartment can be increased, It is necessary to lengthen the time for inflow. As a result, the inside of the refrigerator compartment and the vegetable compartment can be easily dried.
そこで本発明では、冷蔵温度帯室の乾燥を抑制した冷蔵庫を提供することを目的とする。   Therefore, an object of the present invention is to provide a refrigerator that suppresses drying of a refrigerated temperature zone.
このような課題を解決するために、本発明に係る冷蔵庫は、冷蔵室と、冷凍室と、野菜室と、を備えた冷蔵庫において、前記冷蔵室を冷却する第一蒸発器と、前記冷凍室及び前記野菜室を冷却する第二蒸発器と、前記第一蒸発器で冷やされた空気を送風する第一送風機と、前記第二蒸発器で冷やされた空気を送風する第二送風機と、前記第一蒸発器と熱交換した空気を前記冷蔵室へ送り再び前記第一蒸発器へ戻す第一風路と、前記第二蒸発器と熱交換した空気を前記冷凍室及び前記野菜室へ送り再び前記第二蒸発器へ戻す第二風路と、を有し、前記第二風路と途中に、前記野菜室への空気の送風量を制御する冷蔵室ダンパを設けたことを特徴とする。   In order to solve such a problem, the refrigerator according to the present invention is a refrigerator including a refrigerator compartment, a freezer compartment, and a vegetable compartment, a first evaporator that cools the refrigerator compartment, and the freezer compartment And a second evaporator that cools the vegetable compartment, a first blower that blows air cooled by the first evaporator, a second blower that blows air cooled by the second evaporator, and The first air passage that exchanges heat with the first evaporator is sent to the refrigeration chamber and returns to the first evaporator, and the air that exchanges heat with the second evaporator is sent to the freezer compartment and the vegetable compartment again. And a second air passage returning to the second evaporator, and a cold room damper for controlling the amount of air blown into the vegetable compartment is provided in the middle of the second air passage.
本発明によれば、冷蔵温度帯室の乾燥を抑制した冷蔵庫を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerator which suppressed drying of the refrigerator temperature zone room can be provided.
実施例に係る冷蔵庫の正面図Front view of the refrigerator according to the embodiment 図1のA−A断面図AA sectional view of FIG. 図2のB−B断面図BB sectional view of FIG. 実施例に係る冷蔵庫の風路構成を表す模式図The schematic diagram showing the air path structure of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の冷凍サイクル構成を表す概略図Schematic showing the refrigerating cycle structure of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の通常時の運転制御を表すフローチャートThe flowchart showing the normal operation control of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の高負荷時の運転制御を表すフローチャートThe flowchart showing the operation control at the time of high load of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の通常時の制御を表すタイムチャートの一例An example of a time chart representing normal control of the refrigerator according to the embodiment 実施例に係る冷蔵庫の高負荷時の制御を表すタイムチャートの一例An example of a time chart representing control at high load of the refrigerator according to the embodiment 冷蔵庫の蒸発器温度,理論成績係数,冷蔵室温度の関係を表すグラフGraph showing the relationship between the evaporator temperature, the coefficient of theoretical performance, and the refrigerator temperature 冷蔵庫の冷凍サイクルの状態を表すモリエル線図Mollier diagram showing the state of the refrigeration cycle of the refrigerator 実施例に係る冷蔵用ファンの斜視図The perspective view of the refrigeration fan based on an Example プロペラファンとターボファンの空力特性と抵抗曲線の関係を示した図Diagram showing the relationship between the aerodynamic characteristics and resistance curve of propeller fan and turbofan 本実施例に係る冷蔵庫における野菜室の斜視図The perspective view of the vegetable compartment in the refrigerator which concerns on a present Example. 図14の野菜室について、野菜容器カバーを配置したときの斜視図About the vegetable room of FIG. 14, the perspective view when arrange | positioning a vegetable container cover 図15のA−A断面の斜視図The perspective view of the AA cross section of FIG. 図15のA−A断面図AA sectional view of FIG. 仕切りの正面図Front view of partition 図18のB−B断面図BB sectional view of FIG. 7日保存後のオレンジの水分保持率を示したグラフGraph showing water retention of orange after storage for 7 days 7日保存後の大葉の水分保持率を示したグラフGraph showing water retention of large leaves after storage for 7 days 野菜室内の二酸化炭素濃度を示したグラフGraph showing the carbon dioxide concentration in the vegetable compartment 7日保存後のオレンジのビタミンC含量を示したグラフGraph showing the vitamin C content of orange after 7 days storage
次に、冷蔵室に高湿冷気を送るための構造について説明する。   Next, a structure for sending high-humidity cold air to the refrigerator compartment will be described.
本発明に係る冷蔵庫の実施例について説明する。まず,実施例に係る冷蔵庫の構成を図1〜図5を参照しながら説明する。図1は実施例に係る冷蔵庫の正面図,図2は図1のA−A断面図,図3は図2のB−B断面図,図4は実施例に係る冷蔵庫の風路構成を示す模式図,図5は実施例に係る冷蔵庫の冷凍サイクルの構成を表す概略図である。冷蔵庫1の断熱箱体10は,前方に開口しており,上方から冷蔵室2(第一冷蔵温度帯室),左右に並設された製氷室3と上段冷凍室4,下段冷凍室5,野菜室6(第二冷蔵温度帯室)の順に貯蔵室を形成している。以下では,製氷室3,上段冷凍室4,下段冷凍室5は,まとめて冷凍室7(冷凍温度帯室)と呼ぶ。   An embodiment of the refrigerator according to the present invention will be described. First, the structure of the refrigerator which concerns on an Example is demonstrated, referring FIGS. 1 is a front view of a refrigerator according to the embodiment, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIG. 3 is a sectional view taken along line BB in FIG. FIG. 5 is a schematic diagram illustrating the configuration of the refrigeration cycle of the refrigerator according to the embodiment. The heat insulating box 10 of the refrigerator 1 is opened forward, and from above the refrigerator compartment 2 (first refrigerator temperature zone), the ice making compartment 3 and the upper freezer compartment 4, the lower freezer compartment 5, arranged side by side on the left and right. A storage room is formed in the order of the vegetable room 6 (second refrigeration temperature zone room). Hereinafter, the ice making room 3, the upper freezing room 4, and the lower freezing room 5 are collectively referred to as a freezing room 7 (freezing temperature zone room).
冷蔵室2の前方の開口は,左右に分割された回転式の冷蔵室扉2a,2bにより開閉され,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6の前方の開口は,引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aによってそれぞれ開閉される。冷蔵室扉2a,2bの庫内側外周には,シール部材として冷蔵室パッキン95a,95b(第一シール部材),製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5aの庫内側外周には,シール部材として冷凍室パッキン96a,96b,96c(第二シール部材),野菜室6の扉である野菜室扉6aの庫内側外周には,シール部材として野菜室パッキン97(第三シール部材)をそれぞれ備えており,各扉を閉じた際に,断熱箱体10の前縁部と接触することにより庫内外の空気の流通を抑制するようにしている。冷蔵室パッキン95a,95bの周長はそれぞれ2271mm,2441mmであり冷蔵室パッキン95a,95bの全周長(第一シール部材の周長)は4712mmである。冷凍室パッキン96a,96b,96cの周長は,それぞれ976mm,1416mm,2087mmであり,冷凍室パッキン96a,96b,96cの全周長(第二シール部材の周長)は4209mmである。また,野菜室パッキン97の周長(第三シール部材の周長)は2107mmである。   The front opening of the refrigerating room 2 is opened and closed by rotary refrigerating room doors 2a and 2b divided into left and right, and the front opening of the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 is The drawer-type ice making room door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are opened and closed. Refrigerator compartment packings 95a and 95b (first seal members), ice making door 3a, upper freezer compartment door 4a, and lower freezer compartment door 5a are provided on the outer perimeter of refrigerator compartment doors 2a and 2b. Is a freezer compartment packing 96a, 96b, 96c (second seal member) as a seal member, and a vegetable compartment packing 97 (third seal member) as a seal member on the inner periphery of the vegetable compartment door 6a which is a door of the vegetable compartment 6. When the doors are closed, the flow of air inside and outside the cabinet is suppressed by contacting the front edge of the heat insulating box 10. The peripheral lengths of the refrigerator compartment packings 95a and 95b are 2271 mm and 2441 mm, respectively, and the total peripheral length of the refrigerator compartment packings 95a and 95b (peripheral length of the first seal member) is 4712 mm. The peripheral lengths of the freezer compartment packings 96a, 96b, and 96c are 976 mm, 1416 mm, and 2087 mm, respectively, and the total peripheral lengths of the freezer compartment packings 96a, 96b, and 96c (the peripheral length of the second seal member) are 4209 mm. Moreover, the perimeter of the vegetable compartment packing 97 (perimeter of the third seal member) is 2107 mm.
冷蔵庫1と扉2a,2bを固定するために扉ヒンジ(図示せず)は冷蔵室2上部及び下部に設けてあり,上部の扉ヒンジは扉ヒンジカバー16で覆われている。また、扉2aには庫内の温度設定の操作を行う操作部99を設けている。   In order to fix the refrigerator 1 and the doors 2a and 2b, door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2, and the upper door hinges are covered with a door hinge cover 16. The door 2a is provided with an operation unit 99 for performing an operation for setting the temperature in the cabinet.
冷蔵室2の温度と、冷凍室7の温度は、操作部99を介してユーザーが維持温度レベルを選択できるようになっている。具体的には、冷蔵室2と冷凍室7の維持温度レベルの設定はそれぞれ「強」「中」「弱」の3段階に設定できるようになっており、冷蔵室2は「強」では約2℃、「中」では約4℃、「弱」では約6℃に維持され、冷凍室7は「強」では約-22℃、「中」では約−20℃、「弱」では約−18℃に維持される。なお、野菜室6は平均的に7℃程度に維持される。   The temperature of the refrigerator compartment 2 and the temperature of the freezer compartment 7 can be selected by the user via the operation unit 99. Specifically, the setting of the maintenance temperature level of the refrigerator compartment 2 and the freezer compartment 7 can be set in three stages of “strong”, “medium”, and “weak”, respectively. 2 ° C., “Medium” is maintained at about 4 ° C., “Weak” is maintained at about 6 ° C., and the freezer compartment 7 is “−High” at about −22 ° C., “Medium” at about −20 ° C., “Low” at about − Maintained at 18 ° C. The vegetable room 6 is maintained at about 7 ° C. on average.
冷蔵庫1の幅WはW=685mm(図1参照),奥行きDはD=738mm(図2参照),高さHはH=1833mm(図1参照)であり、断熱箱体10の開口部における冷蔵室高さ寸法HはH=787mm、冷凍室高さ寸法HはH=482mm、野菜室高さ寸法HはH=334mmである(図2参照)。JISC9801−3:2015に基づく全定格内容積は602Lであり,内訳は冷蔵室が308Lであり全定格内容積の51.2%,冷凍室は180Lであり29.9%(全定格内容積の28%以上),野菜室は114Lであり全定格内容積の18.9%である。 The width W of the refrigerator 1 is W = 685 mm (see FIG. 1), the depth D is D = 738 mm (see FIG. 2), and the height H is H = 1833 mm (see FIG. 1). the refrigerating chamber height H R is H R = 787mm, freezing chamber height H F is H F = 482mm, vegetable compartment height H V is H V = 334 mm (see FIG. 2). The total rated internal volume based on JISC9801-3: 2015 is 602L, the breakdown is 308L for the refrigerator compartment, 51.2% of the total rated internal volume, the freezer compartment is 180L, 29.9% (of the total rated internal volume) 28% or more), the vegetable compartment is 114L, which is 18.9% of the total rated internal volume.
図2に示すように,外箱10aと内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される断熱箱体10により,冷蔵庫1の庫外と庫内は隔てられている。断熱箱体10には発泡断熱材に加えて複数の真空断熱材36を,鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と,上段冷凍室4及び製氷室3は断熱仕切壁28(空気流通遮断手段)によって隔てられ,下段冷凍室5と野菜室6は断熱仕切壁29によって隔てられている。また,製氷室3,上段冷凍室4,及び下段冷凍室5の各貯蔵室の前面側には,扉3a,4a,5aの隙間を介した庫内外の空気の流通を防ぐために,断熱仕切壁30を設けている。   As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator 1 are separated by a heat insulating box 10 formed by filling a foam heat insulating material (for example, urethane foam) between the outer box 10 a and the inner box 10 b. ing. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 36 are mounted on the heat insulating box 10 between a steel plate outer box 10a and a synthetic resin inner box 10b. The refrigerator compartment 2, the upper freezer compartment 4 and the ice making compartment 3 are separated by a heat insulating partition wall 28 (air circulation blocking means), and the lower freezer compartment 5 and the vegetable compartment 6 are separated by a heat insulating partition wall 29. In addition, a heat insulating partition wall is provided on the front side of each storage room of the ice making room 3, the upper freezing room 4, and the lower freezing room 5 in order to prevent the flow of air inside and outside the space through the gaps of the doors 3a, 4a, 5a. 30 is provided.
冷蔵室2の扉2a,2bの庫内側には上方に開口した複数の扉ポケット33a,33b,33cと,複数の棚34a,34b,34c,34dを設け,複数の貯蔵スペースに区画されている。なお,最上部の扉ポケット33aの開口高さ(図2中の破線)は最上段の棚34aよりも高い位置に設けられている。冷凍室7及び野菜室6には,それぞれ扉3a,4a,5a,6aと一体に引き出される製氷室容器(図示せず),上段冷凍室容器4b,下段冷凍室容器5b,野菜室容器6bを備えている。野菜室容器6bは,上下2段に分かれており,下段側の前方には飲料のボトル類を収納できるボトル収納スペース6cを備えている。ボトル収納スペース6cの高さ寸法は,1.5Lや2Lの飲料のボトルを立てて収納できるように305mm以上確保している(本実施例では315mm)。また,飲料用のボトルを収納可能なことは,カタログや取扱説明書,広告媒体等の文面,図,写真,映像を通じてユーザーに周知される。   A plurality of door pockets 33a, 33b, 33c opened upward and a plurality of shelves 34a, 34b, 34c, 34d are provided on the inner side of the doors 2a, 2b of the refrigerator compartment 2 and partitioned into a plurality of storage spaces. . The opening height (broken line in FIG. 2) of the uppermost door pocket 33a is provided at a position higher than that of the uppermost shelf 34a. The freezer compartment 7 and the vegetable compartment 6 are respectively provided with an ice making container (not shown), an upper freezer container 4b, a lower freezer container 5b, and a vegetable compartment container 6b that are pulled out integrally with the doors 3a, 4a, 5a, 6a. I have. The vegetable compartment container 6b is divided into two upper and lower tiers, and a bottle storage space 6c is provided in front of the lower tier for storing beverage bottles. The height of the bottle storage space 6c is 305 mm or more (315 mm in this embodiment) so that 1.5L and 2L beverage bottles can be stood and stored. Also, the ability to store beverage bottles is made known to users through catalogs, instruction manuals, texts such as advertising media, diagrams, photographs, and videos.
断熱仕切壁28の上方には,冷蔵室2の温度帯より低めに設定可能なチルドルーム35を設けている。チルドルーム35は,ユーザーが操作部99を介して設定温度を選択することができる。具体的には,冷蔵温度帯の約0〜3℃に維持する「温度レベル1」と,冷凍温度帯の約−3〜0℃に維持する「温度レベル2」の何れかに設定することができる。   A chilled room 35 that can be set lower than the temperature range of the refrigerator compartment 2 is provided above the heat insulating partition wall 28. In the chilled room 35, the user can select a set temperature via the operation unit 99. Specifically, it can be set to either “temperature level 1” maintained at about 0 to 3 ° C. of the refrigeration temperature zone or “temperature level 2” maintained at about −3 to 0 ° C. of the refrigeration temperature zone. it can.
冷蔵室2の略背部には冷蔵用蒸発器室8aを備えており,冷蔵用蒸発器室8a内には,フィンチューブ式熱交換器である冷蔵用蒸発器14a(第一蒸発器)が収納されている。冷蔵用蒸発器14aの上方には冷蔵用ファン9a(第一送風機)を備えている。また,冷蔵室2背部の幅方向の略中心には冷蔵室送風路11を備えており,冷蔵室送風路11の上部には,吹き出す空気を上方に指向させる指向手段を備えた冷蔵室吐出口11aを備えている。なお,本実施例の冷蔵庫では,冷蔵室吐出口11aの指向手段として,冷蔵室吐出口11aの開口面を上方に向けている。冷蔵室吐出口11aから上方に向けて吹き出された冷却空気は,図2中に矢印で示すように冷蔵室2の天井面を沿って流れて冷蔵室2の前方の領域に到達し,棚34a,34b,34cの前方に生じる扉ポケット33a,33b,33cとの隙間を流れ,棚34cと棚34dの間の空間の左後方に設けられた開口92(図3参照)を介してチルドルーム35の後方空間に入り,冷蔵用蒸発器室8aの下部前面,下部左側面,下部右前面に設けられた冷蔵室戻り風路15a,15b,15c(図3参照)から冷蔵用蒸発器室8aに戻る。また,棚34cと棚34dの間の空間を流れた空気の一部は,棚34cと棚34dの間の空間の右後方に設けられた冷蔵室戻り風路15d(図3参照)から冷蔵用蒸発器室8aに戻る。なお,冷蔵室戻り風路15cの一部には,冷蔵室2を流れる空気と接するように脱臭部材91(一例としてオープンセル構造脱臭部材)を備えている。   A refrigeration evaporator chamber 8a is provided substantially at the back of the refrigeration chamber 2, and a refrigeration evaporator 14a (first evaporator), which is a fin-tube heat exchanger, is accommodated in the refrigeration evaporator chamber 8a. Has been. A refrigeration fan 9a (first blower) is provided above the refrigeration evaporator 14a. Further, a refrigerator compartment air passage 11 is provided at a substantially center in the width direction of the back of the refrigerator compartment 2, and a refrigerator outlet having an orientation means for directing the air to be blown upward is provided above the refrigerator compartment air passage 11. 11a. In the refrigerator of the present embodiment, the opening surface of the refrigerator compartment discharge port 11a is directed upward as the directing means of the refrigerator compartment discharge port 11a. The cooling air blown upward from the refrigerating chamber discharge port 11a flows along the ceiling surface of the refrigerating chamber 2 as shown by an arrow in FIG. 2, reaches the area in front of the refrigerating chamber 2, and reaches the shelf 34a. , 34b, 34c flows through the gaps between the door pockets 33a, 33b, 33c, and the chilled room 35 through an opening 92 (see FIG. 3) provided at the left rear of the space between the shelf 34c and the shelf 34d. To the refrigeration evaporator chamber 8a from the refrigeration chamber return air passages 15a, 15b, 15c (see FIG. 3) provided on the lower front surface, the lower left surface, and the lower right front surface of the refrigeration evaporator chamber 8a. Return. Further, a part of the air flowing through the space between the shelf 34c and the shelf 34d is used for refrigeration from the refrigerator compartment return air passage 15d (see FIG. 3) provided at the right rear of the space between the shelf 34c and the shelf 34d. Return to the evaporator chamber 8a. A part of the refrigerating room return air passage 15c is provided with a deodorizing member 91 (open cell structure deodorizing member as an example) so as to be in contact with the air flowing through the refrigerating room 2.
冷凍室7の略背部には冷凍用蒸発器室8bを備えており,フィンチューブ式熱交換器である冷凍用蒸発器室8b内には,冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bを備えている。また,冷凍室7の背部には冷凍室送風路12を備えており,冷凍用ファン9b(第二送風機)の前方の冷凍室送風路12には複数の冷凍室吐出口12aを備えている。冷凍室用蒸発器室8bの下部前方には冷凍室7に送られた空気が戻る冷凍室戻り風路17(図2及び図3参照)を備えている。   A refrigeration evaporator chamber 8b is provided substantially at the back of the freezer compartment 7, and a refrigeration evaporator 14b (second evaporator) is accommodated in the refrigeration evaporator chamber 8b, which is a fin-tube heat exchanger. Has been. A freezing fan 9b is provided above the freezing evaporator 14b. A freezer compartment air passage 12 is provided at the back of the freezer compartment 7, and a plurality of freezer compartment discharge ports 12 a are provided in the freezer compartment air passage 12 in front of the freezing fan 9 b (second blower). A freezer compartment return air passage 17 (see FIGS. 2 and 3) through which air sent to the freezer compartment 7 returns is provided in front of the lower part of the freezer compartment evaporator chamber 8b.
野菜室6への風路となる野菜室送風路13は,冷凍室送風路12の右下方から分岐形成され,断熱仕切壁29を通過している。野菜室送風路13の出口となる野菜室吐出口13aは,野菜室6背部右上の断熱仕切壁29下面の高さと略一致するように設けられ,下方に開口している。野菜室送風路13には,野菜室6の冷却制御手段である野菜室ダンパ19を備えている(図3参照)。野菜室6と冷凍室7の間の断熱仕切壁29の左下部前方には,野菜室戻り流入口18aを備えており,断熱仕切壁29内を通過する野菜室戻り風路18を介して冷凍用蒸発器室8bの下部前方に設けられた野菜室戻り流出口18bに至る流路が形成されている。   The vegetable room air passage 13 serving as an air passage to the vegetable room 6 is branched from the lower right side of the freezer compartment air passage 12 and passes through the heat insulating partition wall 29. The vegetable room discharge port 13a serving as the outlet of the vegetable room air passage 13 is provided so as to substantially coincide with the height of the lower surface of the heat insulating partition wall 29 at the upper right of the back of the vegetable room 6 and opens downward. The vegetable room air passage 13 is provided with a vegetable room damper 19 which is a cooling control means for the vegetable room 6 (see FIG. 3). A vegetable room return inlet 18a is provided in front of the lower left part of the heat insulating partition wall 29 between the vegetable room 6 and the freezing room 7 and is frozen through the vegetable room return air passage 18 passing through the heat insulating partition wall 29. A flow path to the vegetable room return outlet 18b provided in front of the lower part of the evaporator room 8b is formed.
