JP7191715B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7191715B2
JP7191715B2 JP2019026176A JP2019026176A JP7191715B2 JP 7191715 B2 JP7191715 B2 JP 7191715B2 JP 2019026176 A JP2019026176 A JP 2019026176A JP 2019026176 A JP2019026176 A JP 2019026176A JP 7191715 B2 JP7191715 B2 JP 7191715B2
Authority
JP
Japan
Prior art keywords
chamber
temperature
compartment
switchable
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026176A
Other languages
Japanese (ja)
Other versions
JP2020133970A (en
Inventor
良二 河井
晴樹 額賀
慎一郎 岡留
真申 小川
拳司 伊藤
遵自 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019026176A priority Critical patent/JP7191715B2/en
Priority to CN201910831303.0A priority patent/CN111578609A/en
Publication of JP2020133970A publication Critical patent/JP2020133970A/en
Application granted granted Critical
Publication of JP7191715B2 publication Critical patent/JP7191715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、冷蔵庫に関する。 The present invention relates to refrigerators.

本技術分野の背景技術として、例えば国際公開第2018/131157号公報(特許文献1)がある。 Background art of this technical field includes, for example, International Publication No. 2018/131157 (Patent Document 1).

特許文献1には、周囲の他室よりも高温に設定されて貯蔵物を貯蔵する貯蔵室を備え、前記貯蔵室は、前記貯蔵室を区画する各壁部にそれぞれ真空断熱材を配すことで、真空断熱材による貯蔵室の被覆面積を可能な限り増大する冷蔵庫が開示されている。 In Patent Document 1, a storage chamber is provided that is set to a temperature higher than that of other surrounding chambers to store items, and the storage chamber has a vacuum insulation material on each wall portion that partitions the storage chamber. discloses a refrigerator that maximizes the coverage of the storage compartment by vacuum insulation.

国際公開第2018/131157号公報International Publication No. 2018/131157

特許文献1に記載の構成を採用することによって、周囲の他室よりも高温に設定される貯蔵室への冷熱の流入を防止できる。一方で外部である冷蔵庫の周囲への放熱も防止でき、設定温度に熱効率良く維持できる。しかしながら、冷蔵温度に設定された貯蔵室が、冷凍温度に設定された貯蔵室と隣接するとともに、庫内を冷却する蒸発器を備えた蒸発器室にも隣接する構成を有する冷蔵庫に特許文献1に記載の構成を採用すると、冷蔵庫の使用歳月が経過するにつれて前記冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、結露や着霜が生じるといった不具合が発生する。 By adopting the configuration described in Patent Literature 1, it is possible to prevent cold heat from flowing into the storage compartment, which is set to a higher temperature than other surrounding compartments. On the other hand, heat radiation to the surroundings of the refrigerator, which is the outside, can also be prevented, and the set temperature can be maintained with good thermal efficiency. However, Patent Document 1 discloses a refrigerator having a configuration in which a storage compartment set to a refrigerating temperature is adjacent to a storage compartment set to a freezing temperature, and is also adjacent to an evaporator compartment having an evaporator for cooling the inside of the refrigerator. If the configuration described in 1 is adopted, as the refrigerator is used for a long period of time, the inside of the storage compartment set to the refrigerating temperature becomes too cold, or condensation or frost occurs.

本発明は上記課題に鑑みてなされたものであり、上記構成を有する冷蔵庫において、使用歳月が経過しても冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い信頼性が高い冷蔵庫を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. To provide a highly reliable refrigerator in which trouble such as frost formation is unlikely to occur.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、
圧縮手段と、放熱手段と、減圧手段と、冷却手段とが接続された冷凍サイクルと、断熱箱体と、冷蔵温度に設定された第一の貯蔵室と、該第一の貯蔵室の上部に第一の仕切壁を隔てて隣接する冷凍温度に設定された第二の貯蔵室と、前記第一の貯蔵室の下部に第二の仕切壁を隔てて隣接する冷凍温度に設定された第三の貯蔵室と、前記第一の貯蔵室の後方に第三の仕切壁を隔てて隣接する前記冷却手段が実装された蒸発器室を備えた冷蔵庫において、前記第一乃至第三の仕切壁の少なくとも一つは、真空断熱材を備えるとともに、該真空断熱材に近接するように配設された前記第一の貯蔵室を加熱する第一の加熱手段を備えた仕切壁とし、且つ、前記第一乃至第三の仕切壁の他の少なくとも一つは、真空断熱材を備えず、前記第一の貯蔵室を加熱する第二の加熱手段を備えた仕切壁として、前記第一の加熱手段の発熱密度を、前記第二の加熱手段の発熱密度より小さくしたことを特徴とする。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present application includes multiple means for solving the above problems, but if one example is given,
A refrigerating cycle to which compression means, heat radiation means, decompression means, and cooling means are connected, a heat insulating box body, a first storage chamber set to a refrigerating temperature, and an upper portion of the first storage chamber A second storage chamber set to a freezing temperature adjacent to the first storage chamber across the first partition wall, and a second storage chamber set to the freezing temperature adjacent to the lower portion of the first storage chamber across the second partition wall A refrigerator comprising three storage compartments and an evaporator compartment in which the cooling means is mounted and which is adjacent to the rear of the first storage compartment with a third partition wall therebetween, wherein the first to third partition walls At least one of is a partition wall provided with a vacuum insulation material and a first heating means for heating the first storage chamber arranged so as to be adjacent to the vacuum insulation material, and At least one other of the first to third partition walls is not provided with a vacuum insulation material, and is a partition wall provided with a second heating means for heating the first storage chamber, and the first heating means is set smaller than the heat generation density of the second heating means .

使用歳月が経過しても冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い信頼性が高い冷蔵庫を提供することができる。 It is possible to provide a highly reliable refrigerator in which troubles such as overcooling of a storage chamber set to a refrigerating temperature or dew condensation or frost formation on the wall surface of the storage chamber do not easily occur even after a long period of use. .

実施例に係る冷蔵庫の正面図Front view of the refrigerator according to the embodiment 図1のA-A断面図AA sectional view of FIG. 実施例に係る冷蔵庫の庫内の構成を示す正面図FIG. 2 is a front view showing the configuration inside the refrigerator according to the embodiment; 実施例に係る冷蔵庫の要部を拡大した断面図Sectional drawing which expanded the principal part of the refrigerator which concerns on an Example 実施例に係る冷蔵庫の風路構成を表す模式図Schematic diagram showing the air duct configuration of the refrigerator according to the embodiment 実施例に係る冷蔵庫の冷凍サイクル構成を表す概略図Schematic diagram showing the refrigeration cycle configuration of the refrigerator according to the embodiment 実施例に係る冷蔵庫の壁面放熱配管と結露防止配管の配置を表す図A diagram showing the arrangement of wall heat radiation piping and dew condensation prevention piping of the refrigerator according to the embodiment. 実施例に係る冷蔵庫の断熱箱体の構成を表す断面図Sectional view showing the structure of the heat insulating box body of the refrigerator according to the embodiment 実施例に係る冷蔵庫の真空断熱材の構成を表す図The figure showing the structure of the vacuum insulation material of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の仕切壁の嵌合部近傍の拡大断面図Enlarged cross-sectional view of the vicinity of the fitting portion of the partition wall of the refrigerator according to the embodiment 実施例に係る冷蔵庫の第一切替室の扉と容器を外して正面から見た図FIG. 2 is a front view of the refrigerator according to the embodiment with the door and the container of the first switching compartment removed. 実施例に係る冷蔵庫の第二切替室の扉と容器を外して正面から見た図FIG. 10 is a front view of the refrigerator according to the embodiment with the door and the container of the second switching compartment removed. 実施例に係る冷蔵庫の冷却運転制御を表すフローチャート4 is a flow chart representing cooling operation control of the refrigerator according to the embodiment. 実施例に係る冷蔵庫の安定運転状態を表すタイムチャートの例An example of a time chart representing a stable operating state of the refrigerator according to the embodiment 実施例に係る冷蔵庫の除霜運転状態を表すタイムチャートの例An example of a time chart representing the defrosting operation state of the refrigerator according to the embodiment

本発明に関する冷蔵庫の実施例について説明する。図1は実施例に係る冷蔵庫の正面図、図2は図1のA-A断面図である。 An embodiment of a refrigerator relating to the present invention will be described. FIG. 1 is a front view of a refrigerator according to an embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

図1に示すように、冷蔵庫1の断熱箱体10は、上方から冷蔵室2、左右に併設された製氷室3と冷凍室4、第一切替室5、第二切替室6の順に貯蔵室を有している。 As shown in FIG. 1, the heat-insulating box body 10 of the refrigerator 1 includes storage compartments in order from the top: the refrigerating compartment 2; have.

冷蔵庫1はそれぞれの貯蔵室の開口を開閉する扉を備えている。これらの扉は、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室扉2a、2bと、製氷室3、冷凍室4、第一切替室5、第二切替室6の開口をそれぞれ開閉する引き出し式の製氷室扉3a、冷凍室扉4a、第一切替室扉5a、第二切替室扉6aである。これら複数の扉の内部材料は主に発泡断熱材であるポリウレタンフォームである。 The refrigerator 1 has doors for opening and closing the openings of the respective storage compartments. These doors are divided left and right rotating refrigerating chamber doors 2a and 2b for opening and closing the opening of the refrigerating chamber 2, ice making chamber 3, freezing chamber 4, first switching chamber 5 and second switching chamber 6. They are a drawer-type icemaker door 3a, a freezer compartment door 4a, a first switchable compartment door 5a, and a second switchable compartment door 6a that open and close the respective openings. The interior material of these multiple doors is primarily polyurethane foam, which is foam insulation.

冷蔵庫1の外形寸法は幅685mm、奥行き738mm、高さ1833mmであり、JISC9801-3:2015に基づく定格内容積は、冷蔵室2が308L、製氷室3が23L、冷凍室4が32L、第一切替室5が104L、第二切替室6が100Lである。また、第一切替室扉5aの上端の高さ位置は780mm、第二切替室扉6aの上端の高さ位置は400mmである。 The external dimensions of the refrigerator 1 are 685 mm in width, 738 mm in depth, and 1833 mm in height. The switching chamber 5 is 104L, and the second switching chamber 6 is 100L. The height of the upper end of the first switchable chamber door 5a is 780 mm, and the height of the upper end of the second switchable chamber door 6a is 400 mm.

このように、扉上端の高さ位置が床面から500mm~1200mmに含まれ、屈まずに作業できる食品の出し入れの負担が小さい貯蔵室と、扉上端の高さ位置が床面から500mm以下となり食品の出し入れの負担がやや大きくなる貯蔵室の双方を切替室とすることで、ユーザーがライフスタイルに合わせて使い易いレイアウトを選ぶことができ、使い勝手の良い冷蔵庫となる。また、冷蔵扉上端の高さ位置が床面から500mm~1200mmに含まれる切替室(第一切替室5)の内容積を、扉上端の高さ位置が床面から500mm以下となる切替室(第二切替室6)の内容積と同等にすることで、ライフスタイルに合わせて食品の出し入れの負担が小さい貯蔵室と、食品の出し入れの負担がやや大きくなる貯蔵室の設定を入れ替えて使えるようになるため、使い勝手の良い冷蔵庫となる。なお、第一切替室と第二切替室の定格内容積の差が10%以下であれば両者は同等とみなせる。 In this way, the height position of the upper end of the door is included in 500 mm to 1200 mm from the floor, and there is a storage room where the burden of putting in and taking out food is small, and the height position of the upper end of the door is 500 mm or less from the floor. By using switchable compartments for both of the storage compartments where the burden of putting in and taking out food is somewhat large, the user can choose a layout that is easy to use according to their lifestyle, resulting in an easy-to-use refrigerator. In addition, the internal volume of the switchable chamber (first switchable chamber 5) whose height position of the upper end of the refrigeration door is included in 500 mm to 1200 mm from the floor is changed to the switchable chamber whose height position of the upper end of the door is 500 mm or less from the floor surface. By making the internal volume the same as that of the second switching compartment 6), it is possible to switch the setting between the storage room where the burden of taking food in and out is small and the storage room where the load of taking food in and out is slightly larger according to the lifestyle. Therefore, it becomes a convenient refrigerator. If the difference in rated internal volume between the first switchable chamber and the second switchable chamber is 10% or less, the two can be regarded as equivalent.

扉2aの庫外側表面には、庫内の温度設定の操作を行う操作部26を設けている。操作部26の高さ位置(床面からの高さ)は、下端が1200mm、上端が1300mmとしている。このように900mm~1500mmの範囲に操作部26を設けることで、屈んだり、見上げたりせずに温度設定等の操作が可能となり、使い勝手の良い冷蔵庫となる。また、扉の庫外側に操作部を設けることで、扉を開けることなくユーザーが温度設定等の操作を行うことができるようにしている。 An operation part 26 for setting the temperature inside the refrigerator is provided on the outer surface of the door 2a. The height position (height from the floor surface) of the operation unit 26 is 1200 mm at the lower end and 1300 mm at the upper end. By providing the operation part 26 in the range of 900 mm to 1500 mm in this way, it is possible to operate the temperature setting etc. without bending down or looking up, making the refrigerator easy to use. In addition, by providing an operation unit on the outer side of the door, the user can perform operations such as setting the temperature without opening the door.

冷蔵室2と、冷凍室4及び製氷室3は断熱仕切壁28によって隔てられている。また、冷凍室4及び製氷室3と、第一切替室5は断熱仕切壁29によって隔てられ、第一切替室5と第二切替室6は断熱仕切壁30によって隔てられている。 The refrigerator compartment 2 is separated from the freezer compartment 4 and the ice making compartment 3 by a heat insulating partition wall 28 . The freezer compartment 4 and the ice making compartment 3 are separated from the first switchable compartment 5 by the heat insulating partition 29 , and the first switchable compartment 5 and the second switchable compartment 6 are separated by the heat insulating partition 30 .

断熱箱体10の天面庫外側の前方と、断熱仕切壁28の前縁には、冷蔵庫1と扉2a、2bを固定するための扉ヒンジ(図示せず)を備えおり、上部の扉ヒンジは扉ヒンジカバー16で覆っている。 Door hinges (not shown) for fixing the refrigerator 1 and the doors 2a and 2b are provided at the front of the outer side of the top panel of the heat insulating box 10 and at the front edge of the heat insulating partition wall 28, and the upper door hinge is covered with a door hinge cover 16.

製氷室3及び冷凍室4は、基本的に庫内を冷凍温度(0℃未満)の例えば平均的に-18℃程度にした貯蔵室であり、冷蔵室2は庫内を冷蔵温度(0℃以上)の例えば平均的に4℃程度にした貯蔵室である。第一切替室5及び第二切替室6は、操作部26によって冷凍温度もしくは冷蔵温度に設定することができる貯蔵室であり、本実施例の冷蔵庫では、冷蔵温度(平均的に4℃程度に維持)と、冷凍温度(平均的に-18℃程度に維持)の何れかを選択することができる。具体的には、第一切替室5と第二切替室6がともに冷凍温度に設定される「FF」モード、第一切替室5と第二切替室6がそれぞれ冷蔵温度と冷凍温度に設定される「RF」モード、第一切替室5と第二切替室6がそれぞれ冷凍温度と冷蔵温度に設定される「FR」モード、第一切替室5と第二切替室6がともに冷蔵温度に設定される「RR」モードの中から選択することができる。 The ice making compartment 3 and the freezing compartment 4 are basically storage compartments whose insides are kept at a freezing temperature (less than 0°C), for example, about -18°C on average. above), for example, the storage room is set to about 4°C on average. The first switchable compartment 5 and the second switchable compartment 6 are storage compartments that can be set to the freezing temperature or the refrigerating temperature by the operation unit 26. (maintained at about −18° C. on average) or frozen temperature (maintained at about −18° C. on average) can be selected. Specifically, the first switchable compartment 5 and the second switchable compartment 6 are both set to the freezing temperature in the "FF" mode, and the first switchable compartment 5 and the second switchable compartment 6 are set to the refrigerating temperature and the freezing temperature, respectively. "RF" mode in which the first switchable compartment 5 and the second switchable compartment 6 are set to the freezing temperature and the refrigerating temperature respectively, and "FR" mode in which the first switchable compartment 5 and the second switchable compartment 6 are set to the refrigerating temperature. You can choose among the "RR" modes that are available.

図2に示すように、冷蔵庫1は、鋼板製の外箱91と合成樹脂製(本実施例ではABS樹脂)の内箱92
との間に発泡断熱材93(本実施例ではポリウレタンフォーム)を充填して形成される断熱箱体10により、庫外と庫内が隔てられて構成されている。断熱箱体10には発泡断熱材に加えて、発泡断熱材より熱伝導率が低い(断熱性能が高い)真空断熱材を外箱91と内箱92との間に複数実装することで、内容積の低下を抑えて断熱性能を高めている。本実施例の冷蔵庫は、断熱箱体10の背面に真空断熱材25a、下面(底面)に真空断熱材25b、左側面に真空断熱材25c(図3参照)、右側面に真空断熱材25d(図3参照)を実装して、貯蔵室より温度が高い庫外からの熱の侵入を抑えて冷蔵庫1の断熱性能を高めている。同様に、本実施例の冷蔵庫は、第一切替室扉5aに真空断熱材25e、第二切替室扉6aに真空断熱材25fを実装することで、冷蔵庫1の断熱性能を高めている。
As shown in FIG. 2, the refrigerator 1 includes an outer case 91 made of steel plate and an inner case 92 made of synthetic resin (ABS resin in this embodiment).
The outside and the inside are separated from each other by a heat insulating box body 10 formed by filling a foamed heat insulating material 93 (polyurethane foam in this embodiment) between them. In addition to the foamed heat insulating material in the heat insulating box 10, a plurality of vacuum heat insulating materials having a lower thermal conductivity (higher heat insulation performance) than the foamed heat insulating material are mounted between the outer box 91 and the inner box 92. It suppresses the reduction of the product and enhances the heat insulation performance. The refrigerator of this embodiment has a vacuum insulation material 25a on the rear surface of the insulation box body 10, a vacuum insulation material 25b on the bottom surface (bottom surface), a vacuum insulation material 25c on the left side surface (see FIG. 3), and a vacuum insulation material 25d (see FIG. 3) on the right side surface. 3) is mounted to suppress heat from entering from outside, which has a higher temperature than the storage compartment, and improve the insulation performance of the refrigerator 1 . Similarly, in the refrigerator of this embodiment, the heat insulating performance of the refrigerator 1 is enhanced by mounting the vacuum heat insulating material 25e on the first switchable compartment door 5a and the vacuum heat insulating material 25f on the second switchable compartment door 6a.

冷蔵室扉2a、2bは、庫内側に複数の扉ポケット33a、33b、33cを備えている。また、冷蔵室2内は、棚34a、34b、34c、34dによって複数の貯蔵スペースに区画されている。製氷室扉3a、冷凍室扉4a、第一切替室扉5a、第二切替室扉6aは、それぞれ一体に引き出される製氷室容器3b、冷凍室容器4b、第一切替室容器5b、第二切替室容器6bを備えている。 Refrigerating compartment doors 2a, 2b are equipped with a plurality of door pockets 33a, 33b, 33c inside the compartments. The interior of the refrigerator compartment 2 is divided into a plurality of storage spaces by shelves 34a, 34b, 34c, and 34d. The ice making compartment door 3a, the freezing compartment door 4a, the first switching compartment door 5a, and the second switching compartment door 6a are integrated with the ice making compartment container 3b, the freezing compartment container 4b, the first switching compartment container 5b, and the second switching compartment door 6a. A chamber container 6b is provided.

冷蔵室2の背部には、冷蔵室2を冷却する冷却手段である第一蒸発器14aが実装された第一蒸発器室8aを備えている。また、第一切替室5及び第二切替室6の略背部には、製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する冷却手段である第二蒸発器14bが実装された第二蒸発器室8bを備えており、第一切替室5及び第二切替室6と、第二蒸発器室8b、後述する第二ファン吐出風路12、冷凍室風路130、第一切替室風路140、第二切替室風路150(図3参照)との間は、断熱仕切壁27によって隔てられている。 At the back of the refrigerating chamber 2, there is provided a first evaporator chamber 8a in which a first evaporator 14a, which is cooling means for cooling the refrigerating chamber 2, is mounted. A second evaporator 14b, which is cooling means for cooling the ice making chamber 3, the freezer chamber 4, the first switchable chamber 5, and the second switchable chamber 6, is provided substantially behind the first switchable chamber 5 and the second switchable chamber 6. is mounted, the first switching chamber 5 and the second switching chamber 6, the second evaporator chamber 8b, the second fan discharge air passage 12 described later, the freezer compartment air passage 130 , the first switching chamber air passage 140 and the second switching chamber air passage 150 (see FIG. 3) are separated by the heat insulating partition wall 27 .

