JP2011038715A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2011038715A
JP2011038715A JP2009186975A JP2009186975A JP2011038715A JP 2011038715 A JP2011038715 A JP 2011038715A JP 2009186975 A JP2009186975 A JP 2009186975A JP 2009186975 A JP2009186975 A JP 2009186975A JP 2011038715 A JP2011038715 A JP 2011038715A
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
temperature
defrosting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009186975A
Other languages
Japanese (ja)
Inventor
Akiyoshi Ohira
昭義 大平
Ryoji Kawai
良二 河井
Yohei Kadoi
陽平 門傳
Hiroto Ishiwatari
寛人 石渡
Makoto Ashida
誠 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009186975A priority Critical patent/JP2011038715A/en
Publication of JP2011038715A publication Critical patent/JP2011038715A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a refrigerator capable of improving energy-saving properties and preservability of foods. <P>SOLUTION: Cold air is supplied to a refrigeration temperature zone chamber by operating a blower, in a state with a compressor stopped, a refrigeration chamber damper open, and a freezing chamber damper closed. When it is determined that there is less frost formation by comparing a temperature gradient of a cooler with a set value, the blower is stopped, the refrigeration chamber damper is closed, and a defrosting heater is operated, after the cooler reaches a prescribed temperature. When it is determined that there is much frosting by comparing the temperature gradient of the cooler with the set value, the defrosting heater is operated; and then, the blower is stopped and the refrigeration chamber damper is closed, after the cooler reaches the prescribed temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷蔵庫に関するものである。   The present invention relates to a refrigerator.

冷蔵庫に保存した食品からの水分蒸発やドア開閉時の外気侵入により、マイナス温度の冷却器に水分が凝縮しそれが霜になって成長する。冷却器のフィン表面に霜が成長すると、次第に通風抵抗が大きくなるため十分に熱交換できなくなり、冷却性能の低下をもたらす。従って、冷却器のフィンピッチを狭くして空気側の熱交換性能を向上させることは容易ではない。しかしながら、冷蔵庫の省エネ性向上とコンパクト大容量化を両立させた冷蔵庫のニーズは高く、除霜運転時も考慮した冷却ユニットの高性能化は、冷蔵庫を開発する上で重要である。   Due to evaporation of moisture from food stored in the refrigerator and intrusion of outside air when the door is opened and closed, moisture condenses in the minus temperature cooler and grows as frost. When frost grows on the fin surface of the cooler, the ventilation resistance gradually increases, so that heat cannot be sufficiently exchanged, resulting in a decrease in cooling performance. Therefore, it is not easy to improve the air side heat exchange performance by narrowing the fin pitch of the cooler. However, there is a great need for a refrigerator that achieves both improved energy saving and a large capacity of the refrigerator, and it is important to develop a high-performance cooling unit that takes into account the defrosting operation.

従来の冷却器の除霜方法は、冷却器の下側に設けた除霜用ヒータ(例えば、ガラス管ヒータ)を用い、冷却器に設置した温度センサが所定の温度に到達するまで加熱して霜を解かしている。この方式は冷却器だけでなく、冷却器設置スペース全体を除霜用ヒータで加熱するため、霜の解け残りが少ないことが特徴である。しかしながら、冷却器に成長した霜を解かす目的以外にも加熱エネルギーが投入されているため、省エネ性向上の観点からすると無駄が多い除霜方式となる。霜を解かす目的以外に庫内に投入されたエネルギーは全て熱負荷となるため、庫内の温度上昇を引き起こし、結局は除霜終了後の冷却運転(冷却復帰運転)によって、投入された加熱エネルギーを除去する必要がある。従って、省エネ性を向上させるためには、除霜時の外部からの投入エネルギーを少なくすることが重要である。   A conventional defrosting method for a cooler uses a defrosting heater (for example, a glass tube heater) provided on the lower side of the cooler and heats it until a temperature sensor installed in the cooler reaches a predetermined temperature. The frost is thawed. Since this system heats not only the cooler but also the entire cooler installation space with a heater for defrosting, it is characterized in that there is little unmelted frost. However, since the heating energy is input in addition to the purpose of defrosting the frost that has grown on the cooler, the defrosting method is wasteful from the viewpoint of energy saving. Except for the purpose of defrosting, all the energy input into the chamber becomes a heat load, which causes the temperature in the chamber to rise, and eventually the heating input by the cooling operation (cooling recovery operation) after defrosting is completed. It is necessary to remove energy. Therefore, in order to improve energy saving, it is important to reduce the input energy from the outside at the time of defrosting.

除霜ヒータによる除霜は多くのメーカーが採用しており、省エネを目的とした除霜時間短縮に関する方式が多く公開されている。すなわち、着霜量が少ない時には、冷却器以外の着霜が少ないために、霜の解け残りとなる頻度が少ないと予想されるので、霜が解けた後の冷却器の加熱量を少なくして、早めに除霜を終了させるものである。例えば、冷蔵庫運転中の着霜量の予測方法に関しては、以下のような手段が公開されている。一定時間におけるドアの開閉回数,圧縮機の積算運転時間,庫外温度などは、着霜量の推定に利用される一般的な測定項目であり、既に製品に適用されている例もある。特開平8−261629号公報では、ドアの開閉数に応じて着霜量を予測しており、ドア開閉数の基準値よりも少ない場合、着霜量が少ないと判断し、通常よりも除霜終了温度を下げて除霜時間を短くして消費電力量の低減を図っている。また、特開平8−94234号公報では、除霜周期の最適化を行うために、除霜中の冷却器の温度を測定することにより、温度勾配から着霜量を推定している。着霜量が多い場合には、除霜開始から霜が解け始まるまでに時間を要するため、温度勾配が緩くなり、逆に着霜量が少ない場合には、温度勾配は急になる。従って、除霜中の冷却器の温度勾配が緩い場合には着霜量が多いので、現在行われている除霜間隔よりも短くして、除霜間隔を最適化している。   Many manufacturers have adopted defrosting using a defrosting heater, and many methods for reducing defrosting time for the purpose of energy saving have been disclosed. In other words, when the amount of frost formation is small, the amount of frost formation other than the cooler is small, so it is expected that the frequency of frost unresolved is low. The defrosting is finished early. For example, the following means are disclosed regarding the method of predicting the amount of frost formation during operation of the refrigerator. The number of times the door is opened and closed, the compressor operating time, the outside temperature, etc. are general measurement items used for estimating the amount of frost formation, and there are examples that have already been applied to products. In JP-A-8-261629, the amount of frost formation is predicted according to the number of doors opened and closed. When the amount of frost formation is smaller than the reference value of the number of doors opened and closed, it is determined that the amount of frost formation is small, and defrosting is performed more than usual. The end temperature is lowered to shorten the defrosting time to reduce power consumption. In JP-A-8-94234, in order to optimize the defrost cycle, the amount of frost formation is estimated from the temperature gradient by measuring the temperature of the cooler during defrosting. When the amount of frost formation is large, it takes time from the start of defrosting until the frost starts to melt, so the temperature gradient becomes gentle. Conversely, when the amount of frost formation is small, the temperature gradient becomes steep. Therefore, since the amount of frost formation is large when the temperature gradient of the cooler during defrosting is gentle, the defrosting interval is optimized by making it shorter than the defrosting interval currently performed.

特開平8−261629号公報JP-A-8-261629 特開平8−94234号公報JP-A-8-94234

しかしながら、除霜ヒータを用いて冷却器下方部から加熱して除霜する方式では、除霜ヒータと霜との伝熱は空気を媒体とした自然対流によるもので、除霜時間の短縮は難しい。また、除霜ヒータを直接冷却器のパイプに取り付けてヒータからの伝熱性能を高めた方式もあるが、除霜時間の短縮と除霜時の投入エネルギー低減の根本的な解決にはなっていない。   However, in the method of defrosting by heating from the lower part of the cooler using a defrost heater, the heat transfer between the defrost heater and the frost is due to natural convection using air as a medium, and it is difficult to shorten the defrost time. . There is also a method in which a defrost heater is directly attached to the pipe of the cooler to improve the heat transfer performance from the heater, but this is a fundamental solution to shortening the defrost time and reducing the input energy during defrosting. Absent.