次に,本実施例に係る冷蔵庫の風路構成について図4を参照しながら説明する。冷蔵用蒸発器14aと熱交換して低温になった空気は,冷蔵用ファン9aを駆動することにより,冷蔵室送風路11,冷蔵室吐出口11aを介して冷蔵室2に送風され,冷蔵室2内を冷却する。冷蔵室2に送られた空気は,冷蔵室戻り風路15a,15b,15c及び15d(図3参照)から冷蔵用蒸発器室8aに戻る。以下,この冷蔵用蒸発器室8aから冷蔵室2を流れて冷蔵用蒸発器室8aに戻る風路を冷蔵風路111(第一風路)と呼ぶ。また,冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍室7に送風され,冷凍室7内を冷却する。冷凍室7に送られた空気は,冷凍室戻り風路17から冷凍用蒸発器室8bに戻る。また,野菜室ダンパ19が開放状態の場合には,冷凍室送風路12に流入した冷却空気の一部が野菜室送風路13を流れ,野菜室吐出口13aを介して野菜室6に至り,野菜室6内を冷却する。野菜室6に送られた空気は,野菜室戻り風路18を流れて冷凍用蒸発器室8bに戻る。以下,この冷凍用蒸発器室8bから冷凍室7を流れて冷凍用蒸発器室8bに戻る風路と,冷凍用蒸発器室8bから野菜室6を流れて冷凍用蒸発器室8bに戻る風路を冷凍野菜風路112(第二風路)と呼ぶ。   Next, the air path configuration of the refrigerator according to the present embodiment will be described with reference to FIG. The air that has become low temperature by exchanging heat with the refrigeration evaporator 14a is sent to the refrigeration room 2 via the refrigeration room air passage 11 and the refrigeration room discharge port 11a by driving the refrigeration fan 9a. 2 is cooled. The air sent to the refrigerating chamber 2 returns to the refrigerating evaporator chamber 8a from the refrigerating chamber return air passages 15a, 15b, 15c and 15d (see FIG. 3). Hereinafter, the air passage that flows from the refrigeration evaporator chamber 8a through the refrigeration chamber 2 and returns to the refrigeration evaporator chamber 8a is referred to as a refrigeration air passage 111 (first air passage). In addition, the air that has become low temperature by exchanging heat with the freezing evaporator 14b is sent to the freezing room 7 through the freezing room air passage 12 and the freezing room discharge port 12a by driving the freezing fan 9b. The inside of the freezer compartment 7 is cooled. The air sent to the freezer compartment 7 returns from the freezer compartment return air passage 17 to the freezer evaporator chamber 8b. In addition, when the vegetable compartment damper 19 is in an open state, a part of the cooling air flowing into the freezer compartment air passage 12 flows through the vegetable compartment air passage 13 and reaches the vegetable compartment 6 through the vegetable compartment discharge port 13a. Cool the vegetable compartment 6. The air sent to the vegetable compartment 6 flows through the vegetable compartment return air passage 18 and returns to the freezing evaporator compartment 8b. Hereinafter, an air path that flows from the freezing evaporator chamber 8b through the freezing chamber 7 and returns to the freezing evaporator chamber 8b, and an air flow that flows from the freezing evaporator chamber 8b through the vegetable chamber 6 and returns to the freezing evaporator chamber 8b. The road is called a frozen vegetable air path 112 (second air path).
本実施例の冷蔵庫では,冷蔵用ファン9aは翼径が100mmの遠心ファン(後向きファン)であり,冷凍用ファン9bは翼径が110mmの軸流ファン(プロペラファン)である。遠心ファンは軸方向から吸込んだ空気を90度転向して径方向に吹き出す特性を有する。一方,軸流ファンは軸方向から吸込んだ空気を軸方向に吹き出す特性を有する。したがって,軸方向に吸込んだ流れを90度転向させる風路では,遠心ファンが実装性に優れ,軸方向に吸込んだ流れを軸方向に吹き出す風路では軸流ファンが実装性に優れる。従って,冷蔵用ファン9aとしては,前方から吸込んだ空気を,90度転向して上方の冷蔵室送風路11に吹き出す構成となるため,遠心ファンである後向きファンを採用し,冷凍用ファン9bとしては,後方から吸込んだ空気を前方の冷凍室送風路12に吹き出す構成となるために,軸流ファンであるプロペラファンを採用してスペース効率が高い冷蔵庫としている。   In the refrigerator of the present embodiment, the refrigeration fan 9a is a centrifugal fan (backward fan) having a blade diameter of 100 mm, and the refrigeration fan 9b is an axial fan (propeller fan) having a blade diameter of 110 mm. The centrifugal fan has a characteristic that the air sucked from the axial direction is turned 90 degrees and blown out in the radial direction. On the other hand, the axial fan has a characteristic of blowing out air sucked from the axial direction in the axial direction. Therefore, the centrifugal fan is excellent in mountability in the air passage that turns the flow sucked in the axial direction by 90 degrees, and the axial fan is excellent in mountability in the air passage that blows out the flow sucked in the axial direction in the axial direction. Accordingly, since the refrigeration fan 9a is configured to turn the air sucked from the front 90 degrees and blow it out to the upper refrigeration chamber air passage 11, a rearward fan, which is a centrifugal fan, is adopted as the refrigeration fan 9b. Has a configuration in which the air sucked from the rear is blown out to the front freezer compartment air passage 12, so that a propeller fan, which is an axial fan, is used to provide a highly space-efficient refrigerator.
図12は本実施例に係る冷蔵用ファン9aの斜視図である。本実施例では、冷蔵用ファン9aとして、ターボファンを用いている。図12に示すように、ターボファンを動作させると、ターボファンの軸方向から風を吸込み、遠心力により外周側に運ばれて、外周側から全周に送風される。また、ターボファンは高静圧タイプの送風機のため、プロペラファンと比較して高静圧(通風抵抗が大きい)時に風量を増大させやすい特性を持っている。   FIG. 12 is a perspective view of the refrigeration fan 9a according to the present embodiment. In the present embodiment, a turbo fan is used as the refrigeration fan 9a. As shown in FIG. 12, when the turbo fan is operated, wind is sucked from the axial direction of the turbo fan, is carried to the outer peripheral side by centrifugal force, and is blown from the outer peripheral side to the entire periphery. Moreover, since the turbo fan is a high static pressure type blower, it has a characteristic that the air volume is likely to increase at a high static pressure (large ventilation resistance) as compared to the propeller fan.
図13は、同一翼直径、同一回転数のプロペラファンとターボファンの空力特性と抵抗曲線の関係を示した図である。図13(a)に示すように、冷蔵用蒸発器室8aに霜が付着していない通常運転時においては、ターボファンを実装した場合とプロペラファンを実装した場合で同等の風量を確保することができる。図13(b)に示すように、冷蔵用蒸発器室8aの表面に霜が成長した場合においては、本実施例のようにターボファンを実装することで、プロペラファンを実装した場合より風量を増大させることができる。本実施例においては、前記したように冷蔵用蒸発器室8aの除霜時にも冷蔵用ファン9aを動作させるため、除霜運転の効率向上により、冷蔵庫の省エネルギー性能を高めることもできる。   FIG. 13 is a diagram showing the relationship between the aerodynamic characteristics and the resistance curve of a propeller fan and a turbo fan having the same blade diameter and the same rotation speed. As shown in FIG. 13 (a), in the normal operation in which frost is not attached to the refrigeration evaporator chamber 8a, ensure the same air volume when the turbo fan is mounted and when the propeller fan is mounted. Can do. As shown in FIG. 13 (b), when frost grows on the surface of the refrigeration evaporator chamber 8a, by installing a turbo fan as in this embodiment, the air volume is more than that when a propeller fan is mounted. Can be increased. In the present embodiment, as described above, since the refrigeration fan 9a is operated even during the defrosting of the refrigeration evaporator chamber 8a, the energy saving performance of the refrigerator can be enhanced by improving the efficiency of the defrosting operation.
図2及び図3に示すように,冷蔵室2,冷凍室7,野菜室6の庫内背面側には,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43を備え,それぞれ冷蔵室2,冷凍室7,野菜室6の温度を検知している。また,冷蔵用蒸発器14aの上部には冷蔵用蒸発器温度センサ40a,冷凍用蒸発器14bの上部には冷凍用蒸発器温度センサ40bを備え,冷蔵用蒸発器14a,及び冷凍用蒸発器14bの温度を検知している。また,冷蔵庫1の天井部の扉ヒンジカバー16の内部には,外気(庫外空気)の温度,湿度を検知する外気温湿度センサ37を備え,扉2a,2b,3a,4a,5a,6aには,開閉状態をそれぞれ検知する扉センサ(不図示)を備えている。   As shown in FIG.2 and FIG.3, the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, and the vegetable compartment temperature sensor 43 are provided on the back side in the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6 respectively. The temperature of the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6 is detected. Further, a refrigeration evaporator temperature sensor 40a is provided above the refrigeration evaporator 14a, and a refrigeration evaporator temperature sensor 40b is provided above the refrigeration evaporator 14b. The refrigeration evaporator 14a and the refrigeration evaporator 14b are provided. The temperature is detected. Further, inside the door hinge cover 16 on the ceiling of the refrigerator 1 is provided with an outside air temperature / humidity sensor 37 for detecting the temperature and humidity of the outside air (outside air), and the doors 2a, 2b, 3a, 4a, 5a, 6a. Are provided with door sensors (not shown) for detecting the open / closed state.
また,冷凍用蒸発器室8bの下部には,冷凍用蒸発器14bを加熱する除霜ヒータ21を備えている。除霜ヒータ21は,例えば50W〜200Wの電気ヒータで,本実施例では150Wのラジアントヒータを設けている。冷凍用蒸発器14bの除霜時に発生した除霜水(融解水)は,冷凍用蒸発器室8bの下部に備えた樋23bに流下し,排水口22b,冷凍用排水管27bを介して冷蔵庫1の後方(背面側)下部に設けられた機械室39に至り,機械室39内に設置された圧縮機24の上部の蒸発皿32に排出される。   In addition, a defrosting heater 21 for heating the freezing evaporator 14b is provided below the freezing evaporator chamber 8b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and a 150 W radiant heater is provided in this embodiment. The defrost water (melted water) generated when the refrigeration evaporator 14b is defrosted flows down to the tub 23b provided at the lower part of the refrigeration evaporator chamber 8b, and is stored in the refrigerator via the drain port 22b and the refrigeration drain pipe 27b. 1 reaches the machine room 39 provided at the lower part of the rear (back side), and is discharged to the evaporating dish 32 above the compressor 24 installed in the machine room 39.
また,冷蔵用蒸発器14aの除霜方法については後述するが,冷蔵用蒸発器14aの除霜時に発生した除霜水は,冷蔵用蒸発器室8aの下部に備えた樋23aに流下し,排水口22a,冷蔵用排水管27aを介して圧縮機24の上部に備えた蒸発皿32に排出される。   Further, although a defrosting method for the refrigeration evaporator 14a will be described later, the defrost water generated at the time of defrosting the refrigeration evaporator 14a flows down to the tub 23a provided in the lower part of the refrigeration evaporator chamber 8a. It is discharged to the evaporating dish 32 provided on the upper part of the compressor 24 through the drain port 22a and the refrigeration drain pipe 27a.
機械室39内には,上述の圧縮機24,蒸発皿32とともに,フィンチューブ式熱交換器である庫外放熱器50a,庫外ファン26を備えている。庫外ファン26の駆動により圧縮機24,庫外放熱器50a蒸発皿32に空気が流れ,圧縮機24と庫外放熱器50aからの放熱が促進され,省エネルギー性能を高めるとともに,蒸発皿32に通風することで,蒸発皿32に溜まった除霜水の蒸発を促進して溢水を抑制し,信頼性を高めている。   In the machine room 39, the above-described compressor 24 and evaporating dish 32 are provided, as well as an outside heat radiator 50a and an outside fan 26 that are fin-tube heat exchangers. By driving the external fan 26, air flows into the compressor 24 and the external radiator 50a evaporating dish 32, heat dissipation from the compressor 24 and the external radiator 50a is promoted, energy saving performance is improved, and By ventilating, the evaporation of defrosted water accumulated in the evaporating dish 32 is promoted to suppress overflow and improve reliability.
図3に示すように,樋23aには,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101を備えている。また,冷蔵用排水管27aには排水管上部ヒータ102及び排水管下部ヒータ103を備えている。なお,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103は,何れも除霜ヒータ21よりも容量が低いヒータであり,本実施例では樋ヒータ101を6W,排水管上部ヒータ102を3W,排水管下部ヒータ103を1Wとしている。   As shown in FIG. 3, the eaves 23 a includes an eaves heater 101 that melts the defrost water frozen in the eaves 23 a. The refrigeration drain pipe 27 a includes a drain pipe upper heater 102 and a drain pipe lower heater 103. The dredge heater 101, the drain pipe upper heater 102, and the drain pipe lower heater 103 are all heaters having a capacity lower than that of the defrost heater 21. In this embodiment, the dredge heater 101 is 6 W and the drain pipe upper heater 102 is 3W, drain pipe lower heater 103 is 1W.
ここで,冷蔵用ファン9aを駆動すると,冷蔵用蒸発器室8aの右上に設けられた冷蔵室戻り口15bを介して,冷蔵室2からの戻り空気を樋23aに向けて下方に流し,樋23aを加熱して温度を上げるようにしている。これにより,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101の加熱量を低減する効果が得られ,省エネルギー性能を高めることができる。   Here, when the refrigeration fan 9a is driven, the return air from the refrigeration chamber 2 flows downward toward the tub 23a through the refrigeration chamber return port 15b provided at the upper right of the refrigeration evaporator chamber 8a. 23a is heated to raise the temperature. Thereby, the effect of reducing the heating amount of the firewood heater 101 that melts the defrosted water frozen in the firewood 23a is obtained, and the energy saving performance can be enhanced.
また,排水管27a下部は,冷凍室7及び冷凍用蒸発器室8bよりも外箱10aに近接させている。これにより,排水管27aにおいて凍結した除霜水を融解させる排水管下部ヒータ103の加熱量を低減することができ,省エネルギー性能が高くなる。   The lower part of the drain pipe 27a is closer to the outer box 10a than the freezer compartment 7 and the freezer evaporator compartment 8b. Thereby, the heating amount of the drain pipe lower heater 103 for melting the defrost water frozen in the drain pipe 27a can be reduced, and the energy saving performance is improved.
冷蔵庫1の天井部(図2参照)には,制御装置の一部であるCPU,ROMやRAM等のメモリ,インターフェース回路等を搭載した制御基板31を配置している。制御基板31は,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43,蒸発器温度センサ40a,40b等と接続され,前述のCPUは,これらの出力値や操作部99の設定,前述のROMに予め記録されたプログラム等を基に,圧縮機24や冷蔵用ファン9a,冷凍用ファン9bのON/OFFや回転速度制御,除霜ヒータ21,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103,及び,後述する三方弁52の制御等を行っている。   On the ceiling of the refrigerator 1 (see FIG. 2), a control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, etc., which are a part of the control device are mounted. The control board 31 is connected to the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, the evaporator temperature sensors 40a, 40b, etc., and the CPU described above sets these output values and the operation unit 99. , Based on a program or the like recorded in advance in the ROM, the compressor 24, the refrigeration fan 9a, the refrigeration fan 9b ON / OFF and the rotational speed control, the defrost heater 21, the soot heater 101, the drain pipe upper heater 102, the drain pipe lower heater 103, and a three-way valve 52, which will be described later, are controlled.
図5は,実施例1に係る冷蔵庫の冷凍サイクル(冷媒流路)である。本実施例の冷蔵庫1では,圧縮機24(押除量9.2cc),冷媒の放熱を行う庫外放熱器50aと壁面放熱配管50b,断熱仕切壁28,29,30の前縁部への結露を抑制する結露抑制配管50c(庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを放熱手段と呼ぶ),冷媒流制御手段である三方弁52,冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53b,冷媒と庫内の空気を熱交換させて,庫内の熱を吸熱する冷蔵用蒸発器14a,及び,冷凍用蒸発器14bを備えている。また,三方弁52の上流には,冷凍サイクル中の水分を除去するドライヤ51を備え,冷蔵用蒸発器14aの下流と,冷凍用蒸発器14bの下流には,それぞれ液冷媒が圧縮機24に流入するのを防止する冷蔵用気液分離器54a,冷凍用機液分離器54bを備えている。さらに冷凍用気液分離器54bの下流には逆止弁56を備えている。これらの構成要素を冷媒配管により接続することで冷凍サイクルを構成している。なお本実施例の冷蔵庫においては,冷蔵用蒸発器14a及び冷凍用蒸発器14bの温度を,圧縮機24,冷蔵用ファン9a,冷凍用ファン9bの回転速度によって調整するため,圧縮機24,冷蔵用ファン9a,冷凍用ファン9bを蒸発器温度調整手段と呼ぶ。また,冷媒には可燃性冷媒のイソブタンを用いており,冷媒量封入量は88gである。   FIG. 5 is a refrigeration cycle (refrigerant flow path) of the refrigerator according to the first embodiment. In the refrigerator 1 of the present embodiment, the compressor 24 (pushing amount 9.2 cc), the external heat radiator 50a that radiates the refrigerant, the wall surface heat radiating pipe 50b, and the front edges of the heat insulating partition walls 28, 29, and 30 are provided. Condensation suppression piping 50c that suppresses condensation (external heat radiator 50a, external heat radiator 50b, and condensation suppression piping 50c are referred to as heat dissipation means), a three-way valve 52 that is a refrigerant flow control means, and a pressure reduction means that decompresses the refrigerant. A refrigeration capillary tube 53a, a refrigeration capillary tube 53b, a refrigeration evaporator 14a that absorbs heat in the refrigerator by exchanging heat between the refrigerant and the air in the refrigerator, and a refrigeration evaporator 14b are provided. Further, a dryer 51 for removing moisture in the refrigeration cycle is provided upstream of the three-way valve 52, and liquid refrigerant is supplied to the compressor 24 downstream of the refrigeration evaporator 14a and downstream of the refrigeration evaporator 14b, respectively. A refrigeration gas / liquid separator 54a and a refrigeration machine / liquid separator 54b for preventing the inflow are provided. Further, a check valve 56 is provided downstream of the refrigeration gas-liquid separator 54b. A refrigeration cycle is configured by connecting these components through refrigerant piping. In the refrigerator of this embodiment, the temperature of the refrigeration evaporator 14a and the refrigeration evaporator 14b is adjusted by the rotational speed of the compressor 24, the refrigeration fan 9a, and the refrigeration fan 9b. The fan 9a and the refrigerating fan 9b are referred to as evaporator temperature adjusting means. In addition, flammable refrigerant isobutane is used as the refrigerant, and the amount of refrigerant enclosed is 88 g.
三方弁52は,流出口52aと,流出口52bを備えており,流出口52aを開放状態,流出口52bを閉鎖状態として,冷蔵用キャピラリチューブ53a側に冷媒を流す状態1(冷蔵モード),流出口52aを閉鎖状態,流出口52bを開放状態として,冷凍用キャピラリチューブ53b側に冷媒を流す状態2(冷凍モード),及び,流出口52a,52bの何れも閉鎖状態とする状態3(全閉モード)を備えた冷媒流制御弁である。   The three-way valve 52 includes an outflow port 52a and an outflow port 52b. With the outflow port 52a in an open state and the outflow port 52b in a closed state, the refrigerant flows into the chilling capillary tube 53a side 1 (refrigeration mode), State 2 (freezing mode) in which the outlet 52a is closed and the outlet 52b is opened, and the refrigerant flows to the freezing capillary tube 53b side, and state 3 (all the outlets 52a and 52b are closed) (Closed mode).
三方弁52が状態1(冷蔵モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態1(流出口52aが開放状態,流出口52bが閉鎖状態)となっているため,続いて,冷媒は冷蔵用キャピラリチューブ53aを流れて減圧され冷蔵用蒸発器14aに至り,冷蔵室2の戻り空気と熱交換する。冷蔵用蒸発器14aを出た冷媒は,冷蔵用気液分離器54aを通り,キャピラリチューブ53aとの接触部57aを流れることでキャピラリチューブ53a内を流れる冷媒と熱交換した後に圧縮機24に戻る。   When the three-way valve 52 is controlled in the state 1 (refrigeration mode), the refrigerant discharged from the compressor 24 flows through the external heat radiator 50a, the external heat radiator 50b, and the dew condensation suppression pipe 50c to radiate heat, and the dryer 51 To the three-way valve 52. Since the three-way valve 52 is in the state 1 (the outlet 52a is in the open state and the outlet 52b is in the closed state), the refrigerant flows through the refrigeration capillary tube 53a and is depressurized to reach the refrigeration evaporator 14a. Heat exchange with the return air of the refrigerator compartment 2 is performed. The refrigerant that has exited the refrigeration evaporator 14a passes through the refrigeration gas-liquid separator 54a, flows through the contact portion 57a with the capillary tube 53a, exchanges heat with the refrigerant flowing in the capillary tube 53a, and then returns to the compressor 24. .
三方弁52が状態2(冷凍モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態2(流出口52aが閉鎖状態,流出口52bが開放状態)となっているため,続いて,冷媒は冷凍用キャピラリチューブ53bを流れて減圧されて低温化し,冷凍用蒸発器14bで,冷凍室7の戻り空気及び野菜室6の戻り空気(野菜室ダンパ19が開放状態の場合)と熱交換する。冷凍用蒸発器14bを出た冷媒は,冷凍用気液分離器54bを通り,キャピラリチューブ53bとの接触部57bを流れることでキャピラリチューブ53b内を流れる冷媒と熱交換した後に圧縮機24に戻る。   When the three-way valve 52 is controlled to the state 2 (refrigeration mode), the refrigerant discharged from the compressor 24 flows through the external heat radiator 50a, the external heat radiator 50b, and the dew condensation suppression pipe 50c to radiate heat, and the dryer 51 To the three-way valve 52. Since the three-way valve 52 is in the state 2 (the outlet 52a is closed and the outlet 52b is open), the refrigerant flows through the refrigeration capillary tube 53b to be depressurized and reduced in temperature. In 14b, heat exchange is performed with the return air of the freezer compartment 7 and the return air of the vegetable compartment 6 (when the vegetable compartment damper 19 is in an open state). The refrigerant exiting the refrigeration evaporator 14b passes through the refrigeration gas-liquid separator 54b, flows through the contact portion 57b with the capillary tube 53b, exchanges heat with the refrigerant flowing in the capillary tube 53b, and returns to the compressor 24. .
三方弁52が状態3(全閉モード)に制御されている場合,圧縮機24を駆動すると,冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53bから冷媒が供給されない状態となるため,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒が放熱手段側に回収される(詳細は後述)。   When the three-way valve 52 is controlled to the state 3 (fully closed mode), when the compressor 24 is driven, the refrigerant is not supplied from the refrigeration capillary tube 53a and the freezing capillary tube 53b. The refrigerant in 14a or the refrigerant in the refrigeration evaporator 14b is collected on the heat radiating means side (details will be described later).
