JP6890502B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6890502B2
JP6890502B2 JP2017160735A JP2017160735A JP6890502B2 JP 6890502 B2 JP6890502 B2 JP 6890502B2 JP 2017160735 A JP2017160735 A JP 2017160735A JP 2017160735 A JP2017160735 A JP 2017160735A JP 6890502 B2 JP6890502 B2 JP 6890502B2
Authority
JP
Japan
Prior art keywords
evaporator
temperature
defrosting
chamber
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017160735A
Other languages
Japanese (ja)
Other versions
JP2019039586A (en
Inventor
慎一郎 岡留
慎一郎 岡留
良二 河井
良二 河井
晴樹 額賀
晴樹 額賀
真申 小川
真申 小川
暢志郎 小池
暢志郎 小池
智史 小沼
智史 小沼
拳司 伊藤
拳司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2017160735A priority Critical patent/JP6890502B2/en
Publication of JP2019039586A publication Critical patent/JP2019039586A/en
Application granted granted Critical
Publication of JP6890502B2 publication Critical patent/JP6890502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Description

本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.

特許文献1(特許第5854937公報)に記載の冷蔵庫は、「冷蔵空間と、冷凍空間と、圧縮機と、前記圧縮機から吐出された冷媒が供給され前記冷蔵空間及び前記冷凍空間を冷却する蒸発器と、前記蒸発器で冷却された空気を前記冷蔵空間及び前記冷凍空間に送風する蒸発器ファンと、前記蒸発器で冷却された空気を前記冷蔵空間に供給する流路を開閉する冷蔵ダンパと、前記蒸発器で冷却された空気を前記冷凍空間に供給する流路を開閉する冷凍ダンパと、前記蒸発器に付着した霜を加熱する除霜ヒータと、前記圧縮機、前記蒸発器ファン、前記冷蔵ダンパ、前記冷凍ダンパ、及び前記除霜ヒータを制御する制御部とを備え、前記制御部が、前記圧縮機を停止し、前記冷蔵ダンパを開状態とし、前記冷凍ダンパを閉状態とし、前記蒸発器ファンを駆動し、前記蒸発器の少なくとも一部が霜の融解温度以下を維持するように前記除霜ヒータを通電状態とする第1除霜運転を実行し、前記蒸発器に霜が残存している状態で前記第1除霜運転を終了し、その後、前記圧縮機を停止し、前記冷蔵ダンパを開状態とし、前記冷凍ダンパを閉状態とし、前記蒸発器ファンを駆動し、前記除霜ヒータを非通電状態とする第2除霜運転を実行」(請求項1参照)し、「前記第1除霜運転の実行中に前記蒸発器の温度が霜の融解温度に達すると、前記第1除霜運転を終了して前記第2除霜運転を実行する」(請求項2参照)こと、「前記第2除霜運転の実行中に前記蒸発器の温度が霜の融解温度に達すると、前記第2除霜運転を終了する」(請求項3参照)ことが記載されている。 The refrigerator described in Patent Document 1 (Japanese Patent No. 5854937) is described as "a refrigerating space, a refrigerating space, a compressor, and evaporation to cool the refrigerating space and the refrigerating space by supplying a refrigerant discharged from the compressor. A container, an evaporator fan that blows air cooled by the evaporator to the refrigerating space and the refrigerating space, and a refrigerating damper that opens and closes a flow path that supplies air cooled by the evaporator to the refrigerating space. A refrigerating damper that opens and closes a flow path that supplies air cooled by the evaporator to the refrigerating space, a defrost heater that heats frost adhering to the evaporator, the compressor, the evaporator fan, and the above. A refrigerating damper, the refrigerating damper, and a control unit for controlling the defrosting heater are provided, and the control unit stops the compressor, opens the refrigerating damper, closes the refrigerating damper, and sets the refrigerating damper in a closed state. The first defrosting operation is performed by driving the evaporator fan and energizing the defrosting heater so that at least a part of the evaporator maintains the melting temperature of the frost or less, and frost remains in the evaporator. The first defrosting operation is finished in this state, then the compressor is stopped, the refrigerating damper is opened, the refrigerating damper is closed, the evaporator fan is driven, and the defrosting is performed. The second defrosting operation in which the frost heater is de-energized is executed (see claim 1), and "when the temperature of the evaporator reaches the melting temperature of the frost during the execution of the first defrosting operation, the said "End the first defrosting operation and execute the second defrosting operation" (see claim 2), "The temperature of the evaporator reaches the melting temperature of the frost during the execution of the second defrosting operation." Then, the second defrosting operation is terminated ”(see claim 3).

また、「制御部は、第4除霜運転を開始してから蒸発器温度センサで検出される蒸発器の温度が所定温度(例えば、10℃)に達すると第2除霜運転を終了する」(特許文献1の段落0068参照)こと、「第4除霜運転では、制御部が、圧縮機を停止し、冷蔵ダンパ及び冷凍ダンパを閉状態とし、蒸発器ファンを停止し、除霜ヒータを通電状態とする」(特許文献1の段落0067参照)ことが記載されている。 Further, "the control unit ends the second defrosting operation when the temperature of the evaporator detected by the evaporator temperature sensor reaches a predetermined temperature (for example, 10 ° C.) after starting the fourth defrosting operation." (Refer to paragraph 0068 of Patent Document 1), "In the fourth defrosting operation, the control unit stops the compressor, closes the refrigerating damper and the refrigerating damper, stops the evaporator fan, and turns on the defrosting heater. "Energize state" (see paragraph 0067 of Patent Document 1).

特許第5854937号公報Japanese Patent No. 5854937

特許文献1の冷蔵庫は、蒸発器よりも空気の流れ方向下流側の壁面に付着した霜について考慮されていない。蒸発器の温度が霜の融解温度以下の範囲で除霜ヒータに通電しながら蒸発器ファンを駆動させる第1除霜運転を行い、蒸発器の温度が霜の融解温度に達すると除霜ヒータを非通電状態にする第2除霜運転を行うことが記載されている。蒸発器を通過した出口空気は低温になり、蒸発器と同程度の温度になる。第1除霜運転及び第2除霜運転中の蒸発器は融解温度以下となっているため、蒸発器を通過した出口空気温度も霜の融解温度と同等、或いはそれ以下となる。従って、第1除霜運転中に蒸発器よりも空気の流れ方向下流側の壁面に付着した霜を解かすことは困難である。 The refrigerator of Patent Document 1 does not consider the frost adhering to the wall surface on the downstream side in the air flow direction with respect to the evaporator. The first defrosting operation is performed to drive the evaporator fan while energizing the defrosting heater within the range where the temperature of the evaporator is lower than the melting temperature of frost, and when the temperature of the evaporator reaches the melting temperature of frost, the defrosting heater is turned on. It is described that the second defrosting operation for de-energizing is performed. The outlet air that has passed through the evaporator becomes cold and has a temperature similar to that of the evaporator. Since the evaporator during the first defrosting operation and the second defrosting operation is below the melting temperature, the temperature of the outlet air passing through the evaporator is equal to or lower than the melting temperature of frost. Therefore, it is difficult to defrost the frost adhering to the wall surface on the downstream side in the air flow direction with respect to the evaporator during the first defrosting operation.

また、特許文献1の第2実施形態では、蒸発器ファンを停止して除霜ヒータに通電する第4除霜運転を蒸発器の温度が融解温度を超えるまで行っている(特許文献1の図6参照)。しかしながら、第4除霜では蒸発器ファンを停止させているため、空気の流速が低く、蒸発器下流側の壁面が加熱されにくくなる。従って、壁面の霜を解かすためには、除霜ヒータによる加熱時間を長くする、或いは発熱量を多くする必要があり、省エネルギー性能が低下するという課題があった。 Further, in the second embodiment of Patent Document 1, the fourth defrosting operation in which the evaporator fan is stopped and the defrosting heater is energized is performed until the temperature of the evaporator exceeds the melting temperature (FIG. 1 of Patent Document 1). 6). However, in the fourth defrosting, since the evaporator fan is stopped, the flow velocity of air is low, and the wall surface on the downstream side of the evaporator is less likely to be heated. Therefore, in order to defrost the wall surface, it is necessary to lengthen the heating time by the defrost heater or increase the amount of heat generated, and there is a problem that the energy saving performance is lowered.