冷却器に成長した霜は、見方を変えると冷熱エネルギーが蓄熱されたものと考えることができる。従来方式は、除霜ヒータにより庫外から熱エネルギーを霜に加えることにより解かしている。従って、霜に蓄熱された冷熱エネルギーの利用は考えていない。   From a different perspective, the frost that has grown on the cooler can be thought of as having accumulated cold energy. The conventional method is solved by applying thermal energy to the frost from the outside by a defrost heater. Therefore, utilization of the cold energy stored in the frost is not considered.

省エネ性向上だけを考えると、庫内ファンのみ運転し、庫外から庫内に侵入してくる熱負荷だけによって、すなわち除霜ヒータを使わないで庫内ファンによる送風のみで冷却器の霜を解かし、その際に発生する冷気を冷蔵室あるいは野菜室に送風する方法が最も良い。しかしながら、複数の温度帯の冷蔵庫、すなわち冷蔵温度帯と冷凍温度帯を合わせ持つ冷蔵庫では、除霜運転中に霜の冷熱エネルギーによって冷蔵温度帯を冷却することは可能であるが、除霜運転中の冷気温度は冷凍温度帯に対しては高温となるため、冷凍室を冷却することはできない。従って、このような除霜運転では、冷凍室への冷気送風が停止されているため、冷凍室の温度抑制を目的に除霜運転時間を短くし、冷凍食品の保存性を維持しなくてはならない。   Considering only the improvement in energy saving performance, only the internal fan is operated, and only the heat load entering the internal storage from outside the storage, that is, without using the defrosting heater, the cooler frost is only generated by the internal fan. The best method is to vent the cold air generated at that time to the refrigerator compartment or vegetable compartment. However, in a refrigerator having a plurality of temperature zones, that is, a refrigerator having both a refrigeration temperature zone and a refrigeration temperature zone, it is possible to cool the refrigeration temperature zone by the frost heat energy during the defrosting operation. Since the cold air temperature is higher than the freezing temperature zone, the freezing room cannot be cooled. Therefore, in such a defrosting operation, since the cooling air blowing to the freezer compartment is stopped, the defrosting operation time must be shortened for the purpose of temperature control of the freezer compartment, and the preservation of frozen food must be maintained. Don't be.

冷却器の着霜量は、霜が相変化(霜が解けて水に変わる変化。相変化中の冷却器の温度は約0℃一定)する時間の長さで判断することができる。着霜量が少なければ相変化時間が短く、着霜量が多ければ相変化時間が長くなる。しかしながら、相変化時間で着霜量の判断をする場合、判断した時には既に除霜時間の大部分は経過しており、この時点で着霜量が多いと判断し、除霜時間を短縮する手段を講じても既に手遅れとなる場合が発生する。従来技術では除霜中に除霜時間を短縮する手段を備えていない。このような状況下では、冷凍室の温度が上昇してしまい、冷凍食品を保存する上で問題が生じる。   The amount of frost formation on the cooler can be determined by the length of time during which the frost undergoes a phase change (a change in which frost is melted and turns into water. The temperature of the cooler during the phase change is approximately 0 ° C.). If the amount of frost formation is small, the phase change time is short, and if the amount of frost formation is large, the phase change time is long. However, when determining the amount of frost formation based on the phase change time, most of the defrosting time has already elapsed when the determination is made, and it is determined that the amount of frost formation is large at this time, and means for shortening the defrosting time Even if it is taken, it may be too late. In the prior art, there is no means for shortening the defrosting time during the defrosting. Under such circumstances, the temperature of the freezer compartment rises, causing problems when storing frozen food.

また、従来の除霜タイミングは、一定時間におけるドアの開閉回数,圧縮機の積算運転時間,庫外温度等を用いている場合が多い。しかしながら、例えば、冷蔵室(野菜室も含む)の運転時間が長い場合や、冷蔵室に食品を多く入れた場合は、庫外から庫内に持ち込まれる水分量が多いので、結果的に着霜量が多く、必ずしも従来方式による除霜タイミングでは十分でない。上記のような運転が行われると、従来方式によって着霜量は少ないと判断し、実際には着霜量が多くなる場合も生じる可能性がある。従って、このような場合であっても、除霜中に除霜時間を短縮する手段を備える必要がある。   Further, the conventional defrosting timing often uses the number of times the door is opened and closed in a certain time, the cumulative operation time of the compressor, the outside temperature, and the like. However, for example, when the operating time of the refrigerator compartment (including the vegetable compartment) is long, or when a large amount of food is put in the refrigerator compartment, the amount of moisture brought into the refrigerator from the outside is large, resulting in frost formation. The amount is large, and the defrosting timing by the conventional method is not always sufficient. When the above operation is performed, it may be determined that the amount of frost formation is small by the conventional method, and the amount of frost formation may actually increase. Therefore, even in such a case, it is necessary to provide means for shortening the defrosting time during the defrosting.

本発明は上記課題を解決するためになされたものであり、省エネルギー性及び食品の保存性が向上した冷蔵庫を得ることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to obtain a refrigerator having improved energy saving and food storage stability.

上記課題を解決するために、本発明は、冷蔵庫本体に設けられた冷蔵温度帯室及び冷凍温度帯室と、前記冷蔵庫本体に設けられ冷媒を圧縮する圧縮機と、前記冷凍温度帯室の後方に設けられ冷却器が配置される冷却器室と、該冷却器室から前記冷蔵温度帯室及び前記冷凍温度帯室に冷気を供給する送風機と、前記冷蔵温度帯室に供給する冷気量を制御する冷蔵室ダンパと、前記冷凍温度帯室に供給する冷気量を制御する冷凍室ダンパと、前記冷却器室に設けられ前記冷却器を除霜する除霜ヒータと、前記圧縮機を停止,前記冷蔵室ダンパを開、及び前記冷凍室ダンパを閉の状態で前記送風機を運転して前記冷蔵温度帯室に冷気を供給し、前記冷却器の温度勾配と設定値を比較して着霜が少ないと判定した場合、前記冷却器が所定温度に達した後に前記送風機を停止及び前記冷蔵室ダンパを閉じて前記除霜ヒータを運転し、前記冷却器の温度勾配と設定値を比較して着霜が多いと判定した場合、前記除霜ヒータを運転して、前記冷却器が所定温度に達した後に前記送風機を停止及び前記冷蔵室ダンパを閉じることを特徴とする。   In order to solve the above problems, the present invention provides a refrigeration temperature zone chamber and a freezing temperature zone chamber provided in a refrigerator main body, a compressor provided in the refrigerator main body for compressing refrigerant, and a rear of the freezing temperature zone chamber. A cooler chamber in which a cooler is disposed, a blower that supplies cool air from the cooler chamber to the refrigeration temperature zone chamber and the refrigeration temperature zone chamber, and an amount of cool air supplied to the refrigeration temperature zone chamber A refrigerating room damper that controls the amount of cold air supplied to the freezing temperature zone chamber, a defrost heater that is provided in the cooler chamber and defrosts the cooler, and stops the compressor, The refrigerator is operated with the refrigerator compartment damper opened and the freezer compartment damper closed to supply cool air to the refrigerator compartment, and the temperature gradient of the cooler is compared with the set value to reduce frost formation. When it is determined that the cooler has reached a predetermined temperature When the blower is stopped and the refrigerator compartment damper is closed and the defrost heater is operated, the temperature gradient of the cooler is compared with a set value, and it is determined that there is much frost formation, the defrost heater is operated. The blower is stopped and the refrigerator compartment damper is closed after the cooler reaches a predetermined temperature.

また、前記冷却器の着霜量に応じて前記除霜ヒータの通電率又は前記送風機の回転数の少なくともいずれかを制御することを特徴とする。   Moreover, according to the amount of frost formation of the said cooler, at least any one of the electricity supply rate of the said defrost heater or the rotation speed of the said air blower is controlled.

また、前記冷凍温度帯室の扉の開閉を検出する扉センサを備え、該扉センサの検出値に応じて前記除霜ヒータの通電率又は前記送風機の回転数の少なくともいずれかを制御することを特徴とする。   In addition, a door sensor for detecting opening and closing of the door of the freezing temperature zone chamber is provided, and at least one of the energization rate of the defrost heater or the rotation speed of the blower is controlled according to a detection value of the door sensor. Features.