本実施例の冷蔵庫は,三方弁52を状態1(冷蔵モード)に制御し,圧縮機24を駆動状態,冷蔵用ファン9aを駆動状態,冷凍用ファン9bを停止状態とすることで冷蔵室2を冷却する「冷蔵運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を開放状態,冷蔵用ファン9aを駆動状態、または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍室7と野菜室6を冷却する「冷凍野菜運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を閉鎖状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍室7を冷却する「冷凍運転」,三方弁52を状態3(全閉モード)に制御し,圧縮機24を駆動状態として,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する「冷媒回収運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを停止状態,冷凍用ファン9bを停止状態とする「運転停止」,三方弁52を状態2(冷凍モード)且つ圧縮機24を駆動状態に制御,または,三方弁52を状態3(全閉モード)且つ圧縮機24を停止状態に制御して,冷蔵用蒸発器14aに冷媒が流れない状態として冷蔵用ファンを駆動状態として,冷蔵用蒸発器14aの表面に成長した霜や蒸発器自体の蓄冷熱で冷蔵室2を冷却しつつ冷蔵用蒸発器14aの除霜を行う「冷蔵用蒸発器除霜運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを停止状態,除霜ヒータ21を通電状態とすることで,冷凍用蒸発器14bの除霜を行う「冷凍用蒸発器除霜運転」の各運転を適宜実施することで,冷蔵庫1の庫内各貯蔵室を冷却する。   In the refrigerator of this embodiment, the three-way valve 52 is controlled to be in state 1 (refrigeration mode), the compressor 24 is driven, the refrigeration fan 9a is driven, and the refrigeration fan 9b is stopped. “Refrigeration operation” for cooling the refrigerator, the three-way valve 52 is controlled to state 2 (freezing mode), the compressor 24 is driven, the vegetable compartment damper 19 is opened, the refrigeration fan 9a is driven or stopped, "Frozen vegetable operation" that cools the freezer compartment 7 and the vegetable compartment 6 by setting the fan 9b in the driving state, the three-way valve 52 is controlled to the state 2 (freezing mode), the compressor 24 is driven, and the vegetable compartment damper 19 is closed, refrigeration fan 9a is driven or stopped, and refrigeration fan 9b is driven to “freeze operation” to cool freezer compartment 7, and three-way valve 52 is set to state 3 (fully closed mode). Control and drive compressor 24 "Refrigerant recovery operation" in which the refrigerant in the refrigeration evaporator 14a or the refrigerant in the refrigeration evaporator 14b is recovered to the heat radiating means side, and the three-way valve 52 is in state 3 (fully closed mode). “Stop operation” in which the refrigeration fan 9a is stopped and the refrigeration fan 9b is stopped, the three-way valve 52 is controlled to the state 2 (refrigeration mode) and the compressor 24 is driven, or the three-way valve 52 is stopped. Is controlled in the state 3 (fully closed mode) and the compressor 24 is stopped, and the refrigerant is not flown into the refrigeration evaporator 14a, the refrigeration fan is driven, and it has grown on the surface of the refrigeration evaporator 14a. Compressor with refrigeration evaporator defrosting operation to defrost refrigeration evaporator 14a while refrigeration chamber 2 is cooled with frost or cold storage heat of evaporator itself, with three-way valve 52 in state 3 (fully closed mode) 24 is stopped, refrigeration fan Each operation of “refrigeration evaporator defrosting operation” for defrosting the refrigeration evaporator 14b by setting “a” to a drive state or a stop state, the refrigeration fan 9b to a stop state, and the defrost heater 21 to be energized. As appropriate, each storage room in the refrigerator 1 is cooled.
以上で,本実施例に係る冷蔵庫の構成を説明したが,次に本実施例に係る冷蔵庫の制御について説明する。図6は,本実施例に係る冷蔵庫の通常運転状態における制御を表すフローチャートである。図7は,本実施例に係る冷蔵庫の高負荷状態における制御を表すフローチャートである。   The configuration of the refrigerator according to the present embodiment has been described above. Next, control of the refrigerator according to the present embodiment will be described. FIG. 6 is a flowchart showing the control in the normal operation state of the refrigerator according to the present embodiment. FIG. 7 is a flowchart showing the control in the high load state of the refrigerator according to the present embodiment.
図6に示すように,本実施例の冷蔵庫は電源投入により運転が開始され(スタート),冷蔵庫1の各貯蔵室が冷却される。ユーザーが各貯蔵室扉の開閉を行う,或いは冷蔵庫周囲の温度環境の変化等の要因による負荷変動がない通常運転状態(通常運転モード)においては,基本的に一定の運転パターンを繰り返す状態(以下,安定冷却運転と呼ぶ)となる。図5では,電源投入から安定冷却運転に至るまでの制御過程は省略している。   As shown in FIG. 6, the refrigerator according to the present embodiment starts operation when the power is turned on (start), and each storage room of the refrigerator 1 is cooled. In a normal operation state (normal operation mode) in which the user opens / closes each storage room door or there is no load fluctuation due to factors such as changes in the temperature environment around the refrigerator, a state in which a constant operation pattern is repeated (hereinafter, , Called stable cooling operation). In FIG. 5, the control process from power-on to stable cooling operation is omitted.
安定冷却運転では,一定の運転パターン(運転サイクル)を繰り返すが,ここでは冷蔵室2を冷却する運転モードである冷蔵運転が開始される状態からの制御を説明する。冷蔵運転は,三方弁52を状態1(冷蔵モード),圧縮機24を速度1(800min-1)で駆動,冷蔵用ファン9aを速度2(1500min-1)で駆動,冷凍用ファン9bを停止,野菜室ダンパ19を閉鎖することで開始する(ステップS101)。続いて,庫内が高負荷になっているかが判定される(ステップS102)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high),または,冷蔵室温度センサ41が検知する冷蔵室温度TRが,高負荷判定温度TR_high(=10℃)以上(TR≧TR_high)の場合にステップS102が成立する。ステップS102が成立した場合の制御は後述する。
このとき,圧縮機24及び冷蔵用ファン9aは,冷蔵運転時の冷蔵用蒸発器14aの時間平均温度をTRevp_ave,冷蔵室2の維持温度をTF_keep,冷凍室7の維持温度をTF_keep,冷蔵室維持温度TR_keepと冷蔵運転時の冷蔵用蒸発器14aの時間平均温度TRevp_aveの差をΔT(=TR_keep−TRevp_ave),蒸発器温度に対する冷凍サイクル理論成績係数をCOPthとした場合に,TRevp_ave≧0.5×(TR_keep+TF_keep), d(COPth)/dTRevp_ave − d(ΔT−1)/dTRevp_ave ≧0 を満足するように選定している。
In the stable cooling operation, a constant operation pattern (operation cycle) is repeated. Here, the control from the state in which the refrigerating operation, which is the operation mode for cooling the refrigerating chamber 2, is started will be described. In the refrigeration operation, the three-way valve 52 is in state 1 (refrigeration mode), the compressor 24 is driven at speed 1 (800 min -1 ), the refrigeration fan 9a is driven at speed 2 (1500 min -1 ), and the refrigeration fan 9b is stopped. , And starts by closing the vegetable compartment damper 19 (step S101). Subsequently, it is determined whether or not the inside of the warehouse is heavily loaded (step S102). In the refrigerator of the present embodiment, the freezing compartment temperature T F of the freezing compartment temperature sensor 42 is detected, a high load determination temperature T F_high (= -10 ℃) or (T F ≧ T F_high), or, the refrigerating compartment temperature sensor 41 Step S102 is established when the refrigerator compartment temperature T R detected by is equal to or higher than the high load determination temperature T R — high (= 10 ° C.) (T R ≧ T R — high ). The control when step S102 is established will be described later.
At this time, the compressor 24 and the refrigerating fan 9a, the time average temperature T Revp_ave of refrigerating evaporator 14a during refrigerating operation, maintenance temperature T F_keep refrigerating compartment 2, the maintenance temperature of the freezing compartment 7 T F_keep, When the difference between the refrigeration room maintenance temperature T R_keep and the time average temperature T Revp_ave of the refrigeration evaporator 14a during the refrigeration operation is ΔT (= T R_keep −T Revp_ave ), and the refrigeration cycle theoretical performance coefficient with respect to the evaporator temperature is COP th In addition, TRevp_ave ≧ 0.5 × ( TR_keep + TF_keep ), d 2 (COP th ) / dT Revp_ave 2 −d 2 (ΔT −1 ) / dT Revp_ave 2 ≧ 0 is selected.
ステップS102が成立しない場合(No)は,続いて冷蔵運転終了条件が成立しているかが判定される(ステップS103)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転終了温度TRoff(=1℃)以下(T≦TRoff)の場合にステップS103が成立する。ステップS103が成立しない場合(No),再びステップS102の判定に戻る。 When step S102 is not satisfied (No), it is subsequently determined whether the refrigeration operation end condition is satisfied (step S103). In the refrigerator of the present embodiment, the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 detects is satisfied steps S103 when the refrigerating operation end temperature T Roff (= 1 ℃) or less (T RT Roff). When step S103 is not established (No), the process returns to the determination of step S102 again.
ステップS103が成立した場合(Yes),次に冷凍野菜運転開始条件が成立しているかが判定される(ステップS104)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=-18℃)以上(TF≧TF_on)の場合にステップS104が成立する。 If step S103 is satisfied (Yes), it is next determined whether or not the frozen vegetable operation start condition is satisfied (step S104). In the refrigerator of the present embodiment, step S104 is established when the freezer temperature TF detected by the freezer temperature sensor 42 is equal to or higher than the frozen vegetable operation start temperature TF_on (= −18 ° C.) ( TFTF_on ). To do.
ステップS104が成立した場合(成立しない場合(No)は後述),次に圧縮機24の駆動回転速度を維持して,三方弁52を状態3(全閉モード)とし,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS105)。このとき,冷蔵用ファン9aは駆動を継続し,冷媒回収運転中も冷蔵室2の冷却を行う。   If step S104 is established (if not established (No) (to be described later)), then the driving rotational speed of the compressor 24 is maintained, the three-way valve 52 is set to state 3 (fully closed mode), and the refrigeration evaporator 14a is filled. A refrigerant recovery operation for recovering the refrigerant to the heat dissipating means side is performed (step S105). At this time, the refrigeration fan 9a continues to drive and cools the refrigeration chamber 2 during the refrigerant recovery operation.
続いて冷蔵用蒸発器除霜運転を実施するかが判定される(ステップS106)。本実施例の冷蔵庫では,冷蔵室2の下部に備えたチルドルーム35の設定が,冷蔵温度帯の約0〜3℃に維持する「温度レベル1」が選択されている場合にはステップS106が成立(Yes)し,冷凍温度帯の約−3〜0℃に維持する「温度レベル2」が選択されている場合には,ステップS106が否成立(No)となる。ステップS106が成立した場合(Yes),冷蔵用ファン9aを速度1(900min-1)として,冷蔵用蒸発器除霜運転が開始され(ステップS107),ステップS106が否成立(No)の場合,冷蔵用ファン9aが停止される(ステップS108)。 Subsequently, it is determined whether or not the refrigeration evaporator defrosting operation is performed (step S106). In the refrigerator of the present embodiment, when “temperature level 1” for maintaining the chilled room 35 provided at the lower part of the refrigerator room 2 at about 0 to 3 ° C. in the refrigerator temperature zone is selected, step S106 is performed. If established (Yes) and “temperature level 2” is selected to maintain the temperature in the refrigeration temperature range of about −3 to 0 ° C., step S106 is denied (No). When step S106 is established (Yes), the refrigeration fan 9a is set to speed 1 (900 min −1 ), the refrigeration evaporator defrosting operation is started (step S107), and when step S106 is not established (No), The refrigeration fan 9a is stopped (step S108).
次に冷凍野菜運転が開始される(ステップS109)。冷凍野菜運転は,三方弁を状態2(冷凍モード),圧縮機24を速度2(1400min-1),冷凍用ファン9bを速度1(1200min-1)で駆動し,野菜室ダンパ19を開放した状態で行われる。 Next, the frozen vegetable operation is started (step S109). In frozen vegetable operation, the three-way valve is driven in state 2 (freezing mode), the compressor 24 is driven at speed 2 (1400 min −1 ), the freezing fan 9 b is driven at speed 1 (1200 min −1 ), and the vegetable compartment damper 19 is opened. Done in state.
続いて,庫内が高負荷になっているかが判定される(ステップS110)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high),または,冷蔵室温度センサ41が検知する冷蔵室温度TRが,高負荷判定温度TR_high(=10℃)以上(TR≧TR_high)の場合にステップS110が成立する(ステップS102と同様の判定)。ステップS110が成立した場合の制御は後述する。
ステップS110が成立しない場合(No),次に野菜室冷却終了条件が成立しているかが判定される(ステップS111)。本実施例の冷蔵庫では,野菜室温度センサ43が検知する野菜室温度Tが,野菜室冷却終了温度TV_off(=4℃)以下(TV≦TV_off)の場合にステップS111が成立する。ステップS111が成立した場合(Yes),野菜室ダンパ19が閉鎖されて冷凍野菜運転が終了し,冷凍室7を冷却する冷凍運転に移行する。
Subsequently, it is determined whether or not the inside of the warehouse is heavily loaded (step S110). In the refrigerator of the present embodiment, the freezing compartment temperature T F of the freezing compartment temperature sensor 42 is detected, a high load determination temperature T F_high (= -10 ℃) or (T F ≧ T F_high), or, the refrigerating compartment temperature sensor 41 Step S110 is established when the refrigeration room temperature T R detected by is equal to or higher than the high load determination temperature T R_high (= 10 ° C.) (T R ≧ T R_high ) (determination similar to Step S102). The control when step S110 is established will be described later.
When step S110 is not satisfied (No), it is next determined whether or not the vegetable room cooling end condition is satisfied (step S111). In the refrigerator of this embodiment, vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected, step S111 in the case of vegetable compartment cooling end temperature T V_off (= 4 ℃) or less (T V ≦ T V_off) is satisfied . When Step S111 is established (Yes), the vegetable compartment damper 19 is closed, the frozen vegetable operation is finished, and the operation is shifted to the freezing operation for cooling the freezer compartment 7.
ステップS111が成立しない場合(No),続いて冷蔵用蒸発器除霜運転終了条件が成立しているかが判定される(ステップS113)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TR_evpが冷蔵用蒸発器除霜運転終了温度TRD_off(=2℃)以上(TR_evp≧TRD_off)の場合に成立する。ステップS113が成立した場合(Yes),冷蔵用ファン9aが停止されて(ステップS114),「冷蔵用蒸発器除霜運転終了」が終了する。 When step S111 is not satisfied (No), it is subsequently determined whether the refrigeration evaporator defrosting operation end condition is satisfied (step S113). The refrigeration evaporator defrosting operation end condition is satisfied when the refrigeration evaporator temperature TR_evp is equal to or higher than the refrigeration evaporator defrosting operation end temperature TRD_off (= 2 ° C.) ( TR_evpTRD_off ). When step S113 is established (Yes), the refrigeration fan 9a is stopped (step S114), and the “end of refrigeration evaporator defrosting operation” is completed.
ステップS113が成立しない場合(No),続いて冷凍運転終了条件が成立しているかが判定される(ステップS115)。本実施例の冷蔵庫では,野菜室ダンパ19が閉鎖状態,且つ,冷凍室温度Tが冷凍運転終了温度TF_off(=-21℃)以下(T≧TF_off)の場合にステップS115が成立する。ステップS115が成立しない場合(No),ステップS110の判定に戻る。 When step S113 is not satisfied (No), it is subsequently determined whether the freezing operation end condition is satisfied (step S115). In the refrigerator of the present embodiment, step S115 is established when the vegetable compartment damper 19 is closed and the freezer compartment temperature T F is equal to or lower than the freezing operation end temperature T F_off (= −21 ° C.) (T F ≧ T F_off ). To do. When step S115 is not established (No), the process returns to the determination of step S110.
ステップS115が成立した場合,次に冷蔵運転開始条件が成立しているかが判定される(ステップS116)。本実施例の冷蔵庫では,本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転開始温度TR_on(=5℃)以上(TR≧TR_on)の場合にステップS116が成立する。 If step S115 is satisfied, it is next determined whether the refrigeration operation start condition is satisfied (step S116). In the refrigerator of the present embodiment, in the refrigerator of the present embodiment, the case of the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 for detecting the refrigeration operation start temperature T R_on (= 5 ℃) or (T R ≧ T R_on) Step S116 is established.
ステップS116が成立した場合,(成立しない場合(No)は後述),圧縮機24の駆動回転速度を維持して,三方弁52を状態3(全閉モード)とし,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS117)。このとき,冷凍用ファン9bは駆動を継続し,冷媒回収運転中も冷凍室7の冷却を行う。   If step S116 is satisfied (if not satisfied (No) (to be described later)), the drive rotational speed of the compressor 24 is maintained, the three-way valve 52 is set to state 3 (fully closed mode), and the refrigeration evaporator 14b A refrigerant recovery operation for recovering the refrigerant to the heat radiating means side is performed (step S117). At this time, the refrigeration fan 9b continues to drive and cools the freezer compartment 7 even during the refrigerant recovery operation.
ステップS104が成立しない場合(No),続いて冷蔵用蒸発器除霜運転を実施するかが判定される(ステップS201)。本実施例の冷蔵庫では,冷蔵室2の下部に備えたチルドルーム35の設定が,冷蔵温度帯の約0〜3℃に維持する「温度レベル1」が選択されている場合にはステップS106が成立(Yes)し,冷凍温度帯の約−3〜0℃に維持する「温度レベル2」が選択されている場合には,ステップS106が否成立(No)となる(ステップS106と同様の判定)。ステップS201が成立した場合(Yes),冷蔵用ファン9aを速度1(900min-1)として,冷蔵用蒸発器除霜運転が開始され(ステップS202),ステップS106が否成立(No)の場合,冷蔵用ファン9aが停止されて(ステップS203),三方弁52を状態3(全閉モード)として,圧縮機24が停止,冷凍用ファン9bが停止される(ステップS118)。また,ステップS116が成立しない場合(No)も,三方弁52を状態3(全閉モード)として,圧縮機24が停止,冷凍用ファン9bが停止される(ステップS118)。 When step S104 is not established (No), it is subsequently determined whether or not the refrigeration evaporator defrosting operation is performed (step S201). In the refrigerator of the present embodiment, when “temperature level 1” for maintaining the chilled room 35 provided at the lower part of the refrigerator room 2 at about 0 to 3 ° C. in the refrigerator temperature zone is selected, step S106 is performed. If “temperature level 2” that is established (Yes) and is maintained at about −3 to 0 ° C. of the refrigeration temperature zone is selected, step S106 is not established (No) (the same determination as step S106) ). If step S201 is established (Yes), the refrigeration fan 9a is set to speed 1 (900 min −1 ) and the refrigeration evaporator defrosting operation is started (step S202). If step S106 is not established (No), The refrigeration fan 9a is stopped (step S203), the three-way valve 52 is set to state 3 (fully closed mode), the compressor 24 is stopped, and the refrigeration fan 9b is stopped (step S118). When step S116 is not established (No), the three-way valve 52 is set to state 3 (fully closed mode), the compressor 24 is stopped, and the refrigeration fan 9b is stopped (step S118).
続いて,庫内が高負荷になっているかが判定される(ステップS119)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high),または,冷蔵室温度センサ41が検知する冷蔵室温度TRが,高負荷判定温度TR_high(=10℃)以上(TR≧TR_high)の場合にステップS119が成立する(ステップS102,110と同様の判定)。ステップS119が成立した場合の制御は後述する。
ステップS119が成立しない場合(No),次に冷蔵用蒸発器除霜運転終了条件が成立しているかが判定される(ステップS120)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TR_evpが冷蔵用蒸発器除霜運転終了温度TRD_off(=2℃)以上(TR_evp≧TRD_off)の場合に成立する(ステップS113と同様の判定)。ステップS120が成立した場合(Yes),冷蔵用ファン9aが停止されて(ステップS121),「冷蔵用蒸発器除霜運転終了」が終了する。
Subsequently, it is determined whether or not the inside of the warehouse is heavily loaded (step S119). In the refrigerator of the present embodiment, the freezing compartment temperature T F of the freezing compartment temperature sensor 42 is detected, a high load determination temperature T F_high (= -10 ℃) or (T F ≧ T F_high), or, the refrigerating compartment temperature sensor 41 Step S119 is established when the refrigeration room temperature T R detected by is higher than the high load determination temperature T R_high (= 10 ° C.) (T R ≧ T R_high ) (the same determination as in Steps S102 and 110). The control when step S119 is established will be described later.
When step S119 is not satisfied (No), it is then determined whether the refrigeration evaporator defrosting operation end condition is satisfied (step S120). The refrigeration evaporator defrosting operation end condition is satisfied when the refrigeration evaporator temperature T R_evp is equal to or higher than the refrigeration evaporator defrosting operation end temperature T RD_off (= 2 ° C.) ( TR_evp ≧ T RD_off ). Determination similar to S113). When step S120 is established (Yes), the refrigeration fan 9a is stopped (step S121), and the “end of refrigeration evaporator defrosting operation” is completed.
ステップS120が成立しない場合(No),続いて冷凍野菜運転開始条件が成立しているかが判定される(ステップS122)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=-18℃)以上(TF≧TF_on)の場合にステップS122が成立する(ステップS104と同様の判定)。ステップS122が成立した場合(Yes),次に冷媒回収運転実施要否が判定される(ステップS123)。本実施例の冷蔵庫では,ステップS118による圧縮機24停止の直前の運転が冷蔵運転の場合にステップS123が成立する。ステップS123が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷蔵運転における回転速度で圧縮機24を駆動して,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を実施し(ステップS124),冷凍野菜運転を開始する(ステップS109)。ステップS123が成立しない場合(No),冷媒回収運転を実施せずに冷凍野菜運転を開始する(ステップS109)。 When step S120 is not satisfied (No), it is subsequently determined whether the frozen vegetable operation start condition is satisfied (step S122). In the refrigerator of the present embodiment, step S122 is established when the freezer temperature TF detected by the freezer temperature sensor 42 is equal to or higher than the frozen vegetable operation start temperature TF_on (= −18 ° C.) ( TFTF_on ). (Same determination as in step S104). When step S122 is established (Yes), it is next determined whether or not the refrigerant recovery operation is necessary (step S123). In the refrigerator of the present embodiment, step S123 is established when the operation immediately before the stop of the compressor 24 in step S118 is the refrigeration operation. When step S123 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14a is dissipated. A refrigerant recovery operation for recovering to the side is performed (step S124), and a frozen vegetable operation is started (step S109). If step S123 is not established (No), the frozen vegetable operation is started without performing the refrigerant recovery operation (step S109).
ステップS122が成立しない場合(No),続いて冷蔵運転開始条件が成立しているかが判定される(ステップS125)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転開始温度TR_on(=5℃)以上(TR≧TR_on)の場合にステップS116が成立する(ステップS116と同様の判定)。 When step S122 is not satisfied (No), it is subsequently determined whether the refrigeration operation start condition is satisfied (step S125). In the refrigerator of the present embodiment, the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 for detecting the refrigeration operation start temperature T R_on (= 5 ℃) or (T R ≧ T R_on) step S116 is satisfied in the case of ( Determination similar to step S116).
ステップS125が成立した場合,次に冷媒回収運転実施要否が判定される(ステップS126)。本実施例の冷蔵庫では,ステップS118による圧縮機24停止の直前の運転が冷凍運転の場合にステップS126が成立する。ステップS126が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷凍運転における回転速度で圧縮機24を駆動して,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS127),冷蔵運転を開始する(ステップS101)。ステップS126が成立しない場合(No)は,冷媒回収運転を実施せずに冷蔵運転を開始する(ステップS101)。   When step S125 is established, it is next determined whether or not the refrigerant recovery operation needs to be performed (step S126). In the refrigerator of the present embodiment, step S126 is established when the operation immediately before the stop of the compressor 24 in step S118 is the refrigeration operation. When step S126 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14b is dissipated. A refrigerant recovery operation for recovering to the side is performed (step S127), and a refrigeration operation is started (step S101). When step S126 is not established (No), the refrigeration operation is started without performing the refrigerant recovery operation (step S101).