なお、断熱仕切壁27は、断熱箱体10、断熱仕切壁29及び断熱仕切壁30とは別体であり、図示しないシール部材(一例として軟質ウレタンフォーム)を介して断熱箱体10、断熱仕切壁29及び断熱仕切壁30と接触するように固定し、着脱可能としている。このように、断熱仕切壁27を別体で形成し着脱可能とすることで、第二蒸発器室8bに収納される第二蒸発器14bや後述する第二ファン9b、第一切替室ダンパ101、第二切替室ダンパ102といった断熱仕切壁27により覆われる部品に不具合が生じた場合に、断熱仕切壁27を外して容易にメンテナンスが行えるようになる。 The heat insulating partition wall 27 is separate from the heat insulating box body 10, the heat insulating partition wall 29 and the heat insulating partition wall 30. It is fixed so as to be in contact with the wall 29 and the heat insulating partition wall 30 and is detachable. Thus, by forming the heat insulating partition wall 27 separately and making it detachable, the second evaporator 14b accommodated in the second evaporator chamber 8b, the second fan 9b described later, and the first switching chamber damper 101 , the second switching chamber damper 102, which is covered by the heat insulating partition wall 27, the heat insulating partition wall 27 can be removed for easy maintenance.

また、断熱仕切壁27、28の内部には、真空断熱材は実装せずに主たる断熱部材として発泡断熱材であるポリスチレンフォームを実装している。一方、断熱仕切壁29、30の内部には発泡断熱材であるポリスチレンフォームとともに、それぞれ真空断熱材25g、25hを実装することで断熱性能を高めている。真空断熱材25は、発泡断熱材より熱伝導率が低い(断熱性能が高い)ので、断熱仕切壁29、30の主たる断熱部材は真空断熱材25となる。なお、断熱仕切壁27、28、29、30の内部に用いる発泡断熱材としては、ポリウレタンフォーム、ポリエチレンフォームを用いても良い。 Further, inside the heat insulating partition walls 27 and 28, polystyrene foam, which is a foamed heat insulating material, is mounted as a main heat insulating member without mounting a vacuum heat insulating material. On the other hand, vacuum heat insulating materials 25g and 25h are mounted inside the heat insulating partition walls 29 and 30 together with polystyrene foam, which is a foam heat insulating material, to improve the heat insulating performance. Since the vacuum heat insulating material 25 has a lower thermal conductivity (higher heat insulating performance) than the foam heat insulating material, the main heat insulating member of the heat insulating partition walls 29 and 30 is the vacuum heat insulating material 25 . Polyurethane foam or polyethylene foam may be used as the foamed heat insulating material used inside the heat insulating partition walls 27, 28, 29, and 30. FIG.

冷蔵室2、冷凍室4、第一切替室5、第二切替室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44を設け、第一蒸発器14aの上部には第一蒸発器温度センサ40a、第二蒸発器14bの上部には第二蒸発器温度センサ40bを設けている。これらのセンサにより、冷蔵室2、冷凍室4、第一切替室5、第二切替室6、第一蒸発器室8a、第一蒸発器14a、第二蒸発器室8b、及び、第二蒸発器14bの温度を検知している。また、冷蔵庫1の天井部の扉ヒンジカバー16の内部には、外気温度センサ37と外気湿度センサ38を設け、外気(庫外空気)の温度と湿度を検知している。その他にも、扉センサ(図示せず)を設けることで、扉2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知している。 Refrigerator compartment temperature sensor 41, freezer compartment temperature sensor 42, first switchable compartment temperature sensor 43, second A switching chamber temperature sensor 44 is provided, a first evaporator temperature sensor 40a is provided above the first evaporator 14a, and a second evaporator temperature sensor 40b is provided above the second evaporator 14b. With these sensors, the refrigerator compartment 2, the freezer compartment 4, the first switching compartment 5, the second switching compartment 6, the first evaporator compartment 8a, the first evaporator 14a, the second evaporator compartment 8b, and the second evaporation The temperature of the container 14b is detected. An outside air temperature sensor 37 and an outside air humidity sensor 38 are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1 to detect the temperature and humidity of the outside air (outside air). In addition, door sensors (not shown) are provided to detect the open/closed states of the doors 2a, 2b, 3a, 4a, 5a, and 6a.

次に図3~図5及び適宜図2を参照しながら庫内の風路構成について説明する。図3(a)は、図1の扉、容器、後述する吐出口形成部材を外した状態の正面図、図3(b)は、図1の扉及び容器を外した状態の正面図である。図4は、図3(b)中に示すB-B断面の要部拡大図である。図5は、実施例に係る冷蔵庫の製氷室3、冷凍室4、第一切替室5及び第二切替室6の冷却空気の風路構造の概略図である。 Next, the configuration of air passages in the refrigerator will be described with reference to FIGS. 3 to 5 and optionally FIG. FIG. 3(a) is a front view of FIG. 1 with the door, container, and discharge port forming member described later removed, and FIG. 3(b) is a front view of FIG. 1 with the door and container removed. . FIG. 4 is an enlarged view of the main part of the BB cross section shown in FIG. 3(b). FIG. 5 is a schematic diagram of the cooling air passage structure of the ice making compartment 3, the freezing compartment 4, the first switchable compartment 5 and the second switchable compartment 6 of the refrigerator according to the embodiment.

図3(a)に示すように、第一蒸発器14aの上方には第一ファン9aを備えている。第一ファン9aにより送り出される冷却空気は、冷蔵室風路110、冷蔵室吐出口110aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。ここで、第一ファン9aの形態は、遠心ファンであるターボファン(後向きファン)であり、回転速度は高速(1600min-1)と低速(1000min-1)に制御可能となっている。冷蔵室2に送風された空気は冷蔵室戻り口110b(図2参照)及び冷蔵室戻り口110cから第一蒸発器室8aへと戻り、再び第一蒸発器14aと熱交換する。冷蔵室戻り口110b及び110cには後述する第一排水管の最小径よりも隙間が小さいスリット(図示せず)を設け、排水口(図示せず)及び第一排水管での食品のつまりを防止している。 As shown in FIG. 3(a), a first fan 9a is provided above the first evaporator 14a. The cooling air sent out by the first fan 9 a is blown into the refrigerator compartment 2 through the refrigerator compartment air passage 110 and the refrigerator compartment outlet 110 a to cool the inside of the refrigerator compartment 2 . Here, the form of the first fan 9a is a centrifugal turbo fan (backward fan), and the rotation speed can be controlled between high speed (1600 min -1 ) and low speed (1000 min -1 ). The air blown into the refrigerator compartment 2 returns to the first evaporator compartment 8a through the refrigerator compartment return port 110b (see FIG. 2) and the refrigerator compartment return port 110c, and exchanges heat with the first evaporator 14a again. A slit (not shown) with a gap smaller than the minimum diameter of the first drain pipe described later is provided at the refrigerator compartment return ports 110b and 110c to prevent clogging of the drain port (not shown) and the first drain pipe. are preventing.

冷蔵室2の冷蔵室吐出口110aは冷蔵室2の上部に設けており、本実施例では最上段の棚34aと二段目の棚34bの上方に空気が吐出するように設けている。また、冷蔵室戻り口110cは冷蔵室2の棚34cと棚34dの間に形成される空間の背部に設け、冷蔵室戻り口110bは冷蔵室2の棚34dと断熱仕切壁28の間に形成される空間の略背面に設けている。 A refrigerating chamber discharge port 110a of the refrigerating chamber 2 is provided in the upper portion of the refrigerating chamber 2, and in this embodiment, is provided so that air is discharged above the uppermost shelf 34a and the second shelf 34b. The refrigerator compartment return port 110c is provided at the back of the space formed between the shelf 34c and the shelf 34d of the refrigerator compartment 2, and the refrigerator compartment return port 110b is formed between the shelf 34d of the refrigerator compartment 2 and the heat insulating partition wall 28. It is provided almost at the back of the space where the

図3(b)に示すように、冷蔵室2内の棚34dの上部には、容器35が備えられており、容器35内部は、冷却空気が直接送風されない間接冷却空間となっている。これにより、食品の乾燥が抑制され、野菜等の乾燥に弱い食品の収納に適した収納スペースとなる。 As shown in FIG. 3(b), a container 35 is provided above the shelf 34d in the refrigerator compartment 2, and the inside of the container 35 is an indirect cooling space to which cooling air is not directly blown. As a result, drying of food is suppressed, and the storage space becomes suitable for storing food such as vegetables that are susceptible to drying.

なお、内箱92と容器35の左壁間や、仕切壁35bと容器35の右壁間などの容器35とその他の壁面との間には約8mmの隙間を設けており、容器35の出し入れを容易にしている。同様に、容器35に取手35aを設けることで、出し入れを容易にしている。 A gap of about 8 mm is provided between the container 35 and other wall surfaces such as between the inner box 92 and the left wall of the container 35 and between the partition wall 35b and the right wall of the container 35 so that the container 35 can be put in and taken out. making it easier. Similarly, the container 35 is provided with a handle 35a to facilitate taking it in and out.

図3(b)に示すように、冷蔵室2内の、断熱仕切壁28の上部には、内部が-1℃程度に維持される容器36が備えられており、容器36の前方は蓋体36aにより開閉可能となっている。蓋体36aの外周にはパッキン(図示せず)が備えられており、蓋体36aを閉鎖状態とした場合、パッキンにより蓋体36aと容器36が隙間なく接触し、密閉される構造となっている。また、容器36の背部には、容器36内の空気を吸引するポンプ(図示せず)が備えられており、蓋体36aが閉鎖された状態でポンプを駆動することで、容器36内の気圧が約0.8気圧に減圧されるようにしている。これにより容器36内は、蓋体36aにより冷却空気が直接送風されなくなるとともに、減圧環境となるので、食品の乾燥と酸化を抑制する収納スペースとなる。 As shown in FIG. 3(b), a container 36 whose interior is maintained at about -1° C. is provided above the heat-insulating partition wall 28 in the refrigerating chamber 2, and a lid is provided in front of the container 36. It can be opened and closed by 36a. A packing (not shown) is provided on the outer circumference of the lid 36a, and when the lid 36a is closed, the lid 36a and the container 36 come into contact with each other without gaps due to the packing, forming an airtight structure. there is A pump (not shown) for sucking the air in the container 36 is provided at the back of the container 36. By driving the pump with the lid 36a closed, the pressure inside the container 36 is reduced. is decompressed to about 0.8 atm. As a result, the inside of the container 36 is prevented from being directly blown with cooling air by the lid 36a, and becomes a reduced-pressure environment, thereby providing a storage space that suppresses drying and oxidation of the food.

図3(a)に示すように本実施例の冷蔵庫は、第一切替室5及び第二切替室6への送風遮断手段として、第一切替室ダンパ101、第二切替室ダンパ102を備えている。第一切替室ダンパ101は第一切替室5の背部に実装され、第二切替室ダンパ102は第二切替室6の背部に実装されている。ここで、第一切替室ダンパ101の開口面積は6300mm(幅180mm×高さ35mm)、第二切替室ダンパ102の開口面積は5200mm(幅80mm×高さ65mm)である。 As shown in FIG. 3( a ), the refrigerator of this embodiment includes a first switchable compartment damper 101 and a second switchable compartment damper 102 as means for blocking airflow to the first switchable compartment 5 and the second switchable compartment 6 . there is The first switching chamber damper 101 is mounted behind the first switching chamber 5 , and the second switching chamber damper 102 is mounted behind the second switching chamber 6 . Here, the opening area of the first switching chamber damper 101 is 6300 mm 2 (width 180 mm×height 35 mm), and the opening area of the second switching chamber damper 102 is 5200 mm 2 (width 80 mm×height 65 mm).

図2に示すように、第二蒸発器14bは第一切替室5、第二切替室6、及び断熱仕切壁30の略背部の第二蒸発器室8b内に設けてある。第二蒸発器14bの上方には第二ファン9bを備えている。第二ファン9bは、遠心ファンであるターボファン(後向きファン)であり、回転速度は高速(1800min-1)と低速(1200min-1)に制御可能となっている。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口120c(図3参照)より冷凍室戻り風路120d(図3参照)を介して、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 As shown in FIG. 2, the second evaporator 14b is provided in the second evaporator chamber 8b substantially behind the first switchable chamber 5, the second switchable chamber 6, and the heat insulating partition wall 30. As shown in FIG. A second fan 9b is provided above the second evaporator 14b. The second fan 9b is a centrifugal turbo fan (backward fan) whose rotational speed can be controlled between high speed (1800 min -1 ) and low speed (1200 min -1 ). The air that has cooled the ice making chamber 3 and the freezer compartment 4 returns to the second evaporator chamber 8b from the freezer compartment return port 120c (see FIG. 3) through the freezer compartment return air passage 120d (see FIG. 3), and then returns to the second evaporator compartment 8b. It exchanges heat with the second evaporator 14b.

図4に示すように、第二切替室6は、背面上部に第二切替室戻り口112bを備えている。第二切替室戻り口112bから流入した空気は、第二切替室戻り口112bから下方に延伸する第二切替室戻り風路112cを流れ、第二切替室戻り口112bより高さ位置が低く形成された第二蒸発器室流入口112dに至り、第二蒸発器室8bに流れ込む。このように第二切替室戻り口112bから第二蒸発器室流入口112dに至る間に、下方に延伸する風路(第二切替室戻り風路112c)を備えることで、第二ファン9bが停止した際に、第二蒸発器室8b内の低温空気が第二切替室6内に逆流し難くなる。これにより、特に第二切替室6が冷蔵温度に設定された際に、第二切替室6が冷え過ぎるといった事態が生じ難い冷蔵庫とすることができる。なお、第二切替室戻り口112bから第二蒸発器室流入口112dに至る間に、下方に延伸する風路があれば良いので、第二切替室戻り口112bから流入した空気が、上方に向けて流れた後に、下方に延伸する風路を流れるように構成することもできる。 As shown in FIG. 4, the second switching chamber 6 has a second switching chamber return port 112b on the upper back surface. The air that has flowed in from the second switchable chamber return port 112b flows through the second switchable chamber return air passage 112c that extends downward from the second switchable chamber return port 112b, and is formed at a lower height than the second switchable chamber return port 112b. It reaches the second evaporator chamber inlet 112d, and flows into the second evaporator chamber 8b. By providing the downwardly extending air passage (second switching chamber return air passage 112c) between the second switching chamber return port 112b and the second evaporator chamber inlet 112d in this manner, the second fan 9b can be When stopped, the low-temperature air in the second evaporator chamber 8b is less likely to flow back into the second switching chamber 6. - 特許庁As a result, it is possible to provide a refrigerator in which a situation in which the second switchable compartment 6 is overcooled is unlikely to occur, particularly when the second switchable compartment 6 is set to the refrigerating temperature. In addition, since it is sufficient if there is an air path extending downward between the second switching chamber return port 112b and the second evaporator chamber inlet 112d, the air flowing in from the second switching chamber return port 112b is directed upward. It can also be configured such that after flowing toward it, it flows through an air path that extends downward.

図5に示すように、第二蒸発器14bと熱交換して低温になった空気は、第二ファン9bを駆動することにより、第一切替室ダンパ101、第二切替室ダンパ102の開閉状態に依らず第二ファン吐出風路12、冷凍室風路130、冷凍室吐出口120a、120bを介して製氷室3及び冷凍室4に送られ、製氷室3の製氷皿内の水、容器3b内の氷、冷凍室4内の容器4bに収納された食品等を冷却する。製氷室3及び冷凍室4を冷却した空気は、冷凍室戻り口120cより冷凍室戻り風路120dを介して、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 As shown in FIG. 5, the low-temperature air that has been heat-exchanged with the second evaporator 14b drives the second fan 9b, thereby opening and closing the first switchable chamber damper 101 and the second switchable chamber damper 102. It is sent to the ice making compartment 3 and the freezing compartment 4 via the second fan discharge air passage 12, the freezer compartment air passage 130, and the freezer compartment outlets 120a and 120b, and the water in the ice tray of the ice making compartment 3, the container 3b The ice inside the freezer compartment 4 and the food stored in the container 4b inside the freezer compartment 4 are cooled. The air that has cooled the ice making compartment 3 and the freezing compartment 4 returns to the second evaporator compartment 8b from the freezing compartment return port 120c via the freezing compartment return air passage 120d, and exchanges heat with the second evaporator 14b again.

次に、第一切替室ダンパ101が開放状態に制御されている場合は、第二ファン9bにより昇圧された空気は、第二ファン吐出風路12、第一切替室風路140、第一切替室ダンパ101、吐出口形成部材111(図3参照)に備えられた第一切替室吐出口111aを介して、第一切替室5に設けた第一切替室容器5b内に送られて、第一切替室容器5b内の食品を冷却する。第一切替室5を冷却した空気は、第一切替室戻り口111b、冷凍室戻り風路120dを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 Next, when the first switching chamber damper 101 is controlled to be in an open state, the air pressurized by the second fan 9b flows through the second fan discharge air passage 12, the first switching chamber air passage 140, and the first switching chamber air passage 140. It is sent into the first switchable chamber container 5b provided in the first switchable chamber 5 through the first switchable chamber outlet 111a provided in the chamber damper 101 and the outlet forming member 111 (see FIG. 3). The food in the one-switchable chamber container 5b is cooled. The air that has cooled the first switchable compartment 5 flows through the first switchable compartment return port 111b and the freezer compartment return air path 120d, returns to the second evaporator compartment 8b, and exchanges heat with the second evaporator 14b again.

また、第二切替室ダンパ102が開放状態に制御されている場合は、第二ファン9bにより昇圧された空気は、第二ファン吐出風路12、第二切替室風路150、第二切替室ダンパ102、吐出口形成部材112(図3参照)に備えられた第二切替室吐出口112aを介して、第二切替室6に設けた第二切替室容器6b内に送られて、第二切替室容器6b内の食品を冷却する。第二切替室6を冷却した空気は、第二切替室戻り口112b、第二切替室戻り風路112cを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。なお、低温の蒸発器が収納される蒸発器室(本実施例では第二蒸発器室8b)、蒸発器と熱交換して低温になった空気が流れる風路(本実施例では、第二ファン吐出風路12、冷凍室風路130、第一切替室風路140、第二切替室風路150)、冷凍温度に維持される貯蔵室(本実施例では製氷室3、冷凍室4、冷凍温度に設定された場合の第一切替室5、冷凍温度に設定された場合の第二切替室6)、冷凍温度に維持される貯蔵室からの戻り風路(本実施例では、冷凍室戻り風路120d、冷凍温度に設定された場合の第二切替室戻り風路112c)は、冷凍温度になる空間であるため、以下では冷凍温度空間と呼ぶ。 Further, when the second switchable chamber damper 102 is controlled to be in an open state, the air pressurized by the second fan 9b flows through the second fan discharge air passage 12, the second switchable chamber air passage 150, and the second switchable chamber. It is sent into the second switchable chamber container 6b provided in the second switchable chamber 6 via the damper 102 and the second switchable chamber outlet 112a provided in the outlet forming member 112 (see FIG. 3), and the second The food in the switchable chamber container 6b is cooled. The air that has cooled the second switchable chamber 6 flows through the second switchable chamber return port 112b and the second switchable chamber return air passage 112c, returns to the second evaporator chamber 8b, and again heat-exchanges with the second evaporator 14b. . In addition, an evaporator chamber (second evaporator chamber 8b in this embodiment) in which a low-temperature evaporator is housed, and an air passage (second fan discharge air path 12, freezer compartment air path 130, first switchable compartment air path 140, second switchable compartment air path 150), storage compartments maintained at freezing temperature (in this embodiment, ice making compartment 3, freezer compartment 4, The first switchable chamber 5 when set to the freezing temperature, the second switchable chamber 6 when set to the freezing temperature), the return air path from the storage compartment maintained at the freezing temperature (in this embodiment, the freezer compartment Since the return air path 120d and the second switching chamber return air path 112c when set to the freezing temperature are spaces that reach the freezing temperature, they are hereinafter referred to as freezing temperature spaces.