そこで本発明は、蒸発器下流の壁面に付着した霜を融解させつつ、省エネルギー性能の高い除霜運転を行う冷蔵庫を提供することを目的とする。 Therefore, an object of the present invention is to provide a refrigerator that performs a defrosting operation with high energy-saving performance while melting the frost adhering to the wall surface downstream of the evaporator.

上記課題に鑑みてなされた本発明は、冷蔵温度帯の第一の貯蔵室と、冷凍温度帯室の第二の貯蔵室と、圧縮機と、前記第一の貯蔵室と前記第二の貯蔵室を冷却する蒸発器と、該蒸発器で冷却された空気を、前記第一の貯蔵室と前記第二の貯蔵室に送風するファンと、前記蒸発器から前記第一の貯蔵室への送風を制御する冷蔵室ダンパと、前記蒸発器から前記第二の貯蔵室への送風を制御する冷凍室ダンパと、前記蒸発器に付着した霜を解かす除霜ヒータと、前記蒸発器の温度を検知する蒸発器温度検知手段を備える冷蔵庫において、前記圧縮機を停止中に、前記ファンを停止状態で前記除霜ヒータを通電状態とする第一の除霜モードと、前記冷凍室ダンパを閉状態、前記冷蔵室ダンパを開状態として、前記ファンを駆動させて除霜ヒータを通電状態とする第二の除霜モードを備え、前記第一の除霜モードを実施した後に、前記第二の除霜モードを行い、該第二の除霜モードを前記蒸発器温度検知手段が霜の融解温度よりも高い温度になるまで行うことを特徴とする冷蔵庫。 In view of the above problems, the present invention has been made in view of the first storage chamber in the refrigerating temperature zone, the second storage chamber in the freezing temperature zone chamber, the compressor, the first storage chamber and the second storage chamber. An evaporator that cools the chamber, a fan that blows air cooled by the evaporator to the first storage chamber and the second storage chamber, and a fan that blows air from the evaporator to the first storage chamber. A refrigerator damper that controls the temperature of the refrigerator, a freezer damper that controls the air blown from the evaporator to the second storage chamber, a defrost heater that defrosts frost adhering to the evaporator, and the temperature of the evaporator. In a refrigerator provided with an evaporator temperature detecting means for detecting, a first defrosting mode in which the fan is stopped and the defrosting heater is energized while the compressor is stopped, and a state in which the freezer damper is closed. A second defrosting mode is provided in which the refrigerating chamber damper is opened, the fan is driven to energize the defrosting heater, and after the first defrosting mode is performed, the second defrosting mode is performed. A refrigerator characterized in that a frost mode is performed and the second defrost mode is performed until the evaporator temperature detecting means reaches a temperature higher than the melting temperature of frost.

本発明によれば、蒸発器下流の壁面に付着した霜を融解させつつ、省エネルギー性能の高い除霜運転を行う冷蔵庫を提供することができる。 According to the present invention, it is possible to provide a refrigerator that performs a defrosting operation with high energy-saving performance while melting the frost adhering to the wall surface downstream of the evaporator.

実施例に係わる冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on Example. 図1のA−A断面図である。FIG. 1 is a sectional view taken along the line AA of FIG. 蒸発器の周辺部を示す正面図である。It is a front view which shows the peripheral part of an evaporator. 除霜モード1における空気の流れを表す図2の蒸発器周辺の拡大図である。It is an enlarged view around the evaporator of FIG. 2 which shows the air flow in the defrost mode 1. 除霜モード2における空気の流れを表す図2の蒸発器周辺の拡大図である。It is an enlarged view around the evaporator of FIG. 2 which shows the air flow in a defrost mode 2. 除霜制御を示すタイムチャートの一例である。This is an example of a time chart showing defrost control.

本発明に関する冷蔵庫の実施例について説明する。図1は実施例に係わる冷蔵庫の正面図、図2は図1のA−A断面図である。冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aである。以下では、製氷室3、上段冷凍室4、下段冷凍室5は、まとめて冷凍室7と呼ぶ。 Examples of the refrigerator according to the present invention will be described. FIG. 1 is a front view of the refrigerator according to the embodiment, and FIG. 2 is a sectional view taken along the line AA of FIG. The box body 10 of the refrigerator 1 has a refrigerating chamber 2 from above, an ice making chamber 3 attached to the left and right, an upper freezing chamber 4, a lower freezing chamber 5, and a vegetable compartment 6 in this order. Refrigerator 1 is provided with a door that opens and closes the opening of each storage room. These doors open and close the opening of the refrigerating room 2, the left and right rotating rotating refrigerating room doors 2a and 2b, and the opening of the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6. A pull-out type ice making chamber door 3a, an upper freezing chamber door 4a, a lower freezing chamber door 5a, and a vegetable compartment door 6a that open and close, respectively. Hereinafter, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7.

ドア2aには庫内の温度設定の操作を行う操作部26を設けている。冷蔵庫1とドア2a、2bを固定するためにドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。 The door 2a is provided with an operation unit 26 for operating the temperature setting in the refrigerator. Door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2 to fix the refrigerator 1 and the doors 2a and 2b, and the upper door hinges are covered with the door hinge cover 16.

図2に示すように、外箱10aと内箱10bとの間に発泡断熱材を充填して形成される箱体10により、冷蔵庫1の庫外と庫内は隔てられている。箱体10には発泡断熱材に加えて複数の真空断熱材25を、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と、上段冷凍室4及び製氷室3は断熱仕切壁28によって隔てられ、同様に下段冷凍室5と野菜室6は断熱仕切壁29によって隔てられている。また、製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室の前面側には、ドア3a、4a、5aの隙間から冷凍室7内の空気が庫外へ漏れ、庫外の空気が各貯蔵室に侵入しないよう、断熱仕切壁30を設けている。 As shown in FIG. 2, the outside and inside of the refrigerator 1 are separated by a box body 10 formed by filling the outer box 10a and the inner box 10b with a foamed heat insulating material. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 25 are mounted on the box body 10 between the outer box 10a made of steel plate and the inner box 10b made of synthetic resin. The refrigerating room 2, the upper freezing room 4, and the ice making room 3 are separated by a heat insulating partition wall 28, and similarly, the lower freezing room 5 and the vegetable room 6 are separated by a heat insulating partition wall 29. Further, on the front side of each storage chamber of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, the air inside the freezing chamber 7 leaks to the outside of the refrigerator through the gaps between the doors 3a, 4a, and 5a, and the outside of the refrigerator. A heat insulating partition wall 30 is provided so that air does not enter each storage chamber.

冷蔵室2のドア2a、2bの庫内側には複数のドアポケット33a、33b、33cと、複数の棚34a、34b、34c、34dを設け、複数の貯蔵スペースに区画されている。冷凍室7及び野菜室6には、それぞれドア3a、4a、5a、6aと一体に引き出される製氷室容器(図示せず)、上段冷凍室容器4b、下段冷凍室容器5b、野菜室容器6bを備えている
断熱仕切壁28の上方には、貯蔵室35を設けている。一般に、貯蔵室35は冷蔵室2の温度帯よりも低めに設定されたチルドルームを設けていることが多い。貯蔵室35内の温度調整は、例えば、貯蔵室35の後方部の冷蔵室冷気ダクト11の途中に設けた専用の風量調整装置(図示せず)によって行なわれ、貯蔵室35が冷え過ぎた場合は、貯蔵室35の下部に設けた温度調整用のヒータ19によって加熱する。
A plurality of door pockets 33a, 33b, 33c and a plurality of shelves 34a, 34b, 34c, 34d are provided inside the doors 2a and 2b of the refrigerating chamber 2, and are partitioned into a plurality of storage spaces. In the freezing room 7 and the vegetable room 6, an ice making room container (not shown), an upper freezing room container 4b, a lower freezing room container 5b, and a vegetable room container 6b, which are pulled out integrally with the doors 3a, 4a, 5a, and 6a, respectively A storage chamber 35 is provided above the heat insulating partition wall 28 provided. In general, the storage room 35 is often provided with a chilled room set lower than the temperature range of the refrigerating room 2. The temperature inside the storage chamber 35 is adjusted by, for example, a dedicated air volume adjusting device (not shown) provided in the middle of the refrigerating chamber cold air duct 11 at the rear of the storage chamber 35, and the storage chamber 35 is too cold. Is heated by a temperature adjusting heater 19 provided in the lower part of the storage chamber 35.