次に冷蔵庫1の庫内が高負荷になっている場合の制御について図7を参照しながら説明する。図7に示す制御には,図6のステップS102,S110,S119において,冷蔵庫1の庫内が高負荷になっていると判定された場合(各ステップにおける判定がYes)に移行する。庫内が高負荷になっていると判定されると,続いて冷蔵室2が高負荷であるか(ステップS301),冷凍室7が高負荷であるかの判定(ステップS302)が行われる。冷蔵室2が高負荷で,冷凍室7が高負荷になっていない場合は,ステップS301がNoとなり,次に冷媒回収運転の要否が判定される(ステップS501)。   Next, control when the inside of the refrigerator 1 is heavily loaded will be described with reference to FIG. In the control shown in FIG. 7, the process proceeds to the case where it is determined in steps S102, S110, and S119 in FIG. 6 that the inside of the refrigerator 1 has a high load (the determination in each step is Yes). If it is determined that the inside of the refrigerator has a high load, then it is determined whether the refrigerator compartment 2 has a high load (step S301) or whether the freezer compartment 7 has a high load (step S302). If the refrigerator compartment 2 is heavily loaded and the freezer compartment 7 is not heavily loaded, step S301 is No, and it is then determined whether the refrigerant recovery operation is necessary (step S501).
本実施例の冷蔵庫では,図6のステップS102,S110,S119の何れかが成立した時点における運転が冷蔵運転の場合にステップS501が成立する。ステップS501が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷蔵運転における回転速度で圧縮機24を駆動して,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS502),続いて「高負荷モード冷凍野菜運転」が選択される(ステップS503)。ステップS501が成立しない場合(No)は,冷媒回収運転を実施せずに「高負荷モード冷凍野菜/冷凍運転」が選択される(ステップS503)。本実施例の冷蔵庫では,「高負荷モード冷凍野菜/冷凍運転」が選択された場合,冷凍野菜運転または冷凍運転が実施される際の回転速度として、圧縮機24は速度4(3600min-1),冷凍用ファン9bは速度2(2000min-1)に設定される。なお,冷蔵運転,冷蔵用蒸発器除霜運転が実施される際の圧縮機24,冷蔵用ファン9aの回転速度は通常運転モードと同じ回転速度が選択される。 In the refrigerator of the present embodiment, step S501 is established when the operation at the time when any of steps S102, S110, and S119 in FIG. 6 is established is a refrigeration operation. When step S501 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14a is dissipated. Next, a refrigerant recovery operation is performed (step S502), and then “high load mode frozen vegetable operation” is selected (step S503). When step S501 is not established (No), “high load mode frozen vegetable / freezing operation” is selected without performing the refrigerant recovery operation (step S503). In the refrigerator of the present embodiment, when “high load mode frozen vegetable / freezing operation” is selected, the compressor 24 has a speed of 4 (3600 min −1 ) as the rotation speed when the frozen vegetable operation or the freezing operation is performed. The refrigeration fan 9b is set at a speed of 2 (2000 min −1 ). Note that the rotational speeds of the compressor 24 and the refrigeration fan 9a when the refrigeration operation and the refrigeration evaporator defrosting operation are performed are the same as those in the normal operation mode.
冷凍室7が高負荷で(ステップS301がYes),冷蔵室2が高負荷になっていない場合は,ステップS302がNoとなり,次に冷媒回収運転の要否が判定される(ステップS401)。   If the freezer compartment 7 has a high load (Yes at Step S301) and the refrigerator compartment 2 is not at a high load, Step S302 is No, and then it is determined whether or not the refrigerant recovery operation is necessary (Step S401).
本実施例の冷蔵庫では,図6のステップS102,S110,S119の何れかが成立した時点における運転が冷凍野菜運転または冷凍運転の場合にステップS401が成立する。ステップS401が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷凍野菜運転または冷凍運転における回転速度で圧縮機24を駆動して,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS402),続いて「高負荷モード冷蔵運転」が選択される(ステップS403)。ステップS401が成立しない場合(No)は,冷媒回収運転を実施せずに「高負荷モード冷蔵運転」が選択される(ステップS403)。本実施例の冷蔵庫では,「高負荷モード冷蔵運転」が選択された場合,圧縮機24は速度3(2500min-1),冷蔵用ファン9aは速度3(2000min-1)に回転速度が設定される。なお,冷凍野菜運転,冷凍運転,冷蔵用蒸発器除霜運転が実施される際の圧縮機24,冷蔵用ファン9a,冷凍用ファン9bの回転速度は通常運転モードと同じ回転速度が選択される。 In the refrigerator of the present embodiment, step S401 is established when the operation at the time when any of steps S102, S110, and S119 in FIG. 6 is established is the frozen vegetable operation or the freezing operation. When step S401 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding frozen vegetable operation or freezing operation, and the inside of the freezing evaporator 14b is set. A refrigerant recovery operation for recovering the refrigerant to the heat radiating means side is performed (step S402), and then “high load mode refrigeration operation” is selected (step S403). When step S401 is not established (No), the “high load mode refrigeration operation” is selected without performing the refrigerant recovery operation (step S403). In the refrigerator of this embodiment, when “high load mode refrigeration operation” is selected, the compressor 24 is set to a rotational speed of 3 (2500 min −1 ) and the refrigeration fan 9 a is set to a speed of 3 (2000 min −1 ). The The rotation speeds of the compressor 24, the refrigeration fan 9a, and the refrigeration fan 9b when the frozen vegetable operation, the refrigeration operation, and the refrigeration evaporator defrost operation are performed are selected to be the same as the normal operation mode. .
冷凍室7と冷蔵室2が共に高負荷(ステップS301とステップS302がYes)の場合,次に冷媒回収運転の要否が判定される(ステップS303)。本実施例の冷蔵庫では,図6のステップS102,S110,S119の何れかが成立した時点における運転が冷蔵運転の場合にステップS303が成立する。ステップS303が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷蔵運転における回転速度で圧縮機24を駆動して,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS304),続いて「過負荷モード」が選択される(ステップS305)。本実施例の冷蔵庫では,「過負荷モード」が選択された場合,冷蔵運転が実施される際の回転速度として,圧縮機24は速度3(2500min-1),冷蔵用ファン9aは速度3(2000min-1),冷凍野菜運転または冷凍運転が実施される際の回転速度として、圧縮機24は速度4(3600min-1),冷凍用ファン9bは速度2(2000min-1)に設定される。なお,冷蔵用蒸発器除霜運転が実施される際の冷蔵用ファン9aの回転速度は通常運転モードと同じ回転速度が選択される。 When the freezer compartment 7 and the refrigerator compartment 2 are both heavily loaded (Yes in Step S301 and Step S302), it is next determined whether or not the refrigerant recovery operation is necessary (Step S303). In the refrigerator of the present embodiment, step S303 is established when the operation at the time when any of steps S102, S110, and S119 in FIG. 6 is established is the refrigeration operation. When step S303 is established (Yes), the three-way valve 52 is set to state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14a is dissipated. The refrigerant recovery operation for recovering to the side is performed (step S304), and then the “overload mode” is selected (step S305). In the refrigerator of the present embodiment, when “overload mode” is selected, the compressor 24 has a speed 3 (2500 min −1 ) and the refrigeration fan 9 a has a speed 3 ( 2000 min -1), as the rotational speed when the frozen vegetables operation or freezing operation is carried out, the compressor 24 speed 4 (3600 min -1), freezing fan 9b is set to speed 2 (2000min -1). The rotation speed of the refrigeration fan 9a when the refrigeration evaporator defrosting operation is performed is selected to be the same as that in the normal operation mode.
ステップS305において「過負荷モード」が選択されると,三方弁を状態2(冷凍モード),圧縮機24を速度4(3600min-1),冷凍用ファン9bを速度2(2000min-1)で駆動し,野菜室ダンパ19を開放して冷凍野菜運転が開始され(ステップS306),続いて冷蔵用ファン9aを速度1(900min-1)で駆動して,冷蔵用蒸発器除霜運転が実施される。 If in step S305 'overload mode "is selected, the three-way valve state 2 (freezing mode), the compressor 24 speed 4 (3600 min -1), drives the freezing fan 9b at the rate 2 (2000 min -1) Then, the vegetable compartment damper 19 is opened and the frozen vegetable operation is started (step S306). Subsequently, the refrigeration fan 9a is driven at a speed of 1 (900 min -1 ), and the refrigeration evaporator defrosting operation is performed. The
次に野菜室冷却終了条件が成立しているかが判定される(ステップS308)。本実施例の冷蔵庫では,野菜室温度センサ43が検知する野菜室温度Tが,野菜室冷却終了温度TV_off(=4℃)以下(TV≦TV_off)の場合にステップS307が成立する。ステップS308が成立した場合(Yes),野菜室ダンパ19が閉鎖されて冷凍野菜運転が終了し,冷凍室7を冷却する冷凍運転に移行する(ステップS309)。 Next, it is determined whether or not the vegetable room cooling end condition is satisfied (step S308). In the refrigerator of this embodiment, vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected, step S307 in the case of vegetable compartment cooling end temperature T V_off (= 4 ℃) or less (T V ≦ T V_off) is satisfied . When Step S308 is established (Yes), the vegetable compartment damper 19 is closed, the frozen vegetable operation is finished, and the operation proceeds to the freezing operation for cooling the freezer compartment 7 (Step S309).
ステップS308が成立しない場合(No),続いて冷蔵用蒸発器除霜運転終了条件が成立しているかが判定される(ステップS310)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TR_evpが冷蔵用蒸発器除霜運転終了温度TRD_off(=2℃)以上(TR_evp≧TRD_off)の場合に成立する。ステップS310が成立した場合(Yes),冷蔵用ファン9aが停止されて,冷蔵用蒸発器除霜運転が終了する(ステップS311)。 When step S308 is not satisfied (No), it is subsequently determined whether the refrigeration evaporator defrosting operation end condition is satisfied (step S310). The refrigeration evaporator defrosting operation end condition is satisfied when the refrigeration evaporator temperature TR_evp is equal to or higher than the refrigeration evaporator defrosting operation end temperature TRD_off (= 2 ° C.) ( TR_evpTRD_off ). When step S310 is established (Yes), the refrigeration fan 9a is stopped and the refrigeration evaporator defrosting operation is ended (step S311).
ステップS310が成立しない場合(No),続いて冷凍野菜運転,または,冷凍運転終了条件が成立しているかが判定される(ステップS312)。本実施例の冷蔵庫では,野菜室ダンパ19が閉鎖状態,且つ,冷凍室温度Tが冷凍運転終了温度TF_off(=-21℃)以下(T≧TF_off)の場合,または,冷凍野菜運転,または,冷凍運転の継続時間が所定値(20分)に到達した場合にステップS312が成立する。ステップS312が成立しない場合(No),ステップS308の判定に戻る。 When step S310 is not satisfied (No), it is subsequently determined whether the frozen vegetable operation or the freezing operation end condition is satisfied (step S312). In the refrigerator of this embodiment, when the vegetable compartment damper 19 is closed and the freezer compartment temperature T F is equal to or lower than the freezing operation end temperature T F_off (= −21 ° C.) (T F ≧ T F_off ), or frozen vegetables Step S312 is established when the duration time of the operation or the freezing operation reaches a predetermined value (20 minutes). If step S312 is not satisfied (No), the process returns to the determination of step S308.
ステップS312が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS313)。このとき,冷凍用ファン9bは駆動を継続する。   When step S312 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), and a refrigerant recovery operation for recovering the refrigerant in the refrigeration evaporator 14b to the heat radiating means side is performed (step S313). At this time, the refrigeration fan 9b continues to drive.
続いて通常運転モードに移行するかの判定が行われる(ステップS314)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが冷蔵運転開始温度TR_on(=5℃)以下(TR≦TR_on),冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=−18℃)以下(TR≦TF_on)が同時に満たされている場合にステップS314が成立し(Yes),通常運転モードに戻る(図6のステップS101)
ステップS314が成立しない場合(No),続いて冷蔵運転が行われる(ステップS315)。冷蔵運転は,三方弁52を状態1(冷蔵モード),圧縮機24を速度3(2500min-1)で駆動,冷蔵用ファン9aを速度3(2000 min-1)で駆動,冷凍用ファン9bを停止,野菜室ダンパ19を閉鎖することで開始する。
Subsequently, a determination is made as to whether to shift to the normal operation mode (step S314). In the refrigerator of the present embodiment, the refrigerating compartment temperature T R is refrigerating operation start temperature T R_on the refrigerating compartment temperature sensor 41 for detecting (= 5 ° C.) or less (T R ≦ T R_on), the freezing compartment temperature sensor 42 for detecting frozen If the room temperature T F is simultaneously satisfied with the frozen vegetable operation start temperature T F — on (= −18 ° C.) or less (T R ≦ T F — on ), step S314 is established (Yes), and the normal operation mode is returned ( Step S101 in FIG. 6)
When step S314 is not established (No), the refrigeration operation is subsequently performed (step S315). Refrigerating operation, the state 1 the three-way valve 52 (refrigerating mode), drives the compressor 24 at a speed 3 (2500min -1), drives the refrigerating fan 9a at a speed 3 (2000 min -1), the freezing fan 9b Stop and start by closing the vegetable compartment damper 19.
次に、冷凍室7が高負荷であるかが判定される(ステップS316)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high)の場合にステップS316が成立する(Yes)。ステップS316が成立した場合(Yes)は,冷媒回収運転が行われ(ステップS304),過負荷モードに移行する(ステップS305)。なお,冷蔵運転が開始されてから所定時間(5分)が経過するまでは、ステップS316の判定はスキップされる。 Next, it is determined whether the freezer compartment 7 has a high load (step S316). In the refrigerator of the present embodiment, step S316 is established when the freezer compartment temperature T F detected by the freezer compartment temperature sensor 42 is equal to or higher than the high load determination temperature T F_high (= −10 ° C.) ( TFTF_high ). (Yes). When step S316 is established (Yes), the refrigerant recovery operation is performed (step S304), and the process shifts to the overload mode (step S305). Note that the determination in step S316 is skipped until a predetermined time (5 minutes) has elapsed since the start of the refrigeration operation.
ステップS316が成立しない場合(No)は,冷蔵運転終了条件が成立しているかの判定(ステップS317)に移行する。本実施例の冷蔵庫では,冷蔵室温度Tが冷蔵運転終了温度TR_off(=1℃)以下(T≦TR_off)の場合,または,過負荷モードにおいて冷蔵運転の継続時間が所定値(10分)に到達した場合にステップS317が成立する。ステップS317が成立しない場合(No)は,再びステップS316の判定に戻り,ステップS317が成立した場合(Yes)は,三方弁52を状態3(全閉モード)とし,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS318)。このとき,冷蔵用ファン9aは駆動を継続する。 When step S316 is not satisfied (No), the process proceeds to determination (step S317) whether the refrigeration operation end condition is satisfied. In the refrigerator of the present embodiment, when the refrigerating compartment temperature T R is refrigerating operation end temperature T R_off (= 1 ℃) or less (T R ≦ T R_off), or the duration of the refrigerating operation in the overload mode is a predetermined value ( 10 minutes), step S317 is established. If step S317 is not satisfied (No), the process returns to the determination in step S316 again. If step S317 is satisfied (Yes), the three-way valve 52 is set to state 3 (fully closed mode), and the refrigeration evaporator 14a is set. A refrigerant recovery operation for recovering the refrigerant to the heat radiating means side is performed (step S318). At this time, the refrigeration fan 9a continues to drive.
続いて通常運転モードに移行するかの判定が行われる(ステップS319)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが冷蔵運転開始温度TR_on(=5℃)以下(TR≦TR_on),冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=−18℃)以下(TR≦TF_on)が同時に満たされている場合にステップS318が成立し(Yes),通常運転モードに戻る(図6のステップS109)。 Subsequently, a determination is made as to whether to shift to the normal operation mode (step S319). In the refrigerator of the present embodiment, the refrigerating compartment temperature T R is refrigerating operation start temperature T R_on the refrigerating compartment temperature sensor 41 for detecting (= 5 ° C.) or less (T R ≦ T R_on), the freezing compartment temperature sensor 42 for detecting frozen If the room temperature T F is simultaneously satisfied with the frozen vegetable operation start temperature T F — on (= −18 ° C.) or less (T R ≦ T F — on ), step S318 is established (Yes), and the normal operation mode is returned ( Step S109 in FIG. 6).
また,ステップS403で「高負荷モード冷蔵運転」が選択された場合は,ステップS315に移行して冷蔵運転が開始され,ステップS503で「高負荷モード冷凍野菜/冷凍運転」が選択された場合は,ステップS306に移行して冷凍野菜運転が開始され,以降は上述の制御フローに従って制御がなされる。   If “high load mode refrigeration operation” is selected in step S403, the process proceeds to step S315 to start refrigeration operation. If “high load mode frozen vegetable / frozen operation” is selected in step S503, , The process proceeds to step S306, and the frozen vegetable operation is started. Thereafter, the control is performed according to the control flow described above.
なお本実施例の冷蔵庫では,ステップS105,ステップS301における冷媒回収運転は,圧縮機24が速度1(800min-1),冷蔵用ファン9aが速度2(1500min-1)で駆動している場合は2分間,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動している場は1.5分間実施する。また,ステップS112,ステップS302における冷媒回収運転は,圧縮機24が速度2(1400min-1),冷凍用ファン9bが速度1(1200min-1)で駆動している場合は2.5分間,圧縮機24が速度4(1400min-1),冷凍用ファン9bが速度2(2000min-1)で駆動している場合は1.5分間実施する。 In the refrigerator of the present embodiment, the refrigerant recovery operation in step S105 and step S301 is performed when the compressor 24 is driven at a speed 1 (800 min −1 ) and the refrigeration fan 9a is driven at a speed 2 (1500 min −1 ). For 2 minutes, the compressor 24 is driven at a speed of 3 (2500 min -1 ) and the refrigeration fan 9a is driven at a speed of 3 (2000 min -1 ) for 1.5 minutes. The refrigerant recovery operation in steps S112 and S302 is performed for 2.5 minutes when the compressor 24 is driven at speed 2 (1400 min -1 ) and the refrigeration fan 9b is driven at speed 1 (1200 min -1 ). When the machine 24 is driven at a speed of 4 (1400 min −1 ) and the refrigeration fan 9 b is driven at a speed of 2 (2000 min −1 ), the operation is performed for 1.5 minutes.
通常運転モードにおける冷蔵運転中の冷蔵用ファン9aの回転速度(速度2=1500min-1)での冷蔵室2の循環風量は0.52m/minである。また,冷蔵用蒸発器除霜運転中の冷蔵用ファン9aの回転速度(速度1=900min-1)での冷蔵室2の循環風量は0.31m/minである。 The circulating air volume in the refrigerating chamber 2 at the rotational speed of the refrigerating fan 9a during the refrigerating operation in the normal operation mode (speed 2 = 1500 min −1 ) is 0.52 m 3 / min. Further, the circulating air volume in the refrigerating chamber 2 at the rotational speed (speed 1 = 900 min −1 ) of the refrigerating fan 9a during the defrosting operation of the refrigerating evaporator is 0.31 m 3 / min.
通常運転モードにおける冷凍用ファン9bの回転速度(速度1=1200min-1)での冷凍室7の循環風量は野菜室ダンパ19が開放された状態(冷凍野菜運転中)では0.55m/min,野菜室ダンパ19が閉鎖された状態(冷凍運転中)では0.6m/minであり,野菜室ダンパ19が開放された状態(冷凍野菜運転中)の野菜室6の循環風量は0.07m/minである。 The amount of circulating air in the freezer compartment 7 at the rotational speed of the freezing fan 9b in the normal operation mode (speed 1 = 1200 min −1 ) is 0.55 m 3 / min when the vegetable compartment damper 19 is open (during frozen vegetable operation). When the vegetable room damper 19 is closed (during freezing operation), the flow rate is 0.6 m 3 / min, and the amount of circulating air in the vegetable room 6 when the vegetable room damper 19 is opened (during frozen vegetable operation) is 0. 07 m 3 / min.
高負荷モード,または,過負荷モードにおける冷蔵運転中の冷蔵用ファン9aの回転速度(速度3=2000min-1)における冷蔵室2の循環風量は0.52m/minである。また,高負荷モードにおける冷凍用ファン9bの回転速度(速度2=2000min-1)での冷凍室7の循環風量は野菜室ダンパ19が開放された状態(冷凍野菜運転中)では0.92m/min,野菜室ダンパ19が閉鎖された状態(冷凍運転中)では1.0m/minであり,野菜室ダンパ19が開放された状態(冷凍野菜運転中)の野菜室6の循環風量は0.12m/minである。 The circulating air volume in the refrigerator compartment 2 at the rotational speed (speed 3 = 2000 min −1 ) of the refrigeration fan 9a during the refrigeration operation in the high load mode or the overload mode is 0.52 m 3 / min. Further, the circulating air volume in the freezer compartment 7 at the rotational speed of the freezing fan 9b in the high load mode (speed 2 = 2000 min −1 ) is 0.92 m 3 when the vegetable compartment damper 19 is open (during frozen vegetable operation). / Min, 1.0 m 3 / min when the vegetable compartment damper 19 is closed (during freezing operation), and the circulating air volume in the vegetable compartment 6 when the vegetable compartment damper 19 is opened (during frozen vegetable operation) is 0.12 m 3 / min.
図8は本実施例に係る冷蔵庫を,32℃,相対湿度70%の環境下に設置し,通常運転モードによる安定冷却運転が行われている状態を表すタイムチャートである。なお冷蔵室2の維持温度レベルは「中」,冷凍室7の維持温度レベルは「中」,チルドルーム35は「温度レベル1」に設定されている。   FIG. 8 is a time chart showing a state in which the refrigerator according to the present embodiment is installed in an environment of 32 ° C. and a relative humidity of 70% and the stable cooling operation is performed in the normal operation mode. The maintenance temperature level of the refrigerator compartment 2 is set to “medium”, the maintenance temperature level of the freezer compartment 7 is set to “medium”, and the chilled room 35 is set to “temperature level 1”.
経過時間tは冷蔵室2を冷却する冷蔵運転が開始(図6のステップS101)された経過時間である。通常運転モードにおける冷蔵運転では,三方弁52が状態1(冷蔵モード)に制御され,圧縮機24が速度1(800min-1)で駆動されて冷蔵用蒸発器14aに冷媒が供給されることで,冷蔵用蒸発器14aの温度が低下している。この状態で冷蔵用ファン9aが速度2(1500min-1)で駆動されることで,冷蔵用蒸発器14aを通過して低温になった空気が冷蔵室吐出口11a(図2参照)から冷蔵室2内に吹き出し、冷蔵室2が冷却されて温度が低下している。 Elapsed time t 0 is the elapsed time (step S101 in FIG. 6) refrigerating operation is started to cool the refrigerator compartment 2. In the refrigeration operation in the normal operation mode, the three-way valve 52 is controlled to the state 1 (refrigeration mode), the compressor 24 is driven at a speed 1 (800 min −1 ), and the refrigerant is supplied to the refrigeration evaporator 14a. The temperature of the refrigeration evaporator 14a is decreasing. In this state, the refrigeration fan 9a is driven at a speed of 2 (1500 min −1 ), so that the low temperature air passing through the refrigeration evaporator 14a is supplied from the refrigeration chamber discharge port 11a (see FIG. 2). It blows out in 2 and the refrigerator compartment 2 is cooled and the temperature is falling.