図6は、実施例に係る冷蔵庫の冷凍サイクルの構成を表す図である。本実施例の冷蔵庫では、圧縮機24、冷媒の放熱を行う放熱手段としての庫外放熱器50a、壁面放熱配管50b(外箱91と内箱92の間の領域の外箱91の内面に配置)、断熱仕切壁28、29、30の前面部及び断熱箱体10の前縁部近傍への結露を抑制する結露防止配管50c(断熱仕切壁28、29、30の内面に配置)、冷媒を減圧する減圧手段である第一キャピラリチューブ53aと第二キャピラリチューブ53b、冷媒と庫内の空気を熱交換することで庫内の熱を吸熱する第一蒸発器14aと第二蒸発器14bを備えている。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒の圧縮機24への流入を抑制する気液分離器54a、54b、冷媒流路を制御する冷媒制御弁52、逆止弁56、冷媒流を接続する冷媒合流部55を備えており、これらを冷媒配管で接続して冷凍サイクルを構成している。冷媒は可燃性冷媒のイソブタンである。 FIG. 6 is a diagram showing the configuration of the refrigerating cycle of the refrigerator according to the embodiment. In the refrigerator of this embodiment, the compressor 24, the outside heat radiator 50a as heat dissipation means for heat dissipation of the refrigerant, the wall heat dissipation pipe 50b (arranged on the inner surface of the outer case 91 in the region between the outer case 91 and the inner case 92) ), dew condensation prevention piping 50c (arranged on the inner surface of the heat insulating partition walls 28, 29, 30) for suppressing condensation near the front portions of the heat insulating partition walls 28, 29, 30 and the front edge portion of the heat insulating box body 10, and the refrigerant Equipped with a first capillary tube 53a and a second capillary tube 53b, which are decompression means for reducing pressure, and a first evaporator 14a and a second evaporator 14b that absorb heat in the chamber by exchanging heat between the refrigerant and the air in the chamber. ing. Also, a dryer 51 for removing moisture in the refrigerating cycle, gas-liquid separators 54a and 54b for suppressing the inflow of liquid refrigerant into the compressor 24, a refrigerant control valve 52 for controlling the refrigerant flow path, a check valve 56, A refrigerant junction 55 for connecting refrigerant flows is provided, and these are connected by refrigerant pipes to form a refrigeration cycle. The refrigerant is isobutane, a flammable refrigerant.

冷媒制御弁52は、流出口52a、52bを備えており、流出口52aを開放し、流出口52bを閉鎖した「状態1」、流出口52aを閉鎖し、流出口52bを開放した「状態2」、流出口52aと流出口52bの何れも閉鎖した「状態3」、流出口52aと流出口52bの何れも開放した「状態4」の4つの状態に切換え可能な弁である。なお、圧縮機24の回転速度は高速(2500min-1)、中速(1500min-1)、低速(1000min-1)の3段階に制御可能となっている。 The refrigerant control valve 52 has outflow ports 52a and 52b, and can be in “state 1” in which the outflow port 52a is open and the outflow port 52b is closed, and in “state 2” in which the outflow port 52a is closed and the outflow port 52b is open. , "state 3" in which both the outlets 52a and 52b are closed, and "state 4" in which both the outlets 52a and 52b are open. The rotational speed of the compressor 24 can be controlled in three stages, high speed (2500 min -1 ), medium speed (1500 min -1 ) and low speed (1000 min -1 ).

次に本実施例の冷蔵庫の冷媒の流れについて説明する。圧縮機24から吐出した高温高圧冷媒は、庫外放熱器50a、壁面放熱配管50b、結露防止配管50c、ドライヤ51の順に流れ、冷媒制御弁52に至る。冷媒制御弁52の流出口52aは冷媒配管を介して第一キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して第二キャピラリチューブ53bと接続されている。 Next, the flow of refrigerant in the refrigerator of this embodiment will be described. The high-temperature, high-pressure refrigerant discharged from the compressor 24 flows through the outside radiator 50 a , the wall heat radiation pipe 50 b , the dew condensation prevention pipe 50 c , the dryer 51 in this order, and reaches the refrigerant control valve 52 . The outflow port 52a of the refrigerant control valve 52 is connected to the first capillary tube 53a via a refrigerant pipe, and the outflow port 52b is connected to the second capillary tube 53b via a refrigerant pipe.

第一蒸発器14aにより冷蔵室2を冷却する場合は、冷媒制御弁52を、流出口52a側に冷媒が流れる「状態1」に制御する。流出口52aから流出した冷媒は、第一キャピラリチューブ53aにより減圧されて低温低圧となり、第一蒸発器14aに入り庫内空気と熱交換した後に、気液分離機54a、第一キャピラリチューブ53a内の冷媒と熱交換する熱交換部57a、冷媒合流部55を流れ、圧縮機24に戻る。 When the refrigerator compartment 2 is cooled by the first evaporator 14a, the refrigerant control valve 52 is controlled to "state 1" in which the refrigerant flows to the outflow port 52a side. The refrigerant flowing out from the outflow port 52a is decompressed by the first capillary tube 53a, becomes low temperature and low pressure, enters the first evaporator 14a, exchanges heat with the air in the warehouse, and then flows into the gas-liquid separator 54a and the first capillary tube 53a. The refrigerant flows through the heat exchange portion 57 a that exchanges heat with the refrigerant, the refrigerant junction portion 55 , and returns to the compressor 24 .

第二蒸発器14bにより製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する場合は、冷媒制御弁52を、流出口52b側に冷媒が流れる「状態2」に制御する。流出口52bから流出した冷媒は、第二キャピラリチューブ53bにより減圧されて低温低圧となり、第二蒸発器14bに入り庫内空気と熱交換した後に、気液分離機54b、第二キャピラリチューブ53b内の冷媒と熱交換する熱交換部57b、逆止弁56、冷媒合流部55の順に流れ、圧縮機24に戻る。逆止弁56は冷媒合流部55から第二蒸発器14b側に向かう流れを阻止するように配設している。 When the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 are cooled by the second evaporator 14b, the refrigerant control valve 52 is set to "state 2" in which the refrigerant flows to the outflow port 52b side. Control. The refrigerant flowing out from the outflow port 52b is decompressed by the second capillary tube 53b, becomes low temperature and low pressure, enters the second evaporator 14b, exchanges heat with the air in the warehouse, and then flows into the gas-liquid separator 54b and the second capillary tube 53b. , the check valve 56 , and the refrigerant junction 55 , and returns to the compressor 24 . The check valve 56 is arranged so as to block the flow from the refrigerant junction 55 toward the second evaporator 14b.

図7は、実施例に係る冷蔵庫の壁面放熱配管50bと、結露防止配管50cの配置を示す図である。断熱箱体10の背面側下部に設けられた機械室39内には、庫外放熱器50a(図6参照)が設置されており、庫外放熱器50aの出口配管は、壁面放熱配管50bに接続される(機械室39内の構成は図7中に図示せず)。図7中に示すように、断熱箱体10の左壁、天井壁、右壁には壁面放熱配管50b(図7中に示すA点からB点に至る配管)が配設されている。また、断熱箱体10の前面側には、断熱仕切壁28、29、30の前面部及び断熱箱体10の前縁部近傍への結露を抑制する結露防止配管50c(図7中に示すD点からE点に至る配管)が配設されている。 FIG. 7 is a diagram showing the arrangement of the wall heat radiation pipe 50b and the dew condensation prevention pipe 50c of the refrigerator according to the embodiment. An outside radiator 50a (see FIG. 6) is installed in the machine room 39 provided on the lower back side of the heat insulating box 10, and the outlet pipe of the outside radiator 50a is connected to the wall surface heat radiating pipe 50b. (the configuration inside the machine room 39 is not shown in FIG. 7). As shown in FIG. 7, wall surface radiation pipes 50b (pipes from point A to point B shown in FIG. 7) are arranged on the left wall, the ceiling wall, and the right wall of the heat insulating box 10 . In addition, on the front side of the heat insulating box 10, dew condensation prevention pipes 50c (D A pipe from point to point E) is installed.

冷媒は、断熱箱体10の左壁後方下部のA点から壁面放熱配管50bに入り、断熱箱体10の左壁、天井壁、右壁の順に流れて、B点で断熱箱体10の右壁から機械室39に入る。続いてC点から再び断熱箱体10内に入り、結露防止配管50cの始点となるD点に至る(C点からD点は接続配管)。D点から断熱箱体10の前縁、断熱仕切壁30、断熱仕切壁29、断熱仕切壁28を流れて、E点に至る。さらに右壁の下部を流れてF点において再び機械室39に入り、機械室内に設置されるドライヤ51(図6参照)に至る。 The refrigerant enters the wall heat radiation pipe 50b from point A on the rear lower part of the left wall of the heat insulating box 10, flows through the left wall, the ceiling wall, and the right wall of the heat insulating box 10 in order, and reaches the right side of the heat insulating box 10 at point B. Enter the machine room 39 through the wall. Then, from point C, it enters the heat insulating box 10 again and reaches point D, which is the starting point of the dew condensation prevention pipe 50c (from point C to point D is the connecting pipe). From the point D, it flows through the front edge of the heat insulating box 10, the heat insulating partition wall 30, the heat insulating partition wall 29, and the heat insulating partition wall 28, and reaches the point E. Further, it flows under the right wall, enters the machine room 39 again at point F, and reaches the dryer 51 (see FIG. 6) installed in the machine room.

図8は、実施例に係る冷蔵庫の断熱箱体10の左壁の構成を示す水平断面図である。断熱箱体10は、外箱91(厚さ0.45mmの鋼板)と内箱92(厚さ0.9mmのABS樹脂)と、その間に充填されたポリウレタンフォーム93、及び、外箱91側に設置された真空断熱材25cから構成されている。真空断熱材25cには溝250が形成されており、溝250と外箱91の間に形成される領域に、上下に亘って壁面放熱配管50bが配設されている。壁面放熱配管50bは図示しない金属テープ(アルミニウムテープ)により、外箱91に固定されており、真空断熱材25cは図示しない接着剤によって外箱91に固定されている。外箱91は金属(鋼板)であるため熱伝導率が高く、また、金属テープで固定されていることから、壁面放熱配管50bの熱は外箱91に良好に伝導されるとともに、外箱91に固定されている真空断熱材25cの表面にも良好に伝導される。すなわち、壁面放熱配管50bは、真空断熱材25cと熱的に略接触した状態となる。なお、壁面放熱配管と真空断熱材の間に十分な空隙、または、断熱部材(具体的には10mm以上の空隙、または、10mm以上の厚さの断熱部材)が介在していない場合は、壁面放熱配管と、真空断熱材は熱的に略接触した状態とみなせる。以後、熱的に略接触した状態を、近接と呼ぶことがある。ちなみに、断熱箱体10の右壁も上述の左壁と略左右対称の構成となっており、壁面放熱配管50bが、真空断熱材25dと熱的に略接触した状態となっている。 FIG. 8 is a horizontal cross-sectional view showing the configuration of the left wall of the heat insulating box body 10 of the refrigerator according to the embodiment. The heat insulating box body 10 includes an outer box 91 (steel plate with a thickness of 0.45 mm), an inner box 92 (ABS resin with a thickness of 0.9 mm), a polyurethane foam 93 filled between them, and the outer box 91 side. It is composed of the installed vacuum heat insulating material 25c. A groove 250 is formed in the vacuum heat insulating material 25c, and a wall surface heat radiation pipe 50b is arranged vertically in a region formed between the groove 250 and the outer case 91. As shown in FIG. The wall heat radiation pipe 50b is fixed to the outer case 91 with a metal tape (aluminum tape) not shown, and the vacuum heat insulating material 25c is fixed to the outer case 91 with an adhesive not shown. Since the outer case 91 is made of metal (steel plate), it has a high thermal conductivity. It is also well conducted to the surface of the vacuum heat insulating material 25c fixed to. That is, the wall surface heat radiation pipe 50b is in a state of being substantially in thermal contact with the vacuum heat insulating material 25c. In addition, if there is no sufficient gap or heat insulating material (specifically, a gap of 10 mm or more, or a heat insulating material with a thickness of 10 mm or more) between the wall heat radiation pipe and the vacuum insulation material, the wall surface It can be considered that the heat radiation piping and the vacuum insulation material are in a state of being thermally substantially in contact with each other. Hereinafter, the state of being in thermal contact may be referred to as proximity. Incidentally, the right wall of the heat insulating box 10 is also substantially bilaterally symmetrical with the left wall described above, and the wall heat radiating pipe 50b is in substantially thermal contact with the vacuum heat insulating material 25d.

図9は、実施例に係る冷蔵庫の真空断熱材25(25a~25h)の基本構成を示す図である。真空断熱材25はガスバリア性を備えた外包材72と、外包材72の内部に芯材70と吸着剤71を封入した状態で、外包材72の内部のガスを排出し、端部72aを熱溶着することで形成された断熱部材である。外包材72の端部72aは図9に示すように折り返して図示しないテープで固定することで、芯材70の形状に略一致した断熱部材とすることができる。外包材72は、少なくとも一層は金属を含むガスバリア層(金属箔層または金属蒸着層)を備えたラミネートフィルムである。具体的な構成の一例として、外包材72を4層ラミネートフィルムとし、最も外側の第一層は表面保護層として、ポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の樹脂フィルムを用い、第二層には、第1ガスバリア層として、アルミニウム蒸着付きのポリエチレンテレフタレートフィルム、第三層には、第2ガスバリア層として、アルミニウム蒸着付きのエチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、又はアルミ箔とし、最も内側の第四層は、熱溶着層として、未延伸タイプのポリエチレン、ポリプロピレン等の樹脂フィルムとすることができる。 FIG. 9 is a diagram showing the basic configuration of the vacuum heat insulating material 25 (25a to 25h) of the refrigerator according to the embodiment. The vacuum heat insulating material 25 includes an outer wrapping material 72 having a gas barrier property, and a core material 70 and an adsorbent 71 enclosed in the outer wrapping material 72. The gas inside the outer wrapping material 72 is discharged, and the end portion 72a is heated. It is a heat insulating member formed by welding. The end portion 72a of the outer wrapping material 72 is folded back as shown in FIG. The outer wrapping material 72 is a laminate film having at least one gas barrier layer containing metal (a metal foil layer or a metal deposition layer). As an example of a specific configuration, the outer wrapping material 72 is a four-layer laminate film, the outermost first layer is a surface protective layer made of a resin film such as polypropylene, polyamide, polyethylene terephthalate, and the second layer is a 4-layer laminate film. A polyethylene terephthalate film with vapor deposition of aluminum as the first gas barrier layer, an ethylene vinyl alcohol copolymer resin film with vapor deposition of aluminum or a biaxially stretched polyvinyl alcohol resin film with vapor deposition of aluminum as the second gas barrier layer in the third layer, Alternatively, an aluminum foil can be used, and the innermost fourth layer can be a resin film such as unstretched polyethylene or polypropylene as a heat-sealable layer.

図10は第一切替室扉5aと容器5bを外した状態で第一切替室5を前方から見た図である。断熱仕切壁29及び断熱仕切壁30の内部には、図10中に点線で示すように真空断熱材25g及び真空断熱材25hが実装されており、真空断熱材25g及び真空断熱材25hの面積(幅寸法×奥行寸法)は、それぞれ272000mm、266700mmである。また、図10中に破線で示すように、本実施例の冷蔵庫は、第一切替室5の底面、すなわち、断熱仕切壁30の上面30aには、第一切替室5の下方からの加熱手段となる第一切替室第一ヒータ301を備え、第一切替室5の背面、すなわち、断熱仕切壁27の前面27aには第一切替室5の後方からの加熱手段となる第一切替室第二ヒータ302を備えている。さらに、第一切替室5の左面と右面、すなわち、内箱92の左面92aと右面92bには、第一切替室5の左側方からの加熱手段となる第一切替室第三ヒータ303と、第一切替室5の右側方からの加熱手段となる第一切替室第四ヒータ304を備えている。第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303及び第一切替室第四ヒータ304は、図示しない配線により互いに並列に接続された電気ヒータであり、全てが同時に通電される。以下では、第一切替室5の加熱手段となるヒータ(第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303、第一切替室第四ヒータ304)の総称を、第一切替室ヒータ300とする。 FIG. 10 is a front view of the first switchable chamber 5 with the first switchable chamber door 5a and container 5b removed. Inside the heat insulating partition wall 29 and the heat insulating partition wall 30, a vacuum heat insulating material 25g and a vacuum heat insulating material 25h are mounted as indicated by dotted lines in FIG. The width dimension×depth dimension) are 272000 mm 2 and 266700 mm 2 respectively. 10, the refrigerator of this embodiment has a bottom surface of the first switchable compartment 5, i.e., an upper surface 30a of the heat insulating partition wall 30, which is provided with heating means from below the first switchable compartment 5. The first switchable chamber first heater 301 is provided on the rear surface of the first switchable chamber 5 , that is, on the front surface 27 a of the heat insulating partition wall 27 . A second heater 302 is provided. Further, on the left and right surfaces of the first switchable chamber 5, that is, on the left surface 92a and the right surface 92b of the inner box 92, a first switchable chamber third heater 303 serving as a heating means from the left side of the first switchable chamber 5, A first switchable chamber fourth heater 304 is provided as heating means from the right side of the first switchable chamber 5 . The first switchable chamber first heater 301, the first switchable chamber second heater 302, the first switchable chamber third heater 303, and the first switchable chamber fourth heater 304 are electric heaters connected in parallel with each other by wiring (not shown). Yes, all energized at the same time. In the following, the heaters (the first heater 301 for the first switchable chamber, the second heater 302 for the first switchable chamber, the third heater 303 for the first switchable chamber, the fourth heater 304 for the first switchable chamber, and ) is collectively referred to as the first switching chamber heater 300 .

第一切替室ヒータ300は図示しない発熱線(一例としてシリコンコードヒータ)とアルミニウム箔を両面粘着テープの一面で固定し、両面粘着テープの他面を加熱面に貼付可能としたアルミ箔ヒータである。第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303、第一切替室第四ヒータ304の有効加熱面積(アルミニウム箔面積)は、それぞれ255200mm、107800mm、11750mm、11750mmである。第一切替室第一ヒータ301は、断熱仕切壁30内の真空断熱材25hの上面(面積266700mm)の過半領域を覆うように配設されており、真空断熱材25hの断熱性能が劣化することで断熱仕切壁30の断熱性能が低下しても、断熱仕切壁30の上面を良好に加熱できるようにしている(詳細は後述)。 The first switching chamber heater 300 is an aluminum foil heater in which a heating wire (a silicon cord heater as an example) and an aluminum foil (not shown) are fixed with a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to the heating surface. . The effective heating area (aluminum foil area) of the first switchable chamber first heater 301, the first switchable chamber second heater 302, the first switchable chamber third heater 303, and the first switchable chamber fourth heater 304 is 255,200 mm 2 , respectively. 107800 mm 2 , 11750 mm 2 and 11750 mm 2 . The first switching chamber first heater 301 is arranged so as to cover the majority of the upper surface (area 266700 mm 2 ) of the vacuum heat insulating material 25h in the heat insulating partition wall 30, and the heat insulating performance of the vacuum heat insulating material 25h deteriorates. Thus, even if the heat insulation performance of the heat insulating partition wall 30 is lowered, the upper surface of the heat insulating partition wall 30 can be heated well (details will be described later).

第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303、第一切替室第四ヒータ304の容量は、それぞれ11.3W、8.6W、3.1W、3.1Wであり、発熱密度(単位面積当たりの発熱量)はそれぞれ44.3W/m、79.8W/m、263.8W/m、263.8W/mである。発熱密度が高いと温度が上昇しやすくなるので、特に真空断熱材25hを備えた断熱仕切壁30に実装された加熱手段(第一切替室第一ヒータ301)の発熱密度は、100W/m以下の44.3W/mに抑えることで温度が上昇することによる真空断熱材25hの劣化が加速され難くしている(詳細は後述)。また、本実施例の冷蔵庫のように、真空断熱材を備えていない断熱仕切壁27に実装された加熱手段(第一切替室第二ヒータ302)の発熱密度を、真空断熱材25hを備えた断熱仕切壁30に実装された加熱手段(第一切替室第一ヒータ302)より小さくすることで、真空断熱材25hを備えた断熱仕切壁の劣化が加速されて、第一切替室5が冷え過ぎるといった事態が生じ難い冷蔵庫としている。 The capacities of the first switchable chamber first heater 301, the first switchable chamber second heater 302, the first switchable chamber third heater 303, and the first switchable chamber fourth heater 304 are 11.3 W, 8.6 W, and 3.6 W, respectively. They are 1 W and 3.1 W, and the heat generation densities (calorific value per unit area) are 44.3 W/m 2 , 79.8 W/m 2 , 263.8 W/m 2 and 263.8 W/m 2 , respectively . Since the temperature tends to rise when the heat generation density is high, the heat generation density of the heating means (the first heater 301 of the first switching chamber) mounted on the heat insulating partition wall 30 having the vacuum heat insulating material 25h is 100 W/m 2 . By suppressing it to the following 44.3 W/m 2 , deterioration of the vacuum heat insulating material 25h due to temperature rise is less likely to be accelerated (details will be described later). In addition, the heat generation density of the heating means (second heater 302 in the first switching chamber) mounted on the heat insulating partition wall 27 not provided with the vacuum heat insulating material, as in the refrigerator of this embodiment, was reduced to By making it smaller than the heating means (first heater 302 of the first switchable chamber) mounted on the heat insulating partition 30, deterioration of the heat insulating partition provided with the vacuum heat insulating material 25h is accelerated, and the first switchable chamber 5 cools down. The refrigerator is designed so that it is difficult for a situation such as overheating to occur.