蒸発器14は下段冷凍室5の略背部に備えた蒸発器収納室8内に設けてあり、蒸発器14の上方に設けた庫内ファン9により、蒸発器14と熱交換した冷気が冷蔵室冷気ダクト11、冷凍室冷気ダクト12を介して、冷蔵室2、上段冷凍室4、下段冷凍室5、製氷室3の各貯蔵室へ吐出口11a、12aからそれぞれ送られる。冷蔵室2、及び冷凍室7への冷気の送風は、冷蔵室ダンパ20と冷凍室ダンパ21の開閉により制御される。なお、蒸発器収納室8のうち、蒸発器14よりも下部の空間を風路8a、蒸発器14から冷蔵室ダンパ20及び冷凍室ダンパ21に至る空間を風路8bとする。 The evaporator 14 is provided in the evaporator storage chamber 8 provided substantially behind the lower freezing chamber 5, and the cold air that has exchanged heat with the evaporator 14 by the internal fan 9 provided above the evaporator 14 is a refrigerating chamber. The air is sent from the discharge ports 11a and 12a to the storage chambers of the refrigerating chamber 2, the upper freezing chamber 4, the lower freezing chamber 5, and the ice making chamber 3 via the cold air duct 11 and the freezing chamber cold air duct 12, respectively. The blowing of cold air to the refrigerating chamber 2 and the freezing chamber 7 is controlled by opening and closing the refrigerating chamber damper 20 and the freezing chamber damper 21. In the evaporator storage chamber 8, the space below the evaporator 14 is referred to as an air passage 8a, and the space from the evaporator 14 to the refrigerating chamber damper 20 and the freezing chamber damper 21 is referred to as an air passage 8b.

蒸発器14の下部の風路8aには、例えばラジアントヒータである除霜ヒータ22を設けている。除霜時に発生したドレン水(融解水)は樋23に一旦落下し、ドレン孔27を介して圧縮機24の上部に設けた蒸発皿32に排出される。 The air passage 8a below the evaporator 14 is provided with, for example, a defrost heater 22 which is a radiant heater. The drain water (melted water) generated during defrosting once falls into the gutter 23 and is discharged to the evaporating dish 32 provided on the upper part of the compressor 24 through the drain hole 27.

冷蔵室2、冷凍室7、野菜室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43を設け、蒸発器14の上部には蒸発器温度センサ40を設け、これらのセンサにより、冷蔵室2、冷凍室7、野菜室6、及び蒸発器14の温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気(庫外空気)の温度、湿度を検知する外気温度センサ37を設けている。その他のセンサとして、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知するドアセンサ(図示せず)や、後述する仕切部温度検知手段である仕切部温度センサ100等も設けている。 A refrigerator room temperature sensor 41, a freezer room temperature sensor 42, and a vegetable room temperature sensor 43 are provided on the back side of the refrigerator chamber 2, the freezer chamber 7, and the vegetable compartment 6, respectively, and the evaporator temperature is above the evaporator 14. Sensors 40 are provided, and the temperatures of the refrigerator compartment 2, the freezer compartment 7, the vegetable compartment 6, and the evaporator 14 are detected by these sensors. Further, inside the door hinge cover 16 on the ceiling of the refrigerator 1, an outside air temperature sensor 37 for detecting the temperature and humidity of the outside air (outside air) is provided. Other sensors include a door sensor (not shown) that detects the open / closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a, a partition temperature sensor 100 that is a partition temperature detecting means described later, and the like. There is.

冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43、蒸発器温度センサ40等と接続され、前述のCPUは、これらの出力値や操作部26の設定、前述のROMに予め記録されたプログラム等を基に、圧縮機24や庫内ファン9、冷蔵室ダンパ20、冷凍室ダンパ21、後述する冷媒制御弁47の制御等を行っている。 A control board 31 on which a CPU, a memory such as a ROM or RAM, an interface circuit, or the like, which is a part of the control device, is mounted is arranged on the upper part of the refrigerator 1. The control board 31 is connected to the refrigerating room temperature sensor 41, the freezing room temperature sensor 42, the vegetable room temperature sensor 43, the evaporator temperature sensor 40, and the like. Based on a program or the like recorded in advance in the ROM of the above, the compressor 24, the internal fan 9, the refrigerator compartment damper 20, the freezer compartment damper 21, and the refrigerant control valve 47 described later are controlled.

冷蔵室2を冷却する冷蔵室冷却運転の場合には、冷蔵室ダンパ20を開、冷凍室ダンパ21を閉にし、冷蔵室冷気ダクト11に設けた吐出口11a、から冷蔵室2に冷気が送られる。冷蔵室2を冷却した後の冷気は、冷蔵室2下部に設けた冷気戻り口(図示せず)から図3に図示する冷蔵室戻りダクト51に流入し、その後、蒸発器14に戻る。 In the case of the refrigerating room cooling operation for cooling the refrigerating room 2, the refrigerating room damper 20 is opened, the freezing room damper 21 is closed, and cold air is sent from the discharge port 11a provided in the refrigerating room cold air duct 11 to the refrigerating room 2. Be done. After cooling the refrigerating chamber 2, the cold air flows into the refrigerating chamber return duct 51 shown in FIG. 3 from the cold air return port (not shown) provided in the lower part of the refrigerating chamber 2, and then returns to the evaporator 14.

冷凍室7を冷却する冷凍室冷却運転の場合には、冷蔵室ダンパ20を閉、冷凍室ダンパ21を開にし、冷凍室冷気ダクト12に設けた複数の吐出口12aから冷気が吐出されて、上段冷凍室4、下段冷凍室5、及び製氷室3を冷却した後、冷凍室冷気戻り部17から蒸発器14に戻る。 In the case of the freezing room cooling operation for cooling the freezing room 7, the refrigerating room damper 20 is closed, the freezing room damper 21 is opened, and cold air is discharged from a plurality of discharge ports 12a provided in the freezing room cold air duct 12. After cooling the upper freezing chamber 4, the lower freezing chamber 5, and the ice making chamber 3, the refrigerator returns to the evaporator 14 from the freezing chamber cold air return unit 17.

冷蔵室2、及び冷凍室7の温度は、庫内に設けた冷蔵室温度センサ41、冷凍室温度センサ42で検知され、庫内の温度に応じて冷蔵室2と冷凍室7を同時に冷却する運転もあり、その場合には冷蔵室ダンパ20と冷凍室ダンパ21をいずれも開にして各貯蔵室に冷気を送風する。 The temperatures of the refrigerating chamber 2 and the freezing chamber 7 are detected by the refrigerating chamber temperature sensor 41 and the freezing chamber temperature sensor 42 provided in the refrigerator, and the refrigerating chamber 2 and the freezing chamber 7 are simultaneously cooled according to the temperature inside the refrigerator. In that case, both the refrigerator compartment damper 20 and the freezer compartment damper 21 are opened to blow cold air to each storage chamber.

野菜室6の冷却手段については種々の方法があるが、例えば、冷蔵室2を冷却した後に野菜室6に冷気を送る方法や、野菜室6専用の風量調整装置(図示せず)を用いて、蒸発器14で熱交換して発生した冷気を直接野菜室6に送る方法がある。本実施例においては、野菜室6への冷気の供給方法についてはいずれの場合でも良い。図2の記載例では、野菜室6に流入した冷気は、断熱仕切壁29の下部前方に設けた野菜室側の冷気戻り部18aから野菜室冷気戻りダクト18を介して、野菜室冷気戻り部18bから蒸発器14下部に流入する。 There are various methods for cooling the vegetable compartment 6. For example, a method of cooling the refrigerating chamber 2 and then sending cold air to the vegetable compartment 6 or an air volume adjusting device (not shown) dedicated to the vegetable compartment 6 is used. , There is a method of directly sending the cold air generated by heat exchange in the evaporator 14 to the vegetable compartment 6. In this embodiment, the method of supplying cold air to the vegetable compartment 6 may be any case. In the description example of FIG. 2, the cold air flowing into the vegetable compartment 6 is sent from the cold air return portion 18a on the vegetable compartment side provided in front of the lower part of the heat insulating partition wall 29 to the vegetable chamber cold air return portion 18 via the vegetable chamber cold air return duct 18. It flows from 18b to the lower part of the evaporator 14.