ここで,冷蔵運転中の冷蔵用蒸発器14aの時間平均温度は−6℃であり,後述する冷凍運転中の冷凍用蒸発器14bの時間平均温度の-24℃よりも高くしている。一般に蒸発器温度(蒸発温度)が高い方が,冷凍サイクル成績係数(圧縮機24の入力に対する吸熱量の割合)が高く,省エネルギー性能が高い。冷凍室7は冷凍温度に維持するために冷凍用蒸発器14bの温度を低温にする必要があるが,冷蔵室2は冷蔵温度に維持すれば良いので,冷蔵用蒸発器14aの温度を高めるように冷蔵用ファン9a及び圧縮機24の回転速度を制御して,省エネルギー性能を向上している。経過時間tで冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転終了温度TR_offまで低下したことで,冷蔵運転から冷媒回収運転に切換わっている(図6のステップS104,S105)。冷媒回収運転では三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度1(800min-1),冷蔵用ファン9aが速度2(1500min-1)で駆動されて,冷蔵用蒸発器14a内の冷媒が2分間回収される(ΔTA1=2min)。これにより,次の冷凍野菜運転及び冷凍運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷蔵用ファン9aが駆動されることで,冷蔵用蒸発器14a内の残留冷媒が冷蔵室2の冷却に活用されるとともに,冷蔵室2内の空気による加熱で,冷蔵用蒸発器14a内の圧力低下が緩和される。これにより,圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 Here, the time average temperature of the refrigeration evaporator 14a during the refrigeration operation is −6 ° C., which is higher than the time average temperature -24 ° C. of the refrigeration evaporator 14b during the refrigeration operation described later. Generally, the higher the evaporator temperature (evaporation temperature), the higher the coefficient of performance of the refrigeration cycle (the ratio of the endothermic amount to the input of the compressor 24), and the higher the energy saving performance. In order to maintain the freezing temperature in the freezer compartment 7 at the freezing temperature, the temperature of the freezing evaporator 14b needs to be lowered. However, since the refrigerating room 2 only needs to be maintained at the refrigerating temperature, the temperature of the refrigerating evaporator 14a should be increased. In addition, the rotational speed of the refrigeration fan 9a and the compressor 24 is controlled to improve the energy saving performance. Elapsed time by the refrigerating compartment temperature T R of the refrigerating compartment temperature sensor 41 at t 1 is detected is decreased to refrigerating operation end temperature T R_off, steps S104, S105 that are switched to the refrigerant recovery run from refrigerating operation (FIG. 6 ). In the refrigerant recovery operation, the three-way valve 52 is controlled to state 3 (fully closed mode), the compressor 24 is driven at speed 1 (800 min −1 ), and the refrigeration fan 9a is driven at speed 2 (1500 min −1 ). The refrigerant in the evaporator 14a is recovered for 2 minutes (ΔT A1 = 2 min). Thereby, the cooling efficiency fall by the refrigerant | coolant shortage by the following frozen vegetable driving | operation and freezing driving | operation can be suppressed. At this time, when the refrigeration fan 9a is driven, the residual refrigerant in the refrigeration evaporator 14a is utilized for cooling the refrigeration chamber 2, and the refrigeration evaporator is heated by the air in the refrigeration chamber 2. The pressure drop in 14a is alleviated. As a result, an increase in the specific volume of the suction refrigerant of the compressor 24 is suppressed, and a large amount of refrigerant can be recovered in a relatively short time, thereby improving the cooling efficiency.
冷媒回収運転が終わると(経過時間t),冷蔵用蒸発器除霜運転を実施するかが判定され,ここではチルドルーム35の設定が「温度レベル1」となっているため,冷蔵用ファン9aが速度1(900min-1)で駆動されて冷蔵用蒸発器除霜運転が行われている(図6のステップS106,S107)。これにより冷蔵用蒸発器14aの温度が上昇するとともに,霜や冷蔵用蒸発器14aの蓄冷熱による冷却効果によって,冷蔵室2の温度上昇が緩和される。また経過時間tで冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on以上となっていることから冷凍野菜運転が開始され,野菜室6が冷却され野菜室温度Tが低下している。冷凍野菜運転では,三方弁52が状態2(冷凍モード)に制御され,圧縮機24が速度2(1400min-1)で駆動されて冷凍用蒸発器14bに冷媒が供給されて,冷凍用蒸発器14bが低温になる。この状態で野菜室ダンパ19が開放され,冷凍用ファン9bが速度1(1200min-1)で駆動されることで,冷凍用蒸発器14bを通過して低温になった空気で冷凍室7と野菜室6が冷却される。 When the refrigerant recovery operation ends (elapsed time t 2 ), it is determined whether or not the refrigeration evaporator defrosting operation is performed. Here, since the setting of the chilled room 35 is “temperature level 1”, the refrigeration fan 9a is driven at a speed of 1 (900 min −1 ), and the refrigeration evaporator defrosting operation is performed (steps S106 and S107 in FIG. 6). As a result, the temperature of the refrigeration evaporator 14a rises, and the temperature rise of the refrigeration chamber 2 is mitigated by the cooling effect of frost and the cold storage heat of the refrigeration evaporator 14a. The freezing compartment temperature T F of the freezing compartment temperature sensor 42 detects the elapsed time t 2 is, frozen vegetables driving frozen vegetables operation since the start has a temperature T F_on above is started, the vegetable compartment vegetable compartment 6 is cooled temperature T V is decreased. In the frozen vegetable operation, the three-way valve 52 is controlled to the state 2 (freezing mode), the compressor 24 is driven at the speed 2 (1400 min −1 ), and the refrigerant is supplied to the freezing evaporator 14b. 14b becomes low temperature. In this state, the vegetable compartment damper 19 is opened, and the freezing fan 9b is driven at a speed of 1 (1200 min −1 ), so that the air that has passed through the freezing evaporator 14b and has been cooled to the freezer compartment 7 and the vegetable Chamber 6 is cooled.
経過時間tで野菜室温度センサ43が検知する野菜室温度Tが野菜室冷却終了温度TV_offに到達したことにより,野菜室ダンパ19が閉鎖され,冷凍運転に移行している(図6のステップS111,S112)。 By vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected reaches the vegetable compartment cooling end temperature T V_off by the elapsed time t 3, the vegetable compartment damper 19 is closed, and moves to the freezing operation (FIG. 6 Steps S111 and S112).
続いて経過時間tに冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器14aの温度TRevpが冷蔵用蒸発器除霜運転終了温度TRD_offに到達したことにより,冷蔵用ファン9aが停止され,冷蔵用蒸発器除霜運転が終了している(図6のステップS113,S114)。 Then as the temperature T REVP of refrigerating evaporator 14a for refrigerating evaporator temperature sensor 40a detects the elapsed time t 4 reaches the refrigerating evaporator defrosting operation end temperature T RD_off, the refrigeration fan 9a stop Thus, the refrigeration evaporator defrosting operation is completed (steps S113 and S114 in FIG. 6).
経過時間tで冷凍室温度センサ42が検知する冷凍室温度Tが冷凍運転終了温度TF_offに到達し,且つ,野菜室ダンパ19が閉鎖されていることから,冷凍運転が終了している(図6のステップS115)。このとき冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転開始温度TR_on以上に達していることから,冷蔵運転開始条件が成立し(図6のステップS116),冷媒回収運転が行われている(図6のステップS117)。冷媒回収運転では,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度2(1400min-1),冷凍用ファン9bが速度1(1200min-1)で駆動されて,冷凍用蒸発器14b内の冷媒が1.5分間回収される(ΔtB1=1.5min)。これにより,次の冷蔵運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷凍用ファン9bを駆動することで,冷凍用蒸発器14b内の残留冷媒を冷凍室7の冷却に活用するとともに,冷凍室7内の空気による加熱で,冷凍用蒸発器14b内の圧力低下が緩和される。これにより圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 Freezing compartment temperature T F of the freezing compartment temperature sensor 42 detects the elapsed time t 5 reaches the freezing operation completion temperature T F_off, and, since the vegetable compartment damper 19 is closed, the freezing operation is completed (Step S115 in FIG. 6). Since this time the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 detects is reached over the refrigerating operation start temperature T R_on, refrigerating operation start condition is satisfied (step S116 in FIG. 6), the refrigerant recovering operation is row (Step S117 in FIG. 6). In the refrigerant recovery operation, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is driven at speed 2 (1400 min −1 ), and the refrigeration fan 9 b is driven at speed 1 (1200 min −1 ). The refrigerant in the evaporator 14b is recovered for 1.5 minutes (Δt B1 = 1.5 min). Thereby, the cooling efficiency fall by the refrigerant | coolant shortage by the following refrigeration operation can be suppressed. At this time, by driving the refrigeration fan 9b, the refrigerant remaining in the refrigeration evaporator 14b is used for cooling the refrigeration chamber 7, and the inside of the refrigeration evaporator 14b is heated by the air in the refrigeration chamber 7. This reduces the pressure drop. As a result, an increase in the specific volume of the suction refrigerant in the compressor 24 is suppressed, and a large amount of refrigerant can be recovered in a relatively short time, thereby improving the cooling efficiency.
冷凍室7が冷却される運転は,冷凍野菜運転(t2〜t3),冷凍運転(t3〜t5),冷媒回収運転(t5〜t6)であり,これらの運転が行われている間の冷凍用蒸発器14bの時間平均温度は約−24℃となるように,冷凍用ファン9b及び圧縮機24が制御されている。また,冷蔵用ファン9aが駆動状態となっている冷凍運転と冷蔵用蒸発器除霜運転が行われている間の冷蔵室吐出空気温度の時間平均値は,-1.5℃であり,冷凍室維持温度TF_keep(4℃)と冷蔵室維持温度TR_keep(−20℃)の算術平均値(-8℃)より高い温度となっている。 The operation in which the freezer compartment 7 is cooled includes the frozen vegetable operation (t2 to t3), the freezing operation (t3 to t5), and the refrigerant recovery operation (t5 to t6). The refrigeration fan 9b and the compressor 24 are controlled so that the time average temperature of the evaporator 14b is about -24 ° C. The time average value of the refrigeration chamber discharge air temperature during the refrigeration operation in which the refrigeration fan 9a is in operation and the refrigeration evaporator defrosting operation is -1.5 ° C. chamber maintained temperature T F_keep (4 ℃) and the refrigerating compartment maintained temperature T arithmetic mean of R_keep (-20 ℃) has a temperature higher than (-8 ° C.).
冷媒回収運転が終了した経過時間tより再び,冷蔵運転が開始され(図6のステップS101),以後周期的に上述の運転が繰り返され、冷蔵室2は約4℃、冷凍室7は約-20℃、野菜室は約7℃に維持される。 Again from the elapsed time t 6 to the refrigerant recovery run is completed, refrigerating operation is started (step S101 in FIG. 6), are repeated periodically in the above operation thereafter, the refrigerating compartment 2 to about 4 ° C., the freezing compartment 7 about -20 ℃, vegetable room is maintained at about 7 ℃.
図9は本実施例に係る冷蔵庫を,32℃の環境下に設置しJISC9801−3:2015に定められた負荷冷却試験を実施した際の運転状態を表すタイムチャートである。冷蔵庫では,扉の開閉等が行われない状態で,安定して冷却運転が行われる状態だけでなく,食品等の実用的な負荷が投入された際に良好に冷却されることが重要となる。一般的な冷蔵庫の使われ方を十分考慮した上で,JISC9801−3:2015には実用的な負荷が投入された場合を想定した「負荷冷却試験」が規定されている。したがって,本明細書においてはJISC9801−3:2015に定められる負荷を実用負荷と呼ぶ。   FIG. 9 is a time chart showing an operation state when the refrigerator according to the present embodiment is installed in an environment of 32 ° C. and a load cooling test defined in JIS C9801-3: 2015 is performed. In refrigerators, it is important not only to open and close the doors, but also to cool them stably, as well as to cool well when a practical load such as food is applied. . JISC9801-3: 2015 stipulates a “load cooling test” assuming that a practical load is applied in consideration of how a general refrigerator is used. Therefore, in this specification, the load defined in JIS C9801-3: 2015 is referred to as a practical load.
安定冷却運転における冷凍運転(図8参照)が行われている状態の経過時間t0において,JISC9801−3:2015に定められた手順に従って冷蔵室2の扉2aを1分間開放し,実用負荷として32℃の水5064g(冷蔵室2と野菜室6の定格内容積1Lあたり12g)を500mLペットボトルに封入して冷蔵室2内の所定位置に設置し,続いて,冷凍室7(下段冷凍室5)の扉5aを1分間開放し,実用負荷として32℃の水720g(冷凍室の定格内容積1Lあたり4g)を冷凍室7(下段冷凍室5)内の所定位置に設置している。これにより,まず冷蔵室温度Tが上昇し,冷蔵室高負荷判定温度TR_highを超えたために,冷蔵室2が高負荷であると判定される(図6のステップS110)。この時点では,冷蔵室温度Tは冷蔵室高負荷判定温度TR_highを超えて高負荷と判定されるが,冷凍室温度Tは高負荷判定温度TF_highに達していない。したがって,図7のステップS301は成立するが(Yes),ステップS302は成立しない(No)ため,次に冷媒回収運転の要否が判定される(図7のステップS401)。ステップS110の判定がなされた際の運転モードが冷凍運転となるため,ここでは冷媒回収運転要と判定され(図7のステップ401がYes),圧縮機24が速度2(1400min-1),冷凍用ファン9bが速度1(1200min-1)で駆動された状態で,冷凍用蒸発器14b内の冷媒が2.5分間(ΔtA2=2.5min)回収される冷媒回収運転が行われている(図7のステップS402)。このとき,冷凍用ファン9bが駆動されることで,冷凍用蒸発器14b内の残留冷媒の吸熱作用によって冷凍室7が冷却される(冷凍室冷却状態)。 At the elapsed time t0 when the refrigeration operation in the stable cooling operation (see FIG. 8) is performed, the door 2a of the refrigerator compartment 2 is opened for 1 minute in accordance with the procedure defined in JIS C9801-3-3: 5064 g of water at 12 ° C. (12 g per rated liter of the refrigerator compartment 2 and vegetable compartment 6 per liter) was sealed in a 500 mL plastic bottle and placed in a predetermined position in the refrigerator compartment 2, followed by the freezer compartment 7 (lower freezer compartment 5 ) Is opened for 1 minute, and 720 g of water at a temperature of 32 ° C. (4 g per rated internal volume of the freezer compartment) is installed at a predetermined position in the freezer compartment 7 (lower freezer compartment 5). Thus, first, the refrigerating compartment temperature T R is increased, due to exceeding the refrigerating chamber high load determination temperature T R_high, refrigerator compartment 2 is determined to be a high load (step S110 in FIG. 6). At this point, although the refrigerating compartment temperature T R is determined that a high load beyond the refrigerating compartment high load determination temperature T R_high, freezing compartment temperature T F does not reach the high load determination temperature T F_high. Therefore, although step S301 in FIG. 7 is satisfied (Yes), step S302 is not satisfied (No), and therefore it is determined whether or not the refrigerant recovery operation is necessary (step S401 in FIG. 7). Since the operation mode at the time of the determination in step S110 is the refrigeration operation, it is determined here that the refrigerant recovery operation is necessary (step 401 in FIG. 7 is Yes), the compressor 24 is at speed 2 (1400 min −1 ), and the refrigeration operation is performed. Refrigerant recovery operation is performed in which the refrigerant in the refrigeration evaporator 14b is recovered for 2.5 minutes (Δt A2 = 2.5 min) while the fan 9b is driven at a speed of 1 (1200 min -1 ). (Step S402 in FIG. 7). At this time, by driving the refrigeration fan 9b, the freezer compartment 7 is cooled by the endothermic action of the residual refrigerant in the refrigeration evaporator 14b (in the freezer compartment cooling state).
経過時間t0’で冷媒回収運転が終了し,続いて,三方弁52が状態1(冷蔵モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動され,冷凍用ファン9bは停止状態となる高負荷モード冷蔵運転が行われている(図7のステップS403,S315)。 The refrigerant recovery operation ends at the elapsed time t0 ′, and then the three-way valve 52 is controlled to the state 1 (refrigeration mode), the compressor 24 is at speed 3 (2500 min −1 ), and the refrigeration fan 9a is at speed 3 (2000 min). -1 ), and the high-load mode refrigeration operation in which the refrigeration fan 9b is stopped is performed (steps S403 and S315 in FIG. 7).
冷凍室7(下段冷凍室5)に投入した実用負荷によって,冷凍室温度Tが上昇して高負荷判定温度TF_highを超えるが,冷蔵運転移行後5分経過するまでは,図7に示すステップS316が成立しないため,高負荷モード冷蔵運転が継続される。 The practical load put into the freezer compartment 7 (lower freezer compartment 5) causes the freezer compartment temperature TF to rise and exceed the high load determination temperature TF_high , but it is shown in FIG. Since step S316 is not established, the high load mode refrigeration operation is continued.
経過時間t1で冷蔵運転移行条件成立後の最低経過時間である5分が経過したことによって,図7に示すステップS316が成立し(Yes),冷媒回収運転(図7のステップS304)を経て,経過時間t1において過負荷モードに移行している(図7のステップS305)。このときの冷媒回収運転では,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動されて,冷蔵用蒸発器14a内の冷媒が1.5分間回収される(ΔtB2=1.5min)。この冷媒回収運転は経過時間t1’で完了する。冷媒回収運転中に,冷蔵用ファン9aが駆動されることで,冷蔵用蒸発器14a内の残留冷媒の吸熱作用によって冷蔵室2が冷却される。 When 5 minutes which is the minimum elapsed time after establishment of the refrigeration operation transition condition has elapsed at elapsed time t1, Step S316 shown in FIG. 7 is established (Yes), and after the refrigerant recovery operation (Step S304 in FIG. 7), Transition to the overload mode is performed at the elapsed time t1 (step S305 in FIG. 7). In the refrigerant recovery operation at this time, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is driven at the speed 3 (2500 min −1 ), and the refrigeration fan 9 a is driven at the speed 3 (2000 min −1 ). Thus, the refrigerant in the refrigeration evaporator 14a is recovered for 1.5 minutes (Δt B2 = 1.5 min). This refrigerant recovery operation is completed at the elapsed time t1 ′. By driving the refrigeration fan 9a during the refrigerant recovery operation, the refrigeration chamber 2 is cooled by the endothermic action of the residual refrigerant in the refrigeration evaporator 14a.
この経過時間t0’から経過時間t1’に至るまでは,冷蔵室が冷却される運転状態(冷蔵室冷却状態)となる。   From the elapsed time t0 'to the elapsed time t1', an operation state (cooling chamber cooling state) in which the refrigerator compartment is cooled is entered.
経過時間t1から過負荷モードとなり,冷凍室7を冷却する冷凍野菜運転が開始される(図7のステップS306)。過負荷モードの冷凍野菜運転は,三方弁が状態2(冷凍モード)に制御され,圧縮機24が速度4(3600min-1),冷凍用ファン9bが速度2(2000min-1)で駆動され,野菜室ダンパ19が開放された状態で行われる。この運転により冷凍室7及び野菜室6が冷却される。また,このとき冷蔵用ファン9aが速度1(900min-1)で駆動されることで,冷蔵用蒸発器除霜運転が実施される(図7のステップS307)。経過時間t2において,冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器14aの温度TRevpが冷蔵用蒸発器除霜運転終了温度TRD_offに到達したことにより,冷蔵用ファン9aが停止され,冷蔵用蒸発器除霜運転が終了している(図7のステップS310,S311)。 The overload mode is entered from the elapsed time t1, and the frozen vegetable operation for cooling the freezer compartment 7 is started (step S306 in FIG. 7). Frozen vegetables operation overload mode, three-way valve is controlled to a state 2 (freezing mode), the compressor 24 speed 4 (3600 min -1), freezing fan 9b is driven at a speed 2 (2000 min -1), This is performed with the vegetable room damper 19 opened. By this operation, the freezer compartment 7 and the vegetable compartment 6 are cooled. At this time, the refrigeration fan 9a is driven at a speed of 1 (900 min −1 ), so that the refrigeration evaporator defrosting operation is performed (step S307 in FIG. 7). Since the temperature T Revp of the refrigeration evaporator 14a detected by the refrigeration evaporator temperature sensor 40a at the elapsed time t2 has reached the refrigeration evaporator defrosting operation end temperature TRD_off , the refrigeration fan 9a is stopped. The refrigeration evaporator defrosting operation has been completed (steps S310 and S311 in FIG. 7).
経過時間t3において,野菜室温度センサ43が検知する野菜室温度Tが,野菜室冷却終了温度TV_off(=4℃)以下(TV≦TV_off)に到達したことによって野菜室ダンパ19が閉鎖され冷凍運転に移行している(図7のステップS308,S309)。 In the elapsed time t3, the vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected, a vegetable compartment damper 19 by reaching the vegetable compartment cooling end temperature T V_off (= 4 ℃) less (T V ≦ T V_off) is It is closed and the operation is shifted to the freezing operation (steps S308 and S309 in FIG. 7).
経過時間t4において,過負荷モードの冷凍野菜運転開始からの経過時間が所定値(20min)に到達したため,冷凍野菜/冷凍運転終了条件が成立し(図7のステップS312),冷凍運転が終了され,冷媒回収運転に移行している。このときの冷媒回収運転は,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度4(3600min-1),冷凍用ファン9bが速度2(2000min-1)で駆動されて,冷凍用蒸発器14b内の冷媒が1.5分間回収される(ΔtC2=1.5min)。この冷媒回収運転は経過時間t4’で完了する。冷媒回収運転中に,冷凍用ファン9bが駆動されることで,冷凍用蒸発器14b内の残留冷媒の吸熱作用によって冷凍室7が冷却される。以上から,経過時間t1’〜t3は冷凍室7と野菜室6が冷却される状態(冷凍野菜室冷却状態)となり,経過時間t3〜t4’は冷凍室7が冷却される状態(冷凍室冷却状態)となる。 At the elapsed time t4, the elapsed time from the start of the frozen vegetable operation in the overload mode has reached a predetermined value (20 min), so the frozen vegetable / freezing operation end condition is satisfied (step S312 in FIG. 7), and the freezing operation is ended. , Has shifted to refrigerant recovery operation. Refrigerant recovery operation at this time, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 speed 4 (3600 min -1), freezing fan 9b is driven at a speed 2 (2000 min -1) Thus, the refrigerant in the freezing evaporator 14b is recovered for 1.5 minutes (Δt C2 = 1.5 min). This refrigerant recovery operation is completed at the elapsed time t4 ′. By driving the refrigeration fan 9b during the refrigerant recovery operation, the freezer compartment 7 is cooled by the endothermic action of the residual refrigerant in the refrigeration evaporator 14b. From the above, the elapsed times t1 ′ to t3 are in a state where the freezer compartment 7 and the vegetable compartment 6 are cooled (frozen vegetable compartment cooled state), and the elapsed times t3 to t4 ′ are those in which the freezer compartment 7 is cooled (freezer compartment cooling). State).
続いて,通常運転モードへの移行が判定されるが(図7のステップS312),経過時間t4’においては冷蔵室温度T,冷凍室温度Tともに冷蔵運転開始温度TR_on及び冷凍野菜運転開始温度TF_onより高いため成立せず,過負荷モードの冷蔵運転に移行する(図7のステップS315)。これにより,三方弁52が状態1(冷蔵モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動され,冷凍用ファン9bは停止状態となる過負荷モードの冷蔵運転が行われている(図7のステップS315,S315)。 Then, (step S312 in FIG. 7), but the transition to the normal operation mode is determined, the elapsed time refrigerating compartment temperature T R in t4 ', the freezing compartment temperature T F together refrigerating operation start temperature T R_on and frozen vegetables operation Since it is higher than the start temperature TF_on , it does not hold, and shifts to the overload mode refrigeration operation (step S315 in FIG. 7). As a result, the three-way valve 52 is controlled to the state 1 (refrigeration mode), the compressor 24 is driven at speed 3 (2500 min −1 ), the refrigeration fan 9 a is driven at speed 3 (2000 min −1 ), and the freezing fan 9 b is Refrigeration operation in an overload mode that is in a stopped state is performed (steps S315 and S315 in FIG. 7).