また、第一切替室ヒータ300の容量(第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303、第一切替室第四ヒータ304の総容量)を20W以上の26.1Wとしている。これにより、特に第一切替室5と第二切替室6がそれぞれ冷蔵温度と冷凍温度に設定される「RF」モードに設定されて、第一切替室5の3つの面が第一切替室5より低温の冷凍温度空間と隣接する状態になり、温度が下がりやすい貯蔵室となった場合に、第一切替室5と冷凍温度空間との間を隔てる断熱仕切壁に実装された真空断熱材が破損するといった不測の事態が生じても第一切替室5を良好に加熱することができ、貯蔵室内が冷えすぎて所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が生じ難い冷蔵庫となる。 Also, the capacity of the first switchable chamber heater 300 (the total capacity of the first switchable chamber first heater 301, the first switchable chamber second heater 302, the first switchable chamber third heater 303, and the first switchable chamber fourth heater 304) is set to 26.1 W, which is 20 W or more. Thereby, in particular, the first switchable chamber 5 and the second switchable chamber 6 are set to the "RF" mode in which the refrigerator temperature and the freezer temperature are respectively set, and the three surfaces of the first switchable chamber 5 are set to the first switchable chamber 5 When the storage compartment becomes adjacent to a freezing temperature space with a lower temperature and the temperature tends to drop, the vacuum insulation material mounted on the insulating partition separating the first switching compartment 5 and the freezing temperature space is removed. Even if an unexpected situation such as breakage occurs, the first switching chamber 5 can be heated well, and the inside of the storage chamber becomes too cold to maintain the desired temperature, or condensation or frost forms on the wall surface of the storage chamber. It becomes a refrigerator in which it is difficult to cause such a problem as

さらに、第一切替室5を下方から加熱する加熱手段(第一切替室第一ヒータ301)の容量(11.3W)を、第一切替室5を背面(後方)、または、左右側面から加熱する加熱手段(第一切替室第二ヒータ302、第一切替室第二ヒータ303、第一切替室第二ヒータ304)の何れの容量(8.6W、3.1W、3.1W)よりも大きくしている。加熱されて温度が上昇した空気は、貯蔵室内を上昇するので、このように下方からの加熱手段(第一切替室第一ヒータ301)の容量(11.3W)を大きくすることで効率的に第一切替室5内を加熱することができ、省エネルギー性能が高くなる。 Furthermore, the capacity (11.3 W) of the heating means (first heater 301 for the first switchable chamber) for heating the first switchable chamber 5 from below is adjusted to heat the first switchable chamber 5 from the back (rear) or the left and right sides. than any capacity (8.6 W, 3.1 W, 3.1 W) of the heating means (first switching chamber second heater 302, first switching chamber second heater 303, first switching chamber second heater 304) making it bigger. Since the air heated and raised in temperature rises in the storage chamber, by increasing the capacity (11.3 W) of the heating means (first switchable chamber first heater 301) from below in this way, the air can be efficiently heated. The inside of the first switching chamber 5 can be heated, and the energy saving performance is improved.

なお、断熱仕切壁30及び断熱仕切壁27は、表面が図示しない厚さ1.5mmの樹脂部材(本実施例ではポリプロピレン)により覆われており、第一切替室第一ヒータ301及び第一切替室第二ヒータ302は、それぞれ断熱仕切壁30及び断熱仕切壁27の樹脂部材の内側(内表面)に貼付されている。従って、断熱仕切壁30内の真空断熱材25hには、第一切替室第一ヒータ301を直接貼付していないが、両者の間には十分な空隙、または、断熱部材(具体的には10mm以上の空隙、または、10mm以上の厚さの断熱部材)が介在していないので、熱的に略接触した状態となる。 The heat insulating partition wall 30 and the heat insulating partition wall 27 are covered with a resin member (polypropylene in this embodiment) having a thickness of 1.5 mm (not shown) on their surfaces, and the first heater 301 in the first switching chamber and the first heater 301 in the first switching chamber. The chamber second heater 302 is attached to the inside (inner surface) of the resin members of the heat insulating partition wall 30 and the heat insulating partition wall 27, respectively. Therefore, although the first heater 301 for the first switching chamber is not directly attached to the vacuum heat insulating material 25h inside the heat insulating partition wall 30, there is a sufficient space between them or a heat insulating member (specifically, 10 mm Since there is no intervening gap, or a heat insulating member having a thickness of 10 mm or more, they are in a substantially thermal contact state.

また、第一切替室第三ヒータ303及び第一切替室第四ヒータ304は、何れも内箱92(ABS樹脂)の内表面(庫外側表面)に貼付されている。図10に示すとおり、第一切替室5を加熱する第一切替室ヒータ300が配設される位置は、第一切替室扉5aと容器5bを外すことで解体作業を伴わずにユーザーが触れることが可能な、貯蔵室の内壁面となる。そこで、上記のように第一切替室ヒータ300と第一切替室5の間に樹脂部材(断熱仕切壁27及び断熱仕切壁30の表面樹脂部材または内箱92)を介在させるように配設することで、ユーザーが清掃等のために第一切替室扉5aと容器5bを外して庫内壁面(断熱仕切壁27、断熱仕切壁30、内箱92の表面)に触れても、ヒータが破損するといった事態が生じない信頼性の高い冷蔵庫としている。 Also, the first switchable chamber third heater 303 and the first switchable chamber fourth heater 304 are both attached to the inner surface (outside surface) of the inner box 92 (ABS resin). As shown in FIG. 10, the position where the first switchable chamber heater 300 that heats the first switchable chamber 5 is disposed can be accessed by the user without dismantling by removing the first switchable chamber door 5a and the container 5b. It becomes the inner wall surface of the storage room that can be used. Therefore, as described above, the resin member (the surface resin member of the heat insulating partition wall 27 and the heat insulating partition wall 30 or the inner box 92) is arranged between the first switchable chamber heater 300 and the first switchable chamber 5. Therefore, even if the user removes the first switching chamber door 5a and the container 5b for cleaning or the like and touches the inner wall surface (the heat insulating partition wall 27, the heat insulating partition wall 30, the surface of the inner box 92), the heater will not be damaged. It is a highly reliable refrigerator that does not cause such a situation.

図11は、第二切替室扉6aと容器6bを外した状態で第二切替室6を前方から見た図である。図11中に破線で示すように、本実施例の冷蔵庫は、第二切替室6の背面を形成する内箱92cには、第二切替室6の後方からの加熱手段となる第二切替室第一ヒータ401を備えている。また、断熱仕切壁30の下面30bには、第二切替室6の上方からの加熱手段となる第二切替室第二ヒータ402を備えている。第二切替室第一ヒータ401、第二切替室第二ヒータ402は図示しない配線により互いに並列に接続されており、同時に通電される。以下では、第二切替室6の加熱手段となるヒータ(第二切替室第一ヒータ401、第二切替室第二ヒータ402)の総称を、第二切替室ヒータ400とする。 FIG. 11 is a front view of the second switchable chamber 6 with the second switchable chamber door 6a and the container 6b removed. As indicated by the dashed line in FIG. 11 , the refrigerator of this embodiment has a second switchable chamber serving as a heating means from the rear of the second switchable chamber 6 in an inner box 92 c forming the back surface of the second switchable chamber 6 . A first heater 401 is provided. In addition, the lower surface 30b of the heat insulating partition wall 30 is provided with a second switchable chamber second heater 402 that serves as heating means for heating the second switchable chamber 6 from above. The second switchable chamber first heater 401 and the second switchable chamber second heater 402 are connected in parallel to each other by wiring (not shown) and are energized simultaneously. Hereinafter, the heaters (second switchable chamber first heater 401 and second switchable chamber second heater 402 ) that serve as heating means for the second switchable chamber 6 are collectively referred to as a second switchable chamber heater 400 .

第二切替室ヒータ400は、図示しない発熱線(一例としてシリコンコードヒータ)とアルミニウム箔を両面粘着テープの一面で固定し、両面粘着テープの他面を加熱面に貼付可能としたアルミ箔ヒータである。第二切替室第一ヒータ401、第二切替室第二ヒータ402の有効加熱面積(アルミニウム箔面積)は、それぞれ40710mm、255200mmであり、ヒータ容量と発熱密度は、それぞれ4.0W、98.3W/m、10.9W、42.7W/mである。第二切替室第一ヒータ401は、内箱92(ABS樹脂)の内表面(庫外側表面)に貼付されており、第二切替室第二ヒータ402は、断熱仕切壁30の樹脂部材内側(内表面)に貼付されている。 The second switching chamber heater 400 is an aluminum foil heater in which a heating wire (a silicon cord heater as an example) and an aluminum foil (not shown) are fixed with a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to the heating surface. be. The effective heating area (aluminum foil area) of the second switchable chamber first heater 401 and the second switchable chamber second heater 402 is 40,710 mm 2 and 255,200 mm 2 respectively, and the heater capacity and heat generation density are 4.0 W and 98 W, respectively. .3 W/m 2 , 10.9 W and 42.7 W/m 2 . The second switchable chamber first heater 401 is attached to the inner surface (outside surface) of the inner box 92 (ABS resin), and the second switchable chamber second heater 402 is attached to the inside of the resin member of the heat insulating partition wall 30 ( inner surface).

図12は、図2における断熱仕切壁30の後端近傍の嵌合部の構成を表す要部拡大断面図である。図12に示すように、断熱仕切壁30の内部には真空断熱材25が実装されている。また、断熱仕切壁30の上面30aを形成する樹脂部材の内面には第一切替室第一ヒータ301、断熱仕切壁30の下面30bを形成する樹脂部材の内面には第二切替室第二ヒータ402がそれぞれ貼付されている。このように断熱仕切壁の内部に真空断熱材とともに加熱手段(ヒータ)を実装する場合には、加熱手段(ヒータ)を真空断熱材に貼付せずに、外周形成部材に貼付することで、ヒータ加熱時の膨張作用に起因する劣化が生じ難くなり、信頼性が高い冷蔵庫となる。また、断熱仕切壁30の後部は、断熱仕切壁27の凹部27aに嵌め込むことで固定されており、断熱仕切壁30に実装された真空断熱材25の後端は、断熱仕切壁27の凹部27aの前縁27bより寸法L(本実施例ではL=30mm)だけ後方に位置するように実装されている。 FIG. 12 is an enlarged cross-sectional view showing the configuration of the fitting portion near the rear end of the heat insulating partition wall 30 in FIG. As shown in FIG. 12, a vacuum heat insulating material 25 is mounted inside the heat insulating partition wall 30 . A first heater 301 for the first switching chamber is provided on the inner surface of the resin member forming the upper surface 30a of the heat insulating partition wall 30, and a second heater 301 for the second switching chamber is provided on the inner surface of the resin member forming the lower surface 30b of the heat insulating partition wall 30. 402 are attached respectively. When the heating means (heater) is mounted inside the heat-insulating partition wall together with the vacuum heat insulating material, the heating means (heater) is not adhered to the vacuum heat insulating material, but is adhered to the outer circumference forming member. Deterioration due to expansion during heating is less likely to occur, and the refrigerator has high reliability. The rear portion of the heat insulating partition wall 30 is fixed by being fitted into the recessed portion 27 a of the heat insulating partition wall 27 , and the rear end of the vacuum heat insulating material 25 mounted on the heat insulating partition wall 30 is fixed to the recess portion of the heat insulating partition wall 27 . It is mounted so as to be located behind the front edge 27b of 27a by a dimension L (L=30 mm in this embodiment).

冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。また、制御基板31は、外気温度センサ37、外気湿度センサ38、冷蔵室温度センサ41、冷凍室温度センサ42、第一切替室温度センサ43、第二切替室温度センサ44、第一蒸発器温度センサ40a、第二蒸発器温度センサ40b等と電気配線(図示せず)で接続されている。制御基板31では、各センサの出力値や操作部26の設定、ROMに予め記録されたプログラム等を基に、後述する圧縮機24や第一ファン9a、第二ファン9bのON/OFFや回転速度制御、第一切替室ダンパ101、第二切替室ダンパ102の開閉制御、第一切替室ヒータ300、第二切替室ヒータ400、後述する除霜ヒータ21の通電制御、冷媒制御弁52の流路切替制御を行っている。 In the upper part of the refrigerator 1, a control board 31 is arranged, which is a part of the control device and has a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like. The control board 31 also includes an outside air temperature sensor 37, an outside air humidity sensor 38, a refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, a first switching compartment temperature sensor 43, a second switching compartment temperature sensor 44, and a first evaporator temperature sensor. It is connected to the sensor 40a, the second evaporator temperature sensor 40b, etc. by electrical wiring (not shown). In the control board 31, based on the output values of each sensor, the setting of the operation unit 26, the programs pre-recorded in the ROM, etc., the compressor 24, the first fan 9a, and the second fan 9b, which will be described later, can be turned on/off and rotated. speed control, opening/closing control of the first switching chamber damper 101 and the second switching chamber damper 102, first switching chamber heater 300, second switching chamber heater 400, energization control of the defrosting heater 21 described later, flow of the refrigerant control valve 52 It performs road switching control.

続いて本実施例の冷蔵庫の第一蒸発器14a及び第二蒸発器14bの除霜運転について説明する。第一蒸発器14aについては、圧縮機24駆動状態で冷媒制御弁52を流出口52bに流れる「状態2」に制御した状態、または、圧縮機24停止状態の何れかの状態に制御することで第一蒸発器14aに冷媒を流さない状態とし、第一ファン9aを駆動して冷蔵室2からの戻り空気による加熱作用で除霜する。第一蒸発器14aの除霜時に発生した除霜水は、第一蒸発器室8aの下部に設けた樋23a(図2参照)から、図示しない第一排水管を介して機械室39に設けた図示しない第一蒸発皿に排出され、圧縮機24からの放熱や、機械室39に設置された図示しない機械室ファンによる通風等の作用により蒸発する。このように第一蒸発器14aの除霜は、ヒータを用いず、第一ファン9aの駆動によって行うため省エネルギー性能が高い冷蔵庫となる。また、霜の水分の一部は除霜によって冷蔵室2に還元されるため、冷蔵室2をより高湿に保つことができる。 Next, the defrosting operation of the first evaporator 14a and the second evaporator 14b of the refrigerator of this embodiment will be described. For the first evaporator 14a, the state where the refrigerant control valve 52 is controlled to the "state 2" in which the refrigerant flows to the outflow port 52b while the compressor 24 is driven, or the state where the compressor 24 is stopped. The first evaporator 14a is in a state in which no refrigerant flows, and the first fan 9a is driven to defrost by the heating action of the return air from the refrigerating compartment 2. FIG. Defrosted water generated during defrosting of the first evaporator 14a is supplied to the machine room 39 from a gutter 23a (see FIG. 2) provided at the bottom of the first evaporator chamber 8a through a first drain pipe (not shown). It is then discharged to a first evaporating dish (not shown) and evaporated by heat radiation from the compressor 24 and ventilation by a machine room fan (not shown) installed in the machine room 39 . Thus, the defrosting of the first evaporator 14a is performed by driving the first fan 9a without using a heater, so that the refrigerator has high energy saving performance. In addition, since part of the frost moisture is returned to the refrigerating compartment 2 by defrosting, the refrigerating compartment 2 can be kept at a higher humidity.

一方、第二蒸発器14bについては、圧縮機24が停止した状態で、第二蒸発器14bの下部に備えられた加熱手段である除霜ヒータ21(図2参照)に通電することで除霜する。除霜ヒータ21は、例えば50W~200Wの電気ヒータを採用すれば良く、本実施例では150Wのラジアントヒータとしている。第二蒸発器14bの除霜時に発生した除霜水は第二蒸発器室8bの下部の樋23b(図2参照)から第二排水管26(図2参照)を介して圧縮機24の上部に設けた第二蒸発皿32(図2参照)に排出され、圧縮機24からの放熱や、図示しない機械室ファンによる通風等の作用により蒸発する。 On the other hand, the second evaporator 14b is defrosted by energizing the defrosting heater 21 (see FIG. 2), which is a heating means provided in the lower part of the second evaporator 14b, while the compressor 24 is stopped. do. The defrosting heater 21 may be, for example, an electric heater of 50 W to 200 W. In this embodiment, a radiant heater of 150 W is used. Defrosted water generated during defrosting of the second evaporator 14b flows from the gutter 23b (see FIG. 2) at the bottom of the second evaporator chamber 8b to the upper part of the compressor 24 via the second drain pipe 26 (see FIG. 2). It is discharged to a second evaporating dish 32 (see FIG. 2) provided in the inner wall, and evaporates due to heat radiation from the compressor 24 and ventilation by a machine room fan (not shown).

以上で、本実施例に係る冷蔵庫の構成を説明したが、次に本実施例に係る冷蔵庫の制御について説明する。図13は、本実施例に係る冷蔵庫の冷却運転制御を表すフローチャートである。 The configuration of the refrigerator according to this embodiment has been described above. Next, control of the refrigerator according to this embodiment will be described. FIG. 13 is a flow chart showing cooling operation control of the refrigerator according to the present embodiment.

図13に示すように、本実施例の冷蔵庫は、電源の投入により冷却運転が開始される(スタート)。電源投入から庫内の貯蔵室が所定の温度レベルに到達するまでのプルダウン運転の制御については省略し、安定運転状態に達した状態において第一蒸発器運転が開始される段階(ステップS101)から説明する。なお、安定運転状態とは、冷蔵庫の扉の開閉が行われない状態で、安定して周期的な冷却運転が行われる状態である(例えばJISC9801-3:2015に規定)。 As shown in FIG. 13, the refrigerator of this embodiment starts the cooling operation (start) when the power is turned on. Control of the pull-down operation from power-on until the storage chamber in the refrigerator reaches a predetermined temperature level is omitted. explain. The stable operation state is a state in which the refrigerator door is not opened and closed, and the cooling operation is performed stably and periodically (for example, defined in JISC9801-3:2015).

第一蒸発器運転とは、冷媒制御弁を「状態1」に制御し、圧縮機24を駆動状態、第一ファン9aを駆動状態として、第一蒸発器14aに供給される低温冷媒で冷蔵室2を冷却する運転である。本実施例の冷蔵庫では、ステップS101により、冷媒制御弁52は「状態1」の状態に制御され、圧縮機24は低速(1000min-1)で駆動、第一ファン9aは高速(1600min-1)で駆動され、冷蔵室2の冷却(第一蒸発器運転)が行われる。 In the first evaporator operation, the refrigerant control valve is controlled to "state 1", the compressor 24 is driven, the first fan 9a is driven, and the low-temperature refrigerant supplied to the first evaporator 14a is used to cool the refrigerator compartment. 2 is cooled. In the refrigerator of this embodiment, in step S101, the refrigerant control valve 52 is controlled to "state 1", the compressor 24 is driven at low speed (1000 min -1 ), and the first fan 9a is driven at high speed (1600 min -1 ). to cool the refrigerator compartment 2 (first evaporator operation).

ステップS101によって開始された第一蒸発器運転は、第一蒸発器運転終了条件(ステップS102)が成立するまで継続される。ステップS102は、冷蔵室温度センサ41が検知する冷蔵室温度が、第一蒸発器運転終了温度(本実施例の冷蔵庫では2℃)以下の場合、または、第一蒸発器運転開始からの経過時間が所定時間(本実施例の冷蔵庫では50分)に到達した場合に成立する。 The first evaporator operation started in step S101 is continued until the first evaporator operation end condition (step S102) is satisfied. In step S102, if the refrigerating chamber temperature detected by the refrigerating chamber temperature sensor 41 is equal to or lower than the first evaporator operation end temperature (2° C. in the refrigerator of this embodiment), or the elapsed time from the start of the first evaporator operation reaches a predetermined time (50 minutes in the refrigerator of this embodiment).

ステップS102が成立した場合(ステップS102がYes)、続いて冷媒回収運転が行われる(ステップS103)。冷媒回収運転とは、圧縮機24の駆動状態を継続し、冷媒制御弁52を「状態3(全閉)」として、第一蒸発器14a内の冷媒を放熱手段(庫外放熱器50a、壁面放熱配管50b、結露防止配管50c)側に回収する運転であり、本実施例の冷蔵庫では2分間継続する(ステップS103)。このとき、第一ファン9aの駆動状態を継続し、冷媒回収運転中も冷蔵室2の冷却を行う。これにより第一蒸発器運転終了時に第一蒸発器14a内に残った冷媒を冷却に利用できるので、冷却効率が高い冷蔵庫となる。 If step S102 is satisfied (step S102 is Yes), then refrigerant recovery operation is performed (step S103). Refrigerant recovery operation means that the compressor 24 continues to be driven, the refrigerant control valve 52 is set to "state 3 (fully closed)", and the refrigerant in the first evaporator 14a is released by the heat dissipation means (external radiator 50a, wall surface This is an operation for recovering to the heat radiation pipe 50b and dew condensation prevention pipe 50c) side, and continues for 2 minutes in the refrigerator of the present embodiment (step S103). At this time, the driving state of the first fan 9a is continued to cool the refrigerator compartment 2 even during the refrigerant recovery operation. As a result, the refrigerant remaining in the first evaporator 14a when the operation of the first evaporator is finished can be used for cooling, so that the refrigerator has a high cooling efficiency.