図3は本発明の実施例に係る蒸発器14の周辺部を、冷蔵庫正面から見た図である。蒸発器入口パイプ47と蒸発器出口パイプ48に接続する冷媒パイプ50は、上下方向に折り返して7段のフィンチューブ式熱交換器(蒸発器14)を構成している。蒸発器14の上部に設けた蒸発器入口パイプ47には、蒸発器温度センサ40が設置されており、蒸発器温度センサ40で検出される温度によって除霜運転に関する判定を行っている。蒸発器14の下部に設けた除霜ヒータ22は、ヒータ線を内部に挿入したガラス管44と、その外周部に設けた金属製の放熱フィン46、及びガラス管44と金属フィン46の上部を覆うように設けた金属製の融解水滴下防止部45から構成されている。本実施の形態例の冷蔵庫1は、可燃性冷媒を使用しており、除霜ヒータ22は、庫内で可燃性冷媒が漏れた場合を想定し、通電中にガラス管44の表面温度を可燃性冷媒の発火温度(イソブタンの場合494℃)よりも100℃以上低い温度を維持するようにしている。融解水滴下防止部45をガラス管44の上部に設けることによって、除霜時に生じた融解水がガラス管44の表面に直接滴下して、急激な温度変化によるガラス管44の破損を防止している。庫内循環空気の通風抵抗を考慮すると、融解水滴下防止部45は放熱フィン46の直径と同程度が好ましい。除霜ヒータ22の出力は、一般的に100W〜200Wの電気ヒータであり、本実施の形態例では150Wとしている。 FIG. 3 is a view of the peripheral portion of the evaporator 14 according to the embodiment of the present invention as viewed from the front of the refrigerator. The refrigerant pipe 50 connected to the evaporator inlet pipe 47 and the evaporator outlet pipe 48 is folded back in the vertical direction to form a seven-stage fin tube heat exchanger (evaporator 14). An evaporator temperature sensor 40 is installed in the evaporator inlet pipe 47 provided above the evaporator 14, and a determination regarding the defrosting operation is performed based on the temperature detected by the evaporator temperature sensor 40. The defrosting heater 22 provided in the lower part of the evaporator 14 has a glass tube 44 in which a heater wire is inserted, a metal heat radiating fin 46 provided in the outer peripheral portion thereof, and an upper part of the glass tube 44 and the metal fin 46. It is composed of a metal molten water dripping prevention portion 45 provided so as to cover it. The refrigerator 1 of the present embodiment uses a flammable refrigerant, and the defrost heater 22 makes the surface temperature of the glass tube 44 combustible while the power is on, assuming that the flammable refrigerant leaks in the refrigerator. The temperature is maintained at 100 ° C. or higher lower than the ignition temperature of the sex refrigerant (494 ° C. in the case of isobutane). By providing the molten water dripping prevention portion 45 on the upper part of the glass tube 44, the molten water generated during defrosting is directly dropped on the surface of the glass tube 44 to prevent the glass tube 44 from being damaged due to a sudden temperature change. There is. Considering the ventilation resistance of the circulating air in the refrigerator, the melted water dripping prevention portion 45 is preferably about the same diameter as the heat radiation fin 46. The output of the defrost heater 22 is generally an electric heater of 100 W to 200 W, and is set to 150 W in the example of the present embodiment.

蒸発器14の側方には冷蔵室冷気戻りダクト51を設けてあり、冷蔵室ダンパ20を開、冷凍室ダンパ21を閉にし、庫内ファン9aを駆動させると、冷蔵室2を冷却した後の空気が冷蔵室戻りダクト51から流入する。冷蔵室戻りダクト51に流入した空気は、風路8aで蒸発器14側に向きが変わり、樋23、除霜ヒータ22を通過し、蒸発器14の最下段(7段目)から最上段(1段目)に向かい、風路8bを経由して庫内ファン9へと流れていく。 A refrigerating chamber cold air return duct 51 is provided on the side of the evaporator 14, and when the refrigerating chamber damper 20 is opened, the freezing chamber damper 21 is closed, and the internal fan 9a is driven, the refrigerating chamber 2 is cooled. Air flows in from the refrigerating chamber return duct 51. The air flowing into the refrigerating chamber return duct 51 turns to the evaporator 14 side in the air passage 8a, passes through the gutter 23 and the defrost heater 22, and passes from the bottom (7th) to the top (7th) of the evaporator 14. Heading toward the first stage), it flows to the refrigerator fan 9 via the air passage 8b.

次に、本実施の形態例の除霜運転について説明する。本実施の形態例の冷蔵庫1は除霜モード1、除霜モード2の2つの除霜運転を備えている。除霜モード1は庫内ファン9を停止(OFF)させた状態で除霜ヒータ22に通電(ON)する除霜運転である。 Next, the defrosting operation of the present embodiment will be described. The refrigerator 1 of the embodiment is provided with two defrosting operations, a defrosting mode 1 and a defrosting mode 2. The defrosting mode 1 is a defrosting operation in which the defrosting heater 22 is energized (ON) with the internal fan 9 stopped (OFF).

図4aは除霜モード1における空気の流れを表す図2の蒸発器周辺の拡大図である。除霜モード1は、冷蔵室ダンパ20を閉、冷凍室ダンパ21を開にし、庫内ファン9を停止(OFF)させた状態で、除霜ヒータ22に通電(ON)するモードである。庫内ファン9を停止させているため、蒸発器14は主に自然対流により加熱される。除霜ヒータ22で加熱された蒸発器14下部の風路8aの空気は自然対流により上昇する。この加熱空気と蒸発器14との熱交換により蒸発器14を加熱する。蒸発器14を加熱した後、空気は冷凍室ダンパ21を経由して吐出口12aから冷凍室7へ流出する。一方、冷凍室7の空気は冷凍室戻り口17から風路8aへと流れる。 FIG. 4a is an enlarged view of the periphery of the evaporator of FIG. 2 showing the air flow in the defrosting mode 1. The defrosting mode 1 is a mode in which the defrosting heater 22 is energized (ON) with the refrigerator compartment damper 20 closed, the freezing chamber damper 21 opened, and the internal fan 9 stopped (OFF). Since the internal fan 9 is stopped, the evaporator 14 is mainly heated by natural convection. The air in the air passage 8a under the evaporator 14 heated by the defrost heater 22 rises due to natural convection. The evaporator 14 is heated by heat exchange between the heated air and the evaporator 14. After heating the evaporator 14, air flows out from the discharge port 12a to the freezing chamber 7 via the freezing chamber damper 21. On the other hand, the air in the freezing chamber 7 flows from the freezing chamber return port 17 to the air passage 8a.

このように庫内ファン9を停止状態で行う除霜モード1においても対流により空気が循環し、蒸発器14を加熱しているが、除霜ヒータ22から蒸発器14へと流れる空気の流速が低いため、輻射の影響が大きく、除霜モード1は除霜ヒータ22の周辺、特にトイ23等の風路8aに接する壁面と、蒸発器14の下部を加熱し易い除霜モードである。 In this way, even in the defrosting mode 1 in which the internal fan 9 is stopped, air circulates due to convection and heats the evaporator 14, but the flow velocity of the air flowing from the defrosting heater 22 to the evaporator 14 is high. Since it is low, the influence of radiation is large, and the defrosting mode 1 is a defrosting mode in which the periphery of the defrosting heater 22, particularly the wall surface in contact with the air passage 8a such as the toy 23, and the lower part of the evaporator 14 are easily heated.

なお、冷凍室ダンパ21を開としている理由は、前述の空気の循環が形成し、除霜ヒータ22から蒸発器14に空気が向かう自然対流を促進するためである。これにより、冷凍室ダンパ21を閉とした場合に比べ、蒸発器14に対する加熱量を増加させ、さらには蒸発器14の下流にある風路8bの壁面に対する加熱量も増加させることができる。 The reason why the freezer damper 21 is open is that the above-mentioned air circulation is formed and the natural convection of air from the defrost heater 22 to the evaporator 14 is promoted. As a result, the amount of heat for the evaporator 14 can be increased as compared with the case where the freezer damper 21 is closed, and the amount of heat for the wall surface of the air passage 8b downstream of the evaporator 14 can also be increased.