経過時間t5において過負荷モードの冷蔵運転の継続時間が所定値(10min)に到達したことにより,冷蔵運転終了条件が成立し(図7のステップS317),冷媒回収運転に移行している(図7のステップS318)。このときの冷媒回収運転は,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動されて,冷蔵用蒸発器14a内の冷媒が1.5分間回収される。この冷媒回収運転は経過時間t5’で完了する(経過時間t1〜t1’で実施される冷媒回収運転と同様の制御)。以後は経過時間t1’〜t5’と同様の制御により冷蔵室2,冷凍室7,野菜室6の冷却が行われている。具体的には,経過時間t5〜t7,t9〜t11,t13〜t15が冷凍野菜室冷却状態,経過時間t7〜t8,t11〜t12,t15〜t16が冷凍室冷却状態,経過時間t8〜t9,t12〜t13,t16〜t17が冷蔵室冷却状態となる。また,t5〜t6,t9〜t10,t13〜t14には冷蔵用蒸発器除霜運転が実施されている。 When the continuation time of the refrigeration operation in the overload mode reaches the predetermined value (10 min) at the elapsed time t5, the refrigeration operation end condition is satisfied (step S317 in FIG. 7), and the operation proceeds to the refrigerant recovery operation (FIG. 7 step S318). In this refrigerant recovery operation, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is driven at the speed 3 (2500 min −1 ), and the refrigeration fan 9 a is driven at the speed 3 (2000 min −1 ). Thus, the refrigerant in the refrigeration evaporator 14a is recovered for 1.5 minutes. This refrigerant recovery operation is completed at the elapsed time t5 ′ (the same control as the refrigerant recovery operation performed at the elapsed time t1 to t1 ′). Thereafter, the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6 are cooled by the same control as the elapsed times t1 'to t5'. Specifically, the elapsed times t5 to t7, t9 to t11, t13 to t15 are in the frozen vegetable room cooling state, the elapsed times t7 to t8, t11 to t12, and t15 to t16 are the freezer room cooling state, the elapsed time t8 to t9, t12 to t13 and t16 to t17 are in the refrigerator compartment cooling state. In addition, the refrigeration evaporator defrosting operation is performed from t5 to t6, t9 to t10, and t13 to t14.
経過時間t17において,通常運転モードに移行するかの判定が行われ(図7のステップS319),冷蔵室温度Tが冷蔵運転開始温度TR_on以下(TR≦TR_on),冷凍室温度Tが冷凍野菜運転開始温度TF_on以下(TR≦TF_on)を同時に満たしているので,過負荷モードが終了し(図7のステップS319がYes),t17以降は通常運転モードによる冷却が行われている。 In the elapsed time t17, it is determined whether transition to the normal operation mode is performed (step S319 in FIG. 7), the refrigerating compartment temperature T R refrigeration operation start temperature T R_on below (T R ≦ T R_on), the freezing compartment temperature T since F meets frozen vegetables operation start temperature T F_on below (T R ≦ T F_on) simultaneously, the overload mode ends (step S319 in FIG. 7 is Yes), cooling line according to t17 after the normal operation mode It has been broken.
以上で,本実施例の冷蔵庫の構成と制御方法を説明したが,次に,本実施形態の冷蔵庫の奏する効果について説明する。   The configuration and control method of the refrigerator of this embodiment have been described above. Next, the effects achieved by the refrigerator of this embodiment will be described.
本実施例の冷蔵庫は,冷蔵室2(第一冷蔵温度帯室)と,野菜室6(第二冷蔵温度帯室)と,冷凍室7を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用送風機9a(第一送風機)と,冷凍室7の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9b(第二送風機)を備え,第一送風機の駆動により冷蔵用蒸発器14aと熱交換した冷却空気を冷蔵室2に流通させる冷蔵風路111(第一風路)と,冷凍用ファン9bの駆動により冷凍用蒸発器14bと熱交換した冷却空気を冷凍室7及び野菜室6に流通させる冷凍野菜風路112(第二風路)を備え,第一風路と第二風路の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。これにより,野菜室と冷蔵室とを独立して冷却できるため,例えば野菜室に温度が高い食品を収納した,あるいは,食品等を挟み込むことにより野菜室扉と断熱箱体の間に隙間が生じているといった事由により野菜室の負荷が大きくなった場合においても,野菜室と一緒に冷蔵室を冷却する必要がなく,冷蔵室を過度に冷却することが抑制できるので,冷蔵室の冷却効率低下を防ぐことが可能である。また,隔壁などを介して冷凍室の冷気で野菜室を間接的に冷却する構成と異なり,冷凍用蒸発器と熱交換した空気を野菜室に送風して冷却できるので,冷凍室を過度に低温に維持することによる冷凍室の冷却効率低下も防ぐことが可能である。すなわち,一部の貯蔵室の負荷を冷却するために,冷蔵庫全体としての冷却効率が低下するという問題が生じ難い冷蔵庫,すなわち,冷蔵庫全体としての冷却効率が高い冷蔵庫となる。   The refrigerator of the present embodiment includes a refrigerator compartment 2 (first refrigerator temperature zone chamber), a vegetable compartment 6 (second refrigerator temperature zone chamber), and a freezer compartment 7, and a refrigerator evaporator 14a at the back of the refrigerator compartment 2 is provided. (First evaporator) and refrigeration blower 9a (first blower), and a freezing evaporator 14b (second evaporator) and a freezing fan 9b (second blower) on the back of the freezer compartment 7, Refrigeration air passage 111 (first air passage) for circulating the cooling air heat-exchanged with refrigeration evaporator 14a by driving the blower into refrigeration chamber 2, and heat exchange with refrigeration evaporator 14b by driving refrigeration fan 9b An air flow blocking means (not shown) that includes a frozen vegetable air passage 112 (second air passage) for circulating cooling air to the freezer compartment 7 and the vegetable compartment 6 and that interrupts the air flow between the first air passage and the second air passage ( A heat insulating partition wall 28) is provided. As a result, the vegetable compartment and the refrigerator compartment can be cooled independently. For example, food with high temperature is stored in the vegetable compartment, or food is sandwiched between the vegetable compartment door and the heat insulation box. Even if the load on the vegetable room increases due to reasons such as the fact that it is not necessary to cool the refrigerator room together with the vegetable room, it is possible to suppress excessive cooling of the refrigerator room, so the cooling efficiency of the refrigerator room decreases. It is possible to prevent. Also, unlike the configuration in which the vegetable compartment is indirectly cooled by the cold air in the freezer compartment via a partition wall, etc., the air that has been heat exchanged with the freezer evaporator can be blown into the vegetable compartment and cooled, so the freezer compartment can be cooled to an excessively low temperature. Therefore, it is possible to prevent the cooling efficiency of the freezer compartment from being lowered. That is, since the load of a part of the storage rooms is cooled, a refrigerator in which the cooling efficiency of the entire refrigerator is unlikely to occur, that is, a refrigerator having a high cooling efficiency as the entire refrigerator is obtained.
本実施例の冷蔵庫は,冷蔵室2(第一冷蔵温度帯室),冷凍室7,野菜室6(第二冷蔵温度帯室)のうち,定格内容積が最大の冷蔵室2(第一冷蔵温度帯室)に冷蔵用蒸発器14aと熱交換した冷却空気を冷蔵室2に流通させる冷蔵風路111(第一風路)と,冷凍用蒸発器14bと熱交換した冷却空気を冷凍室7及び野菜室6に流通させる冷凍野菜風路112(第二風路)を備え,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。一般に,定格内容積が大きいほどユーザーはより多くの食品を収納することができるため,定格内容積が大きい貯蔵室は冷却負荷が大きくなる場合が多い。したがって,冷蔵室2(第一冷蔵温度帯室),冷凍室7,野菜室6(第二冷蔵温度帯室)のうち,定格内容積が最大となる冷蔵室2に冷却空気を流す冷蔵風路111と,冷凍野菜風路112の間で空気が流通しないように空気流通遮断手段(断熱仕切壁28)を設けることで,定格内容積が最大の貯蔵室の負荷の影響によって,他の冷凍室や野菜室の食品等が温められてしまうといった事態が生じ難くすることができ,冷却効率が高い冷蔵庫となる。   The refrigerator according to the present embodiment includes the refrigerator compartment 2 (first refrigerator compartment) having the maximum rated internal volume among the refrigerator compartment 2 (first refrigerator compartment), the freezer compartment 7, and the vegetable compartment 6 (second refrigerator compartment). The refrigeration air passage 111 (first air passage) through which the cooling air heat-exchanged with the refrigeration evaporator 14a flows to the refrigeration chamber 2 and the cooling air heat-exchanged with the refrigeration evaporator 14b in the freezing compartment 7 And a frozen vegetable air passage 112 (second air passage) that circulates in the vegetable compartment 6, and air flow blocking means (heat insulating partition wall 28) that blocks air flow between the refrigerated air passage 111 and the frozen vegetable air passage 112. It has. In general, the larger the rated internal volume is, the more the food can be stored by the user. Therefore, a storage room with a large rated internal volume often has a large cooling load. Therefore, among the refrigerator compartment 2 (first refrigerator temperature zone room), the freezer compartment 7, and the vegetable compartment 6 (second refrigerator temperature zone compartment), a refrigerator air passage for flowing cooling air to the refrigerator compartment 2 having the maximum rated internal volume. By providing air flow blocking means (heat insulating partition wall 28) so that air does not flow between 111 and the frozen vegetable air passage 112, other freezer compartments are affected by the load of the storage compartment having the maximum rated internal volume. It is possible to prevent the food in the vegetable room or the like from being warmed, and the refrigerator has a high cooling efficiency.
本実施例の冷蔵庫は,最上段の貯蔵室である冷蔵室2(第一冷蔵温度帯室)に冷却空気を流通させる冷蔵風路111(第一風路)と,冷蔵室2の下段に位置する冷凍室7と野菜室6に冷却空気を流通させる冷凍野菜風路112(第二風路)を備え,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。一般に,冷蔵庫が設置される環境(例えばキッチン等)では,空調機等により積極的な空気の攪拌が行われていない場合には,上下方向の温度分布(温度成層)が形成され,上方ほど空気温度が高くなる傾向が生じる。したがって,最上部の貯蔵室は,扉の開閉操作時により温度が高い空気が流入しやすく,負荷が大きくなりやすい。そこで,本実施例の冷蔵庫は,最上段の貯蔵室である冷蔵室2(第一冷蔵温度帯室)に冷却空気を流通させる冷蔵風路111と,その下部の貯蔵室である冷凍室7及び野菜室6に冷却空気を流通させる冷凍野菜風路112の間で空気が流通しないように空気流通遮断手段(断熱仕切壁28)を備えることで,最上部の貯蔵室の負荷の影響によって,他の貯蔵室(冷凍室や野菜室)の食品等が温められてしまうといった事態が生じ難くすることができ,冷却効率が高い冷蔵庫となる。   The refrigerator according to the present embodiment is located in the refrigeration air passage 111 (first air passage) through which cooling air flows to the refrigerating room 2 (first refrigerating temperature zone room) which is the uppermost storage room, and in the lower stage of the refrigerating room 2. A freezing vegetable air passage 112 (second air passage) for allowing cooling air to flow through the freezer compartment 7 and the vegetable compartment 6 and shutting off air flow between the refrigerated air passage 111 and the frozen vegetable air passage 112 Means (heat insulating partition wall 28) are provided. Generally, in an environment where a refrigerator is installed (for example, a kitchen), when air is not actively stirred by an air conditioner or the like, a temperature distribution (temperature stratification) in the vertical direction is formed, and the air is more upward. There is a tendency for the temperature to rise. Therefore, the uppermost storage room is likely to have a higher temperature when the door is opened and closed, and the load is likely to increase. Therefore, the refrigerator of the present embodiment includes a refrigeration air passage 111 through which cooling air flows to the refrigeration room 2 (first refrigeration temperature zone room) that is the uppermost storage room, the freezing room 7 that is the lower storage room, and By providing an air flow blocking means (heat insulating partition wall 28) so that air does not flow between the frozen vegetable air passages 112 through which the cooling air flows to the vegetable compartment 6, other effects can be obtained due to the load of the uppermost storage chamber. It is possible to make it difficult for food in the storage room (freezer room or vegetable room) to be warmed, resulting in a refrigerator with high cooling efficiency.
なお本実施例の冷蔵庫のように,上方から冷蔵室(冷凍温度帯室),冷凍室(冷凍温度帯室),野菜室(冷蔵温度帯室)の順に配置する冷蔵庫においては,最上段の冷蔵室(冷凍温度帯室)と隣接する冷凍室は低温に維持される貯蔵室となるため,冷蔵室に流入した負荷の影響により冷凍室の食品等が温められてしまうといった事態が生じやすい。すなわち,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えることは,上方から冷蔵室(冷凍温度帯室),冷凍室(冷凍温度帯室),野菜室(冷蔵温度帯室)の順に配置する冷蔵庫において特に有効となる。   As in the refrigerator of this embodiment, in the refrigerator arranged in the order of the refrigerator compartment (freezer temperature zone), the freezer compartment (freezer temperature zone), and the vegetable compartment (refrigerator temperature zone chamber) from the top, Since the freezing room adjacent to the room (freezing temperature zone room) is a storage room that is maintained at a low temperature, the food in the freezing room is likely to be warmed due to the influence of the load flowing into the refrigerating room. That is, the provision of the air flow blocking means (the heat insulating partition wall 28) for blocking the flow of air between the refrigerated air path 111 and the frozen vegetable air path 112 means that the refrigeration room (freezing temperature zone room), freezing room ( This is particularly effective in refrigerators that are arranged in the order of a freezing temperature zone) and a vegetable room (refrigeration temperature zone).
本実施例の冷蔵庫は,シール部材(パッキン)の全周長が最大となる貯蔵室である冷蔵室2(第一冷蔵温度帯室)に冷却空気を流通させる冷蔵風路111(第一風路)と,冷凍室7と野菜室6に冷却空気を流通させる冷凍野菜風路112(第二風路)を備え,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。扉シール部は,食品や食品包装材の挟み込み等によって微小な隙間が生じ,外気と貯蔵室内空気の流入出が起きて負荷が大きくなることがある。扉と断熱箱体の間のシール長さが長い,すなわち,シール部材の全周長が長いほど,そのような事態が発生しやすくなるため,本実施例の冷蔵庫は,シール部材(パッキン)の全周長が最大となる貯蔵室である冷蔵室2に冷却空気を流通させる冷蔵風路111と,冷蔵室2の下段に位置する冷凍室7と野菜室6に冷却空気を流通させる冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えることで,シール部材(パッキン)の全周長が最大となる貯蔵室の負荷の影響によって,他の貯蔵室(冷凍室や野菜室)の食品等が温められてしまうといった事態が生じ難くすることができ,冷却効率が高い冷蔵庫となる。   The refrigerator of the present embodiment has a refrigeration air passage 111 (first air passage) for circulating cooling air to the refrigeration chamber 2 (first refrigeration temperature zone chamber) that is a storage chamber in which the entire circumference of the seal member (packing) is maximum. ), And a frozen vegetable air passage 112 (second air passage) for allowing cooling air to flow through the freezer compartment 7 and the vegetable compartment 6, and air that interrupts the air flow between the refrigerated air passage 111 and the frozen vegetable air passage 112. A flow blocking means (heat insulating partition wall 28) is provided. In the door seal portion, a minute gap may be generated due to food or food packaging material being sandwiched, and the load may increase due to the inflow and outflow of outside air and storage room air. Since the longer the seal length between the door and the heat insulating box, that is, the longer the entire circumference of the seal member, such a situation is more likely to occur. Therefore, the refrigerator of this embodiment has a seal member (packing) A refrigerated air passage 111 for circulating cooling air to the refrigerated room 2, which is a storage room having the maximum perimeter, and a frozen vegetable style for circulating cooling air to the freezing room 7 and the vegetable room 6 located in the lower stage of the refrigerated room 2 By providing an air flow blocking means (heat insulating partition wall 28) that blocks the flow of air between the passages 112, other storages are caused by the influence of the load of the storage chamber that maximizes the total circumference of the seal member (packing). It is possible to prevent a situation where food in the room (freezer room or vegetable room) is warmed, and the refrigerator has a high cooling efficiency.
本実施例の冷蔵庫は,安定冷却運転中において,冷蔵室2の維持温度をTR_keep(設定「中」の場合は約4℃),冷凍室7の維持温度をTF_keep(設定「中」の場合は約-20℃),冷蔵運転時の冷蔵用蒸発器14aの時間平均温度をTRevp_aveとすると,以下の(式1)が満足されるように,蒸発器温度調整手段(圧縮機24及び冷蔵用ファン9a)の回転速度を制御している。 In the refrigerator of this embodiment, during the stable cooling operation, the maintenance temperature of the refrigerator compartment 2 is T R_keep (about 4 ° C in the case of setting “medium”), and the maintenance temperature of the freezer compartment 7 is T F_keep (setting “medium”). When the average temperature of the refrigeration evaporator 14a during the refrigeration operation is T Revp_ave , the evaporator temperature adjusting means (the compressor 24 and the compressor 24 and the following equation 1) is satisfied. The rotational speed of the refrigeration fan 9a) is controlled.
一般に,冷凍サイクルでは,冷却運転時の蒸発器の時間平均温度が高くなるように圧縮機と蒸発器に送風する送風機の回転速度を制御すると,冷凍サイクル成績係数が向上して冷却効率が高くなる。従って維持される温度が高い冷蔵室を冷却する際の蒸発器の時間平均温度を上げることが冷却効率向上に有効となる。しかしながら,冷蔵室を冷却する冷却空気が,冷凍室に流通する経路が存在する場合,低温に維持される冷凍室の温度が上昇してしまうため,冷蔵運転時の蒸発器の時間平均温度を十分高くすることができなかった。そこで,本実施例の冷蔵庫では,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備え,且つ,圧縮機24及び冷蔵用ファン9aの回転速度を制御することで,冷蔵運転時の冷蔵用蒸発器の時間平均温度を十分高め,(式1)に示す関係を満足するようにして,冷却効率が高い冷蔵庫としている。なお,冷凍室が複数存在し,その維持温度が複数にわたる場合は,最も低温となる貯蔵室の温度を(式1)におけるTF_keepとすれば良い。 In general, in the refrigeration cycle, controlling the rotation speed of the blower that blows air to the compressor and evaporator so that the time average temperature of the evaporator during cooling operation is higher, the refrigeration cycle coefficient of performance improves and the cooling efficiency increases. . Therefore, raising the time average temperature of the evaporator when cooling the refrigerator compartment where the temperature maintained is high is effective for improving the cooling efficiency. However, if there is a route through which the cooling air that cools the refrigerator compartment flows to the freezer compartment, the temperature of the freezer compartment that is maintained at a low temperature will rise. Could not be high. Therefore, the refrigerator of the present embodiment is provided with air flow blocking means (heat insulating partition wall 28) that blocks the flow of air between the refrigerated air path 111 and the frozen vegetable air path 112, and includes the compressor 24 and the refrigeration fan. By controlling the rotational speed of 9a, the time average temperature of the refrigeration evaporator during the refrigeration operation is sufficiently increased, and the refrigerator shown in (Equation 1) is satisfied, so that the refrigerator has high cooling efficiency. When there are a plurality of freezer compartments and the maintenance temperature ranges over a plurality of temperatures, the temperature of the storage compartment having the lowest temperature may be set to TF_keep in (Equation 1).
本実施例の冷蔵庫は,安定冷却運転中において,冷蔵室維持温度TR_keepと冷蔵運転時の冷蔵用蒸発器14aの時間平均温度TRevp_aveの差をΔT(=TR_keep−TRevp_ave),蒸発器温度に対する冷凍サイクル理論成績係数をCOPthとした場合に,(式2)を満足するように蒸発器温度調整手段(圧縮機24及び冷蔵用ファン9a)を制御している。これにより,風量向上の有効性が高い範囲で効率よく冷却運転を実施することができる。 In the refrigerator of this embodiment, during the stable cooling operation, the difference between the refrigerating room maintenance temperature T R_keep and the time average temperature T Revp_ave of the refrigerating evaporator 14a during the refrigerating operation is ΔT (= T R_keep− T Revp_ave ). When the refrigeration cycle theoretical coefficient of performance with respect to temperature is COP th , the evaporator temperature adjusting means (the compressor 24 and the refrigeration fan 9a) is controlled so as to satisfy (Equation 2). As a result, the cooling operation can be carried out efficiently within a range in which the effectiveness of air volume improvement is high.
理由を図10及び図11を参照しながら説明する。図10(a)は,理論サイクル成績係数COPth(圧縮機効率100%時の成績係数)と冷蔵用蒸発器温度の関係を示すグラフであり,図10(b)は,冷蔵室維持温度TR_keepと,蒸発器の温度Tevpの差の逆数ΔT−1(=1/(TR_keep−Tevp))を示すグラフである。また,図10(b)は,ΔT−1 と COPthの差を蒸発器温度Tevpで微分した関数(=d(COPth)/dTevp − d(ΔT−1)/dTevp)を表す。 The reason will be described with reference to FIGS. FIG. 10 (a) is a graph showing the relationship between the theoretical cycle coefficient of performance COP th (coefficient of performance when the compressor efficiency is 100%) and the refrigeration evaporator temperature, and FIG. and R_keep, is a graph showing the inverse [Delta] T -1 of the difference between the temperature T evp of the evaporator (= 1 / (T R_keep -T evp)). FIG. 10B shows a function (= d (COP th ) / dT evp −d (ΔT −1 ) / dT evp ) obtained by differentiating the difference between ΔT −1 and COP th by the evaporator temperature T evp. .