本発明によれば、省エネルギー性及び食品の保存性が向上した冷蔵庫を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerator which improved energy saving property and the preservability of foodstuffs can be obtained.

本発明の実施の形態に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on embodiment of this invention. 冷蔵庫の側面断面図である。It is side surface sectional drawing of a refrigerator. 冷却器を冷蔵庫の正面から見たものである。The cooler is viewed from the front of the refrigerator. 冷却器を冷蔵庫の側面から見た断面図である。It is sectional drawing which looked at the cooler from the side of the refrigerator. 本発明の実施の形態に係る冷蔵庫の通常冷却運転パターンの一例である。It is an example of the normal cooling operation pattern of the refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫の除霜運転パターンの一例である。It is an example of the defrost operation pattern of the refrigerator which concerns on embodiment of this invention. 本発明の除霜時における着霜量の判定に関するフロー図である。It is a flowchart regarding determination of the amount of frost formation at the time of defrosting of this invention. 除霜運転中に冷凍室ドア開閉がある場合の制御フロー図である。It is a control flow figure in case there exists freezer compartment door opening and closing during a defrost operation. 除霜運転中に冷凍室ドア開閉がある場合の制御フロー図である。It is a control flow figure in case there exists freezer compartment door opening and closing during a defrost operation. 除霜運転中に冷凍室ドア開閉がある場合の制御フロー図である。It is a control flow figure in case there exists freezer compartment door opening and closing during a defrost operation. 着霜量が少ない場合に除霜運転をした場合の結果の一例である。It is an example of the result at the time of performing defrost operation when there is little frost formation amount. 着霜量が多い場合に除霜運転をした場合の結果の一例である。It is an example of the result at the time of defrosting operation when there is much frost formation amount.

図1は本発明の実施の形態による冷蔵庫の正面図、図2は冷蔵庫の側面方向の断面図である。本実施形態の冷蔵庫8は、上から冷蔵室9,製氷室30,上段冷凍室10(隣に製氷室30),下段冷凍室11,野菜室12から構成されている。冷蔵室9は前方側に左右に分割された観音開きの冷蔵室扉9a,9bを備え、製氷室30,上段冷凍室10,下段冷凍室11,野菜室12は、それぞれ引き出し式の製氷室扉10a,上段冷凍室扉10b,下段冷凍室扉11a,野菜室扉12aを備えている。冷蔵庫8は、扉9a,9b,10a,10b,11a,12aの各扉の開閉状態をそれぞれ検知する扉センサ(図示なし),扉開放状態を使用者に知らせるアラーム(図示なし),冷蔵室9の温度設定手段(図示なし),上段冷凍室10や下段冷凍室11の温度設定手段(図示なし)を備えており、それらは冷蔵庫の制御部と接続してある。また、庫内を冷却するために、冷蔵庫8に冷凍サイクルが組み込まれており、圧縮機1,凝縮器(図示なし),絞り(図示なし),冷却器4が構成され、それらは冷凍配管によって順次接続されている。   FIG. 1 is a front view of a refrigerator according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view in the side direction of the refrigerator. The refrigerator 8 according to the present embodiment includes a refrigerator room 9, an ice making room 30, an upper freezing room 10 (next to the ice making room 30), a lower freezing room 11, and a vegetable room 12 from above. The refrigerating room 9 is provided with front-opening refrigerating room doors 9a and 9b divided into left and right sides. The ice making room 30, the upper freezing room 10, the lower freezing room 11, and the vegetable room 12 are each a drawer type ice making room door 10a. , An upper freezer compartment door 10b, a lower freezer compartment door 11a, and a vegetable compartment door 12a. The refrigerator 8 includes a door sensor (not shown) that detects the open / closed state of each of the doors 9a, 9b, 10a, 10b, 11a, and 12a, an alarm that notifies the user of the door open state (not shown), and the refrigerator compartment 9 Temperature setting means (not shown), and temperature setting means (not shown) for the upper freezer compartment 10 and the lower freezer compartment 11 are connected to the control unit of the refrigerator. In order to cool the inside of the refrigerator, a refrigerator 8 is incorporated in the refrigerator 8, and a compressor 1, a condenser (not shown), a throttle (not shown), and a cooler 4 are configured. Connected sequentially.

図2に示すように、冷蔵庫8の庫外と庫内は断熱箱体31により隔てられている。庫内は断熱仕切壁32により冷蔵室9と、上段冷凍室10及び製氷室30とが隔てられ、断熱仕切壁33により下段冷凍室11と野菜室12とが隔てられている。冷却器4は下段冷凍室11の略背部に備えられた冷却器室34内に設けられており、冷却器4の上方に設けられた庫内ファン5により、戻り空気は冷却器4と熱交換して冷却された空気が各室に送風される。冷蔵室9と野菜室12に冷気を供給する冷蔵室冷却運転(以下「R運転」と称する)の場合、冷蔵室ダンパ6(以下「Rダンパ」と称する)を開(この時、冷凍室ダンパ13(以下「Fダンパ」と称する)は閉)にすることで冷気を供給する。冷蔵室9を冷却した空気は、野菜室12に接続されたダクト24(図3参照)を経由して野菜室12に冷気が送られる。野菜室12に送られた冷気は、断熱仕切壁33内に設けた野菜室戻り風路17と野菜室冷気戻り口21を通過して冷却器4に戻される。上段冷凍室10と下段冷凍室11に冷気を供給する冷凍室冷却運転(以下「F運転」と称する)の場合、冷凍室ダンパ13を開にすることで冷凍室風路15を経由して冷気を供給する。上段冷凍室10と下段冷凍室11に供給された冷気は、冷凍室冷気戻り口14から冷却器4に戻される。R運転,F運転、あるいは庫内の全てを冷却する(冷蔵室+冷凍室)冷却運転(以下「FR運転」と称する。Rダンパ6とFダンパ13が両方開状態)は、庫内の設定温度に対して、庫内に設けた庫内温度センサと比較することにより自動的にそれぞれの運転が決定され、冷却運転がなされる。冷却器4の下部には庫内受け皿25の上部に除霜ヒータ18を設けてあり、庫内受け皿25はドレンパイプ20を介して庫外受け皿19へ除霜時に発生したドレン水を外部に排出するこができる。ドレン水は圧縮機1の排熱等により蒸発できるようになっている。   As shown in FIG. 2, the outside of the refrigerator 8 and the inside of the refrigerator are separated by a heat insulating box 31. In the refrigerator, the refrigerator compartment 9 is separated from the upper freezer compartment 10 and the ice making chamber 30 by the heat insulating partition wall 32, and the lower freezer compartment 11 and the vegetable compartment 12 are separated by the heat insulating partition wall 33. The cooler 4 is provided in a cooler chamber 34 provided substantially at the back of the lower freezing chamber 11, and the return air exchanges heat with the cooler 4 by an internal fan 5 provided above the cooler 4. Then, the cooled air is blown into each chamber. In the case of the refrigerating room cooling operation (hereinafter referred to as “R operation”) for supplying cold air to the refrigerating room 9 and the vegetable room 12, the refrigerating room damper 6 (hereinafter referred to as “R damper”) is opened (at this time, the freezing room damper). 13 (hereinafter referred to as “F damper”) is closed) to supply cold air. The air that has cooled the refrigerator compartment 9 is sent to the vegetable compartment 12 via a duct 24 (see FIG. 3) connected to the vegetable compartment 12. The cold air sent to the vegetable compartment 12 passes through the vegetable compartment return air passage 17 and the vegetable compartment cold air return port 21 provided in the heat insulating partition wall 33 and is returned to the cooler 4. In the case of a freezer cooling operation (hereinafter referred to as “F operation”) in which cold air is supplied to the upper freezer chamber 10 and the lower freezer chamber 11, the freezer air is passed through the freezer air passage 15 by opening the freezer damper 13. Supply. The cold air supplied to the upper freezer compartment 10 and the lower freezer compartment 11 is returned to the cooler 4 from the freezer compartment cold air return port 14. R operation, F operation, or cooling operation (refrigeration room + freezing room) for cooling everything in the warehouse (hereinafter referred to as “FR operation”. Both R damper 6 and F damper 13 are open) Each operation is automatically determined by comparing the temperature with an internal temperature sensor provided in the internal space, and a cooling operation is performed. A defrost heater 18 is provided at the lower part of the cooler 4 at the upper part of the internal tray 25, and the internal tray 25 discharges drain water generated during defrosting to the external tray 19 via the drain pipe 20. Can do. The drain water can be evaporated by the exhaust heat of the compressor 1 or the like.