図4bは除霜モード2における空気の流れを表す図2の蒸発器周辺の拡大図である。除霜モード2は、冷蔵室ダンパ20を開、冷凍室ダンパ21を閉にし、庫内ファン9を駆動(ON)させた状態で除霜ヒータ22に通電(ON)するモードである。冷蔵室ダンパ20を開、冷凍室ダンパ21を閉とし、庫内ファン9を駆動させているため、蒸発器室8内は図3で示した流れと同様の流れ場となる。すなわち、冷蔵室2の空気が冷蔵室戻りダクト51(図3参照)から風路8a流入し、除霜ヒータ22により加熱された後、蒸発器14に至り、蒸発器14を加熱する。蒸発器14を加熱した後、空気は庫内ファン9aにより昇圧され冷蔵室ダンパ20を経由して冷蔵室冷気ダクト11を介して冷蔵室2へと流れていく。 FIG. 4b is an enlarged view of the periphery of the evaporator of FIG. 2 showing the air flow in the defrosting mode 2. The defrosting mode 2 is a mode in which the refrigerating chamber damper 20 is opened, the freezing chamber damper 21 is closed, and the defrosting heater 22 is energized (ON) while the internal fan 9 is driven (ON). Since the refrigerator compartment damper 20 is opened, the freezer compartment damper 21 is closed, and the internal fan 9 is driven, the inside of the evaporator chamber 8 becomes a flow field similar to the flow shown in FIG. That is, the air in the refrigerating chamber 2 flows into the air passage 8a from the refrigerating chamber return duct 51 (see FIG. 3), is heated by the defrost heater 22, and then reaches the evaporator 14 to heat the evaporator 14. After heating the evaporator 14, the air is boosted by the internal fan 9a and flows to the refrigerating chamber 2 via the refrigerating chamber damper 20 and the refrigerating chamber cold air duct 11.

すなわち、除霜モード2では強制対流の流れ場となるため、対流による加熱量が多くなり、除霜モード1に比べ除霜ヒータ22よりも上部、特に蒸発器14と、ファン周辺壁面100等の風路8bに接する壁面を加熱し易い除霜モードである。 That is, in the defrost mode 2, since it becomes a flow field of forced convection, the amount of heat generated by convection increases, and compared to the defrost mode 1, the upper part of the defrost heater 22, especially the evaporator 14, and the wall surface around the fan 100, etc. This is a defrosting mode in which the wall surface in contact with the air passage 8b can be easily heated.

図5は除霜制御を示すタイムチャートの一例である。蒸発器温度は蒸発器温度センサ40で検出される蒸発器14の温度、冷蔵室温度は冷蔵室温度センサ41で検出される冷蔵室2の温度であり、ファン周辺壁面温度はファン周辺の壁面であるファン周辺壁面100(図4a、図4b参照)の温度、トイ温度はトイ23の壁面温度である。図5に示す1、2は除霜モード1、除霜モード2を表す。また圧縮機24、庫内ファン9のONはそれぞれ駆動状態、OFFはそれぞれ停止状態を表す。 FIG. 5 is an example of a time chart showing defrost control. The evaporator temperature is the temperature of the evaporator 14 detected by the evaporator temperature sensor 40, the refrigerating chamber temperature is the temperature of the refrigerating chamber 2 detected by the refrigerating chamber temperature sensor 41, and the wall surface temperature around the fan is the wall surface around the fan. The temperature and toy temperature of a fan peripheral wall surface 100 (see FIGS. 4a and 4b) are the wall surface temperature of the toy 23. 1 and 2 shown in FIG. 5 represent defrost mode 1 and defrost mode 2. Further, ON of the compressor 24 and the fan 9 in the refrigerator represents a driving state, and OFF represents a stopped state.

本実施の形態例では、例えばドア2a、3a、4a、5a、6aの開閉回数、及び圧縮機24の合計駆動時間等から判断される除霜運転の開始条件を満足する(時刻t)と、本実施の形態例の冷蔵庫1ではプリクール運転を行う。 In the example of the present embodiment, for example, the conditions for starting the defrosting operation determined from the number of times the doors 2a, 3a, 4a, 5a, and 6a are opened and closed, the total driving time of the compressor 24, and the like are satisfied (time t 0 ). , The refrigerator 1 of the embodiment of the present embodiment performs a pre-cool operation.

冷凍室7の温度が除霜運転中に過度に上昇すると冷凍食品や氷の融解の恐れがある一方、本実施の形態例では除霜運転中も冷蔵室2を冷却できるため、プリクール運転では、冷蔵室ダンパ20を閉、冷凍室ダンパ21を開とし、冷凍室3を冷却する。プリクール運転を所定の時間、例えば30分間行った後(時刻t)、本実施の形態例の冷蔵庫1は除霜運転に移行する。 If the temperature of the freezing chamber 7 rises excessively during the defrosting operation, there is a risk of melting frozen foods and ice. On the other hand, in the example of the present embodiment, the refrigerating chamber 2 can be cooled even during the defrosting operation. The refrigerating chamber damper 20 is closed, the freezing chamber damper 21 is opened, and the freezing chamber 3 is cooled. After performing the pre-cool operation for a predetermined time, for example, 30 minutes (time t 1 ), the refrigerator 1 of the present embodiment shifts to the defrosting operation.

本実施の形態例の冷蔵庫1は、除霜モード1、除霜モード2の2種類の除霜運転を備え、まず除霜モード1を行う。除霜モード1は、図4aで示したように、庫内ファン9を停止(OFF)させた状態で、除霜ヒータ22に通電(ON)するモードであり、主に除霜ヒータ22周辺、特に蒸発器14の下部の風路8aを形成するトイ23等の壁面を加熱する。 The refrigerator 1 of the embodiment is provided with two types of defrosting operations, a defrosting mode 1 and a defrosting mode 2, and the defrosting mode 1 is first performed. As shown in FIG. 4a, the defrosting mode 1 is a mode in which the defrosting heater 22 is energized (ON) with the internal fan 9 stopped (OFF), and is mainly around the defrosting heater 22. In particular, it heats the wall surface of the toy 23 or the like forming the air passage 8a below the evaporator 14.

この除霜モード1を、例えば10分間行った後(時刻t)、除霜モード2に移行する。除霜モード2は、図4bで示したように、冷蔵室ダンパ20を開、冷凍室ダンパ21を閉とし、庫内ファン9を駆動させながら除霜ヒータ22を通電するモードであり、主に除霜ヒータ22よりも上部、特に蒸発器14と、ファン周辺壁面100等の風路8bを形成する壁面を加熱する。 The defrosting mode 1, after for example 10 minutes (time t 2), the process proceeds to defrosting mode 2. As shown in FIG. 4b, the defrosting mode 2 is a mode in which the refrigerating chamber damper 20 is opened, the freezing chamber damper 21 is closed, and the defrosting heater 22 is energized while driving the internal fan 9. Above the defrost heater 22, in particular, the evaporator 14 and the wall surface forming the air passage 8b such as the fan peripheral wall surface 100 are heated.

その後、蒸発器14の温度が霜の融解温度よりも十分高い除霜終了温度Tfin(例えば10℃)に到達する(時刻t)と、除霜運転を終了する。 After that, when the temperature of the evaporator 14 reaches the defrosting end temperature T fin (for example, 10 ° C.) sufficiently higher than the melting temperature of the frost (time t 4 ), the defrosting operation is terminated.

なお、温度Tfinに到達する前に、蒸発器14の温度が所定温度T2fin(例えば5℃)以上で、冷蔵室2の温度よりも所定温度(例えば3℃)以上高くなった場合は、除霜モード1に移行し、除霜終了温度Tfinまで除霜モード1による除霜を行う。これにより、蒸発器14を通過した空気による冷蔵室2の加熱を抑えることができる。 If the temperature of the evaporator 14 is higher than the predetermined temperature T 2 fin (for example, 5 ° C.) and higher than the temperature of the refrigerating chamber 2 by the predetermined temperature (for example, 3 ° C.) before reaching the temperature T fin, The mode shifts to the defrosting mode 1, and the defrosting is performed in the defrosting mode 1 up to the defrosting end temperature T fin. As a result, it is possible to suppress heating of the refrigerating chamber 2 by the air that has passed through the evaporator 14.