ここで,図10(a)に示す理論成績係数COPthの求め方について図11を参照しながら説明する。図11は一般的な冷蔵庫の冷凍サイクルの動作状態を表すモリエル線図である。配管における圧力損失を無視し,低圧側(蒸発器側)における圧力は,蒸発器温度(蒸発温度)により定まる圧力で一定とすることで,圧縮機の吸い込み冷媒の状態(状態1)を定める。また,高圧側(凝縮器側)は,外気温度を凝縮温度(二相域の温度)として,凝縮温度により定まる圧力で一定とする。また,凝縮器出口(キャピラリチューブ入口)の冷媒状態を飽和液(状態3),蒸発器出口の冷媒状態を飽和蒸気(状態5),キャピラリチューブと蒸発器から圧縮機に至る配管と完全に熱交換(図4における接触部57aの作用)するものとして,圧縮機吸い込み冷媒の温度を凝縮器出口温度(状態1)とする。また,圧縮機の効率を100%(断熱圧縮)とすることで,圧縮機吐出の状態(状態2)が定まり,キャピラリチューブと蒸発器から圧縮機に至る配管と完全に熱交換するという仮定(図4中のΔh1=Δh2)から,蒸発器入口の冷媒状態(状態4)が定まる。これらにより,外気温度と,蒸発器温度を定めることで,冷媒物性に基づいて理論成績係数COPthを理論冷却能力Qthと理論圧縮動力Wthの比(COPth=Qth/Wth)として算出することができる。この理論成績係数COPthは,圧縮機の効率に依らない冷却効率を表す指標となる。なお,図10(a)に示す理論成績係数COPthはと蒸発器温度Tevpの関係は,冷媒をイソブタン,外気温度Tout=32℃として算出したものである。 Here, how to obtain the theoretical coefficient of performance COP th shown in FIG. 10A will be described with reference to FIG. FIG. 11 is a Mollier diagram showing an operation state of a refrigeration cycle of a general refrigerator. The pressure loss in the piping is ignored, and the pressure on the low pressure side (evaporator side) is constant at a pressure determined by the evaporator temperature (evaporation temperature), thereby determining the state of refrigerant sucked by the compressor (state 1). On the high pressure side (condenser side), the outside air temperature is set as the condensation temperature (temperature in the two-phase region), and the pressure determined by the condensation temperature is constant. Also, the refrigerant state at the condenser outlet (capillary tube inlet) is saturated liquid (state 3), the refrigerant state at the evaporator outlet is saturated vapor (state 5), and the capillary tube and the piping from the evaporator to the compressor are completely heated. As the one to be exchanged (operation of the contact portion 57a in FIG. 4), the temperature of the compressor suction refrigerant is set as the condenser outlet temperature (state 1). Also, assuming that the efficiency of the compressor is 100% (adiabatic compression), the compressor discharge state (state 2) is determined, and the heat is completely exchanged between the capillary tube and the piping from the evaporator to the compressor ( From Δh1 = Δh2) in FIG. 4, the refrigerant state (state 4) at the evaporator inlet is determined. Thus, by determining the outside air temperature and the evaporator temperature, the theoretical performance coefficient COP th is set as the ratio of the theoretical cooling capacity Q th to the theoretical compression power W th (COP th = Q th / W th ). Can be calculated. The theoretical coefficient of performance COP th is an index representing the cooling efficiency that does not depend on the efficiency of the compressor. The relationship between the theoretical coefficient of performance COP th and the evaporator temperature T evp shown in FIG. 10A is calculated by assuming that the refrigerant is isobutane and the outside air temperature T out = 32 ° C.
また,良好な冷却を行うためには,蒸発器において所定の交換熱量を得る必要がある。温度効率(蒸発器入口空気温度と蒸発器出口空気温度の差を蒸発器流入空気温度と蒸発器温度との差で除した値)の変化を無視すると,所定交換熱量を得るための風量は,空気温度と,蒸発器温度の差の逆数に比例するという関係が導かれる。空気温度として冷蔵室維持温度TR_keepを用いることで,図10(a)に示すΔT−1が算出され、所定交換熱量を得るための風量の大小を表す指標となる。なお,図10(a)に示すΔT−1は冷蔵室維持温度TR_keepを4℃として算出している。 In addition, in order to perform good cooling, it is necessary to obtain a predetermined exchange heat amount in the evaporator. Ignoring changes in temperature efficiency (the difference between the evaporator inlet air temperature and the evaporator outlet air temperature divided by the difference between the evaporator inlet air temperature and the evaporator temperature), A relationship is derived that is proportional to the inverse of the difference between the air temperature and the evaporator temperature. By using the refrigerating room maintenance temperature T R_keep as the air temperature, ΔT −1 shown in FIG. 10 (a) is calculated and becomes an index representing the magnitude of the air volume for obtaining the predetermined exchange heat quantity. In addition, ( DELTA ) T- 1 shown to Fig.10 (a) is calculated by making cold room maintenance temperature TR_keep into 4 degreeC .
図10(a)に示すCOPthとΔT−1は,ともに蒸発器温度Tevpの上昇に対して単調に上昇しているが,両者の勾配は異なる。図10(b)は,COPthとΔT−1 の差を蒸発器温度Tevpで微分した関数であり,両者の勾配の差を表している。すなわち図10(b)のグラフにおいて,勾配が正となる範囲(蒸発器温度Tevpが約-1℃より低い範囲)においては,蒸発器温度Tevpの上昇に対するCOPthの増加率の方が,蒸発器温度Tevpの上昇に対するΔT−1の増加率よりも高く,COPthを向上させるように蒸発器温度Tevpを上昇させることが有利といえる。一方,勾配が負となる範囲(蒸発器温度Tevpが約-1℃より高い範囲)では,蒸発器温度Tevpの上昇に対するCOPthの増加率の方が,蒸発器温度Tevpの上昇に対するΔT−1の増加率より低いことを表しており,蒸発器温度Tevpを上げるためには風量向上の有効性が低下しているといえる。すなわち,図10(b)のグラフが正の勾配の範囲となるように,d(COPth)/dTevp − d(ΔT−1)/dTevp ≧0となるように制御することが,風量向上の有効性が高い範囲で冷蔵庫を運転することになる。したがって,本実施例の冷蔵庫では,図10における蒸発器温度Tevpを,冷蔵運転時の冷蔵用蒸発器14aの時間平均温度TRevp_aveとして,(式2)を満足するように制御することで,風量向上の有効性が高い範囲で効率よく冷却運転を実施するようにしている。 Both COP th and ΔT −1 shown in FIG. 10A increase monotonously as the evaporator temperature T evp increases, but the gradients of the two are different. FIG. 10B is a function obtained by differentiating the difference between COP th and ΔT −1 with the evaporator temperature T evp and represents the difference between the gradients of the two. That is, in the graph of FIG. 10B, in the range where the gradient is positive (the range in which the evaporator temperature T evp is lower than about −1 ° C.), the increasing rate of COP th with respect to the increase in the evaporator temperature T evp is greater. , higher than the rate of increase [Delta] T -1 for increase in the evaporator temperature T evp, it can be said that the advantageous to increase the evaporator temperature T evp to enhance COP th. On the other hand, the range where the slope is negative (evaporator temperature T evp higher range than about -1 ° C.), the direction of increase of the COP th relative increase in the evaporator temperature T evp, for increase in the evaporator temperature T evp It indicates that the rate of increase is lower than ΔT −1 , and it can be said that the effectiveness of improving the air flow is reduced in order to increase the evaporator temperature T evp . That is, control is performed so that d 2 (COP th ) / dT evp 2 −d 2 (ΔT −1 ) / dT evp 2 ≧ 0 so that the graph of FIG. This means that the refrigerator is operated in a range where the effectiveness of air flow improvement is high. Therefore, in the refrigerator of this embodiment, the evaporator temperature T evp in FIG. 10 is controlled as the time average temperature T Revp_ave of the refrigeration evaporator 14a during the refrigeration operation so as to satisfy (Equation 2), Cooling operation is carried out efficiently in the range where the effectiveness of air flow improvement is high.
本実施例の冷蔵庫は,安定冷却運転中に,定格内容積が最大となる冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えている。これにより定格内容積が最大となる冷蔵室2を,温度ムラが少なく保存性の高い貯蔵室とすることができる。一般に送風手段の駆動により積極的な気流が生じている状態を強制対流と呼び,送風手段による送風が行われずに空気の温度差(密度差)によって生じる弱い気流を自然対流と呼ぶ。空間内に送風手段による強制対流を生じさせた場合は,空気が積極的に移動することで空間内の均温化が図られ,送風手段を停止した場合には,自然対流となり,空間内の空気の移動が生じ難いために温度ムラが形成されやすく,特に容積が大きい空間においては顕著になる。温度ムラが大きいと,食品を収納する場所によって食品の保存性が低下するという問題が生じやすくなる。そこで,本実施例の冷蔵庫では,定格内容積が最大となる冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなるように制御する運転モードを備えることで,冷蔵室2を,温度ムラが少なく保存性の高い貯蔵室としている。   The refrigerator of the present embodiment has an operation mode in which the driving time of the refrigeration fan 9a in the refrigeration chamber 2 having the maximum rated internal capacity is longer than the driving time of the refrigeration fan 9b during the stable cooling operation. As a result, the refrigerator compartment 2 having the maximum rated internal volume can be made a storage room with little temperature unevenness and high storage stability. In general, a state where a positive air flow is generated by driving the air blowing means is called forced convection, and a weak air current caused by a temperature difference (density difference) without air blowing by the air blowing means is called natural convection. When forced convection is generated in the space by air blowing means, air is actively moved to achieve temperature equalization in the space. When the air blowing means is stopped, natural convection occurs and Since the movement of air is difficult to occur, temperature unevenness is likely to be formed, particularly in a space with a large volume. If the temperature unevenness is large, a problem that the storage stability of the food decreases depending on the place where the food is stored is likely to occur. Therefore, the refrigerator of this embodiment includes an operation mode in which the driving time of the refrigeration fan 9a in the refrigeration chamber 2 having the maximum rated internal volume is controlled to be longer than the driving time of the refrigeration fan 9b. The refrigerated room 2 is a storage room with little temperature unevenness and high storability.
また,本実施例の冷蔵庫は,高さ寸法が最大となる貯蔵室である冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えている。一般に温度分布は高さ寸法が大きい空間ほど大きくなりやすいため,本実施例の冷蔵庫では,高さ寸法が最大となる貯蔵室である冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えることで,冷蔵室2を,温度ムラが少なく保存性の高い貯蔵室としている。   In addition, the refrigerator of the present embodiment has an operation mode in which the driving time of the refrigeration fan 9a in the refrigeration room 2 which is the storage room having the maximum height is longer than the driving time of the refrigeration fan 9b. In general, since the temperature distribution tends to increase as the space having a larger height dimension, in the refrigerator of the present embodiment, the driving time of the refrigeration fan 9a in the refrigeration room 2, which is the storage room having the maximum height dimension, is a refrigeration fan. By providing an operation mode that is longer than the drive time of 9b, the refrigerator compartment 2 is a storage room with little temperature unevenness and high storage stability.
本実施例の冷蔵庫は,冷蔵室背面に備えた冷蔵室送風路11の冷蔵室吐出口11aを上方に向けて開口させて(冷気指向手段),上方に指向した空気を吹き出すようにしている。一般に,貯蔵室に収納される食品が冷却空気の流れを阻害すると,貯蔵室内に温度ムラが出来る,あるいは,風路抵抗が増えて風量が減少するといった事態が生じて冷却効率が低下することがある。そこで,冷蔵室送風路11の主たる冷蔵室吐出口11aを上方に向けて開口させて(冷気指向手段),上方に指向した空気を吹き出させることで,冷却空気は図2中に矢印で示すように冷蔵室2の天井面を沿って前方に流れるので,多くの食品を冷蔵室2内に収納しても,食品によって冷却空気の流れが阻害されにくくなり,貯蔵室内に温度ムラが出来る,あるいは,風路抵抗が増えて風量が減少するといった事態が生じ難い冷却効率が高い冷蔵庫となる。なお,本実施例の冷蔵庫では,冷蔵室送風路11に設けられる開口は,上方に向けて開口させた冷蔵室吐出口11aのみとなっているが,他に前方や,側方に向けて吹き出す他の開口を設けても良い。この場合は,上方に向けて開口させた吐出口の開口面積(総面積)が,他の吐出口の開口面積の総和より大きくすることによって,上述の効果を得ることができる。   In the refrigerator of this embodiment, the refrigerator outlet 11a of the refrigerator compartment air passage 11 provided on the back of the refrigerator compartment is opened upward (cold air directing means) to blow out the air directed upward. In general, if food stored in the storage room obstructs the flow of cooling air, the temperature in the storage room may become uneven, or the air flow resistance may increase and the air volume may decrease, resulting in a decrease in cooling efficiency. is there. Therefore, the main refrigerator outlet 11a of the refrigerator compartment air passage 11 is opened upward (cold air directing means), and the upwardly directed air is blown out so that the cooling air is indicated by an arrow in FIG. In addition, since the food flows forward along the ceiling surface of the refrigerator compartment 2, even if a large amount of food is stored in the refrigerator compartment 2, the flow of cooling air is less likely to be obstructed by the food, and the temperature in the storage compartment is uneven. , It becomes a refrigerator with high cooling efficiency that is unlikely to cause a situation in which the air flow resistance increases and the air volume decreases. In the refrigerator of the present embodiment, the opening provided in the refrigerator compartment air passage 11 is only the refrigerator compartment outlet 11a opened upward, but blows out forward or sideward. Other openings may be provided. In this case, the above-described effect can be obtained by making the opening area (total area) of the discharge ports opened upward larger than the sum of the opening areas of the other discharge ports.
本実施例の冷蔵庫は,冷蔵室2の最上段に位置する棚34aよりも開口位置が高い扉ポケット33aを設け,冷蔵室背面に備えた冷蔵室送風路11の冷蔵室吐出口11aを上方に向けて開口させて(冷気指向手段),上方に指向した空気を吹き出させるようにしている。これにより,冷却空気は図2中に矢印で示すように冷蔵室2の天井面を沿って冷蔵室2の最上段に位置する棚34aよりも開口位置が高い扉ポケット33aに向けて流れるので,扉ポケット33aを良好に冷却することができる。   The refrigerator of the present embodiment is provided with a door pocket 33a having an opening position higher than the shelf 34a located at the uppermost stage of the refrigerator compartment 2, and the refrigerator outlet 11a of the refrigerator compartment air passage 11 provided on the back of the refrigerator compartment is directed upward. Opening (cold air directing means), the air directed upward is blown out. As a result, the cooling air flows along the ceiling surface of the refrigerator compartment 2 toward the door pocket 33a having a higher opening position than the shelf 34a located at the uppermost stage of the refrigerator compartment 2, as indicated by an arrow in FIG. The door pocket 33a can be cooled satisfactorily.
本実施例の冷蔵庫では,安定冷却運転中における冷蔵室維持温度(冷蔵室設定温度)TR_keepと,冷蔵室吐出口11aから吐出される冷蔵室吐出空気温度TR_inの差が,冷凍室維持温度TF_keep(冷蔵室設定温度)と冷蔵室維持温度(冷蔵室設定温度)TR_keepの算術平均値より高い温度となるように,蒸発器温度調整手段(圧縮機24,冷蔵用送風機9a)を制御している。一般に,温度が高い空間に低温空気を吹き出すと,密度が高い低温空気は重力の作用で下方に向けた力を受けるため,吹き出し口から離れた上方の領域には低温の空気が到達し難くなる。そこで,本実施例の冷蔵庫では,冷蔵室維持温度(冷蔵室設定温度)TR_keepと,冷蔵室吐出空気温度TR_inの差が,冷凍室維持温度TF_keep(冷蔵室設定温度)と冷蔵室維持温度(冷蔵室設定温度)TR_keepの算術平均値より高くなるように,蒸発器温度調整手段(圧縮機24,冷蔵用送風機9a)を制御することで,冷蔵室吐出口11aから吹き出した冷却空気が受ける重力の作用を軽減し,吐出口から離れた上方のスペース(例えば最上段の扉ポケット33a)を良好に冷却することができる。 In the refrigerator of the present embodiment, the difference between the refrigerator compartment maintenance temperature (refrigerator compartment set temperature) TR_keep and the refrigerator compartment discharge air temperature TR_in discharged from the refrigerator compartment outlet 11a during the stable cooling operation is the freezer compartment maintenance temperature. Control evaporator temperature adjustment means (compressor 24, refrigeration fan 9a) so that the temperature is higher than the arithmetic average value of TF_keep (refrigeration room set temperature) and refrigeration room maintenance temperature (refrigeration room set temperature) TR_keep. doing. In general, when low-temperature air is blown into a high-temperature space, high-density low-temperature air receives a downward force due to the action of gravity, so it is difficult for low-temperature air to reach the upper area away from the air outlet. . Therefore, in the refrigerator of this embodiment, the difference between the refrigerating room maintenance temperature (refrigeration room set temperature) TR_keep and the refrigerating room discharge air temperature TR_in is the freezer room maintenance temperature TF_keep (refrigeration room set temperature) and the refrigerating room maintenance temperature ( By controlling the evaporator temperature adjusting means (compressor 24, refrigeration fan 9a) so as to be higher than the arithmetic average value of the refrigeration chamber set temperature ( TR_Keep ), the cooling air blown out from the refrigeration chamber discharge port 11a is received. The action of gravity can be reduced, and the upper space away from the discharge port (for example, the uppermost door pocket 33a) can be satisfactorily cooled.
本実施例の冷蔵庫は,冷蔵室2(第一冷蔵温度帯室)と,野菜室6(第二冷蔵温度帯室)と,冷凍室7を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用送風機9a(第一送風機)と,冷凍室7の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9b(第二送風機)を備え,第一送風機の駆動により冷蔵用蒸発器14aと熱交換した冷却空気を冷蔵室2に流通させる冷蔵風路111(第一風路)と,冷凍用ファン9bの駆動により冷凍用蒸発器14bと熱交換した冷却空気を冷凍室7及び野菜室6に流通させる冷凍野菜風路112(第二風路)を備え,第一風路と第二風路の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)と,冷蔵風路111を流れる空気と接する脱臭部材91を備えている。これにより,冷蔵室2内に臭気を発する食材等を収納した際に,臭気成分が冷却空気とともに他の貯蔵室(冷凍室7や野菜室6)に循環することを阻止できるので,冷蔵室2以外の貯蔵室(冷凍室7や野菜室6)の食材等への臭い移りを阻止できる。また,臭気成分を含む冷却空気が冷蔵風路111のみを循環し,他の貯蔵室に拡散しないため,より短時間で高い脱臭効果を得ることができる。   The refrigerator of the present embodiment includes a refrigerator compartment 2 (first refrigerator temperature zone chamber), a vegetable compartment 6 (second refrigerator temperature zone chamber), and a freezer compartment 7, and a refrigerator evaporator 14a at the back of the refrigerator compartment 2 is provided. (First evaporator) and refrigeration blower 9a (first blower), and a freezing evaporator 14b (second evaporator) and a freezing fan 9b (second blower) on the back of the freezer compartment 7, Refrigeration air passage 111 (first air passage) for circulating the cooling air heat-exchanged with refrigeration evaporator 14a by driving the blower into refrigeration chamber 2, and heat exchange with refrigeration evaporator 14b by driving refrigeration fan 9b An air flow blocking means (not shown) that includes a frozen vegetable air passage 112 (second air passage) for circulating cooling air to the freezer compartment 7 and the vegetable compartment 6 and that interrupts the air flow between the first air passage and the second air passage ( A heat-insulating partition wall 28) and a deodorizing member 91 in contact with the air flowing through the refrigerated air passage 111 are provided. Thereby, when the foodstuff etc. which generate | occur | produce an odor in the refrigerator compartment 2 are accommodated, since it can prevent that an odor component circulates to other storage rooms (freezer compartment 7 and vegetable compartment 6) with cooling air, refrigerator compartment 2 It is possible to prevent odors from being transferred to foodstuffs in the other storage rooms (freezer room 7 and vegetable room 6). Moreover, since the cooling air containing an odor component circulates only through the refrigerating air passage 111 and does not diffuse to other storage chambers, a high deodorizing effect can be obtained in a shorter time.
本実施例の冷蔵庫は,冷蔵風路111(第一風路)と,冷凍野菜風路112(第二風路)と,冷蔵風路111を流れる空気と接する脱臭部材91を備え,安定冷却運転中に,冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えている。冷蔵用ファン9aの駆動時には,脱臭部材91をより多くの空気が通過するため脱臭作用が高くなるため,冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えることにより,より脱臭作用が高い冷蔵庫とすることができる。   The refrigerator of this embodiment includes a refrigerated air passage 111 (first air passage), a frozen vegetable air passage 112 (second air passage), and a deodorizing member 91 that comes into contact with the air flowing through the refrigerated air passage 111, and a stable cooling operation. The operation mode is such that the drive time of the refrigeration fan 9a in the refrigerator compartment 2 is longer than the drive time of the refrigeration fan 9b. When the refrigeration fan 9a is driven, since more air passes through the deodorizing member 91, the deodorizing action is increased. Therefore, an operation mode in which the driving time of the refrigeration fan 9a is longer than the driving time of the refrigeration fan 9b is provided. Thus, a refrigerator having a higher deodorizing effect can be obtained.
ここで、本実施例の野菜室について説明する。図14は、本実施例の野菜室の斜視図である。野菜室6では,冷蔵庫本体の内壁を成す内箱124が野菜室6の左壁面、右壁面および底壁面を構成している。そして,野菜室6の上壁は,野菜室6上部に配置される野菜容器カバー105(図15参照)により構成されている。図15は,冷蔵庫内において,野菜容器カバー105が配置された野菜室6の斜視図である。   Here, the vegetable room of a present Example is demonstrated. FIG. 14 is a perspective view of the vegetable compartment of the present embodiment. In the vegetable compartment 6, the inner box 124 that forms the inner wall of the refrigerator body constitutes the left wall surface, the right wall surface, and the bottom wall surface of the vegetable compartment 6. And the upper wall of the vegetable compartment 6 is comprised by the vegetable container cover 105 (refer FIG. 15) arrange | positioned at the vegetable compartment 6 upper part. FIG. 15 is a perspective view of the vegetable compartment 6 in which the vegetable container cover 105 is arranged in the refrigerator.
野菜室6には,上段容器6b’が取り付けられた下段容器6bが収納されている。図14に示すように,野菜室では,野菜室扉6aに取り付けられた下段容器6bおよび上段容器6b’が,前後方向に引出自在に収容されている。上段容器6b’は,下段容器6bの上に係合されている。下段容器6bが前後方向に移動しても,上段容器6b’の下段容器6bの内部での位置は変化しない。しかし,上段容器6b’の係合を解除することで,上段容器6b’を下段容器6bに対して,前方にスライドさせ引き出すことができる。   The vegetable compartment 6 houses a lower container 6b to which an upper container 6b 'is attached. As shown in FIG. 14, in the vegetable compartment, a lower container 6b and an upper container 6b 'attached to the vegetable compartment door 6a are accommodated so that they can be drawn out in the front-rear direction. The upper container 6b 'is engaged on the lower container 6b. Even if the lower container 6b moves in the front-rear direction, the position inside the lower container 6b of the upper container 6b 'does not change. However, by releasing the engagement of the upper container 6b ', the upper container 6b' can be slid forward with respect to the lower container 6b.
図15に示すように,野菜室6では,冷蔵庫本体の内壁を成す内箱124(図14参照),野菜容器カバー105により,下段容器6bおよび上段容器6b’のそれぞれの内部の密閉性が、ある程度確保されている。   As shown in FIG. 15, in the vegetable compartment 6, the inner box 124 (see FIG. 14) that forms the inner wall of the refrigerator main body and the vegetable container cover 105 provide the internal sealability of the lower container 6b and the upper container 6b ′. It is secured to some extent.
図16は,図15のA−A断面の斜視図である。図17は,図15のA−A断面図である。下段容器6bには,樹脂製の仕切り110が備えられている。仕切り110により,下段容器6bが前方の前側空間101Bと、後方の後側下段空間101Aとに分割されている。そして、上段容器6b’は,下段容器6b内部において,後側下段空間101Aの上に配置される後側上段空間101Cを囲って形成する。   FIG. 16 is a perspective view of the AA cross section of FIG. 17 is a cross-sectional view taken along line AA in FIG. The lower container 6b is provided with a resin partition 110. By the partition 110, the lower container 6b is divided into a front front space 101B and a rear rear lower space 101A. The upper container 6b 'is formed so as to surround the rear upper stage space 101C disposed on the rear lower stage space 101A in the lower container 6b.