ステップS103の冷媒回収運転が終了すると、続いて第一蒸発器除霜が開始される(ステップS104)。第一蒸発器除霜とは、第一蒸発器14aに冷媒を流さない状態で、第一ファン9aを駆動状態とすることで冷蔵室2からの戻り空気による加熱で除霜を行うものである。本実施例の冷蔵庫では、第一蒸発器除霜時の第一ファン9aの回転速度は低速(1000min-1)であり、第一蒸発器運転時の第一ファン9aの回転速度より低くしている。これにより、ファンの消費電力をより低く抑えた効率のよい除霜を行うことができる。 After the refrigerant recovery operation in step S103 is finished, defrosting of the first evaporator is started (step S104). Defrosting of the first evaporator means that defrosting is performed by heating with return air from the refrigerator compartment 2 by driving the first fan 9a while the refrigerant is not flowing to the first evaporator 14a. . In the refrigerator of this embodiment, the rotational speed of the first fan 9a during defrosting of the first evaporator is low (1000 min -1 ), which is lower than the rotational speed of the first fan 9a during operation of the first evaporator. there is As a result, efficient defrosting can be performed while reducing the power consumption of the fan.

続いて、切替室の設定を読み込み(ステップS105)、第一切替室5、第二切替室6の設定に応じた第二蒸発器運転が開始される(ステップS106)。第二蒸発器運転とは、圧縮機24が駆動状態で、第二蒸発器14bに冷媒が供給されることで、庫内が冷却される状態である。 Subsequently, the setting of the switchable chamber is read (step S105), and the second evaporator operation corresponding to the setting of the first switchable chamber 5 and the second switchable chamber 6 is started (step S106). The second evaporator operation is a state in which the inside of the refrigerator is cooled by supplying refrigerant to the second evaporator 14b while the compressor 24 is in a driving state.

ステップS106では、切替室の設定と周囲温度(庫外温度)に基づいて、第二蒸発器運転開始時の圧縮機24の回転速度、第二ファン9bの回転速度、第一切替室ダンパ101、第二切替室ダンパ102、第一切替室ヒータ300、第二切替室ヒータ400の状態が決定される。 In step S106, the rotation speed of the compressor 24 at the start of operation of the second evaporator, the rotation speed of the second fan 9b, the first switchable chamber damper 101, the first switchable chamber damper 101, The states of the second switching chamber damper 102, the first switching chamber heater 300, and the second switching chamber heater 400 are determined.

本実施例の冷蔵庫では第一切替室5と第二切替室6の設定がそれぞれ冷凍温度と冷凍温度(「FF」モード)であって、周囲温度が高い場合(本実施例の冷蔵庫では20℃より高い場合)、「圧縮機24が高速(2500min-1)、第二ファン9bが高速(1800min-1)、第一切替室ダンパ101が開放状態、第二切替室ダンパ102が開放状態、第一切替室ヒータ300がOFF状態、第二切替室ヒータ400がOFF状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.45m3/min(両室の合計)、第一切替室5が0.27m3/min、第二切替室6が0.33m3/minである。 In the refrigerator of this embodiment, when the first switchable compartment 5 and the second switchable compartment 6 are set to the freezing temperature and the freezing temperature (“FF” mode), respectively, and the ambient temperature is high (20° C. in the refrigerator of this embodiment) higher), "the compressor 24 is at high speed (2500 min -1 ), the second fan 9b is at high speed (1800 min -1 ), the first switchable chamber damper 101 is open, the second switchable chamber damper 102 is open, the second The first switching chamber heater 300 is in the OFF state and the second switching chamber heater 400 is in the OFF state” is selected. In this state, the air volume supplied to each storage compartment is 0.45 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0.27 m 3 /min for the first switching compartment 5, and 0.27 m 3 /min for the second switching compartment. Chamber 6 is 0.33 m 3 /min.

第一切替室5と第二切替室6の設定がそれぞれ冷凍温度と冷凍温度(「FF」モード)であって、周囲温度が低い場合(本実施例の冷蔵庫では20℃以下の場合)、「圧縮機24が中速(1500min-1)、第二ファン9bが低速(1200min-1)、第一切替室ダンパ101が開放状態、第二切替室ダンパ102が開放状態が開放状態、第一切替室ヒータ300がOFF状態、第二切替室ヒータ400がOFF状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.30m3/min(両室の合計)、第一切替室5が0.18m3/min、第二切替室6が0.22m3/minである。 When the first switchable compartment 5 and the second switchable compartment 6 are set to the freezing temperature and the freezing temperature ("FF" mode), respectively, and the ambient temperature is low (20°C or less in the refrigerator of this embodiment), " The compressor 24 is at medium speed (1500 min -1 ), the second fan 9b is at low speed (1200 min -1 ), the first switching chamber damper 101 is in the open state, the second switching chamber damper 102 is in the open state, the first switching "The chamber heater 300 is in the OFF state, and the second switching chamber heater 400 is in the OFF state" is selected. In this state, the air volume supplied to each storage compartment is 0.30 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0.18 m 3 /min for the first switching compartment 5, and 0.18 m 3 /min for the second switching compartment. Chamber 6 is 0.22 m 3 /min.

第一切替室5と第二切替室6の設定がそれぞれ冷蔵温度と冷凍温度(「RF」モード)であって、周囲温度が高い場合、「圧縮機24が中速(1500min-1)、第二ファン9bが高速(1800min-1)、第一切替室ダンパ101が開放状態、第二切替室ダンパ102が開放状態、第一切替室ヒータ300がOFF状態、第二切替室ヒータ400がOFF状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.45m3/min(両室の合計)、第一切替室5が0.27m3/min、第二切替室6が0.33m3/minである。 When the settings of the first switchable chamber 5 and the second switchable chamber 6 are the refrigerating temperature and the freezing temperature (“RF” mode), respectively, and the ambient temperature is high, “compressor 24 is at medium speed (1500 min −1 ), The second fan 9b is at high speed (1800 min -1 ), the first switching chamber damper 101 is open, the second switching chamber damper 102 is open, the first switching chamber heater 300 is OFF, and the second switching chamber heater 400 is OFF. ” is selected. In this state, the air volume supplied to each storage compartment is 0.45 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0.27 m 3 /min for the first switching compartment 5, and 0.27 m 3 /min for the second switching compartment. Chamber 6 is 0.33 m 3 /min.

第一切替室5と第二切替室6の設定がそれぞれ冷蔵温度と冷凍温度((「RF」モード))であって、周囲温度が低い場合、「圧縮機24が低速(1000min-1)、第二ファン9bが低速(1200min-1)、第一切替室ダンパ101が閉鎖状態、第二切替室ダンパ102が開放状態、第一切替室ヒータ300がON状態、第二切替室ヒータ400がOFF状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.24m3/min(両室の合計)、第一切替室5が0 m3/min、第二切替室6が0.26m3/minである。 When the settings of the first switchable chamber 5 and the second switchable chamber 6 are the refrigerating temperature and the freezing temperature ((“RF” mode)), respectively, and the ambient temperature is low, “compressor 24 is at low speed (1000 min -1 ), The second fan 9b is at low speed (1200 min -1 ), the first switching chamber damper 101 is closed, the second switching chamber damper 102 is open, the first switching chamber heater 300 is ON, and the second switching chamber heater 400 is OFF. state is selected. In this state, the air volume supplied to each storage compartment is 0.24 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0 m 3 /min for the first switching compartment 5, and 0 m 3 /min for the second switching compartment. 6 is 0.26 m 3 /min.

第一切替室5と第二切替室6の設定がそれぞれ冷凍温度と冷蔵温度(「FR」モード)であって、周囲温度が高い場合、「圧縮機24が中速(1500min-1)、第二ファン9bが高速(1800min-1)、第一切替室ダンパ101が開放状態、第二切替室ダンパ102が開放状態、第一切替室ヒータ300がOFF状態、第二切替室ヒータ400がOFF状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.45m3/min(両室の合計)、第一切替室5が0.27m3/min、第二切替室6が0.33m3/minである。 When the settings of the first switchable chamber 5 and the second switchable chamber 6 are the freezing temperature and the refrigerating temperature ("FR" mode), respectively, and the ambient temperature is high, "compressor 24 is at medium speed (1500 min -1 ), The second fan 9b is at high speed (1800 min -1 ), the first switching chamber damper 101 is open, the second switching chamber damper 102 is open, the first switching chamber heater 300 is OFF, and the second switching chamber heater 400 is OFF. ” is selected. In this state, the air volume supplied to each storage compartment is 0.45 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0.27 m 3 /min for the first switching compartment 5, and 0.27 m 3 /min for the second switching compartment. Chamber 6 is 0.33 m 3 /min.

第一切替室5と第二切替室6の設定がそれぞれ冷凍温度と冷蔵温度(「FR」モード)であって、周囲温度が低い場合、「圧縮機24が低速(1000min-1)、第二ファン9bが低速(1200min-1)、第一切替室ダンパ101が開放状態、第二切替室ダンパ102が閉鎖状態、第一切替室ヒータ300がOFF状態、第二切替室ヒータ400がON状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.27m3/min(両室の合計)、第一切替室5が0.22m3/min、第二切替室6が0m3/minである。 When the settings of the first switchable chamber 5 and the second switchable chamber 6 are the freezing temperature and the refrigerating temperature ("FR" mode), respectively, and the ambient temperature is low, "compressor 24 is at low speed (1000 min -1 ), second The fan 9b is at low speed (1200 min −1 ), the first switching chamber damper 101 is open, the second switching chamber damper 102 is closed, the first switching chamber heater 300 is OFF, and the second switching chamber heater 400 is ON.” is selected. In this state, the air volume supplied to each storage compartment is 0.27 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0.22 m 3 /min for the first switching compartment 5, and 0.22 m 3 /min for the second switching compartment. Chamber 6 is 0 m 3 /min.

第一切替室5と第二切替室6の設定がそれぞれ冷蔵温度と冷蔵温度(「RR」モード)であって、周囲温度が高い場合、「圧縮機24が中速(1500min-1)、第二ファン9bが高速(1800min-1)、第一切替室ダンパ101が開放状態、第二切替室ダンパ102が開放状態、第一切替室ヒータ300がOFF状態、第二切替室ヒータ400がOFF状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.45m3/min(両室の合計)、第一切替室5が0.27m3/min、第二切替室6が0.33m3/minである。 When the settings of the first switchable chamber 5 and the second switchable chamber 6 are the refrigerating temperature and the refrigerating temperature (“RR” mode), respectively, and the ambient temperature is high, “compressor 24 is at medium speed (1500 min −1 ), second The second fan 9b is at high speed (1800 min -1 ), the first switching chamber damper 101 is open, the second switching chamber damper 102 is open, the first switching chamber heater 300 is OFF, and the second switching chamber heater 400 is OFF. ” is selected. In this state, the air volume supplied to each storage compartment is 0.45 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0.27 m 3 /min for the first switching compartment 5, and 0.27 m 3 /min for the second switching compartment. Chamber 6 is 0.33 m 3 /min.

第一切替室5と第二切替室6の設定がそれぞれ冷蔵温度と冷蔵温度(「RR」モード)であって、周囲温度が低い場合、「圧縮機24が低速(1000min-1)、第二ファン9bが低速(1200min-1)、第一切替室ダンパ101が開放状態、第二切替室ダンパ102が開放状態、第一切替室ヒータ300がOFF状態、第二切替室ヒータ400がOFF状態」が選択される。この状態で各貯蔵室に供給される風量は、製氷室3及び冷凍室4が0.30m3/min(両室の合計)、第一切替室5が0.18m3/min、第二切替室6が0.22m3/minである。 When the settings of the first switchable chamber 5 and the second switchable chamber 6 are the refrigerating temperature and the refrigerating temperature (“RR” mode), respectively, and the ambient temperature is low, “compressor 24 is at low speed (1000 min -1 ), second The fan 9b is at low speed (1200 min −1 ), the first switchable chamber damper 101 is open, the second switchable chamber damper 102 is open, the first switchable chamber heater 300 is OFF, and the second switchable chamber heater 400 is OFF.” is selected. In this state, the air volume supplied to each storage compartment is 0.30 m 3 /min (total of both compartments) for the ice making compartment 3 and the freezer compartment 4, 0.18 m 3 /min for the first switching compartment 5, and 0.18 m 3 /min for the second switching compartment. Chamber 6 is 0.22 m 3 /min.

図13に示すステップS106では、以上で説明した状態に圧縮機24、第二ファン9b、第一切替室ダンパ101、第二切替室ダンパ102、第一切替室ヒータ300、第二切替室ヒータ400が制御されるとともに、冷媒制御弁52が「状態2」に制御されて第二蒸発器運転が開始される。続いてステップS107では、第一切替室ダンパ閉条件が成立しているか否かが判定される。ステップS107は、第一切替室ダンパ101が開放状態であって、第一切替室温度センサ43が検知する第一切替室5の温度が、第一切替室ダンパ閉温度以下になった場合に成立し(ステップS107がYes)、第一切替室ダンパ101が閉鎖される(ステップS201)。本実施例の冷蔵庫における第一切替室ダンパ閉温度は、第一切替室5の設定が冷蔵温度の場合は2℃、冷凍温度の場合は-20℃である。 In step S106 shown in FIG. 13, the compressor 24, the second fan 9b, the first switchable chamber damper 101, the second switchable chamber damper 102, the first switchable chamber heater 300, and the second switchable chamber heater 400 are brought into the state described above. is controlled, the refrigerant control valve 52 is controlled to "state 2", and the second evaporator operation is started. Subsequently, in step S107, it is determined whether or not the condition for closing the first switching chamber damper is satisfied. Step S107 is established when the first switchable chamber damper 101 is in the open state and the temperature of the first switchable chamber 5 detected by the first switchable chamber temperature sensor 43 is equal to or lower than the first switchable chamber damper closing temperature. (Yes in step S107), and the first switching chamber damper 101 is closed (step S201). The closing temperature of the first switchable compartment damper in the refrigerator of this embodiment is 2° C. when the first switchable compartment 5 is set to the refrigerating temperature, and -20° C. when it is set to the freezing temperature.

ステップS108では、第二切替室ダンパ閉条件が成立しているか否かが判定される。ステップS108は、第二切替室ダンパ102が開放状態であって、第二切替室温度センサ44が検知する第二切替室6の温度が、第二切替室ダンパ閉温度以下になった場合に成立し(ステップS108がYes)、第二切替室ダンパ102が閉鎖される(ステップS202)。本実施例の冷蔵庫における第二切替室ダンパ閉温度は、第二切替室6の設定が冷蔵温度の場合は1.5℃、冷凍温度の場合は-21℃である。 In step S108, it is determined whether or not the condition for closing the second switching chamber damper is satisfied. Step S108 is established when the second switchable chamber damper 102 is in the open state and the temperature of the second switchable chamber 6 detected by the second switchable chamber temperature sensor 44 is equal to or lower than the second switchable chamber damper closing temperature. (Yes in step S108), and the second switching chamber damper 102 is closed (step S202). The closing temperature of the second switchable compartment damper in the refrigerator of this embodiment is 1.5° C. when the setting of the second switchable compartment 6 is the refrigerating temperature, and -21° C. when the setting is the freezing temperature.

ステップS109では、第一切替室ヒータOFF条件が成立しているか否かが判定される。ステップS109は、第一切替室ヒータ300が通電状態(ON状態)であって、第一切替室温度センサ43が検知する第一切替室5の温度が、第一切替室ヒータOFF温度以上になった場合に成立し(ステップS109がYes)、第一切替室ヒータ121が非通電状態(OFF状態)となる(ステップS203)。本実施例の冷蔵庫における第一切替室ヒータOFF温度は5℃である。 In step S109, it is determined whether or not the first switching chamber heater OFF condition is satisfied. In step S109, the first switchable chamber heater 300 is in an energized state (ON state), and the temperature of the first switchable chamber 5 detected by the first switchable chamber temperature sensor 43 is equal to or higher than the first switchable chamber heater OFF temperature. (Yes in step S109), and the first switchable chamber heater 121 is turned off (step S203). The OFF temperature of the first switchable compartment heater in the refrigerator of this embodiment is 5°C.

ステップS110では、第二切替室ヒータOFF条件が成立しているか否かが判定される。ステップS110は、第二切替室ヒータ400が通電状態(ON状態)であって、第二切替室温度センサ44が検知する第二切替室6の温度が、第二切替室ヒータOFF温度以上になった場合に成立し(ステップS111がYes)、第二切替室ヒータ400が非通電状態(OFF状態)となる(ステップS204)。本実施例の冷蔵庫における第二切替室ヒータOFF温度は5℃である。 In step S110, it is determined whether or not the second switching chamber heater OFF condition is satisfied. In step S110, the second switchable chamber heater 400 is in an energized state (ON state), and the temperature of the second switchable chamber 6 detected by the second switchable chamber temperature sensor 44 becomes equal to or higher than the second switchable chamber heater OFF temperature. (Yes in step S111), and the second switching chamber heater 400 is turned off (step S204). The second switchable compartment heater OFF temperature in the refrigerator of this embodiment is 5°C.

ステップS111では、第一蒸発器除霜終了条件が成立しているか否かが判定される。ステップS111は、第一ファン9aが駆動状態で、第一蒸発器温度センサ40aが検知する第一蒸発器14aの温度が、第一蒸発器除霜終了温度以上になった場合に成立し(ステップS111がYes)、第一ファン9aがOFF(停止)され、第一蒸発器除霜が終了する(ステップS205)。本実施例の冷蔵庫における第一蒸発器除霜終了温度は3℃である。 In step S111, it is determined whether or not the first evaporator defrosting end condition is satisfied. Step S111 is established when the temperature of the first evaporator 14a detected by the first evaporator temperature sensor 40a becomes equal to or higher than the first evaporator defrosting end temperature while the first fan 9a is in the driving state (step If S111 is Yes), the first fan 9a is turned OFF (stopped), and the defrosting of the first evaporator ends (step S205). The defrosting end temperature of the first evaporator in the refrigerator of this embodiment is 3°C.

ステップS112では、第二蒸発器運転終了条件が成立しているか否かが判定される。ステップS112は、第一切替室ダンパ101が閉鎖状態、第二切替室ダンパ102が閉鎖状態で、冷凍室温度センサ42が検知する温度が第二蒸発器運転終了温度以下となった場合に成立する(ステップS112がYes)。本実施例の冷蔵庫では、冷凍室温度センサ42が検知する冷凍室4の温度が-21℃以下の場合にステップS112が成立する。ステップS112が成立しない場合(ステップS112がNo)は、再びステップS107の判定に戻る。 In step S112, it is determined whether or not the conditions for ending the operation of the second evaporator are satisfied. Step S112 is established when the first switchable compartment damper 101 is in the closed state, the second switchable compartment damper 102 is in the closed state, and the temperature detected by the freezer compartment temperature sensor 42 is equal to or lower than the second evaporator operation end temperature. (Yes in step S112). In the refrigerator of this embodiment, step S112 is established when the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 42 is -21° C. or lower. If step S112 is not satisfied (step S112 is No), the process returns to the determination of step S107.

ステップS112で第二蒸発器運転終了条件が成立した場合(ステップS112がYes)、続いて冷媒回収運転を行う(ステップS113)。ステップS113における冷媒回収運転は、圧縮機24の回転速度を維持し、冷媒制御弁52を「状態3(全閉)」として、第二蒸発器14b内の冷媒を放熱手段側に回収する運転であり、本実施例の冷蔵庫では3分間継続する。このとき、第二ファン9bは駆動状態を継続し、冷媒回収運転中も冷凍室4などの冷却を行い、冷媒回収運転終了時に第二ファン9bを停止する。これにより第二蒸発器運転終了時に第二蒸発器14b内に残った冷媒を冷却に利用できるので、冷却効率が高い冷蔵庫となる。 If the second evaporator operation termination condition is satisfied in step S112 (Yes in step S112), then refrigerant recovery operation is performed (step S113). The refrigerant recovery operation in step S113 is an operation in which the rotation speed of the compressor 24 is maintained, the refrigerant control valve 52 is set to "state 3 (fully closed)", and the refrigerant in the second evaporator 14b is recovered to the heat radiation means side. Yes, and it continues for 3 minutes in the refrigerator of this embodiment. At this time, the second fan 9b continues to be driven to cool the freezer compartment 4 and the like even during the refrigerant recovery operation, and stops the second fan 9b when the refrigerant recovery operation ends. As a result, the refrigerant remaining in the second evaporator 14b can be used for cooling when the operation of the second evaporator is finished, so that the refrigerator has high cooling efficiency.