除霜運転終了(時刻t)後は除霜水が排出されるよう、例えば除霜終了2分後に圧縮機24を駆動させる。その後、例えば圧縮機24を駆動した2分後に冷蔵室ダンパ21を開、冷凍室ダンパ20を閉状態として庫内ファン9を駆動させ、例えばその10分後に冷凍室ダンパ20を開状態とし、冷蔵室2と冷凍室7を冷却する運転に移行する。圧縮機24に対し、庫内ファン9の駆動、及び冷蔵室ダンパ21、冷凍室ダンパ20を開とする時刻を遅らせることで、蒸発器14を低温にした後に送風することになり、冷蔵室2、冷凍室7の加熱を抑えることができる。 After defrosting operation ends (time t 4) is such that the defrost water is discharged, for example to drive the compressor 24 after the defrosting completion 2 minutes. Then, for example, 2 minutes after driving the compressor 24, the refrigerating chamber damper 21 is opened, the freezing chamber damper 20 is closed and the internal fan 9 is driven. For example, 10 minutes later, the freezing chamber damper 20 is opened and refrigerated. The operation shifts to cooling the chamber 2 and the freezing chamber 7. By delaying the drive of the internal fan 9 and the opening time of the refrigerator compartment damper 21 and the freezer compartment damper 20 with respect to the compressor 24, the evaporator 14 is cooled to a low temperature and then blown air. , The heating of the freezer chamber 7 can be suppressed.

以上が、本実施の形態の冷蔵庫1における基本的な除霜運転の制御である。次に、本除霜運転、特に冷蔵室ダンパ20を開、冷凍室ダンパ21を閉とし、庫内ファン9を駆動させながら除霜ヒータ22を通電する除霜モード2により得られる効果を説明していく。 The above is the control of the basic defrosting operation in the refrigerator 1 of the present embodiment. Next, the effect obtained by the main defrosting operation, particularly the defrosting mode 2 in which the refrigerating chamber damper 20 is opened, the freezing chamber damper 21 is closed, and the defrosting heater 22 is energized while driving the internal fan 9, will be described. To go.

除霜モード2では、流れ場は強制対流となるため、蒸発器室8を流れる流速が除霜モード1よりも速くなる。流速が高くなることで除霜ヒータ22と空気との交換熱量が多くなり、輻射による加熱量の割合が減り、蒸発器14等への対流による加熱量(空気を介した加熱量)の割合が増加する。加えて、流速が高くなることで、熱伝達率が高くなるため、空気から壁面(蒸発器14を含む)への伝熱量も増加する。従って、除霜モード1に比べて除霜モード2では、主に対流により加熱される除霜ヒータ22の下流側(上方)に位置する蒸発器14や風路8bを形成する壁面に対する加熱量を高めることができる。これにより、蒸発器14に付着した霜を短時間で解かすことができ、除霜運転に要する消費電力量を低減することができる。 In the defrosting mode 2, the flow field is forced convection, so that the flow velocity flowing through the evaporator chamber 8 is faster than that in the defrosting mode 1. As the flow velocity increases, the amount of heat exchanged between the defrost heater 22 and air increases, the proportion of heat generated by radiation decreases, and the proportion of heat generated by convection to the evaporator 14 and the like (heat amount via air) increases. To increase. In addition, as the flow velocity increases, the heat transfer coefficient increases, so that the amount of heat transferred from the air to the wall surface (including the evaporator 14) also increases. Therefore, in the defrosting mode 2 as compared with the defrosting mode 1, the amount of heat applied to the wall surface forming the evaporator 14 and the air passage 8b located on the downstream side (upper side) of the defrosting heater 22 which is mainly heated by convection is increased. Can be enhanced. As a result, the frost adhering to the evaporator 14 can be thawed in a short time, and the power consumption required for the defrosting operation can be reduced.

また、一般に流速が高いと空気の温度分布は小さくなるため、除霜モード1のみで除霜する場合に比べ、除霜ヒータ22に近い蒸発器14下部の過熱が抑えられ、除霜運転後の圧縮機24を駆動して冷却する熱負荷を低減することができる。加えて、蒸発器14の温度が冷蔵室2の温度よりも低い時刻tからtまでは、冷蔵室2よりも低温の空気が冷蔵室2に流れ、冷蔵室2を冷却することができ、圧縮機24を駆動して冷却する冷蔵室2の熱負荷も低減できる。従って、冷却運転に要する消費電力量も低減することができる。 Further, in general, when the flow velocity is high, the temperature distribution of air becomes small, so that overheating of the lower part of the evaporator 14 near the defrost heater 22 is suppressed as compared with the case of defrosting only in the defrost mode 1, and after the defrost operation. It is possible to reduce the heat load that drives and cools the compressor 24. In addition, from time t 2 to t 3 when the temperature of the evaporator 14 is lower than the temperature of the refrigerating chamber 2, air lower than that of the refrigerating chamber 2 flows into the refrigerating chamber 2 to cool the refrigerating chamber 2. The heat load of the refrigerating chamber 2 that drives and cools the compressor 24 can also be reduced. Therefore, the power consumption required for the cooling operation can also be reduced.

以上のように、除霜モード2を備えることで、除霜運転と冷却運転の何れの消費電力量も低減でき、省エネルギー性能を高めることができる。 As described above, by providing the defrosting mode 2, the power consumption of both the defrosting operation and the cooling operation can be reduced, and the energy saving performance can be improved.

さらに、本実施の形態例の冷蔵庫1では、少なくとも霜の融解温度よりも高いT2finまで除霜モード2を行っており、これにより風路8bを形成する壁面、特にファン周辺壁面100(図4a、図4b参照)の霜を効率よく解かして、蒸発器14下流の風路8bに接する壁面に付着した霜を融解させつつ、省エネルギー性能を高めている。以下でこの理由を説明する。 Further, in the refrigerator 1 of the present embodiment, the defrosting mode 2 is performed at least up to T 2 fin higher than the melting temperature of frost, whereby the wall surface forming the air passage 8b, particularly the wall surface around the fan 100 (FIG. 4a). , FIG. 4b) is efficiently thawed to melt the frost adhering to the wall surface in contact with the air passage 8b downstream of the evaporator 14, while improving the energy saving performance. The reason for this will be explained below.

除霜運転中に蒸発器14より上方(除霜ヒータ22から離れた空気流れ方向下流側)の風路8bを流れる空気は蒸発器14及び蒸発器14に付着した霜と熱交換して冷却され、蒸発器14の上部の温度と同程度の温度となる。そのため蒸発器14の温度が霜の融解温度(0℃)以下の場合、基本的に風路8bを流れる空気も霜の融解温度以下となる。対流による加熱で壁面に付着した霜を解かすためには、霜の融解温度より高い温度の空気と熱交換させる必要がある。なお、風路8bを形成する壁面は、除霜ヒータ22との間に蒸発器14があり、輻射による加熱量も少ない。従って、蒸発器14を通過した空気温度が霜の融解温度よりも高くなるまでファン周辺壁面100を含む風路8bと接する壁面の霜は基本的には解けないが、蒸発器14の温度が霜の融解温度よりも高いT2finになるまで除霜運転を行うことで、霜の融解温度よりも高い空気により風路8bに接する壁面の霜を解かすことができる。 During the defrosting operation, the air flowing through the air passage 8b above the evaporator 14 (downstream in the air flow direction away from the defrost heater 22) is cooled by exchanging heat with the frost adhering to the evaporator 14 and the evaporator 14. , The temperature is about the same as the temperature of the upper part of the evaporator 14. Therefore, when the temperature of the evaporator 14 is equal to or lower than the frost melting temperature (0 ° C.), the air flowing through the air passage 8b is basically also equal to or lower than the frost melting temperature. In order to defrost the frost adhering to the wall surface by heating by convection, it is necessary to exchange heat with air having a temperature higher than the melting temperature of the frost. The wall surface forming the air passage 8b has an evaporator 14 between it and the defrost heater 22, and the amount of heat generated by radiation is small. Therefore, the frost on the wall surface in contact with the air passage 8b including the fan peripheral wall surface 100 cannot be basically thawed until the air temperature passing through the evaporator 14 becomes higher than the melting temperature of the frost, but the temperature of the evaporator 14 is frost. By performing the defrosting operation until T 2 fin is higher than the melting temperature of frost, the frost on the wall surface in contact with the air passage 8b can be defrosted by the air higher than the melting temperature of the frost.