図3は冷却器4を冷蔵庫の正面から見たものである。図4は冷却器4を冷蔵庫の側面から見た断面図である。冷却器4の下部には、冷却器4の横幅とほぼ同じ長さの除霜ヒータ18を設けてある。また、冷却器4の上部には、冷却器4の温度を検知する除霜センサ26が設けられており(例えば、冷却器のパイプに接触するように除霜センサ26を取り付ける)、除霜センサ26で検知された温度に関する信号は、冷蔵庫の制御部(図示なし)に接続されている。ダクト24は冷蔵室9と野菜室12を接続するものであり、冷蔵室9を冷却した冷気はその後ダクト24を介して、野菜室12に供給される。また、図4に示すように、冷凍室10,11に供給された冷気は、冷凍室冷気戻り口14から冷却器4に戻される。また、冷蔵室9と野菜室12に供給された冷気は、野菜室戻り風路17を介して野菜室冷気戻り口21から冷却器4に戻される。冷凍室冷気戻り口14と野菜室冷気戻り口21は、冷却器4の幅方向とほぼ同じ開口長さとなっている。F運転(冷凍室を冷却)の場合は、冷凍室を冷却後、冷気は冷凍室冷気戻り口14から、R運転(冷蔵室(野菜室も含む)を冷却)の場合は、冷蔵室と野菜室を冷却後、冷気は野菜室冷気戻り口21から、それぞれ設けた戻り口から冷却室34に冷気が戻される。また、FR運転(庫内全室冷却)の場合は、冷凍室冷気戻り口14と野菜室冷気戻り口21から同時に冷却器4に冷気が戻される。従って、冷却運転パターンによって冷却器4への冷気の流入パターンが大きく異なるため、冷却器4での熱交換性能と均一着霜を考慮すると、冷気戻り口14,21は冷却器の横幅とほぼ同じとした方が良い。   FIG. 3 shows the cooler 4 as viewed from the front of the refrigerator. FIG. 4 is a cross-sectional view of the cooler 4 as seen from the side of the refrigerator. A defrost heater 18 having a length substantially the same as the width of the cooler 4 is provided below the cooler 4. Further, a defrost sensor 26 for detecting the temperature of the cooler 4 is provided at the upper part of the cooler 4 (for example, the defrost sensor 26 is attached so as to contact the pipe of the cooler), and the defrost sensor The signal regarding the temperature detected by 26 is connected to the control part (not shown) of a refrigerator. The duct 24 connects the refrigerator compartment 9 and the vegetable compartment 12, and the cold air that has cooled the refrigerator compartment 9 is then supplied to the vegetable compartment 12 via the duct 24. Further, as shown in FIG. 4, the cold air supplied to the freezer compartments 10 and 11 is returned to the cooler 4 from the freezer compartment cold air return port 14. Further, the cold air supplied to the refrigerator compartment 9 and the vegetable compartment 12 is returned to the cooler 4 from the vegetable compartment cold air return port 21 via the vegetable compartment return air passage 17. The freezing compartment cold air return port 14 and the vegetable compartment cold air return port 21 have substantially the same opening length as the width direction of the cooler 4. In the case of F operation (cooling of the freezer compartment), after cooling the freezer compartment, the cold air is supplied from the freezer compartment cold air return port 14, and in the case of R operation (cooling the refrigerator compartment (including the vegetable compartment)), the refrigerator compartment and vegetables After cooling the chamber, the cool air is returned from the vegetable chamber cool air return port 21 to the cooling chamber 34 through the return port provided. In the case of FR operation (cooling of the entire room in the refrigerator), cold air is simultaneously returned to the cooler 4 from the freezer compartment cold air return port 14 and the vegetable compartment cold air return port 21. Accordingly, since the inflow pattern of the cool air into the cooler 4 varies greatly depending on the cooling operation pattern, the heat return performance of the cooler 4 and uniform frost formation are considered, and the cool air return ports 14 and 21 are almost the same as the width of the cooler. It is better to do.

図5は本発明の実施の形態による冷蔵庫の通常冷却運転パターンの一例である。R運転(冷蔵運転),F運転(冷凍運転),圧縮機停止時の霜の冷熱エネルギー利用運転から構成されており、庫内ファン,Rダンパ,Fダンパ,圧縮機の動作を冷却運転パターンに合わせて説明する。冷却器4に成長した霜の近傍を戻り空気が通過する際に熱交換し、戻り冷気が冷却される。霜は最初、冷却器4とほぼ同じ温度になっているが、戻り空気との熱交換により霜の温度が上昇し、霜が融解し始める段階ではほぼ0℃にまで上昇する。霜が融解している区間はほぼ0℃一定となる。霜の冷熱エネルギーを利用した運転区間は、圧縮機1を停止、庫内ファン5を運転し、Fダンパ13は閉、Rダンパ6は開とする。庫内ファン5は、例えば冷却器4に設けた除霜センサ26で検出される温度が約3℃になるまで運転して、冷蔵室9に霜の冷熱エネルギーを利用した冷気を供給する。この霜利用運転終了後、冷蔵室9が冷却された後、圧縮機1を運転してR運転を開始する。この時、Rダンパ6は開、Fダンパ13は閉である。圧縮機停止時の霜利用運転の後に、R運転を開始することにより、冷却器4の温度を上昇させた状態で冷蔵温度帯を冷却する冷凍サイクルを開始できるので、サイクル効率が高い状態で運転が開始される。R運転は冷蔵室9の設定下限温度に到達後、F運転に切り替わる。F運転時にはRダンパ6を閉、Fダンパ13を開とする。圧縮機1の回転数は、その時の庫内温度や庫外温度によって変動するが、安定時の冷却運転では、R運転の方がF運転よりも圧縮機の回転数は低くすることが可能となる。   FIG. 5 is an example of a normal cooling operation pattern of the refrigerator according to the embodiment of the present invention. It consists of R operation (refrigeration operation), F operation (refrigeration operation), and operation using frost chill energy when the compressor is stopped, and the operation of the internal fan, R damper, F damper, and compressor in the cooling operation pattern It explains together. When the return air passes through the vicinity of the frost grown on the cooler 4, heat is exchanged, and the return cold air is cooled. The frost is initially at substantially the same temperature as the cooler 4, but the temperature of the frost rises due to heat exchange with the return air, and rises to almost 0 ° C. when the frost begins to melt. The section where the frost is melting is approximately 0 ° C. In the operation section using the cold energy of frost, the compressor 1 is stopped, the internal fan 5 is operated, the F damper 13 is closed, and the R damper 6 is opened. The internal fan 5 operates, for example, until the temperature detected by the defrost sensor 26 provided in the cooler 4 reaches about 3 ° C., and supplies cold air using cold energy of frost to the refrigerator compartment 9. After the frost utilization operation is completed, after the refrigerator compartment 9 is cooled, the compressor 1 is operated to start the R operation. At this time, the R damper 6 is open and the F damper 13 is closed. Since the refrigeration cycle for cooling the refrigeration temperature zone can be started with the temperature of the cooler 4 increased by starting the R operation after the frost utilization operation when the compressor is stopped, the operation is performed with high cycle efficiency. Is started. The R operation is switched to the F operation after reaching the set lower limit temperature of the refrigerator compartment 9. During the F operation, the R damper 6 is closed and the F damper 13 is opened. The rotational speed of the compressor 1 varies depending on the internal temperature and the external temperature at that time, but in the stable cooling operation, the R operation can lower the rotational speed of the compressor than the F operation. Become.