図15に示す野菜容器カバー105は,下段容器6bおよび上段容器6b’の上部開口を覆うように,冷蔵庫本体の内部に取付けられている。野菜容器カバー105は,下段容器6bを冷蔵庫に収容したときに,下段容器6bの上方に配置される。そのため,下段容器6bを冷蔵庫から完全に引き出したときには,野菜容器カバー105は冷蔵庫の内部に残存し,下段容器6bと上段容器6b’の上部開口が外部空間に開放される。なお,野菜容器カバー105の野菜室6の内部を臨む下面には,蒸散ボードが配置されている。   The vegetable container cover 105 shown in FIG. 15 is attached to the inside of the refrigerator body so as to cover the upper openings of the lower container 6b and the upper container 6b '. The vegetable container cover 105 is disposed above the lower container 6b when the lower container 6b is accommodated in the refrigerator. Therefore, when the lower container 6b is completely pulled out of the refrigerator, the vegetable container cover 105 remains inside the refrigerator, and the upper openings of the lower container 6b and the upper container 6b 'are opened to the external space. A transpiration board is arranged on the lower surface of the vegetable container cover 105 facing the inside of the vegetable compartment 6.
前述の通り,野菜室送風路13の出口となる野菜室吐出口13aは,野菜室6背部右上の断熱仕切壁29下面の高さと略一致するように設けられ,下方に開口している。野菜室送風路13には,野菜室6の冷却制御手段である野菜室ダンパ19を備えている。これにより,野菜室6に吹き出された冷気が,後側下段空間101Aに入り込んで,後記の仕切り110の傾斜開口部115c,115dを通って,正面側の前側空間101Bに抜けるようになっている。そのため,後側下段空間101A内の湿度が過度に上昇することを防止でき,結露が防止される。   As described above, the vegetable chamber discharge port 13a serving as the outlet of the vegetable chamber air passage 13 is provided so as to substantially coincide with the height of the lower surface of the heat insulating partition wall 29 at the upper right of the back of the vegetable chamber 6 and opens downward. The vegetable room air passage 13 is provided with a vegetable room damper 19 which is a cooling control means for the vegetable room 6. Thereby, the cold air blown into the vegetable compartment 6 enters the rear lower space 101A, passes through the inclined openings 115c and 115d of the partition 110 described later, and escapes to the front space 101B on the front side. . Therefore, it is possible to prevent the humidity in the rear lower space 101A from rising excessively and to prevent condensation.
図16,図17に示すように,下段容器6bの内部は,後側下段空間101Aと前側空間101Bと後側上段空間101Cとの三つの空間に区画されている。後側下段空間101Aは,下段容器101の内部に配置された仕切り110と,上段容器6b’の下面とにより下段容器6bを区分けして形成されている。また,前側空間101Bは,上段容器6b’の前板と仕切り110と野菜容器カバー105とにより下段容器6bを区分けして形成されている。後側上段空間101Cは,上段容器6b’と野菜容器カバー105とにより下段容器6bを区分けして形成されている。   As shown in FIGS. 16 and 17, the inside of the lower container 6b is partitioned into three spaces of a rear lower space 101A, a front space 101B, and a rear upper space 101C. The rear lower space 101A is formed by dividing the lower container 6b by a partition 110 disposed inside the lower container 101 and a lower surface of the upper container 6b '. The front space 101B is formed by dividing the lower container 6b by the front plate of the upper container 6b ', the partition 110, and the vegetable container cover 105. The rear upper space 101 </ b> C is formed by dividing the lower container 6 b by the upper container 6 b ′ and the vegetable container cover 105.
図18は,仕切り110の正面図である。仕切り110の上部には,触媒を収納する触媒収納部としてケース106が配置されている。また,この仕切り110の少なくとも下部には,傾斜開口部115c,115dが設けられている。   FIG. 18 is a front view of the partition 110. In the upper part of the partition 110, a case 106 is arranged as a catalyst storage part for storing the catalyst. In addition, inclined openings 115 c and 115 d are provided at least in the lower part of the partition 110.
図19に示す通り,ケース106の背面側には,ケース106の内部を介して,後側下段空間101Aと連通するための連通孔106aが形成されている。また,ケース106の正面側にも,ケース106の内部を介して,前側空間101Bと連通するための連通孔106bが形成されている。さらに,ケース106の内部には,後側下段空間101Aと前側空間101B内の空気と接触可能な位置に,エチレン等を分解する不図示の白金触媒が収容されている。そのため,連通孔106aを通じてケース106に取り込まれた空気は,白金触媒に接触した後,各空間(101A,101B)に供給される。なお,後側上段空間101Cへは,前側空間101Bを経由した空気が,上段容器6b’の正面側上部に形成された隙間から流入する。   As shown in FIG. 19, a communication hole 106 a for communicating with the rear lower space 101 </ b> A through the inside of the case 106 is formed on the back side of the case 106. In addition, a communication hole 106 b for communicating with the front space 101 </ b> B through the inside of the case 106 is also formed on the front side of the case 106. Further, in the case 106, a platinum catalyst (not shown) for decomposing ethylene or the like is accommodated in a position where it can come into contact with the air in the rear lower space 101A and the front space 101B. Therefore, the air taken into the case 106 through the communication hole 106a is supplied to each space (101A, 101B) after contacting the platinum catalyst. Note that air that has passed through the front space 101B flows into the rear upper space 101C from a gap formed in the upper part on the front side of the upper container 6b '.
本実施形態では,連通孔106a,106bを底面に設けていないので,結露した水で孔が塞がれてしまう可能性が低く,空気と触媒との接触性を良好に保つことが可能である。また,仕切りに触媒が配置されているので,上段容器102の前面に触媒を配置する場合と比べて,後側下段空間101A内の空気をより効果的に触媒と接触させることができる。ここで,後側下段空間101Aは,他の空間と比べて多くの野菜が収納される傾向にあり,エチレンガス等の発生する量も多い傾向にあるが,本実施形態のような構成であれば,エチレンガスを効率よく触媒を用いて分解できる。   In this embodiment, since the communication holes 106a and 106b are not provided on the bottom surface, it is unlikely that the holes will be blocked by condensed water, and the contact property between the air and the catalyst can be kept good. . Further, since the catalyst is arranged in the partition, the air in the rear lower space 101A can be brought into contact with the catalyst more effectively than in the case where the catalyst is arranged in front of the upper container 102. Here, the rear lower space 101A has a tendency to store more vegetables than other spaces, and tends to generate a large amount of ethylene gas or the like. For example, ethylene gas can be decomposed efficiently using a catalyst.
次に,白金触媒について説明する。白金触媒は,野菜室6の各空間(101A,101B,101C)内の野菜等から発生して空気に含まれるエチレン,トリメチルアミンを分解する触媒である。白金触媒によってエチレン等が分解されることで,二酸化炭素と水が発生する。そして,発生した二酸化炭素は,連通孔106a,106b(図19参照)を介して,各空間(101A,101B,101C)内に供給される。そのため,各空間に貯蔵された野菜の呼吸が抑制され,野菜の鮮度が長時間維持される。野菜容器カバー105の下面には,不図示のリブが形成されている。不図示のリブで形成された空間に蒸散ボードが挿入され,野菜容器カバー105の下面に蒸散ボードが保持される。後側上段空間101Cの内部の空気が野菜容器カバー105に接触すると,含まれる水分が野菜容器カバー105に結露して結露水が発生する可能性がある。しかし,発生した結露水は,上段容器102の上方の全域にわたって配置された蒸散ボードによって吸水される。そのため,後側上段空間101Cへの結露水の落下が抑制される。   Next, the platinum catalyst will be described. A platinum catalyst is a catalyst which decomposes | disassembles ethylene and trimethylamine which generate | occur | produce from vegetables etc. in each space (101A, 101B, 101C) of the vegetable compartment 6, and are contained in air. Carbon dioxide and water are generated by the decomposition of ethylene and the like by the platinum catalyst. The generated carbon dioxide is supplied into the spaces (101A, 101B, 101C) through the communication holes 106a, 106b (see FIG. 19). Therefore, the respiration of vegetables stored in each space is suppressed, and the freshness of vegetables is maintained for a long time. On the lower surface of the vegetable container cover 105, a rib (not shown) is formed. The transpiration board is inserted into a space formed by a rib (not shown), and the transpiration board is held on the lower surface of the vegetable container cover 105. When the air inside the rear upper space 101 </ b> C contacts the vegetable container cover 105, the contained moisture may condense on the vegetable container cover 105 and dew condensation water may be generated. However, the generated dew condensation water is absorbed by the transpiration board disposed over the entire area above the upper container 102. Therefore, the fall of the dew condensation water to the rear side upper stage space 101C is suppressed.
このように,本実施例では,最上段の貯蔵室である冷蔵室2(第一冷蔵温度帯室)に冷却空気を流通させる冷蔵風路111(第一風路)と,冷蔵室2の下段に位置する冷凍室7と最下段にある野菜室6に冷却空気を流通させる冷凍野菜風路112(第二風路)と,を備えている。したがって,野菜室6には比較的低温な冷気が流入することになり,野菜室6を冷却するのに必要な冷気は少量または短時間で済む。つまり,第二風路の途中にあって野菜室6への空気の送風量を制御する野菜室ダンパ19の開放時間は短くて済む。その結果,野菜室6内の乾燥を抑制できる。また,本実施例における冷蔵庫では略密閉構造とした野菜室6の各空間(101A,101B,101C)内に白金触媒を設け二酸化炭素を生成させることで野菜の呼吸を抑え,鮮度を長期間に渡り維持するものとなっている。野菜室6に流入する冷気の量や,流入する時間が短くなることで,鮮度維持に必要な二酸化炭素も十分に維持できる。   Thus, in the present embodiment, the refrigeration air passage 111 (first air passage) through which the cooling air flows to the refrigerating room 2 (first refrigerating temperature zone room) which is the uppermost storage room, and the lower stage of the refrigerating room 2 And a frozen vegetable air passage 112 (second air passage) for allowing cooling air to flow through the freezer compartment 7 located at the bottom and the vegetable compartment 6 at the lowest level. Therefore, relatively low temperature cold air flows into the vegetable compartment 6, and the amount of cold air required to cool the vegetable compartment 6 is small or short. In other words, the opening time of the vegetable compartment damper 19 that controls the amount of air blown to the vegetable compartment 6 in the middle of the second air passage is short. As a result, drying in the vegetable compartment 6 can be suppressed. Moreover, in the refrigerator in this embodiment, a platinum catalyst is provided in each space (101A, 101B, 101C) of the vegetable room 6 having a substantially hermetically sealed structure to generate carbon dioxide, thereby suppressing the respiration of the vegetables and keeping the freshness for a long time. It is meant to be maintained. By reducing the amount of cold air flowing into the vegetable compartment 6 and the time for inflow, carbon dioxide necessary for maintaining freshness can be sufficiently maintained.
次に,本実施例の冷蔵庫における野菜室の効果について説明する。図20,図21は,本実施例の冷蔵庫における野菜室と従来の冷蔵庫における野菜室について、オレンジ,大葉を7日間保存した後の水分保持率を示したグラフである。ここでいう従来の冷蔵庫とは,冷却器を1つ設けた冷蔵庫のことであり,野菜室の仕切りや野菜容器カバーは本実施例と同等構造を有するものとする。これにより,本実施例の冷蔵庫は,従来の冷蔵庫よりも,オレンジ,大葉の乾燥を抑制していることが確認できた。   Next, the effect of the vegetable compartment in the refrigerator of the present embodiment will be described. FIG. 20 and FIG. 21 are graphs showing the moisture retention after storing orange and large leaves for 7 days for the vegetable room in the refrigerator of the present example and the vegetable room in the conventional refrigerator. The conventional refrigerator referred to here is a refrigerator provided with one cooler, and the partition of the vegetable compartment and the vegetable container cover have the same structure as in this embodiment. Thereby, it has confirmed that the refrigerator of a present Example had suppressed drying of orange and a large leaf rather than the conventional refrigerator.
図22には,本実施例の冷蔵庫における野菜室と従来の冷蔵庫における野菜室について,同量の野菜を保存したときの保存中の二酸化炭素の増加量を示したグラフである。これより,本実施例の冷蔵庫は,従来の冷蔵庫よりも,二酸化炭素の増加量が大きくなっており,野菜の品質劣化抑制が期待できる結果となった。   FIG. 22 is a graph showing an increase in carbon dioxide during storage when the same amount of vegetables is stored in the vegetable room in the refrigerator of the present example and the vegetable room in the conventional refrigerator. From this, the refrigerator of a present Example had the result that the increase amount of a carbon dioxide was larger than the conventional refrigerator, and the quality deterioration suppression of vegetables could be anticipated.
さらに図23には,本実施例の冷蔵庫における野菜室と従来の冷蔵庫における野菜室について,7日間保存した後のオレンジのビタミンC含量を示したグラフである。これより,本実施例の冷蔵庫は,従来の冷蔵庫よりも,7日保存後のビタミンC含量が高くなっていることがわかる。つまり,保存中のビタミンCの減少を抑制していると言える。   Further, FIG. 23 is a graph showing the vitamin C content of orange after being stored for 7 days for the vegetable room in the refrigerator of this example and the vegetable room in the conventional refrigerator. From this, it can be seen that the refrigerator of this example has a higher vitamin C content after 7 days storage than the conventional refrigerator. In other words, it can be said that the reduction of vitamin C during storage is suppressed.
以上が,本発明を実施する形態を示す実施例である。なお,本発明は前述した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,本実施例の冷蔵庫では、より確実に空気の流通を遮断するために空気流通遮断手段として断熱仕切壁28を採用しているが、空気の流通を阻止する作用が得られれば、仕切部材の一部にダンパを設けて、ダンパを閉鎖状態とすることで空気流通を遮断した状態を構成しても良い。また、本実施例の冷蔵庫では、蒸発器温度調整手段として圧縮機24、冷蔵用ファン9a、冷凍用ファン9bを用いているが、蒸発器温度の調整が行えれば、他の手段として放熱手段の放熱量を制御するファンや、絞り抵抗を可変させる膨張弁を蒸発器温度調整手段としても良い。すなわち前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。   The above is an example showing a mode for carrying out the present invention. In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, in the refrigerator of the present embodiment, the heat insulating partition wall 28 is employed as the air flow blocking means in order to more reliably block the air flow. However, if the effect of blocking the air flow is obtained, the partition member A state in which the air flow is blocked by providing a damper in a part of the motor and closing the damper may be configured. In the refrigerator of this embodiment, the compressor 24, the refrigeration fan 9a, and the refrigeration fan 9b are used as the evaporator temperature adjusting means. However, if the evaporator temperature can be adjusted, the heat radiating means can be used as other means. A fan that controls the amount of heat released from the heater or an expansion valve that varies the throttle resistance may be used as the evaporator temperature adjusting means. That is, the above-described embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
1 冷蔵庫
2 冷蔵室(第一冷蔵温度帯室)
2a,2b 冷蔵室扉
3 製氷室
4 上段冷凍室
5 下段冷凍室冷凍室
3a,4a,5a 冷凍室扉
6 野菜室(第二冷蔵温度帯室)
6a 野菜室扉
7 冷凍室(3,4,5の総称)
8a 冷蔵用蒸発器室(第一蒸発器収納室)
8b 冷凍用蒸発器室(第二蒸発器収納室)
9a 冷蔵用ファン(第一送風機)
9b 冷凍用ファン(第二送風機)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室送風路
11a 冷蔵室吐出口
12 冷凍室送風路
12a 冷凍室吐出口
13 野菜室送風路
13a 野菜室吐出口
14a 冷蔵用蒸発器(第一蒸発器)
14b 冷凍用蒸発器(第二蒸発器)
15a,15b 15c 冷蔵室戻り風路
16 ヒンジカバー
17 冷凍室戻り口
18 野菜室戻り風路
18a 野菜室戻り口
19 野菜室ダンパ
21 ラジアントヒータ
22a,22b 排水口
23a,23b 樋
24 圧縮機
25 風路
26 庫外ファン
27a 冷蔵用排水管
27b 冷凍用排水管
28,29,30 断熱仕切壁
31 制御基板
32 蒸発皿
35 チルドルーム
39 機械室
40a 冷蔵用蒸発器温度センサ
40b 冷凍用蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 野菜室温度センサ
50a,50b 庫外放熱器(放熱手段)
50c 結露抑制配管(放熱手段)
51 ドライヤ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54a 冷蔵用気液分離器
54b 冷凍用気液分離器
55a,55b 熱交換部
56 逆止弁
91 脱臭部材
95a,95b 冷蔵室パッキン(第一シール部材)
96a,96b,96c 冷凍室パッキン(第二シール部材)
97 野菜室パッキン(第三シール部材)
101 樋部ヒータ
102 排水管上部ヒータ
103 排水管下部ヒータ
6b 野菜室下段容器
6b’野菜室上段容器
101B 前側空間
101A 後側下段空間
101C 後側上段空間
106 ケース
106a、106b 連通孔
110 仕切り部材(仕切り)
115c、115d 傾斜開口部
1 Refrigerator 2 Refrigerated room (first refrigerated temperature room)
2a, 2b Refrigeration room door 3 Ice making room 4 Upper freezing room 5 Lower freezing room Freezing room 3a, 4a, 5a Freezing room door 6 Vegetable room (second refrigeration temperature zone room)
6a Vegetable room door 7 Freezer room (generic name for 3, 4 and 5)
8a Refrigerator evaporator room (first evaporator storage room)
8b Evaporator chamber for refrigeration (second evaporator storage chamber)
9a Refrigeration fan (first blower)
9b Refrigeration fan (second blower)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 10a Outer box 10b Inner box 11 Refrigeration room air outlet 11a Refrigeration room air outlet 12 Freezer room air outlet 12a Freezer room air outlet 13 Vegetable room air outlet 13a Vegetable room outlet 14a Refrigerator evaporator (first evaporator) )
14b Refrigerating evaporator (second evaporator)
15a, 15b 15c Refrigeration room return air passage 16 Hinge cover 17 Freezer compartment return port 18 Vegetable room return air passage 18a Vegetable room return port 19 Vegetable room damper 21 Radiant heaters 22a, 22b Drainage ports 23a, 23b 樋 24 Compressor 25 Air passage 26 Outside fan 27a Refrigeration drain pipe 27b Refrigeration drain pipe 28, 29, 30 Insulating partition wall 31 Control board 32 Evaporating dish 35 Chilled room 39 Machine room 40a Refrigeration evaporator temperature sensor 40b Refrigeration evaporator temperature sensor 41 Refrigeration Room temperature sensor 42 Freezer room temperature sensor 43 Vegetable room temperature sensors 50a, 50b External radiator (heat radiation means)
50c Condensation suppression piping (heat dissipation means)
51 Dryer 52 Three-way valve (refrigerant control means)
53a Capillary tube for refrigeration (pressure reduction means)
53b Capillary tube for freezing (pressure reduction means)
54a Refrigeration gas / liquid separator 54b Refrigeration gas / liquid separator 55a, 55b Heat exchange unit 56 Check valve 91 Deodorizing members 95a, 95b Refrigeration chamber packing (first seal member)
96a, 96b, 96c Freezer compartment packing (second seal member)
97 Vegetable room packing (third seal member)
101 Butter Heater 102 Drain Pipe Upper Heater 103 Drain Pipe Lower Heater 6b Vegetable Room Lower Container 6b 'Vegetable Room Upper Container 101B Front Space 101A Rear Lower Space 101C Rear Upper Space 106 Case 106a, 106b Communication Hole 110 Partition Member (Partition) )
115c, 115d inclined opening

Claims (2)

  1. 冷蔵室と、冷凍室と、野菜室と、を備えた冷蔵庫において、
    前記冷蔵室を冷却する第一蒸発器と、前記冷凍室及び前記野菜室を冷却する第二蒸発器と、
    前記第一蒸発器で冷やされた空気を送風する第一送風機と、前記第二蒸発器で冷やされた空気を送風する第二送風機と、
    前記第一蒸発器と熱交換した空気を前記冷蔵室へ送り再び前記第一蒸発器へ戻す第一風路と、前記第二蒸発器と熱交換した空気を前記冷凍室及び前記野菜室へ送り再び前記第二蒸発器へ戻す第二風路と、
    を有し、
    前記第二風路と途中に、前記野菜室への空気の送風量を制御する冷蔵室ダンパを備えたことを特徴とする冷蔵庫。
    In a refrigerator having a refrigerator compartment, a freezer compartment, and a vegetable compartment,
    A first evaporator for cooling the refrigerator compartment, a second evaporator for cooling the freezer compartment and the vegetable compartment,
    A first blower for blowing air cooled by the first evaporator, a second blower for blowing air cooled by the second evaporator,
    The air exchanged with the first evaporator is sent to the refrigeration chamber, the first air path is returned to the first evaporator again, and the air exchanged with the second evaporator is sent to the freezer compartment and the vegetable compartment. A second air path returning to the second evaporator again;
    Have
    The refrigerator provided with the refrigerator compartment damper which controls the ventilation volume of the air to the said vegetable compartment in the middle of said 2nd air path.
  2. 請求項1において、
    前記第二風路の途中に、エチレンガスを二酸化炭素に分解する触媒を有することを特徴とする冷蔵庫。
    In claim 1,
    A refrigerator comprising a catalyst for decomposing ethylene gas into carbon dioxide in the middle of the second air passage.
JP2018014312A 2018-01-31 2018-01-31 refrigerator Pending JP2019132503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018014312A JP2019132503A (en) 2018-01-31 2018-01-31 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014312A JP2019132503A (en) 2018-01-31 2018-01-31 refrigerator

Publications (1)

Publication Number Publication Date
JP2019132503A true JP2019132503A (en) 2019-08-08

Family

ID=67545912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014312A Pending JP2019132503A (en) 2018-01-31 2018-01-31 refrigerator

Country Status (1)

Country Link
JP (1) JP2019132503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578600A (en) * 2020-05-20 2020-08-25 长虹美菱股份有限公司 Moisture preservation control method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578600A (en) * 2020-05-20 2020-08-25 长虹美菱股份有限公司 Moisture preservation control method and device

Similar Documents

Publication Publication Date Title
KR101306536B1 (en) Refrigerator
JP5507511B2 (en) refrigerator
JP2013061089A (en) Refrigerator
JP5622758B2 (en) refrigerator
JP6131116B2 (en) refrigerator
JP5363247B2 (en) refrigerator
JP2019132503A (en) refrigerator
JP2005016903A (en) Refrigerator
JP2019138481A (en) refrigerator
JP2019027649A (en) refrigerator
JP2019132495A (en) refrigerator
JP2014040966A (en) Refrigerator
JP2019132497A (en) refrigerator
JP5838238B2 (en) refrigerator
JP2019132498A (en) refrigerator
JP6446665B2 (en) refrigerator
JP2019138480A (en) refrigerator
JP2001280794A (en) Refrigerator
CN112378146A (en) Refrigerator with a door
JP2019078494A (en) refrigerator
JP2019027674A (en) refrigerator
JP2019056550A (en) refrigerator
JP2021081180A (en) refrigerator
JP6847010B2 (en) refrigerator
JP6282255B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601