また、霜の融解温度よりも高いT2finまで除霜モード2とすることで、除霜モード1に比べて熱伝達率が高く、空気から壁面への加熱量が増加する。従って、霜の融解温度よりも高い空気により、効率よく壁面に付着した霜を加熱できるので、短時間で確実に壁面に付着した霜を解かすことができる。すなわち、風路8bに接する壁面、特にファン周辺壁面100に付着した霜を融解させつつ、除霜運転の時間を短く抑えることができ、省エネルギー性能の高い除霜運転となる。 Further, by setting the defrost mode 2 up to T 2 fin, which is higher than the melting temperature of frost, the heat transfer coefficient is higher than that of the defrost mode 1, and the amount of heat from the air to the wall surface increases. Therefore, the frost adhering to the wall surface can be efficiently heated by the air having a temperature higher than the melting temperature of the frost, so that the frost adhering to the wall surface can be reliably defrosted in a short time. That is, the time of the defrosting operation can be shortened while melting the frost adhering to the wall surface in contact with the air passage 8b, particularly the wall surface 100 around the fan, and the defrosting operation has high energy saving performance.

次に図5に示したように、除霜モード1、除霜モード2の順に除霜運転を行う効果を説明する。 Next, as shown in FIG. 5, the effect of performing the defrosting operation in the order of the defrosting mode 1 and the defrosting mode 2 will be described.

図4aを用いて前述したように、除霜モード1は除霜ヒータ22に近い、蒸発器14の下部やトイ23を加熱し易い。トイ23からドレインパイプ24を介して除霜水を排出するため、トイ23を除霜運転の前半に加熱して水の氷結温度(0℃)以上にしておくことで、蒸発器14等よりトイ23に至った除霜水が再凍結することなくドレインパイプ24へと排出することができる。なお、蒸発器14の温度が霜の融解温度を超えるまで風路8bの空気温度は霜の融解温度を超えないが、蒸発器14の上流側に位置する風路8aの空気では除霜運転の初期から除霜ヒータ22により霜の融解温度以上まで加熱することができるため、蒸発器14の温度が低い除霜運転前半においても、十分にトイ23を0℃以上まで加熱することができる。 As described above with reference to FIG. 4a, the defrosting mode 1 is close to the defrosting heater 22, and easily heats the lower part of the evaporator 14 and the toy 23. Since the defrosted water is discharged from the toy 23 via the drain pipe 24, the toy 23 is heated in the first half of the defrosting operation to keep the water freezing temperature (0 ° C.) or higher, so that the toy is sent from the evaporator 14 or the like. The defrosted water that has reached 23 can be discharged to the drain pipe 24 without refreezing. The air temperature of the air passage 8b does not exceed the melting temperature of the frost until the temperature of the evaporator 14 exceeds the melting temperature of the frost, but the air in the air passage 8a located on the upstream side of the evaporator 14 is used for defrosting operation. Since the defrost heater 22 can heat the toy 23 to a temperature higher than the melting temperature of the frost from the initial stage, the toy 23 can be sufficiently heated to 0 ° C. or higher even in the first half of the defrosting operation in which the temperature of the evaporator 14 is low.

また、蒸発器14は、冷却運転中に上流側から高湿な空気が流入して着霜するため、上流側の蒸発器14下部の方が、下流側に比べて着霜量が多くなり易い。従って、蒸発器14下部を加熱し易い除霜モード1を除霜運転の前半に行い、着霜量の多い蒸発器14下部を集中して加熱することで、蒸発器14下部の霜を効率よく加熱することができ、その後、温度分布の少ない除霜モード2で蒸発器14全体を加熱することで、全体として効率よく霜を解かすことができる。 Further, since high humidity air flows into the evaporator 14 from the upstream side during the cooling operation and frost is formed, the amount of frost formed in the lower part of the evaporator 14 on the upstream side is likely to be larger than that on the downstream side. .. Therefore, the defrosting mode 1 that easily heats the lower part of the evaporator 14 is performed in the first half of the defrosting operation, and the lower part of the evaporator 14 having a large amount of frost is intensively heated to efficiently defrost the lower part of the evaporator 14. It can be heated, and then the entire evaporator 14 can be heated in the defrosting mode 2 having a small temperature distribution, so that the frost can be efficiently defrosted as a whole.

また、前述したように、風路8bに接する壁面についた霜は、基本的に蒸発器14を通過した空気温度が霜の融解温度を超えるまで解けないため、除霜モード2を除霜運転の後半に行っている。すなわち、風路8bの空気温度を霜の融解温度よりも高くなる除霜運転の後半に、除霜モード1に比べて風路8bに接する壁面を加熱し易い除霜モード2を行うことで、風路8bに接する壁面、特にファン周辺壁面100に付着した霜を効率よく融解させることができる。 Further, as described above, the frost on the wall surface in contact with the air passage 8b cannot be thawed until the temperature of the air passing through the evaporator 14 exceeds the melting temperature of the frost. I'm going in the second half. That is, in the latter half of the defrosting operation in which the air temperature of the air passage 8b becomes higher than the melting temperature of the frost, the defrost mode 2 is performed in which the wall surface in contact with the air passage 8b is easier to heat than the defrost mode 1. The frost adhering to the wall surface in contact with the air passage 8b, particularly the wall surface around the fan 100, can be efficiently melted.

以上のように、除霜モード1、除霜モード2の順に行うことで、蒸発器14の上流側の風路8aに接する壁面、蒸発器14の下流側の風路8bに接する壁面、及び蒸発器14自体の加熱に対し、それぞれ適切な加熱を行うことができる。従って、蒸発器14及び風路8bに接する壁面の霜の融解と、トイ23からドレインパイプ24への除霜水の排出を行いつつ、除霜運転の時間を短く抑えることができ、省エネルギー性能の高い除霜運転となる。 As described above, by performing the defrosting mode 1 and the defrosting mode 2 in this order, the wall surface in contact with the air passage 8a on the upstream side of the evaporator 14, the wall surface in contact with the air passage 8b on the downstream side of the evaporator 14, and the evaporation. Appropriate heating can be performed for each of the heating of the vessel 14 itself. Therefore, the time of the defrosting operation can be shortened while melting the frost on the wall surface in contact with the evaporator 14 and the air passage 8b and discharging the defrosting water from the toy 23 to the drain pipe 24, resulting in energy saving performance. High defrosting operation.

ここで、図4aに示したように、本実施の形態例では除霜モード1において冷凍室ダンパ21を開とし、除霜ヒータ22から蒸発器14に空気が向かう自然対流を促進させ、蒸発器14等への加熱量を増加させている。 Here, as shown in FIG. 4a, in the example of the present embodiment, the freezing chamber damper 21 is opened in the defrosting mode 1, the natural convection of air from the defrosting heater 22 to the evaporator 14 is promoted, and the evaporator. The amount of heating to 14 mag is increased.

一方、冷蔵室ダンパ20と冷凍室ダンパ21の何れも閉とすることも可能である。この場合、除霜モード1から除霜モード2に移行する時間を、本実施の形態例の場合よりも短くするとよい。冷蔵室ダンパ20と冷凍室ダンパ21の何れも閉とすると、除霜ヒータ22からの上昇気流が抑えられるため、除霜ヒータ22周辺のトイ23等の壁面に対する加熱量をより多くすることができるので、除霜モード1における蒸発器14の加熱量は低下するが、トイ23の温度を短時間であげられる。従って、蒸発器14を高効率に加熱できる除霜モード2に短時間で移行し、蒸発器14の上流側の風路8aに接する壁面を比較的短い除霜モード1で集中して加熱し、比較的長い除霜モード2で蒸発器14の下流側の風路8bに接する壁面、及び蒸発器14自体を主に加熱することで、本実施の形態例の冷蔵庫1と同様、蒸発器14、及び風路8aと8bの何れに接する壁面も適切に加熱することができ、省エネルギー性能の高い除霜運転となる。 On the other hand, both the refrigerator compartment damper 20 and the freezer compartment damper 21 can be closed. In this case, the time for transitioning from the defrosting mode 1 to the defrosting mode 2 may be shorter than that in the case of the present embodiment. When both the refrigerator compartment damper 20 and the freezer compartment damper 21 are closed, the updraft from the defrost heater 22 is suppressed, so that the amount of heat to the wall surface of the toy 23 or the like around the defrost heater 22 can be increased. Therefore, the heating amount of the evaporator 14 in the defrosting mode 1 is reduced, but the temperature of the toy 23 can be raised in a short time. Therefore, the evaporator 14 is shifted to the defrosting mode 2 which can be heated with high efficiency in a short time, and the wall surface in contact with the air passage 8a on the upstream side of the evaporator 14 is intensively heated in the relatively short defrosting mode 1. By mainly heating the wall surface in contact with the air passage 8b on the downstream side of the evaporator 14 and the evaporator 14 itself in the relatively long defrosting mode 2, the evaporator 14 and the evaporator 14 are similar to the refrigerator 1 of the present embodiment. The wall surface in contact with any of the air passages 8a and 8b can be appropriately heated, resulting in a defrosting operation with high energy-saving performance.