図6は本発明の実施の形態による冷蔵庫の除霜運転パターンの一例である。本発明の除霜運転は、従来方式である除霜ヒータ18による自然対流式の除霜方式とは異なる。すなわち、除霜運転時にはRダンパ6を開、Fダンパ13を閉とし、庫内ファン5を運転して冷却器4に成長した霜と戻り空気とを強制対流により伝熱を促進させて熱交換させて除霜時間を短くし、更にこの時に発生する冷気を、冷蔵室9と野菜室12に送風して冷却する。次に図6に示した本除霜方式の具体的な方法を説明する。ここに示した運転パターンは一例である。冷蔵室温度,冷凍室温度,冷却器温度(除霜センサ26で検知される温度)と、庫内ファン,Rダンパ,Fダンパ,圧縮機,除霜ヒータの状況を時系列的に示している。冷却器の温度T0からT4に対する時刻はそれぞれt0からt4とする。除霜運転開始時には、除霜中の冷凍室の温度上昇を見込んで、例えば、除霜開始直前に冷凍室を冷却しておく。除霜運転開始時の冷却器温度をT0(時刻t0)とし、自動で除霜運転を開始する場合は、開始時の冷却器温度T0はほぼ一定となると考えて良い。除霜中、Rダンパは開、Fダンパは閉にして、庫内ファンを運転し、圧縮機は停止する。霜と戻り空気の熱交換により冷却器温度は上昇していき、時刻t1で融解温度T1に到達する。時刻t1から霜が解け初め、時刻t2で霜の融解が完了する。この間は潜熱を放出しているので温度T1とT2は同じでほぼ0℃一定になる。時刻t1からt2までの時間は、冷却器4の着霜量に比例する。すなわち、着霜量が多い場合は、時刻t1からt2までの時間が長くなり、冷却器温度T0からT1に到達する時間も長くなる。冷却器温度がT3(例えば3℃、時刻はt3)になったら庫内ファンの運転を停止、Rダンパは閉にして、除霜ヒータにより冷却器を加熱する。除霜ヒータは冷却器の霜が完全に解けるように冷却器温度がT4になるまで加熱が続けられる。T4は経験的に決められた温度であり、概ね10℃である。図6に示した除霜方式は、除霜開始(冷却器温度T0)から冷却器温度T3まで庫内ファンのみ運転して霜を解かし、同時に冷却器で発生する冷気を冷蔵室(野菜室含む)に送り、所定の温度T3になった時点で庫内ファンを止めて除霜ヒータで加熱する方法である。この時、Rダンパは閉とした方が良い。   FIG. 6 is an example of a defrosting operation pattern of the refrigerator according to the embodiment of the present invention. The defrosting operation of the present invention is different from the natural convection type defrosting method using the defrosting heater 18 which is a conventional method. That is, during the defrosting operation, the R damper 6 is opened, the F damper 13 is closed, the internal fan 5 is operated, and heat transfer is promoted by forced convection between the frost grown on the cooler 4 and the return air. The defrosting time is shortened, and the cold air generated at this time is sent to the refrigerator compartment 9 and the vegetable compartment 12 for cooling. Next, a specific method of the present defrosting method shown in FIG. 6 will be described. The operation pattern shown here is an example. Refrigerating room temperature, freezer room temperature, cooler temperature (temperature detected by the defrost sensor 26) and the status of the internal fan, R damper, F damper, compressor, and defrost heater are shown in time series. . The times for the cooler temperatures T0 to T4 are t0 to t4, respectively. At the start of the defrosting operation, for example, the freezing room is cooled immediately before the start of the defrosting in anticipation of an increase in the temperature of the freezing room during the defrosting. When the cooler temperature at the start of the defrosting operation is T0 (time t0) and the defrosting operation is automatically started, it can be considered that the cooler temperature T0 at the start is substantially constant. During defrosting, the R damper is open, the F damper is closed, the internal fan is operated, and the compressor is stopped. The cooler temperature rises due to heat exchange between the frost and the return air, and reaches the melting temperature T1 at time t1. The frost begins to melt from time t1, and the melting of frost is completed at time t2. During this time, since latent heat is released, the temperatures T1 and T2 are the same and are substantially constant at 0 ° C. The time from time t1 to t2 is proportional to the amount of frost formation of the cooler 4. That is, when the amount of frost formation is large, the time from time t1 to t2 becomes longer, and the time to reach the cooler temperature T0 to T1 also becomes longer. When the cooler temperature reaches T3 (for example, 3 ° C., time is t3), the operation of the internal fan is stopped, the R damper is closed, and the cooler is heated by the defrost heater. The defrost heater is continuously heated until the cooler temperature reaches T4 so that the cooler frost can be completely melted. T4 is an empirically determined temperature and is approximately 10 ° C. In the defrosting method shown in FIG. 6, only the internal fan is operated from the start of defrosting (cooler temperature T0) to the cooler temperature T3 to defrost, and at the same time, the cold air generated by the cooler is stored in the refrigerator room (including the vegetable room). ) And when the temperature reaches a predetermined temperature T3, the internal fan is stopped and heated by the defrost heater. At this time, the R damper should be closed.

しかしながら、ここで注意しなければならないことは、除霜時の消費電力量を少なくするには前述の手段が良いが、例えば、着霜量が多い場合、時刻t1とt2の間隔が長くなり、その間冷凍室の温度が上昇する恐れがあり、冷凍食品を保存する上で問題となる。従って、着霜量を検出して庫内ファンと除霜ヒータを併用することにより、除霜時間を短縮する必要がある。図6に示した除霜運転中の除霜ヒータは、着霜量に応じて通電率を変化させることができる。除霜運転時の、除霜ヒータの通電率の考え方は、図7で説明する。   However, what should be noted here is that the above-described means is good for reducing the amount of power consumption during defrosting. For example, when the amount of frost formation is large, the interval between times t1 and t2 becomes long, During this time, the temperature of the freezer compartment may rise, which is a problem when storing frozen foods. Therefore, it is necessary to shorten the defrosting time by detecting the amount of frost formation and using the internal fan and the defrosting heater in combination. The defrosting heater during the defrosting operation shown in FIG. 6 can change an energization rate according to the amount of frost formation. The concept of the energization rate of the defrost heater during the defrosting operation will be described with reference to FIG.

図7は本発明の除霜時における着霜量の判定方法である。除霜運転開始時の時刻t0と冷却器温度T0(除霜センサ26で検出)を記憶装置に記憶させる(S100)。冷却器温度T0は、除霜中の冷凍室の温度上昇を見込んで予め冷し込む場合が多く、冷却器温度T0はほぼ一定となる場合が多い。次にRダンパは開、Fダンパ閉とし、庫内ファンを運転して除霜しながら冷却器で発生した冷気を冷蔵室に送風する。この時除霜ヒータはOFFである(S101)。着霜量の判定は次のように行う。除霜開始時から冷却器温度は除々に温度上昇し、霜が解け始める温度T1(時刻t1)に到達する。着霜量が多いと温度T1に到達する時間が長くなり、逆に着霜量が少ないと温度T1に到達する時間が短くなる。従って、着霜量の判定は除霜開始温度T0から霜が解け始める温度T1(約0℃)までの温度勾配Aにより判定できる。すなわち予め着霜量を判定するための基準となる温度勾配A1,A2を求めておく。例えば、着霜量を大中小の3つの範囲に分類する場合、次のように判定する。除霜時の温度勾配Aが温度勾配A1よりも大きい場合、着霜量は少ないと判定する(S103)。除霜時の温度勾配Aが温度勾配A2よりも小さい場合、着霜量は多いと判定する(S105)。また、温度勾配AがA1とA2の間の場合、着霜量は中間と判定する(S104)。着霜量が少ないと判定した場合(S103)、冷却器温度がT3まで庫内ファンのみの運転であるが、冷却器温度T3以降は庫内ファンをOFF、除霜ヒータをON、Rファンを閉にする(S106)。その後、冷却器温度がT4になるまで除霜ヒータで加熱して除霜が終了する(S108)。   FIG. 7 is a method for determining the amount of frost formation during defrosting according to the present invention. The time t0 at the start of the defrosting operation and the cooler temperature T0 (detected by the defrost sensor 26) are stored in the storage device (S100). The cooler temperature T0 is often cooled in advance in anticipation of a temperature increase in the freezing room during defrosting, and the cooler temperature T0 is often substantially constant. Next, the R damper is opened and the F damper is closed, and cool air generated by the cooler is blown into the refrigerator compartment while operating the internal fan to defrost. At this time, the defrosting heater is OFF (S101). The determination of the amount of frost formation is performed as follows. The cooler temperature gradually increases from the start of defrosting, and reaches a temperature T1 (time t1) at which frost starts to melt. If the amount of frost formation is large, the time to reach the temperature T1 becomes long. Conversely, if the amount of frost formation is small, the time to reach the temperature T1 becomes short. Therefore, the determination of the amount of frost formation can be determined by the temperature gradient A from the defrost start temperature T0 to the temperature T1 (about 0 ° C.) at which the frost starts to melt. That is, temperature gradients A1 and A2 that are references for determining the amount of frost formation are obtained in advance. For example, when classifying the amount of frost formation into three ranges of large, medium and small, the following determination is made. When the temperature gradient A at the time of defrosting is larger than the temperature gradient A1, it determines with the amount of frost formation being small (S103). When the temperature gradient A at the time of defrosting is smaller than the temperature gradient A2, it determines with there being much frost formation (S105). Further, when the temperature gradient A is between A1 and A2, the amount of frost formation is determined to be intermediate (S104). When it is determined that the amount of frost formation is small (S103), only the internal fan is operated until the cooler temperature reaches T3. After the cooler temperature T3, the internal fan is turned off, the defrost heater is turned on, and the R fan is turned on. Close (S106). Thereafter, the defroster is heated until the cooler temperature reaches T4, and the defrosting is completed (S108).