続いてステップS114では、第一蒸発器運転開始条件が成立しているか否かが判定される。ステップS114は、冷蔵室温度センサ41が検知する冷蔵室2の温度が第一蒸発器運転開始温度以上となった場合に成立し(ステップS114がYes)、ステップS101に戻り第一蒸発器運転が開始される。本実施例の冷蔵庫における第一蒸発器運転開始温度は6℃である。ステップS114が成立しない場合(ステップS114がNo)、圧縮機24が停止(OFF)される(ステップS115)。 Subsequently, in step S114, it is determined whether or not the conditions for starting the operation of the first evaporator are satisfied. Step S114 is established when the temperature of the refrigerator compartment 2 detected by the refrigerator compartment temperature sensor 41 is equal to or higher than the first evaporator operation start temperature (Yes in step S114), and the process returns to step S101 to start the first evaporator operation. be started. The operation start temperature of the first evaporator in the refrigerator of this embodiment is 6°C. When step S114 is not established (step S114 is No), the compressor 24 is stopped (OFF) (step S115).

次にステップS116では、第一蒸発器除霜終了条件が成立しているか否かが判定される。ステップS116が成立する条件は、ステップS111が成立する条件と同様である。ステップS116が成立した場合(ステップS111がYes)、第一ファン9aが停止(OFF)され、第一蒸発器除霜が終了する(ステップS206)。 Next, in step S116, it is determined whether or not the first evaporator defrosting end condition is satisfied. The condition for establishing step S116 is the same as the condition for establishing step S111. When step S116 is satisfied (step S111 is Yes), the first fan 9a is stopped (turned off), and the defrosting of the first evaporator ends (step S206).

ステップS117では、第一蒸発器運転開始条件が成立しているか否かが判定される。ステップS117が成立する条件は、ステップS114が成立する条件と同様である。ステップS117が成立した場合(ステップS117がYes)、ステップS101に戻り第一蒸発器運転が開始される。 In step S117, it is determined whether or not the conditions for starting the operation of the first evaporator are satisfied. The condition for establishing step S117 is the same as the condition for establishing step S114. When step S117 is satisfied (step S117 is Yes), the process returns to step S101 and the first evaporator operation is started.

ステップS118では、第二蒸発器運転開始条件が成立しているか否かが判定される。ステップS118は、冷凍室温度センサ42、第一切替室温度センサ43、及び、第二切替室温度センサ44が検知する温度の少なくとも一つが第二蒸発器運転開始温度以上となった場合に成立する(ステップS118がYes)。本実施例の冷蔵庫では、第一切替室5が冷凍温度、第二切替室6が冷凍温度(「FF」モード)に設定されていた場合、冷凍室温度センサ42が検知する冷凍室4の温度が-12℃以上、第一切替室温度センサ43が検知する第一切替室5の温度が-12℃以上、第二切替室温度センサ44が検知する第二切替室6の温度が-12℃以上の少なくとも一つを満足した場合にステップS118が成立する。 In step S118, it is determined whether or not the conditions for starting the operation of the second evaporator are satisfied. Step S118 is established when at least one of the temperatures detected by the freezer compartment temperature sensor 42, the first switchable compartment temperature sensor 43, and the second switchable compartment temperature sensor 44 is equal to or higher than the second evaporator operation start temperature. (Yes in step S118). In the refrigerator of this embodiment, the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 42 is is -12°C or higher, the temperature of the first switchable chamber 5 detected by the first switchable chamber temperature sensor 43 is -12°C or higher, and the temperature of the second switchable chamber 6 detected by the second switchable chamber temperature sensor 44 is -12°C. Step S118 is established when at least one of the above conditions is satisfied.

また、第一切替室5が冷蔵温度、第二切替室6が冷凍温度(「RF」モード)に設定されていた場合は、冷凍室温度センサ42が検知する冷凍室4の温度が-12℃以上、第一切替室温度センサ43が検知する第一切替室5の温度が8℃以上、第二切替室温度センサ44が検知する第二切替室6の温度が-12℃以上の少なくとも一つを満足した場合にステップS118が成立する。 When the first switchable compartment 5 is set to the refrigerating temperature and the second switchable compartment 6 is set to the freezing temperature ("RF" mode), the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 42 is -12°C. At least one temperature of the first switchable chamber 5 detected by the first switchable chamber temperature sensor 43 is 8°C or higher and the temperature of the second switchable chamber 6 detected by the second switchable chamber temperature sensor 44 is -12°C or higher. is satisfied, step S118 is established.

第一切替室5が冷凍温度、第二切替室6が冷蔵温度(「FR」モード)に設定されていた場合は、冷凍室温度センサ42が検知する冷凍室4の温度が-12℃以上、第一切替室温度センサ43が検知する第一切替室5の温度が-12℃以上、第二切替室温度センサ44が検知する第二切替室6の温度が8℃以上の少なくとも一つを満足した場合にステップS118が成立する。 When the first switchable compartment 5 is set to the freezing temperature and the second switchable compartment 6 is set to the refrigerator temperature (“FR” mode), the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 42 is −12° C. or higher. The temperature of the first switchable chamber 5 detected by the first switchable chamber temperature sensor 43 is -12°C or higher, and the temperature of the second switchable chamber 6 detected by the second switchable chamber temperature sensor 44 is 8°C or higher. If so, step S118 is established.

第一切替室5が冷蔵温度、第二切替室6が冷蔵温度(「RR」モード)に設定されていた場合は、冷凍室温度センサ42が検知する冷凍室4の温度が-12℃以上、第一切替室温度センサ43が検知する第一切替室5の温度が8℃以上、第二切替室温度センサ44が検知する第二切替室6の温度が8℃以上の少なくとも一つを満足した場合にステップS118が成立する。
ステップS118が成立した場合(ステップS118がYes)、ステップS105に移行し、ステップS118が成立しない場合(ステップS118がNo)、ステップS116の判定に戻る。
When the first switchable compartment 5 is set to the refrigerating temperature and the second switchable compartment 6 is set to the refrigerating temperature (“RR” mode), the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 42 is −12° C. or higher. Satisfying at least one condition that the temperature of the first switchable chamber 5 detected by the first switchable chamber temperature sensor 43 is 8°C or higher and the temperature of the second switchable chamber 6 detected by the second switchable chamber temperature sensor 44 is 8°C or higher In this case, step S118 is established.
If step S118 is established (step S118 is Yes), the process proceeds to step S105, and if step S118 is not established (step S118 is No), the process returns to the determination of step S116.

図14は本実施例に係る冷蔵庫を、JISC9801-3:2015に則って16℃、相対湿度55%の環境に設置して、第一切替室5を冷蔵温度、第二切替室6を冷凍温度(「RF」モード)に設定した場合の安定運転状態を表すタイムチャートである。以下では冷凍室4と同時に冷却される製氷室3の冷却状態については説明を省略する。 FIG. 14 shows that the refrigerator according to this example is installed in an environment of 16 ° C. and 55% relative humidity in accordance with JISC9801-3:2015, and the first switchable compartment 5 is at the refrigerating temperature and the second switchable compartment 6 is at the freezing temperature. 4 is a time chart showing a stable operating state when set to (“RF” mode). In the following, description of the cooling state of the ice making chamber 3 that is cooled simultaneously with the freezing chamber 4 will be omitted.

時刻tは冷蔵室2を冷却する第一蒸発器運転を開始(図13のステップS101)した時刻である。第一蒸発器運転では、冷媒制御弁52を「状態1」に制御し、圧縮機24を低速(1000min-1)で駆動、第一ファン9aを高速(1600min-1)で駆動することで冷蔵室2を冷却する。ここで、第一蒸発器運転中の第一蒸発器14aの時間平均温度は-8℃であり、後述する第二蒸発器運転中の第二蒸発器14bの時間平均温度よりも高くしている。これにより冷凍室4や冷凍温度に設定された第一切替室5や第二切替室6に対して、維持する温度が相対的に高い冷蔵室2を効率よく冷却でき、省エネルギー性能が高い冷蔵庫となる。 Time t0 is the time when the operation of the first evaporator for cooling the refrigerator compartment 2 is started (step S101 in FIG. 13). In the first evaporator operation, the refrigerant control valve 52 is controlled to "state 1", the compressor 24 is driven at a low speed (1000 min -1 ), and the first fan 9a is driven at a high speed (1600 min -1 ) for refrigeration. Chamber 2 is cooled. Here, the time-average temperature of the first evaporator 14a during operation of the first evaporator is −8° C., which is higher than the time-average temperature of the second evaporator 14b during operation of the second evaporator, which will be described later. . As a result, the refrigerating chamber 2, which maintains a relatively high temperature, can be efficiently cooled with respect to the freezing chamber 4, the first switchable chamber 5, and the second switchable chamber 6 set to the freezing temperature, and the refrigerator has high energy saving performance. Become.

第一蒸発器運転が開始されたことで冷蔵室2が冷却されるとともに、真空断熱材25c、25dに近接して設けられた壁面放熱配管50b(図3及び図8参照)の温度は、圧縮機24により送り出された冷媒が流れることにより、第一蒸発器運転開始後に上昇し、その後安定している。 Since the operation of the first evaporator is started, the refrigerator compartment 2 is cooled, and the temperature of the wall surface heat radiation pipe 50b (see FIGS. 3 and 8) provided close to the vacuum heat insulating materials 25c and 25d is Due to the flow of the refrigerant sent out by the unit 24, it rises after the operation of the first evaporator starts, and then stabilizes.

時刻tで冷蔵室温度センサ42が検知する冷蔵室2の温度が第一蒸発器運転終了温度TR_off(=2℃)以下となり、冷蔵運転から冷媒回収運転に移行している(図13のステップS102、S103)。冷媒回収運転では冷媒制御弁52を「状態3(全閉)」に制御し、圧縮機24を低速(1000min-1)で駆動した状態を継続して、第一蒸発器14a内の冷媒を2分間回収する。これにより、次の第二蒸発器運転における冷媒不足による冷却効率低下を抑制することができる。このとき第一ファン9aを駆動状態とすることで、第一蒸発器14a内の残留冷媒を冷蔵室2の冷却に活用するとともに、冷蔵室2からの戻り空気による加熱で、第一蒸発器14a内の圧力低下が緩和される。これにより、圧縮機24が吸い込む冷媒の比体積の増加が抑制され、比較的短い時間で多くの冷媒を回収できるようになり、冷却効率を高めることができる。 At time t1, the temperature of the refrigerating chamber 2 detected by the refrigerating chamber temperature sensor 42 becomes equal to or lower than the first evaporator operation end temperature T R_off (=2°C), and the refrigerating operation is shifted to the refrigerant recovery operation (Fig. Steps S102, S103). In the refrigerant recovery operation, the refrigerant control valve 52 is controlled to “state 3 (fully closed)”, the compressor 24 is driven at a low speed (1000 min −1 ), and the refrigerant in the first evaporator 14a is reduced to 2. Collect in minutes. As a result, it is possible to suppress a decrease in cooling efficiency due to insufficient refrigerant in the next operation of the second evaporator. At this time, by driving the first fan 9a, the residual refrigerant in the first evaporator 14a is utilized for cooling the refrigerator compartment 2, and the return air from the refrigerator compartment 2 heats the first evaporator 14a. The pressure drop inside is alleviated. As a result, an increase in the specific volume of the refrigerant sucked by the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short period of time, and the cooling efficiency can be improved.

冷媒回収運転が終わると(時刻t)、第一ファン9aが低速(1000min-1)になり、第一蒸発器除霜が行われている。このように第一蒸発器運転中よりも第一ファン9aの回転速度を低くすることで、ファンの駆動に要する消費電力量を抑えつつ、第一蒸発器14aの除霜を行うことができ省エネルギー性能に優れた冷蔵庫となる。このとき、第一蒸発器14aの温度は、冷蔵室2からの戻り空気で加熱されて上昇し、冷蔵室2の温度は、霜や第一蒸発器14aの蓄冷熱による冷却効果により上昇が緩和される。 When the refrigerant recovery operation ends (time t 2 ), the first fan 9a is turned to low speed (1000 min -1 ), and defrosting of the first evaporator is being performed. By making the rotation speed of the first fan 9a lower than that during the operation of the first evaporator in this way, it is possible to defrost the first evaporator 14a while suppressing the power consumption required for driving the fan, thereby saving energy. Refrigerator with excellent performance. At this time, the temperature of the first evaporator 14a is heated by the return air from the refrigerating chamber 2 and rises, and the rise in the temperature of the refrigerating chamber 2 is moderated by the cooling effect of frost and cold heat stored in the first evaporator 14a. be done.

さらに、時刻tからは、冷媒制御弁52が「状態2」に制御され、第一切替室5と第二切替室6の設定に基づいた第二蒸発器運転が開始している(図13のステップS105、S106)。ここでは第一切替室5が冷蔵温度、第二切替室6が冷凍温度(「RF」モード)に設定されており、周囲温度が20℃以下であるため、「圧縮機24が低速(1000min-1)、第二ファン9bが低速(1200min-1)、第一切替室ダンパ101が閉鎖状態、第二切替室ダンパ102が開放状態、第一切替室ヒータ300がON状態、第二切替室ヒータ400がOFF状態」が選択される。 Further, from time t2, the refrigerant control valve 52 is controlled to "state 2 ", and the second evaporator operation based on the settings of the first switching chamber 5 and the second switching chamber 6 is started (Fig. 13 steps S105 and S106). Here, the first switchable chamber 5 is set to the refrigerating temperature and the second switchable chamber 6 is set to the freezing temperature (“RF” mode), and the ambient temperature is 20° C. or less. 1 ), second fan 9b at low speed (1200 min −1 ), first switchable chamber damper 101 in closed state, second switchable chamber damper 102 in open state, first switchable chamber heater 300 in ON state, second switchable chamber heater 400 is OFF” is selected.

第二蒸発器運転が開始されると、第一切替室ダンパ101が閉鎖状態、第二切替室ダンパ102が開放状態で、第二ファン9bが駆動されるため、冷凍室4の温度、第一切替室5の温度、第二切替室6の温度が低下するとともに、第一切替室ヒータ300による加熱が行われるため、真空断熱材25hに近接して設けられた第一切替室第一ヒータ301の温度が上昇している。 When the second evaporator operation is started, the first switchable compartment damper 101 is closed, the second switchable compartment damper 102 is opened, and the second fan 9b is driven, so that the temperature of the freezer compartment 4 changes to the first As the temperature of the switchable chamber 5 and the temperature of the second switchable chamber 6 decrease, heating by the first switchable chamber heater 300 is performed. temperature is rising.

時刻tで第一切替室温度センサ43が検知する第一切替室温度が、第一切替室ヒータ300のOFF温度TS1_H_off(=5℃)以上となり、第一切替室ヒータ300の通電が終了している(図13のステップS109、S203)。これにより、時刻t以降は第一切替室第一ヒータ301の温度が低下している。 At time t3 , the first switchable chamber temperature detected by the first switchable chamber temperature sensor 43 becomes equal to or higher than the OFF temperature T S1_H_off (=5°C) of the first switchable chamber heater 300, and energization of the first switchable chamber heater 300 ends. (steps S109 and S203 in FIG. 13). As a result, the temperature of the first switchable chamber first heater 301 is lowered after time t3.

時刻tで第二切替室温度センサ44が検知する第二切替室温度が、第二切替室ダンパ閉温度TS2_off (=-21℃)以下となり、開放されていた第二切替室ダンパ102が閉鎖され(図13のステップS108、S202)、第二切替室6の冷却が終了し、冷凍室4のみが冷却される状態となる。 At time t4, the second switchable chamber temperature detected by the second switchable chamber temperature sensor 44 became equal to or lower than the second switchable chamber damper closing temperature T S2_off (=-21°C), and the second switchable chamber damper 102, which had been open, It is closed (steps S108 and S202 in FIG. 13), the cooling of the second switchable compartment 6 is completed, and only the freezer compartment 4 is cooled.

時刻tで冷凍室温度センサ42が検知する冷凍室4の温度が、第二蒸発器運転終了温度TF_off (=-21℃)以下に到達したことで、第二蒸発器運転を終了し、冷媒回収運転に移行している(図13のステップS112、S113)。時刻t~tで実施された第二蒸発器運転中の第二蒸発器14bの時間平均温度は-29℃である。 At time t5, the temperature of the freezer compartment 4 detected by the freezer compartment temperature sensor 42 reaches the second evaporator operation end temperature T F_off (=−21° C.) or less, so that the second evaporator operation is terminated, The refrigerant recovery operation is started (steps S112 and S113 in FIG. 13). The hourly average temperature of the second evaporator 14b during the operation of the second evaporator carried out from time t2 to t5 is -29°C.

冷媒回収運転では冷媒制御弁52を「状態3(全閉)」に制御し、圧縮機24を低速(1000min-1)で駆動した状態を継続して、第二蒸発器14b内の冷媒を3分間回収する(図13のステップS113)。これにより、次の第一蒸発器運転における冷媒不足による冷却効率低下を抑制することができる。このとき第二ファン9bを駆動状態とすることで、第二蒸発器14b内の残留冷媒を冷凍室4の冷却に活用するとともに、冷凍室4からの戻り空気による加熱で、第二蒸発器14b内の圧力低下が緩和される。これにより、圧縮機24が吸い込む冷媒の比体積の増加が抑制され、比較的短い時間で多くの冷媒を回収できるようになり、冷却効率を高めることができる。 In the refrigerant recovery operation, the refrigerant control valve 52 is controlled to “state 3 (fully closed)” and the compressor 24 is driven at a low speed (1000 min −1 ) to continue to reduce the refrigerant in the second evaporator 14b to 3. minutes (step S113 in FIG. 13). As a result, it is possible to suppress a decrease in cooling efficiency due to insufficient refrigerant in the next operation of the first evaporator. At this time, by driving the second fan 9b, the residual refrigerant in the second evaporator 14b is utilized for cooling the freezer compartment 4, and the return air from the freezer compartment 4 heats the second evaporator 14b. The pressure drop inside is alleviated. As a result, an increase in the specific volume of the refrigerant sucked by the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short period of time, and the cooling efficiency can be improved.

時刻tで冷媒回収運転が終わると、第一蒸発器運転開始条件が成立しているかが判定され(図13のステップS114)、冷蔵室温度センサ41が検知する冷蔵室2の温度が第一蒸発器運転開始温度TR_on(=6℃)以上に到達していないため、圧縮機24、第二ファン9bが停止され、OFF状態となる。 When the refrigerant recovery operation ends at time t6 , it is determined whether the conditions for starting the operation of the first evaporator are satisfied (step S114 in FIG. 13), and the temperature of the refrigerator compartment 2 detected by the refrigerator compartment temperature sensor 41 reaches the first temperature. Since the temperature has not reached the evaporator operation start temperature T R_on (=6° C.) or more, the compressor 24 and the second fan 9b are stopped and turned off.

時刻tで第一蒸発器温度センサ40aが検知する第一蒸発器14aの温度が第一蒸発器除霜終了温度TRD_off (=3℃)以上に到達し、第一ファン9aが停止している(図13のステップS116、S206)。 At time t7 , the temperature of the first evaporator 14a detected by the first evaporator temperature sensor 40a reaches the first evaporator defrosting end temperature TRD_off (=3°C) or higher, and the first fan 9a stops. (Steps S116 and S206 in FIG. 13).