以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above is an example showing the embodiment of the present embodiment. The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯の貯蔵室)
2a、2b 冷蔵室ドア
3 製氷室
3a 製氷室ドア
4 上段冷凍室
4a 上段冷凍室ドア
4b 上段冷凍室容器
5 下段冷凍室
5a 下段冷凍室ドア
5b 下段冷凍室容器
6 野菜室
6a 野菜室ドア
6b 野菜室容器
7 冷凍室(冷凍温度帯の貯蔵室)
8 蒸発器収納室
8a、8b、8c 風路
9 庫内ファン
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室冷気ダクト
11a、11b、11c、11d 冷蔵室冷気吐出口
12 上段冷凍室冷気ダクト
12a、12b、12c 吐出口
14 蒸発器
16 ドアヒンジカバー
17 冷凍室冷気戻り部
18 野菜室冷気戻りダクト
18a 野菜室側の冷気戻り部
18b 野菜室冷気戻り部
19 ヒータ
20 冷蔵室ダンパ
21 冷凍室ダンパ
22 除霜ヒータ
23 樋
24 圧縮機
25 真空断熱材
26 操作部
27 ドレン孔
28、29 断熱仕切壁
30 断熱仕切壁
31 制御基板
32 蒸発皿
33a、33b、33c ドアポケット
34a、34b、34c、34d 棚
35 貯蔵室
36a、36b、36c 仕切カバー
37 庫外温度センサ
38 庫外湿度センサ
39 機械室
40 蒸発器温度センサ(蒸発器温度)
41 冷蔵室温度センサ(冷蔵室温度)
42 冷凍室温度センサ
43 野菜室温度センサ
44 ガラス管
45 融解水滴下防止部
46 放熱フィン
47 蒸発器入口パイプ
48 蒸発器出口パイプ
50 冷媒パイプ
100 ファン周辺壁面
1 Refrigerator 2 Refrigerator room (storage room in refrigerating temperature range)
2a, 2b Refrigerator door 3 Ice making room 3a Ice making room door 4 Upper freezing room 4a Upper freezing room door 4b Upper freezing room container 5 Lower freezing room 5a Lower freezing room door 5b Lower freezing room container 6 Vegetable room 6a Vegetable room door 6b Vegetables Room container 7 Freezing room (storage room in the freezing temperature range)
8 Evaporator storage room 8a, 8b, 8c Air passage 9 Interior fan 10 Insulation box body 10a Outer box 10b Inner box 11 Refrigerator room cold air duct 11a, 11b, 11c, 11d Refrigerator room cold air discharge port 12 Upper freezer room cold air duct 12a , 12b, 12c Discharge port 14 Evaporator 16 Door hinge cover 17 Freezer room cold air return part 18 Vegetable room cold air return duct 18a Cold air return part on the vegetable room side 18b Vegetable room cold air return part 19 Heater 20 Refrigerator room damper 21 Freezer room damper 22 Frost heater 23 Hi 24 Compressor 25 Vacuum insulation 26 Operation unit 27 Drain holes 28, 29 Insulation partition wall 30 Insulation partition wall 31 Control board 32 Evaporation tray 33a, 33b, 33c Door pocket 34a, 34b, 34c, 34d Shelf 35 Storage Chambers 36a, 36b, 36c Partition cover 37 Outside temperature sensor 38 Outside humidity sensor 39 Machine room 40 Evaporator temperature sensor (evaporator temperature)
41 Refrigerator room temperature sensor (refrigerator room temperature)
42 Freezer room temperature sensor 43 Vegetable room temperature sensor 44 Glass tube 45 Melted water dripping prevention part 46 Heat dissipation fin 47 Evaporator inlet pipe 48 Evaporator outlet pipe 50 Refrigerant pipe 100 Fan peripheral wall surface

Claims (1)

冷蔵温度帯の第一の貯蔵室と、冷凍温度帯室の第二の貯蔵室と、圧縮機と、前記第一の貯蔵室と前記第二の貯蔵室を冷却する蒸発器と、該蒸発器で冷却された空気を、前記第一の貯蔵室と前記第二の貯蔵室に送風するファンと、前記蒸発器から前記第一の貯蔵室への送風を制御する冷蔵室ダンパと、前記蒸発器から前記第二の貯蔵室への送風を制御する冷凍室ダンパと、前記蒸発器に付着した霜を解かす除霜ヒータと、前記蒸発器の温度を検知する蒸発器温度検知手段を備える冷蔵庫において、
前記圧縮機を停止中に、前記ファンを停止状態で前記除霜ヒータを通電状態とする第一の除霜モードと、前記冷凍室ダンパを閉状態、前記冷蔵室ダンパを開状態として、前記ファンを駆動させて除霜ヒータを通電状態とする第二の除霜モードを備え、前記第一の除霜モードを実施した後に、前記第二の除霜モードを行い、該第二の除霜モードを前記蒸発器温度検知手段が霜の融解温度よりも高い温度になるまで行い、
前記第一の除霜モードの実行中、前記冷凍室ダンパを開放する冷蔵庫。
A first storage chamber in the refrigerating temperature zone, a second storage chamber in the freezing temperature zone chamber, a compressor, an evaporator for cooling the first storage chamber and the second storage chamber, and the evaporator. A fan that blows air cooled by the above to the first storage chamber and the second storage chamber, a refrigerator chamber damper that controls the blowing of air from the evaporator to the first storage chamber, and the evaporator. In a refrigerator provided with a freezer damper that controls blowing air from the second storage chamber to the second storage chamber, a defrost heater that defrosts frost adhering to the evaporator, and an evaporator temperature detecting means that detects the temperature of the evaporator. ,
While the compressor is stopped, the fan is stopped, the defrost heater is energized, the first defrost mode is set, the freezer damper is closed, and the refrigerator damper is open. The second defrosting mode is provided, and the second defrosting mode is performed after the first defrosting mode is performed to drive the defrosting heater to energize the defrosting heater. the evaporator temperature detecting means is had rows until the temperature higher than the melting temperature of the frost,
A refrigerator that opens the freezer damper during the execution of the first defrosting mode.
JP2017160735A 2017-08-24 2017-08-24 refrigerator Active JP6890502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017160735A JP6890502B2 (en) 2017-08-24 2017-08-24 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017160735A JP6890502B2 (en) 2017-08-24 2017-08-24 refrigerator

Publications (2)

Publication Number Publication Date
JP2019039586A JP2019039586A (en) 2019-03-14
JP6890502B2 true JP6890502B2 (en) 2021-06-18

Family

ID=65725462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017160735A Active JP6890502B2 (en) 2017-08-24 2017-08-24 refrigerator

Country Status (1)

Country Link
JP (1) JP6890502B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454458B2 (en) 2020-07-06 2024-03-22 日立グローバルライフソリューションズ株式会社 refrigerator
KR20220018175A (en) * 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator
WO2024061451A1 (en) * 2022-09-21 2024-03-28 Electrolux Appliances Aktiebolag Dual mode refrigerator

Also Published As

Publication number Publication date
JP2019039586A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
JP5847626B2 (en) Refrigerator and operation method thereof
JP5178642B2 (en) refrigerator
JP5530852B2 (en) refrigerator
JP6344895B2 (en) refrigerator
CN105452785B (en) Refrigerator
WO2015035886A1 (en) Refrigerator
JP6364221B2 (en) refrigerator
JP2011038715A (en) Refrigerator
JP2011002141A (en) Refrigerator
JP6752107B2 (en) refrigerator
JP6890502B2 (en) refrigerator
WO2018064866A1 (en) Refrigerator
JP6709363B2 (en) refrigerator
JP5393283B2 (en) refrigerator
JP4872558B2 (en) refrigerator
JP5487053B2 (en) refrigerator
JP6321483B2 (en) refrigerator
JP5386243B2 (en) refrigerator
JP6422513B2 (en) Freezer refrigerator
JP2012063026A (en) Refrigerator
JP6837423B2 (en) refrigerator
JP2019027649A (en) refrigerator
JP2019132493A (en) refrigerator
JP7012139B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210205

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210405

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6890502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150