着霜量を中間と判定した場合(S104)、庫内ファンを運転しながら除霜ヒータもONして除霜時間を短縮する。除霜ヒータは通電率を調整することができ、例えば通電率を50%とし(S109)、冷却器温度がT3になるまで続ける。冷却器温度T3以降は、庫内ファンをOFF、除霜ヒータをON、Rダンパを閉にする(S106)。その後、冷却器温度がT4になるまで加熱され(S107)、除霜を終了する(S108)。   When it is determined that the amount of frost formation is intermediate (S104), the defrost heater is also turned on while the internal fan is operated to shorten the defrost time. The defrost heater can adjust the energization rate, for example, the energization rate is set to 50% (S109), and the process is continued until the cooler temperature reaches T3. After the cooler temperature T3, the internal fan is turned off, the defrost heater is turned on, and the R damper is closed (S106). Then, it is heated until the cooler temperature reaches T4 (S107), and the defrosting is finished (S108).

着霜量が多いと判定した場合(S105)、庫内ファンを運転しながら除霜ヒータもONして除霜時間を短縮する。着霜量が多くて除霜時間を短縮するためには、最も時間が短くなるように除霜ヒータの通電率を100%にし(S110)、冷却温度がT3になるまで続ける。冷却器温度T3以降は、庫内ファンをOFFし、除霜ヒータのみの加熱となる(S106)。その後、冷却器温度がT4になるまで加熱され、除霜を終了する(S108)。なお、着霜量によらず共通のS106からS108においても、除霜ヒータの通電率は調整できるようになっている。   When it is determined that the amount of frost formation is large (S105), the defrost heater is also turned on while the internal fan is operated to shorten the defrost time. In order to shorten the defrosting time because the amount of frost formation is large, the energization rate of the defrosting heater is set to 100% so as to shorten the time (S110), and the process is continued until the cooling temperature reaches T3. After the cooler temperature T3, the internal fan is turned off and only the defrost heater is heated (S106). Then, it heats until cooler temperature becomes T4, and complete | finishes defrosting (S108). It should be noted that the energization rate of the defrost heater can be adjusted in common S106 to S108 regardless of the amount of frost formation.

図8,図9,図10は除霜運転中に冷凍室ドア開閉がある場合の制御フロー図である。除霜運転は、着霜量に応じて除霜ヒータの通電率を変えた制御を基本とするが(図7参照)、冷凍室のドア開閉により庫内への熱負荷が増えた場合は、冷凍食品の保存性を維持するように着霜量によらずに除霜時間を最短で終了する方法に移行する。すなわち、庫内ファンと除霜ヒータの通電率を100%にするモードを設けている。図8は除霜開始後、着霜量の判定をする前に冷凍室のドア開閉があった場合(S111)、除霜ヒータをONにしてヒータ通電率を100%にして(S110)除霜時間を短縮できるように制御を変更する。除霜終了までの制御方法は図7と同じである。図9は着霜量が少ないと判断して後、冷凍室のドア開閉があった場合(S111)、除霜ヒータの通電率を100%にした(S110)、除霜時間を短縮できるように制御を変更する。除霜終了までの制御方法は図7と同じである。図10は着霜量が中間と判断した後、冷凍室のドア開閉があった場合(S111)、除霜ヒータの通電率を100%にして(S110)、除霜時間を短縮できるように制御を変更する。   8, FIG. 9 and FIG. 10 are control flow charts when the freezer compartment door is opened and closed during the defrosting operation. The defrosting operation is based on the control in which the energization rate of the defrosting heater is changed according to the amount of frost formation (see FIG. 7), but when the heat load in the refrigerator increases due to the opening and closing of the freezer door, It shifts to the method which complete | finishes a defrost time in the shortest irrespective of the amount of frost formation so that the preservability of frozen food may be maintained. That is, the mode which makes the electricity supply rate of a fan in a warehouse and a defrost heater 100% is provided. FIG. 8 shows that when the freezer compartment door is opened and closed after the start of defrosting and before determining the amount of frost formation (S111), the defrosting heater is turned on and the heater energization rate is set to 100% (S110). Change control to save time. The control method up to the end of defrosting is the same as in FIG. After judging that the amount of frost formation is small in FIG. 9, when the door of the freezer compartment is opened and closed (S111), the energization rate of the defrost heater is set to 100% (S110) so that the defrost time can be shortened. Change control. The control method up to the end of defrosting is the same as in FIG. FIG. 10 shows that when the freezing room door is opened and closed after determining that the amount of frost formation is intermediate (S111), the energization rate of the defrosting heater is set to 100% (S110), and the defrosting time can be shortened. To change.

図11,図12は本除霜運転をした場合の結果の一例で、それぞれ着霜量が少ない(約40g)場合と、着霜量が多い(約230g)場合の冷蔵室,冷凍室,冷却器温度,電力の経時変化の一例である。除霜開始(時間t0、冷却器温度T0)、霜の融解開始(時間t1、冷却器温度T1)、霜の融解終了(時間t2、冷却器温度T2)、庫内ファン停止(時間t3、冷却器温度T3)、除霜終了(時間t4、冷却器温度T4)とする。時間t0からt3の間、冷蔵室に冷気を供給しているので冷蔵室温度はいずれの場合も約10℃から約5℃〜6℃に冷却されている。着霜量が少ない場合(図11)、霜加熱区間(t0〜t1)は約7分、霜融解区間(t1〜t2)は約8分、全体の除霜時間は約30分、着霜量が多い場合(図12)、霜加熱区間(t0〜t1)は約10分、霜融解区間(t1〜t2)は約13分、全体の除霜時間は約40分となる。   FIG. 11 and FIG. 12 are examples of the results when this defrosting operation is performed. Each of the frosting amount, the freezing room, and the cooling when the amount of frost formation is small (about 40 g) and when the amount of frost formation is large (about 230 g). It is an example of a time-dependent change of vessel temperature and electric power. Defrosting start (time t0, cooler temperature T0), frost melting start (time t1, cooler temperature T1), frost melting end (time t2, cooler temperature T2), internal fan stop (time t3, cooling) Temperature T3), defrosting is completed (time t4, cooler temperature T4). Since cold air is supplied to the refrigerator compartment from time t0 to t3, the refrigerator compartment temperature is cooled from about 10 ° C. to about 5 ° C. to 6 ° C. in any case. When the amount of frost formation is small (FIG. 11), the frost heating section (t0 to t1) is about 7 minutes, the frost melting section (t1 to t2) is about 8 minutes, the entire defrosting time is about 30 minutes, and the frost formation amount. When there are many (FIG. 12), a frost heating area (t0-t1) will be about 10 minutes, a frost melting area (t1-t2) will be about 13 minutes, and the whole defrost time will be about 40 minutes.