時刻tで冷蔵室温度センサ41が検知する冷蔵室2の温度が第一蒸発器運転開始温度TR_on(=6℃)以上となり、第一蒸発器運転開始条件が成立し(図13のステップS117)、再び第一蒸発器運転が開始される(図13のステップS101)。以上のt0~t8の状態が繰り返されることで、各部の温度が所定温度に制御される。このとき、真空断熱材25c、25dに近接して設けられた壁面放熱配管50b(図3及び図8参照)の時間平均温度は18.0℃、真空断熱材25hに近接して設けられた第一切替室第一ヒータ301の時間平均温度は5.0℃である。このように本実施例の冷蔵庫は、壁面放熱配管50bの時間平均温度より、 第一切替室第一ヒータ301の時間平均温度の方が低くなるように、圧縮機24、第一ファン9a、第二ファン9b、及び、第一切替室第一ヒータ300を制御している。さらに、真空断熱材25c、25dに近接して設けられた壁面放熱配管50b(図3及び図8参照)の最高到達温度は18.5℃、真空断熱材25hに近接して設けられた第一切替室第一ヒータ301の最高到達温度は13.0℃であり、壁面放熱配管50bの最高到達温度より、 第一切替室第一ヒータ301の最高到達温度の方が低くなるように制御している。 At time t8, the temperature of the refrigerator compartment 2 detected by the refrigerator compartment temperature sensor 41 becomes equal to or higher than the first evaporator operation start temperature TR_on ( =6°C), and the first evaporator operation start condition is established (step S117), and the operation of the first evaporator is started again (step S101 in FIG. 13). By repeating the above states of t0 to t8, the temperature of each part is controlled to a predetermined temperature. At this time, the time-average temperature of the wall heat radiation pipe 50b (see FIGS. 3 and 8) provided close to the vacuum heat insulating materials 25c and 25d was 18.0° C. The hourly average temperature of the first heater 301 for one switching chamber is 5.0°C. As described above, the refrigerator of this embodiment is configured such that the time average temperature of the first switchable compartment first heater 301 is lower than the time average temperature of the wall surface heat radiation pipe 50b. It controls the second fan 9b and the first heater 300 in the first switching chamber. Furthermore, the maximum temperature of the wall heat radiation pipe 50b (see FIGS. 3 and 8) provided close to the vacuum heat insulating materials 25c and 25d is 18.5° C. The maximum temperature reached by the first heater 301 in the switching chamber is 13.0°C, and the maximum temperature reached by the first heater 301 in the first switching chamber is controlled to be lower than the maximum temperature reached by the wall heat radiation pipe 50b. there is

なお、蒸発器(第一蒸発器14aと第二蒸発器14b)は蒸発器室(第一蒸発器室8aと第二蒸発器室8b)に収納され、蒸発器室の温度は蒸発器温度に依存して変化する。従って、図8及び図9に示す蒸発器温度(第一蒸発器温度Tevp1、第二蒸発器温度Tevp2)を蒸発器室の代表温度(第一蒸発器室温度、第二蒸発器室温度)とみなすことができる。 The evaporators (first evaporator 14a and second evaporator 14b) are housed in evaporator chambers (first evaporator chamber 8a and second evaporator chamber 8b), and the temperature of the evaporator chambers is equal to the evaporator temperature. Varies depending on. Therefore, the evaporator temperatures (first evaporator temperature T evp1 , second evaporator temperature T evp2 ) shown in FIGS. ).

図15は実施例に係る冷蔵庫を、JISC9801-3:2015に則って16℃、相対湿度55%の環境に設置し、第一切替室5を冷蔵温度、第二切替室6を冷凍温度(「RF」モード)に設定した場合の第二蒸発器14bの除霜運転を表すタイムチャートである。なお、以下の説明では、冷蔵室2、製氷室3及び冷凍室4の状態については説明を省略する。 FIG. 15 shows that the refrigerator according to the example is installed in an environment of 16 ° C. and 55% relative humidity in accordance with JISC9801-3:2015, the first switchable compartment 5 is the refrigerating temperature, and the second switchable compartment 6 is the freezing temperature (" RF" mode) is a time chart showing the defrosting operation of the second evaporator 14b. In the following description, description of the states of the refrigerator compartment 2, the ice making compartment 3, and the freezer compartment 4 will be omitted.

本実施例の冷蔵庫は、圧縮機24の積算駆動時間が所定時間(本実施例の冷蔵庫では24時間)に到達した場合に第二蒸発器14bに霜が成長したと判定され、第二蒸発器14bの除霜待機状態となる。図15においては、tにおいて、圧縮機24の積算駆動時間が所定時間(24時間)に到達し、第二蒸発器14bの除霜待機状態に移行している。tにおける制御状態は、圧縮機24が低速で駆動(ON)、冷媒制御弁52が状態2、第二ファン9bが低速で駆動(ON)、第一切替室ダンパ101が開放、第二切替室ダンパ102が閉鎖、第一切替室ヒータ300が通電(ON)、第二切替室ヒータ400が非通電(OFF)、除霜ヒータ21が非通電(OFF)の状態で、第二蒸発器14bと熱交換した冷却空気を第二切替室6に供給して冷却している。この状態では、冷凍温度に設定された第二切替室6の温度が低下する。 In the refrigerator of this embodiment, it is determined that frost has grown on the second evaporator 14b when the cumulative driving time of the compressor 24 reaches a predetermined time (24 hours in the refrigerator of this embodiment). It will be in the defrosting standby state of 14b. In FIG. 15, at t0 , the cumulative driving time of the compressor 24 reaches a predetermined time (24 hours), and the second evaporator 14b is shifted to the defrosting standby state. The control state at t0 is as follows: the compressor 24 is driven at low speed (ON), the refrigerant control valve 52 is in state 2, the second fan 9b is driven at low speed (ON), the first switching chamber damper 101 is open, the second switching With the room damper 102 closed, the first switchable room heater 300 energized (ON), the second switchable room heater 400 de-energized (OFF), and the defrost heater 21 de-energized (OFF), the second evaporator 14b The cooling air heat-exchanged with is supplied to the second switching chamber 6 for cooling. In this state, the temperature of the second switchable chamber 6 set to the freezing temperature is lowered.

本実施例の冷蔵庫では、第二蒸発器14bの除霜待機状態に移行後、第二蒸発器運転が所定時間(本実施例の冷蔵庫では15分)継続される。第二蒸発器運転が所定時間実施されると、続いて除霜ヒータ21が通電状態となる第二蒸発器除霜運転が開始される。図15では、tにおいて、圧縮機24が停止(OFF)、冷媒制御弁52が状態3、第二ファン9bが停止(OFF)、第一切替室ダンパ101が閉鎖、第二切替室ダンパ102が閉鎖、第一切替室ヒータ300が非通電(OFF)、第二切替室ヒータ400が非通電(OFF)、除霜ヒータ21が通電(ON)状態となり、第二蒸発器除霜運転が開始している。第二蒸発器除霜運転が開始すると、除霜ヒータ21の加熱作用により、第二蒸発器14bの温度が上昇する。このとき、第一切替室5と第二蒸発器室8bを隔てる断熱仕切壁27の蒸発器室側の表面温度(断熱仕切壁27温度)も除霜ヒータ21の加熱作用により上昇する。また、第二切替室6の温度は冷却が停止された状態となるために上昇する。なお、圧縮機24の積算駆動時間が除霜待機状態に移行する所定時間に到達した際に、第一蒸発器14aに冷媒が供給されることで庫内を冷却している状態(第一蒸発器運転)、または、第一蒸発器14aと第二蒸発器14bの何れにも冷媒が供給されていない状態(冷却停止)の何れかであった場合には、次の第二蒸発器運転が開始した時点から除霜待機状態に移行する。 In the refrigerator of this embodiment, after the second evaporator 14b shifts to the defrosting standby state, the operation of the second evaporator continues for a predetermined time (15 minutes in the refrigerator of this embodiment). After the second evaporator operation has been performed for a predetermined period of time, the second evaporator defrosting operation is started in which the defrosting heater 21 is energized. In FIG. 15 , at t1, the compressor 24 is stopped (OFF), the refrigerant control valve 52 is in state 3, the second fan 9b is stopped (OFF), the first switching chamber damper 101 is closed, and the second switching chamber damper 102 is closed. is closed, the first switching chamber heater 300 is de-energized (OFF), the second switching chamber heater 400 is de-energized (OFF), the defrosting heater 21 is de-energized (ON), and the second evaporator defrosting operation starts. doing. When the second evaporator defrosting operation starts, the heating action of the defrosting heater 21 increases the temperature of the second evaporator 14b. At this time, the evaporator-chamber-side surface temperature of the heat-insulating partition wall 27 separating the first switching chamber 5 and the second evaporator chamber 8b (heat-insulating partition wall 27 temperature) also rises due to the heating action of the defrosting heater 21 . Also, the temperature of the second switching chamber 6 rises because the cooling is stopped. In addition, when the accumulated driving time of the compressor 24 reaches a predetermined time for shifting to the defrosting standby state, the refrigerant is supplied to the first evaporator 14a to cool the inside (first evaporation evaporator operation), or in the state where refrigerant is not supplied to either the first evaporator 14a or the second evaporator 14b (cooling stop), the next second evaporator operation It shifts to a defrosting standby state from the time of starting.

本実施例の冷蔵庫では、第二蒸発器除霜運転開始後に、第二蒸発器温度センサ40bの検知温度が所定温度(本実施例の冷蔵庫では0.5℃)に到達した場合、冷媒制御弁52が状態3から状態2に切替えられる。図15では、tにおいて、冷媒制御弁52が状態2に切替られている。これにより、冷媒制御弁52が状態3となることで放熱手段(庫外放熱器50a、壁面放熱配管50b、結露防止配管50c)側に留まっていた冷媒が、第二蒸発器14b内に流入する。このとき第二蒸発器14bが加熱される(温度上昇が加速される)ので、より確実な除霜を行うことができる。 In the refrigerator of this embodiment, when the temperature detected by the second evaporator temperature sensor 40b reaches a predetermined temperature (0.5° C. in the refrigerator of this embodiment) after the second evaporator defrosting operation is started, the refrigerant control valve 52 is switched from state 3 to state 2. In FIG. 15, the refrigerant control valve 52 is switched to state 2 at t2. As a result, the refrigerant control valve 52 is in state 3, and the refrigerant remaining on the side of the heat dissipation means (external heat radiator 50a, wall heat dissipation pipe 50b, dew condensation prevention pipe 50c) flows into the second evaporator 14b. . At this time, the second evaporator 14b is heated (the temperature rise is accelerated), so more reliable defrosting can be performed.

本実施例の冷蔵庫では、第二蒸発器温度センサ40bの検知温度が0℃より高い除霜終了温度(本実施例の冷蔵庫では8℃)に到達した場合に、除霜ヒータ21への通電が停止され、第二蒸発器除霜運転が終了される。その後、所定時間(本実施例の冷蔵庫では5分間)の冷却開始遅延状態(オフタイム)を経て、第二蒸発器運転が開始される。図15では、tにおいて第二蒸発器温度センサ40bの検知温度が除霜終了温度(8℃)に到達し、除霜ヒータ21への通電が停止され(OFF)、除霜運転が終了している。続いてtまでのオフタイムを経て、圧縮機24が中速で駆動(ON)、冷媒制御弁52が状態2、第二ファン9bが高速で駆動(ON)、第一切替室ダンパ101が閉鎖、第二切替室ダンパ102が開放、第一切替室ヒータ300が通電(ON)、第二切替室ヒータ400が非通電(OFF)、除霜ヒータ21が非通電(OFF)状態で除霜運転中に温度が上昇した第二切替室6の温度を速やかに復帰させる第二蒸発器運転が開始されている。これにより、第二切替室6、第二蒸発器14b、断熱仕切壁27の各温度が低下している。このとき、断熱仕切壁27の温度は、0℃より低い冷凍温度から、0℃より高い冷蔵温度にまで上昇している。また、断熱仕切壁27の最高到達温度は、第二蒸発器温度14bの最高到達温度よりも高くなっている。 In the refrigerator of this embodiment, when the temperature detected by the second evaporator temperature sensor 40b reaches the defrosting end temperature higher than 0°C (8°C in the refrigerator of this embodiment), the electricity to the defrosting heater 21 is turned off. is stopped and the second evaporator defrosting operation is terminated. After that, the operation of the second evaporator is started after a cooling start delay state (off time) for a predetermined time (5 minutes in the refrigerator of this embodiment). In FIG. 15, at t3 , the temperature detected by the second evaporator temperature sensor 40b reaches the defrosting end temperature (8° C.), power supply to the defrosting heater 21 is stopped (OFF), and the defrosting operation ends. ing. Subsequently, after the off time until t4, the compressor 24 is driven at medium speed ( ON), the refrigerant control valve 52 is in state 2, the second fan 9b is driven at high speed (ON), and the first switching chamber damper 101 is turned on. Closed, second switching chamber damper 102 opened, first switching chamber heater 300 energized (ON), second switching chamber heater 400 not energized (OFF), defrosting with defrosting heater 21 not energized (OFF) The second evaporator operation is started to quickly restore the temperature of the second switchable chamber 6 whose temperature has risen during operation. As a result, the temperatures of the second switching chamber 6, the second evaporator 14b, and the heat insulating partition wall 27 are lowered. At this time, the temperature of the heat insulating partition wall 27 rises from the freezing temperature lower than 0°C to the refrigerating temperature higher than 0°C. Also, the maximum temperature reached by the heat insulating partition wall 27 is higher than the maximum temperature reached by the second evaporator temperature 14b.

なお第一切替室5の温度は、第一切替室温度センサ43の表面温度、あるいは、第一切替室5の容器5b内部の温度、第二切替室6の温度は、第二切替室温度センサ44の表面温度、あるいは、第二切替室5の容器6b内部の温度、第二蒸発器14bの温度は、第二蒸発器温度センサ40bの表面温度、あるいは、第二蒸発器14bの最上部近傍の配管温度、断熱仕切壁27の温度は、断熱仕切壁27の第二蒸発器室8b側の蒸発器14b前方投影面内の表面温度、壁面放熱配管50bの温度は、壁面放熱配管50b配設箇所近傍の外箱91表面温度、第一切替室第一ヒータ301の温度は、第一切替室第一ヒータ301が配設された箇所の断熱仕切壁30の表面温度を測定することにより、図13~図15で説明した動作が正しく行われていることを確認できる。 The temperature of the first switchable chamber 5 is the surface temperature of the first switchable chamber temperature sensor 43 or the temperature inside the container 5b of the first switchable chamber 5, and the temperature of the second switchable chamber 6 is the temperature of the second switchable chamber temperature sensor. 44, or the temperature inside the container 6b of the second switching chamber 5, or the temperature of the second evaporator 14b is the surface temperature of the second evaporator temperature sensor 40b, or the vicinity of the top of the second evaporator 14b. The temperature of the heat-insulating partition wall 27 is the surface temperature of the front projection plane of the evaporator 14b on the side of the second evaporator chamber 8b of the heat-insulating partition wall 27. The surface temperature of the outer casing 91 near the location and the temperature of the first heater 301 of the first switchable chamber are measured by measuring the surface temperature of the heat insulating partition wall 30 at the location where the first heater 301 of the first switchable chamber is arranged. It can be confirmed that the operations described with reference to FIGS. 13 to 15 are performed correctly.

以上で、本実施例の冷蔵庫の構成と、制御方法の説明をしたが、次に、本実施形態の冷蔵庫の奏する効果について説明する。 The configuration and the control method of the refrigerator of this embodiment have been described above. Next, the effects of the refrigerator of this embodiment will be described.

本実施例の冷蔵庫は、断熱箱体10の内部に実装された真空断熱材(真空断熱材25b、25c)と、真空断熱材に近接した放熱手段(壁面放熱配管50b)と、冷蔵温度に設定された第一の貯蔵室(冷蔵温度に設定された第一切替室5)と、前記第一の貯蔵室の上部に、第一の仕切壁(断熱仕切壁29)を隔てて隣接する冷凍温度に設定された第二の貯蔵室(製氷室3、冷凍室4)と、前記第一の貯蔵室の下部に、第二の仕切壁(断熱仕切壁30)を隔てて隣接する冷凍温度に設定された第三の貯蔵室(冷凍温度に設定された第二切替室6)と、前記第一の貯蔵室の後方に、第三の仕切壁(断熱仕切壁27)を隔てて隣接した蒸発器室(第二蒸発器室8b)を備え、前記第二の仕切壁には、真空断熱材(真空断熱材25h)を備えるとともに、前記第一の貯蔵室を加熱する加熱手段(第一切替室第一ヒータ301)が真空断熱材25hの上面の過半領域に近接するように配設され、前記放熱手段(壁面放熱配管50b)の安定運転時の時間平均温度が前記加熱手段(第一切替室第一ヒータ301)の安定運転時の時間平均温度より低くなるように加熱している。すなわち第一の貯蔵室を区画する壁のうち、第一の貯蔵室より温度が高い空間(庫外)と第一の貯蔵室の間を隔てる壁(断熱箱体10)に実装された真空断熱材(真空断熱材25b、25c)に近接する放熱手段(壁面放熱配管50b)の安定運転時の時間平均温度より、第一の貯蔵室より温度が低い空間(冷凍温度空間)と第一の貯蔵室の間を隔てる第二の仕切壁(断熱仕切壁30)に実装された真空断熱材(真空断熱材25h)に近接するように配設した加熱手段(第一切替室第一ヒータ301)の安定運転時の時間平均温度の方が低くなるように加熱している。これにより、信頼性が高い冷蔵庫となる。理由を以下で説明する。 The refrigerator of this embodiment includes vacuum heat insulating materials (vacuum heat insulating materials 25b and 25c) mounted inside the heat insulating box 10, heat radiation means (wall heat radiation piping 50b) adjacent to the vacuum heat insulating materials, and a refrigerating temperature. A first storage compartment (first switchable compartment 5 set to a refrigerating temperature) and a freezing temperature adjacent to the upper part of the first storage compartment with a first partition wall (insulating partition wall 29) in between A second storage compartment (ice making compartment 3, freezing compartment 4) set to A third storage chamber (second switching chamber 6 set to a freezing temperature) and an evaporator adjacent to the rear of the first storage chamber with a third partition (insulating partition wall 27) interposed therebetween. A chamber (second evaporator chamber 8b) is provided, the second partition wall is provided with a vacuum heat insulating material (vacuum heat insulating material 25h), and a heating means (first switching chamber The first heater 301) is arranged so as to be close to the majority region of the upper surface of the vacuum heat insulating material 25h, and the time average temperature during stable operation of the heat radiation means (wall heat radiation pipe 50b) is equal to that of the heating means (first switching chamber Heating is performed so as to be lower than the time average temperature of the first heater 301) during stable operation. That is, among the walls that partition the first storage chamber, the vacuum insulation mounted on the wall (insulation box 10) separating the space (outside) having a higher temperature than the first storage chamber and the first storage chamber A space (freezing temperature space) whose temperature is lower than that of the first storage compartment than the time average temperature during stable operation of the heat dissipation means (wall heat dissipation pipe 50b) adjacent to the material (vacuum heat insulating material 25b, 25c) and the first storage Heating means (first heater 301 in the first switching chamber) disposed close to the vacuum heat insulating material (vacuum heat insulating material 25h) mounted on the second partition wall (heat insulating partition wall 30) separating the chambers. Heating is performed so that the time-average temperature during stable operation is lower. This makes the refrigerator highly reliable. The reason is explained below.

本実施例の冷蔵庫では、第一切替室5を冷蔵設定、第二切替室6を冷凍設定とした場合、第一切替室5は、3つの面が第一切替室5より低温の冷凍温度空間と隣接することで特に温度が下がりやすい貯蔵室となる。冷凍温度空間からの冷却作用により貯蔵室が冷えすぎた場合、貯蔵室内が所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生することがある。従って、冷え過ぎの抑制が課題となる。本実施例の冷蔵庫は、断熱性能を向上させるために複数の真空断熱材(真空断熱材25a~25h)を実装しているが、真空断熱材はガスバリア性外包材の内部のガスを排出、すなわち減圧することにより断熱性能を高める断熱部材であるために、長期的にはガスバリア性外包材を介したガス侵入(ガス透過)が生じて断熱性能が低下(劣化)する。このことから、長期的に冷え過ぎによる不具合が生じないようにするためには、真空断熱材の劣化の考慮が必要となる。 In the refrigerator of this embodiment, when the first switchable compartment 5 is set to the refrigeration setting and the second switchable compartment 6 is set to the freezing setting, the first switchable compartment 5 is a freezing temperature space whose three surfaces are lower than the first switchable compartment 5. By adjoining the storage room, it becomes a storage room where the temperature is particularly easy to drop. If the storage chamber becomes too cold due to the cooling action from the freezing temperature space, problems may occur such as the interior of the storage chamber being unable to be maintained at a desired temperature, or condensation or frost forming on the walls of the storage chamber. Therefore, suppression of overcooling becomes a problem. The refrigerator of this embodiment is equipped with a plurality of vacuum insulation materials (vacuum insulation materials 25a to 25h) in order to improve the insulation performance. Since it is a heat-insulating member that enhances heat-insulating performance by depressurization, gas penetration (gas permeation) occurs through the gas-barrier outer wrapping material in the long term, resulting in a decrease (deterioration) of heat-insulating performance. For this reason, it is necessary to consider the deterioration of the vacuum heat insulating material in order to prevent problems caused by overcooling in the long term.