以上のように、冷却器を冷却する圧縮機と、その冷却器で冷却された冷気を冷凍室,冷蔵室,野菜室等に循環する送風機と、冷蔵室に供給する冷気量を制御する冷蔵室ダンパと、冷却器に着いた霜を除霜する除霜ヒータ等と、冷凍室に供給する冷気量を制御する冷凍室ダンパと、冷凍室と冷却器室を区画する仕切板等を備えた冷蔵庫において、送風機前面に冷蔵室ダンパ側に冷気を送る冷蔵室ダクトを形成し、仕切板との間に冷凍室に冷気を送る冷気ダクトを形成する送風機カバーを設け、且つ、上記冷気ダクトには冷凍室ダンパを経た冷気を送るようにすると共に、冷蔵室,冷凍室の庫内温度センサによる温度監視のもと、冷却器に成長した霜による冷蔵室等の冷却運転と除霜中に除霜をしながら冷蔵室等の冷却を同時にできるようにした。   As described above, a compressor that cools a cooler, a blower that circulates cold air cooled by the cooler to a freezer room, a refrigerator room, a vegetable room, and the like, and a refrigerator room that controls the amount of cold air supplied to the refrigerator room Refrigerator having a damper, a defrost heater for defrosting frost attached to the cooler, a freezer damper for controlling the amount of cool air supplied to the freezer, a partition plate for partitioning the freezer and cooler A cooler compartment duct is formed on the front side of the blower to send cold air to the refrigerator compartment damper side, a blower cover is provided between the partition plate and the cooler air duct to send cold air to the freezer compartment, and the cold air duct has a freezer In addition to sending cold air through the room damper, defrosting is performed during the cooling operation and defrosting of the refrigeration room, etc. due to the frost that has grown on the cooler, under the temperature monitoring by the temperature sensor in the refrigerator compartment and freezer compartment While being able to cool the refrigerator compartment etc. at the same time

これによれば、冷却器に成長した霜の冷熱エネルギーによる冷蔵室、及び野菜室の冷却運転が可能で、また除霜中の省エネと冷凍室の温度上昇の抑制を同時に図る除霜方式において、除霜中に着霜量を検知する手段を有する冷蔵庫を実現できるものである。   According to this, in the defrosting method that enables cooling operation of the refrigeration room and vegetable room by the cold energy of the frost grown on the cooler, and simultaneously achieves energy saving during defrosting and suppression of temperature rise in the freezer room, A refrigerator having means for detecting the amount of frost formation during defrosting can be realized.

また、除霜中の着霜量の検知手段として冷却器の温度と冷蔵庫の運転時間を記憶装置に記憶させ、冷却器の除霜開始から霜の融解開始までの温度勾配を基準となる温度勾配と比較することにより除霜運転中に着霜量を判断し、着霜量に応じて省エネ性と冷凍室の温度上昇抑制を両立した冷蔵庫を実現できるものである。   In addition, the temperature of the cooler and the operation time of the refrigerator are stored in a storage device as means for detecting the amount of frost during defrosting, and the temperature gradient from the start of defrosting of the cooler to the start of frost melting is used as a reference temperature gradient The amount of frost formation can be determined during the defrosting operation by comparing with, and a refrigerator that achieves both energy saving and temperature rise suppression in the freezer compartment according to the amount of frost formation can be realized.

また、除霜中に着霜量に応じた除霜手段を有し、冷凍室の扉開閉が行われて熱負荷が庫内に入ったことを扉センサで検出する手段と連動させることにより、除霜運転を早く終了する手段を有する冷蔵庫を実現できる。   In addition, by having a defrosting means according to the amount of frosting during defrosting, by interlocking with a means for detecting by the door sensor that the door of the freezer has been opened and closed and the thermal load has entered the warehouse, A refrigerator having a means for ending the defrosting operation early can be realized.

以上のように、本実施例は、除霜運転開始時における冷却器に設けた除霜開始温度(冷却器に設けた温度センサによる測定)と、所定時間後の温度(例えば冷却器に設けた温度検出センサが約0℃)からなる温度勾配が、予め着霜量の判定用に決めた温度勾配と比較することで、着霜量の判定を行う。庫内ファンのみによる除霜運転を開始した場合、前述の手段により、着霜量が多いと判断した場合、あるいは、冷凍室のドア開閉により熱負荷が増えた場合、除霜運転途中から除霜ヒータをONすることにより霜と周囲空気との伝熱を促進し、除霜時間を短くする方式に変更する手段を有している。   As described above, in this embodiment, the defrosting start temperature provided in the cooler at the start of the defrosting operation (measured by the temperature sensor provided in the cooler) and the temperature after a predetermined time (for example, provided in the cooler). The temperature gradient formed by the temperature detection sensor is approximately 0 ° C.) is compared with the temperature gradient determined in advance for determining the amount of frost formation, thereby determining the amount of frost formation. When defrosting operation using only the internal fan is started, when the above-mentioned means determines that the amount of frost formation is large, or when the thermal load increases due to opening / closing of the freezer compartment door, defrosting is performed during the defrosting operation. By turning on the heater, heat transfer between the frost and the surrounding air is promoted, and a means for changing to a method of shortening the defrosting time is provided.

すなわち、本発明は上記実施例で説明したように、除霜運転時に庫内ファン、あるいは庫内ファンと除霜ヒータを併用して霜を解かし、同時に霜を解かした際に発生する冷気をプラス温度帯となる冷蔵室、あるいは野菜室に送風して庫内の冷却を行う方式である。庫内ファンを運転することにより、霜層の近傍を通過する空気は強制対流となるため伝熱が促進されて除霜時間が短くなり、同時に発生した冷気を冷蔵温度帯に送風して冷却することもできる。   That is, as described in the above embodiment, the present invention adds the cold air generated when the internal fan or the internal fan and the defrost heater are used to defrost and defrost simultaneously at the time of defrosting operation. It is a system which cools the inside of a refrigerator by sending air to a refrigerated room or a vegetable room that becomes a temperature zone. By operating the internal fan, the air passing in the vicinity of the frost layer becomes forced convection, so heat transfer is accelerated and the defrosting time is shortened, and the generated cold air is blown to the refrigeration temperature zone and cooled. You can also

また、冷却器に成長した霜による冷蔵室、及び野菜室の冷却運転が可能となる他、除霜中に霜の冷熱エネルギーを利用した冷却運転をしながら霜を解かす除霜手段を有することにより、省エネ性と冷凍室の温度上昇の抑制を両立できる制御手段を具備する冷蔵庫を提供することができる。   In addition to being able to cool the chilled room and vegetable room with frost grown on the cooler, it has defrosting means to defrost the frost while performing cooling operation using the frost's cold energy during defrosting. Thus, it is possible to provide a refrigerator including a control unit that can achieve both energy saving and suppression of temperature rise in the freezer.

1 圧縮機
4 冷却器
5 庫内ファン
6 冷蔵室ダンパ
7 冷蔵室冷気風路
8 冷蔵庫
9 冷蔵室
9a,9b 冷蔵室扉
10 上段冷凍室
10a 製氷室扉
10b 上段冷凍室扉
11 下段冷凍室
11a 下段冷凍室扉
12 野菜室
12a 野菜室扉
13 冷凍室ダンパ
14 冷凍室冷気戻り口
17 野菜室戻り風路
18 除霜ヒータ
19 庫外受け皿
20 ドレンパイプ
21 野菜室冷気戻り口
22 吐出口
23 仕切り壁
24 ダクト
25 庫内受け皿
26 除霜センサ
27 信号線
30 製氷室
31 断熱箱体
32,33 断熱仕切壁
DESCRIPTION OF SYMBOLS 1 Compressor 4 Cooler 5 Fan in refrigerator 6 Refrigerating room damper 7 Refrigerating room cold air path 8 Refrigerator 9 Refrigerating room 9a, 9b Refrigerating room door 10 Upper freezing room 10a Ice making room door 10b Upper freezing room door 11 Lower freezing room 11a Lower Freezer compartment door 12 Vegetable compartment door 12 Vegetable compartment door 13 Freezer compartment damper 14 Freezer compartment cool air return port 17 Vegetable room return air channel 18 Defrost heater 19 Outer tray 20 Drain pipe 21 Vegetable room cool air return port 22 Discharge port 23 Partition wall 24 Duct 25 Inner tray 26 Defrost sensor 27 Signal line 30 Ice making chamber 31 Heat insulation box 32, 33 Heat insulation partition wall

Claims (3)

冷蔵庫本体に設けられた冷蔵温度帯室及び冷凍温度帯室と、
前記冷蔵庫本体に設けられ冷媒を圧縮する圧縮機と、
前記冷凍温度帯室の後方に設けられ冷却器が配置される冷却器室と、
該冷却器室から前記冷蔵温度帯室及び前記冷凍温度帯室に冷気を供給する送風機と、
前記冷蔵温度帯室に供給する冷気量を制御する冷蔵室ダンパと、
前記冷凍温度帯室に供給する冷気量を制御する冷凍室ダンパと、
前記冷却器室に設けられ前記冷却器を除霜する除霜ヒータと、
前記圧縮機を停止、前記冷蔵室ダンパを開、及び前記冷凍室ダンパを閉の状態で前記送風機を運転して前記冷蔵温度帯室に冷気を供給し、
前記冷却器の温度勾配と設定値を比較して着霜が少ないと判定した場合、前記冷却器が所定温度に達した後に前記送風機を停止及び前記冷蔵室ダンパを閉じて前記除霜ヒータを運転し、
前記冷却器の温度勾配と設定値を比較して着霜が多いと判定した場合、前記除霜ヒータを運転して、前記冷却器が所定温度に達した後に前記送風機を停止及び前記冷蔵室ダンパを閉じることを特徴とする冷蔵庫。
A refrigerated temperature zone and a freezing temperature zone provided in the refrigerator body;
A compressor provided in the refrigerator body for compressing refrigerant;
A cooler chamber provided behind the freezing temperature zone chamber and in which a cooler is disposed;
A blower for supplying cold air from the cooler chamber to the refrigeration temperature zone chamber and the refrigeration temperature zone chamber;
A refrigerating room damper for controlling the amount of cold air supplied to the refrigerating temperature zone chamber;
A freezer damper that controls the amount of cold air supplied to the freezing temperature zone; and
A defrost heater provided in the cooler chamber for defrosting the cooler;
Stop the compressor, open the refrigerator compartment damper, and close the freezer compartment damper to operate the blower to supply cold air to the refrigerator temperature zone chamber,
When the temperature gradient of the cooler is compared with a set value and it is determined that there is little frost formation, after the cooler reaches a predetermined temperature, the blower is stopped and the cold room damper is closed to operate the defrost heater And
When the temperature gradient of the cooler is compared with a set value and it is determined that there is a lot of frost formation, the defrost heater is operated to stop the blower after the cooler reaches a predetermined temperature and the refrigerator compartment damper A refrigerator characterized by closing.
請求項1において、前記冷却器の着霜量に応じて前記除霜ヒータの通電率又は前記送風機の回転数の少なくともいずれかを制御することを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein at least one of an energization rate of the defrost heater and a rotation speed of the blower is controlled according to a frost formation amount of the cooler. 請求項1において、前記冷凍温度帯室の扉の開閉を検出する扉センサを備え、該扉センサの検出値に応じて前記除霜ヒータの通電率又は前記送風機の回転数の少なくともいずれかを制御することを特徴とする冷蔵庫。   In Claim 1, it has a door sensor which detects opening and closing of the door of the freezing temperature zone room, and controls at least one of the energization rate of the defrost heater or the number of rotations of the blower according to the detection value of the door sensor. A refrigerator characterized by that.
JP2009186975A 2009-08-12 2009-08-12 Refrigerator Withdrawn JP2011038715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186975A JP2011038715A (en) 2009-08-12 2009-08-12 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186975A JP2011038715A (en) 2009-08-12 2009-08-12 Refrigerator

Publications (1)

Publication Number Publication Date
JP2011038715A true JP2011038715A (en) 2011-02-24

Family

ID=43766672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186975A Withdrawn JP2011038715A (en) 2009-08-12 2009-08-12 Refrigerator

Country Status (1)

Country Link
JP (1) JP2011038715A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251680A (en) * 2011-06-01 2012-12-20 Panasonic Corp Refrigerator
JP2013200084A (en) * 2012-03-26 2013-10-03 Panasonic Corp Cooling storage
JP2013221719A (en) * 2012-04-19 2013-10-28 Panasonic Corp Refrigerator
JP2015007510A (en) * 2013-06-26 2015-01-15 日立アプライアンス株式会社 Refrigerator
WO2017056212A1 (en) * 2015-09-30 2017-04-06 三菱電機株式会社 Refrigerator
JP2017215108A (en) * 2016-06-01 2017-12-07 シャープ株式会社 refrigerator
WO2018020653A1 (en) * 2016-07-29 2018-02-01 三菱電機株式会社 Freezer-refrigerator
JP2018096646A (en) * 2016-12-15 2018-06-21 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerator
JP2018204874A (en) * 2017-06-06 2018-12-27 日立アプライアンス株式会社 refrigerator
JP2021036189A (en) * 2020-11-02 2021-03-04 三星電子株式会社Samsung Electronics Co.,Ltd. refrigerator
JP2023503166A (en) * 2019-11-26 2023-01-26 チンダオ ハイアール スペシャル エレクトリック フリーザー カンパニー リミテッド Air-cooling equipment control method and air-cooling equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251680A (en) * 2011-06-01 2012-12-20 Panasonic Corp Refrigerator
JP2013200084A (en) * 2012-03-26 2013-10-03 Panasonic Corp Cooling storage
JP2013221719A (en) * 2012-04-19 2013-10-28 Panasonic Corp Refrigerator
JP2015007510A (en) * 2013-06-26 2015-01-15 日立アプライアンス株式会社 Refrigerator
AU2015410544B2 (en) * 2015-09-30 2018-12-13 Mitsubishi Electric Corporation Refrigerator
WO2017056212A1 (en) * 2015-09-30 2017-04-06 三菱電機株式会社 Refrigerator
JP2017215108A (en) * 2016-06-01 2017-12-07 シャープ株式会社 refrigerator
WO2018020653A1 (en) * 2016-07-29 2018-02-01 三菱電機株式会社 Freezer-refrigerator
JP2018096646A (en) * 2016-12-15 2018-06-21 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerator
JP2018204874A (en) * 2017-06-06 2018-12-27 日立アプライアンス株式会社 refrigerator
JP2023503166A (en) * 2019-11-26 2023-01-26 チンダオ ハイアール スペシャル エレクトリック フリーザー カンパニー リミテッド Air-cooling equipment control method and air-cooling equipment
JP7348400B2 (en) 2019-11-26 2023-09-20 チンダオ ハイアール スペシャル エレクトリック フリーザー カンパニー リミテッド Air cooling equipment control method and air cooling equipment
JP2021036189A (en) * 2020-11-02 2021-03-04 三星電子株式会社Samsung Electronics Co.,Ltd. refrigerator

Similar Documents

Publication Publication Date Title
JP2011038715A (en) Refrigerator
CN102022887B (en) Refrigerator
US7698902B2 (en) Defrost operating method for refrigerator
EP2578973B1 (en) Refrigerator and control method thereof
CN101975498B (en) Refrigerator
CN102803876B (en) Refrigerator
JP4096495B2 (en) refrigerator
KR101668302B1 (en) Refrigerator
JP6121654B2 (en) refrigerator
WO2018076583A1 (en) Refrigerator
CN105020965A (en) Refrigerator
JP4982537B2 (en) refrigerator
JPH10111064A (en) Control method for cooling fan of refrigerator
JP6890502B2 (en) refrigerator
JP6143458B2 (en) refrigerator
JP2011052935A (en) Refrigerator
JP2007309530A (en) Refrigerator
JP6837423B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP6383454B2 (en) refrigerator
JP2010281491A (en) Refrigerator
JP2019138510A (en) refrigerator
KR100597304B1 (en) Defroast operating method for refrigerator
JP2771590B2 (en) Cooling storage
KR100228853B1 (en) Refrigerator cooling fan control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106