ガスバリア性外包材を介したガス透過は、温度が高いほど促進される特性を有するため、より高い温度に曝されるほど真空断熱材の劣化は進行する。本実施例の冷蔵庫は、冷蔵設定の第一切替室5より温度が高い空間(庫外)と第一切替室5の間を隔てる壁(断熱箱体10)に実装された真空断熱材(真空断熱材25c、25d)と、冷蔵設定の第一切替室5より温度が低い空間(冷凍温度空間)と第一切替室5の間を隔てる壁(断熱仕切壁30)に実装された真空断熱材(真空断熱材25h)を有するが、それぞれの劣化が進んだ場合の第一切替室5への影響は異なる。具体的には、冷蔵設定の第一切替室5より温度が高い空間(庫外)と第一切替室5の間を隔てる壁(断熱箱体10)に実装された真空断熱材(真空断熱材25c、25d)の劣化が進んだ場合には、庫外からの伝熱が増えて、第一切替室5の冷え過ぎが生じ難くなる。一方で、冷蔵設定の第一切替室5より温度が低い空間(冷凍温度空間)と第一切替室5の間を隔てる壁(断熱仕切壁30)に実装された真空断熱材(真空断熱材25h)の断熱性能が劣化した場合には、冷凍温度空間への伝熱が増えて(冷凍温度空間からの冷却量が増えて)、冷え過ぎによる不具合が生じ易くなる。そこで、本実施例の冷蔵庫では、上述の構成を採用することで、第一切替室5より温度が高い空間(庫外)との間の壁(断熱箱体10)に実装された真空断熱材(真空断熱材25c、25d)より、第一切替室5より温度が低い空間(冷凍温度空間)との間の壁(断熱仕切壁30)に実装された真空断熱材(真空断熱材25h)の劣化を遅らせることで、貯蔵室内が冷えすぎて所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が長期的に発生し難い信頼性が高い冷蔵庫としている。 Since gas permeation through the gas-barrier outer wrapping material has a characteristic of being accelerated as the temperature rises, deterioration of the vacuum heat insulating material progresses as it is exposed to higher temperatures. In the refrigerator of this embodiment, a vacuum insulation material (vacuum Heat insulating materials 25c, 25d) and a vacuum insulating material mounted on the wall (insulating partition wall 30) separating the first switching chamber 5 from a space (freezing temperature space) having a temperature lower than that of the first switching chamber 5 for refrigeration setting. (Vacuum heat insulating material 25h), but the effect on the first switching chamber 5 when deterioration progresses is different. Specifically, a vacuum insulation material (vacuum insulation material 25c, 25d), the heat transfer from the outside increases, and the first switching chamber 5 is less likely to be overcooled. On the other hand, the vacuum insulation material (vacuum insulation material 25 h ) deteriorates, heat transfer to the refrigerating temperature space increases (the amount of cooling from the refrigerating temperature space increases), and problems due to overcooling tend to occur. Therefore, in the refrigerator of this embodiment, by adopting the above-described configuration, the vacuum insulation material mounted on the wall (insulation box body 10) between the space (outside) where the temperature is higher than that of the first switchable chamber 5 (Vacuum insulation material 25c, 25d) of the vacuum insulation material (vacuum insulation material 25h) mounted on the wall (heat insulation partition wall 30) between the space (freezing temperature space) with a lower temperature than the first switching chamber 5 By delaying the deterioration, the refrigerator is highly reliable, in which troubles such as the inside of the storage compartment becoming too cold to maintain a desired temperature or condensation or frost forming on the wall surface of the storage compartment are unlikely to occur for a long period of time.

本実施例の冷蔵庫は、断熱箱体10の内部に実装された真空断熱材(真空断熱材25b、25c)と、真空断熱材に近接した放熱手段(壁面放熱配管50b)と、冷蔵温度に設定された第一の貯蔵室(冷蔵温度に設定された第一切替室5)と、前記第一の貯蔵室の上部に、第一の仕切壁(断熱仕切壁29)を隔てて隣接する冷凍温度に設定された第二の貯蔵室(製氷室3、冷凍室4)と、前記第一の貯蔵室の下部に、第二の仕切壁(断熱仕切壁30)を隔てて隣接する冷凍温度に設定された第三の貯蔵室(冷凍温度に設定された第二切替室6)と、前記第一の貯蔵室の後方に、第三の仕切壁(断熱仕切壁27)を隔てて隣接した蒸発器室(第二蒸発器室8b)を備え、前記第二の仕切壁には、真空断熱材(真空断熱材25h)を備えるとともに、前記第一の貯蔵室を加熱する加熱手段(第一切替室第一ヒータ301)が真空断熱材25hの上面の過半領域に近接するように配設され、前記放熱手段(壁面放熱配管50b)の安定運転時の最高到達温度が前記加熱手段(第一切替室第一ヒータ301)の安定運転時の最高到達温度より低くなるように加熱している。これにより、貯蔵室内が冷えすぎて所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合を、より確実に防止するようにして信頼性を高めている。理由を以下で説明する。 The refrigerator of this embodiment includes vacuum heat insulating materials (vacuum heat insulating materials 25b and 25c) mounted inside the heat insulating box 10, heat radiation means (wall heat radiation piping 50b) adjacent to the vacuum heat insulating materials, and a refrigerating temperature. A first storage compartment (first switchable compartment 5 set to a refrigerating temperature) and a freezing temperature adjacent to the upper part of the first storage compartment with a first partition wall (insulating partition wall 29) in between A second storage compartment (ice making compartment 3, freezing compartment 4) set to A third storage chamber (second switching chamber 6 set to a freezing temperature) and an evaporator adjacent to the rear of the first storage chamber with a third partition (insulating partition wall 27) interposed therebetween. A chamber (second evaporator chamber 8b) is provided, the second partition wall is provided with a vacuum heat insulating material (vacuum heat insulating material 25h), and a heating means (first switching chamber The first heater 301) is arranged so as to be close to the majority region of the upper surface of the vacuum heat insulating material 25h, and the maximum temperature reached during stable operation of the heat radiation means (wall heat radiation pipe 50b) is the same as the heating means (first switching chamber The first heater 301) is heated so as to be lower than the maximum temperature reached during stable operation. As a result, problems such as the inside of the storage chamber becoming too cold to maintain a desired temperature, or condensation or frost forming on the wall surface of the storage chamber can be prevented more reliably, thereby improving reliability. The reason is explained below.

ガス定数をR、ガス透過の活性化エネルギーをE、絶対温度をTとすると、真空断熱材の断熱性能の劣化速度Kは、以下の(式1)により表される。 Assuming that the gas constant is R, the activation energy of gas permeation is E, and the absolute temperature is T, the deterioration rate K of the insulation performance of the vacuum insulation material is expressed by the following (Equation 1).

K∝exp(-E/RT) (式1)
(式1)から、真空断熱材の温度が上がると劣化速度はより高まることがわかり、比較的短い時間であっても劣化が加速される。そこで、本実施例の冷蔵庫では放熱手段(壁面放熱配管50b)の安定運転時の最高到達温度が、加熱手段(第一切替室第一ヒータ301)の安定運転時の最高到達温度よりも低くなるようにすることで、第一切替室5より温度が高い空間(庫外)と第一の貯蔵室の間を隔てる壁の断熱性能の低下より、冷蔵設定の第一切替室5より温度が低い空間(冷凍温度空間)と第一切替室5の間を隔てる壁の断熱性能が早く低下し、貯蔵室内が冷えすぎて所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合を、より確実に防止するようにしている。
K∝exp (-E/RT) (Formula 1)
From (Equation 1), it can be seen that the rate of deterioration increases as the temperature of the vacuum insulation material rises, and the deterioration is accelerated even for a relatively short period of time. Therefore, in the refrigerator of this embodiment, the maximum temperature reached during stable operation of the heat radiation means (wall heat radiation pipe 50b) is lower than the maximum temperature reached during stable operation of the heating means (first heater 301 for the first switchable compartment). By doing so, the temperature is lower than the first switchable compartment 5 with the refrigeration setting due to the deterioration of the insulation performance of the wall separating the space (outside) with a higher temperature than the first switchable compartment 5 and the first storage compartment. The insulation performance of the wall separating the space (freezing temperature space) and the first switching chamber 5 quickly deteriorates, the inside of the storage chamber becomes too cold to maintain the desired temperature, or condensation or frost forms on the wall surface of the storage chamber. It is designed to more reliably prevent such problems as the occurrence of

本実施例の冷蔵庫は、冷蔵温度に設定された第一の貯蔵室(冷蔵温度に設定された第一切替室5)と、第一の貯蔵室の上部に、第一の仕切壁(断熱仕切壁29)を隔てて隣接する冷凍温度に設定された第二の貯蔵室(製氷室3、冷凍室4)と、前記第一の貯蔵室の下部に、第二の仕切壁(断熱仕切壁30)を隔てて隣接する冷凍温度に設定された第三の貯蔵室(冷凍温度に設定された第二切替室6)と、前記第一の貯蔵室の後方に、第三の仕切壁(断熱仕切壁27)を隔てて隣接した蒸発器室(第二蒸発器室8b)を備え、前記第一の仕切壁と前記第二の仕切壁の主たる断熱手段としてそれぞれ真空断熱材(真空断熱材25g、25h)を実装し、前記第三の仕切壁の主たる断熱手段として真空断熱材を実装せず、発泡断熱材を実装している。これにより信頼性が高い冷蔵庫となる。理由を以下で説明する。 The refrigerator of this embodiment has a first storage compartment set to a refrigerating temperature (first switchable compartment 5 set to a refrigerating temperature) and a first partition wall (insulating partition A second storage compartment (ice making compartment 3, freezer compartment 4) set to a freezing temperature adjacent to the wall 29) and a second partition wall (insulating partition wall 30 ) adjacent to each other across a third storage chamber set to a freezing temperature (second switching chamber 6 set to a freezing temperature), and behind the first storage chamber, a third partition wall (insulating partition An evaporator chamber (second evaporator chamber 8b) adjacent to the wall 27) is provided, and vacuum heat insulating materials (25 g of vacuum heat insulating material, 25 g of vacuum heat insulating material, 25h) is implemented, and a foamed heat insulator is implemented as the main heat insulating means of the third partition wall without implementing a vacuum heat insulator. This makes the refrigerator highly reliable. The reason is explained below.

本実施例の冷蔵庫では、第一切替室5を冷蔵設定、第二切替室6を冷凍設定とした場合、第一切替室5は、3つの面が冷凍温度空間と隣接することで特に低温になりやすい貯蔵室となる。冷凍温度空間からの冷却作用により貯蔵室が冷えすぎた場合、貯蔵室内が所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生することがある。従って、冷え過ぎを抑制するためには、冷蔵温度に設定された貯蔵室と、冷凍温度空間とを隔てる仕切壁の断熱性能を向上させるために真空断熱材を実装することが有効となる。真空断熱材は樹脂材料を含むガスバリア性外包材の内部のガスを排出、すなわち減圧することにより断熱性能を高める断熱部材となるため、真空断熱材の内外には大きな差圧(大気圧と同等の差圧)が生じており、外包材のガスバリア性が低下するとガス侵入によって差圧が解消に向かい断熱性能が低下(劣化)する。一般に、樹脂材料は高温状態と低温状態が繰り返される熱サイクルにより劣化が促進される。従って、図15に示すように、除霜運転による高温状態と、冷却運転による低温状態が定期的に繰り返される蒸発器室と冷蔵温度の貯蔵室を隔てる仕切壁に、内部を減圧することで形成される真空断熱材を実装すると、蒸発器室の温度変動によって仕切壁の断熱性能が長期的には低下しやすくなる。一方で、貯蔵室間の仕切壁は、互いに所望の温度に維持されるため温度は比較的安定する。 In the refrigerator of this embodiment, when the first switchable compartment 5 is set to the refrigeration setting and the second switchable compartment 6 is set to the freezing setting, the first switchable compartment 5 has three surfaces adjacent to the freezing temperature space, so that the temperature is particularly low. It becomes a storage room that is easy to become. If the storage chamber becomes too cold due to the cooling action from the freezing temperature space, problems may occur such as the interior of the storage chamber being unable to be maintained at a desired temperature, or condensation or frost forming on the walls of the storage chamber. Therefore, in order to prevent overcooling, it is effective to install a vacuum insulation material to improve the insulation performance of the partition wall separating the storage compartment set at the refrigerating temperature and the freezing temperature space. The vacuum insulation material is a heat insulation member that enhances the insulation performance by discharging the gas inside the gas barrier outer packaging material containing resin material, that is, by reducing the pressure. When the gas barrier property of the outer wrapping material deteriorates, the differential pressure tends to disappear due to gas infiltration, and the heat insulation performance decreases (degrades). In general, deterioration of resin materials is accelerated by thermal cycles in which high temperature and low temperature conditions are repeated. Therefore, as shown in FIG. 15, a partition wall separating the evaporator chamber where the high temperature state due to the defrosting operation and the low temperature state due to the cooling operation are periodically repeated from the refrigerating temperature storage chamber is formed by reducing the pressure inside the partition wall. When a vacuum insulation material is installed, the insulation performance of the partition wall tends to deteriorate in the long term due to temperature fluctuations in the evaporator chamber. On the other hand, the partition walls between the storage compartments are relatively temperature stable because they are maintained at the desired temperature relative to each other.

そこで、本実施例の冷蔵庫では、3つの面が冷凍温度空間と隣接することで特に低温になりやすい貯蔵室(冷蔵温度に設定された第一切替室5)と冷凍温度空間を区画する仕切壁のうち、所望の温度に維持される冷凍温度の貯蔵室との間の仕切壁(仕切壁29及び仕切壁30)には、断熱性能を向上させて冷え過ぎを抑制するための真空断熱材(真空断熱材25g、25h)を実装し、除霜運転と冷却運転が繰り返される蒸発器室(第二蒸発器室8b)との間を隔てる仕切壁(仕切壁27)には真空断熱材を実装せずに、減圧によらない断熱手段である発泡断熱材を実装することで、使用歳月が経過しても冷蔵温度に設定された貯蔵室内が冷え過ぎる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い信頼性が高い冷蔵庫としている。 Therefore, in the refrigerator of this embodiment, the storage compartment (the first switchable compartment 5 set to the refrigerating temperature) that is particularly prone to low temperatures because three surfaces are adjacent to the freezing temperature space and the partition wall that separates the freezing temperature space. Of these, the partition wall (partition wall 29 and partition wall 30) between the freezing temperature storage compartment maintained at the desired temperature is equipped with a vacuum insulation material ( Vacuum insulation materials 25g, 25h) are mounted, and the partition wall (partition wall 27) separating the evaporator chamber (second evaporator chamber 8b) in which the defrosting operation and the cooling operation are repeated is mounted with the vacuum insulation material. However, by installing foam insulation, which is a heat insulation method that does not rely on decompression, the storage room set to the refrigeration temperature will be too cold even after a long period of use, or dew condensation will occur on the walls of the storage room. It is a highly reliable refrigerator that is unlikely to cause problems such as frost formation.

また、本実施例の冷蔵庫では、仕切壁27の最下部前縁を、仕切壁30に実装された真空断熱材25hの後縁より前方に配置している。真空断熱材の周縁部は、金属を含むガスバリア層を介した伝熱により熱を伝えやすく断熱性能が低くなる。そこで、上記構成を採用することにより、断熱仕切壁27の断熱作用により、真空断熱材25hの後縁近傍の金属を含むガスバリア層を介した熱移動が低減されるので、冷蔵温度に設定された貯蔵室(冷蔵温度に設定された第一切替室5)と、冷凍温度に設定された貯蔵室との間の熱移動により冷蔵温度に設定された貯蔵室が冷え過ぎる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生し難い冷蔵庫となる。 Further, in the refrigerator of this embodiment, the lowermost front edge of the partition wall 27 is arranged forward of the rear edge of the vacuum heat insulating material 25h mounted on the partition wall 30. As shown in FIG. The periphery of the vacuum heat insulating material easily conducts heat by heat transfer via the gas barrier layer containing metal, resulting in low heat insulating performance. Therefore, by adopting the above configuration, heat transfer through the gas barrier layer containing metal in the vicinity of the trailing edge of the vacuum heat insulating material 25h is reduced by the heat insulating effect of the heat insulating partition wall 27, so that the refrigerating temperature is set. Due to heat transfer between the storage compartment (the first switching compartment 5 set to the refrigerating temperature) and the storage compartment set to the freezing temperature, the storage compartment set to the refrigerating temperature is too cold, or the wall surface of the storage room This refrigerator is less prone to problems such as condensation and frost formation.

本実施例の冷蔵庫は、冷蔵温度に設定された貯蔵室(冷蔵温度に設定された第一切替室5)と蒸発器室(蒸発器室8b)との間を隔てる真空断熱材を備えない仕切壁(仕切壁27)に、加熱手段(第一切替室第二ヒータ302)を備えている。これにより、特に低温となる蒸発器室からの熱伝導によって冷蔵温度に設定された貯蔵室の温度が過度に低下したり、貯蔵室内の壁面に結露や着霜が生じるといった不具合が発生する虞が高いと判断される場合に適宜加熱を行うことができるので、信頼性が高い冷蔵庫となる。 The refrigerator of this embodiment has a partition without a vacuum insulation material between the storage compartment set to the refrigerating temperature (the first switchable compartment 5 set to the refrigerating temperature) and the evaporator compartment (evaporator compartment 8b). A wall (partition wall 27) is provided with a heating means (first switching chamber second heater 302). As a result, the heat transfer from the evaporator chamber, which is particularly cold, may cause the temperature of the storage compartment set at the refrigerating temperature to drop excessively, or cause problems such as condensation or frost on the walls of the storage compartment. Since heating can be appropriately performed when it is judged to be high, the refrigerator has high reliability.

本実施例の冷蔵庫は、隣接する2つの貯蔵室が冷凍温度と冷蔵温度に設定可能な切替室(第一切替室5及び第二切替室6)であり、2つの切替室の間を隔てる仕切壁(断熱仕切壁30)に、真空断熱材25hを実装し、真空断熱材25hの両面に加熱手段(第一切替室第一ヒータ301及び第二切替室第二ヒータ402)を備えている。これにより信頼性が高い冷蔵庫となる。理由を以下で説明する。 In the refrigerator of this embodiment, two adjacent storage compartments are switchable compartments (first switchable compartment 5 and second switchable compartment 6) that can be set to a freezing temperature and a refrigerating temperature, and a partition separating the two switchable compartments is provided. A vacuum heat insulating material 25h is mounted on the wall (heat insulating partition wall 30), and both sides of the vacuum heat insulating material 25h are provided with heating means (first heater 301 for the first switching chamber and second heater 402 for the second switching chamber). This makes the refrigerator highly reliable. The reason is explained below.

ユーザーが一方の切替室を冷蔵温度、他方の貯蔵室を冷凍温度に設定して使用する場合には、冷蔵温度に設定された切替室が冷凍温度に設定された切替室からの熱伝導により冷えすぎることを抑制するために、2つの切替室の間を隔てる仕切壁に真空断熱材を実装することが有効となる。一方で、2つの切替室の間を隔てる仕切壁の面のうち、冷蔵温度に設定された切替室側の面は低温になることで、結露や着霜が発生する虞がある。真空断熱材が実装された仕切壁は断熱性能が高いため、一方の面を加熱しても他方の面に熱が伝わりにくく加熱量が不足するという事態を招くことがあるため、2つの切替室の間を隔てる仕切壁(断熱仕切壁30)に真空断熱材25hを実装し、さらに断熱仕切壁30の両面に加熱手段(第一切替室第一ヒータ301及び第二切替室第二ヒータ402)を備えることで、ユーザーが何れの設定を選択しても、仕切壁の表面に結露や着霜が発生する虞が高いと判断される場合に、何れの面も良好に適宜加熱を行うことができるので信頼性が高い冷蔵庫となる。 When the user sets one switchable compartment to the refrigeration temperature and the other storage compartment to the freezer temperature, the switchable compartment set to the refrigeration temperature is cooled by heat conduction from the switchable compartment set to the freezer temperature. In order to suppress the overheating, it is effective to mount a vacuum heat insulating material on the partition wall separating the two switching chambers. On the other hand, of the surfaces of the partition wall that separates the two switchable compartments, the surface on the switchable compartment side that is set to the refrigerating temperature becomes low temperature, which may cause dew condensation or frost formation. Since the partition wall with vacuum insulation material has high heat insulation performance, even if one side is heated, it is difficult to transfer heat to the other side, which may lead to a situation where the amount of heat is insufficient. A vacuum insulation material 25h is mounted on the partition wall (insulation partition wall 30) separating the space, and heating means (first heater 301 for the first switching chamber and second heater 402 for the second switching chamber) With the provision of, regardless of which setting the user selects, when it is determined that there is a high risk of condensation or frost formation on the surface of the partition wall, both surfaces can be properly heated. This makes the refrigerator highly reliable.

以上で、実施例を説明したが、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、本実施例の冷蔵庫では、放熱手段(壁面放熱配管50b)と、加熱手段(第一切替室第一ヒータ301)の温度が所望の温度範囲に制御されるようにあらかじめ制御パラメータを設定しているが、放熱手段50bと第一切替室第一ヒータ301の温度検知手段を備えて、フィードバック制御によって所望の温度範囲に維持するようにしても良い。また、本実施例の冷蔵庫は、冷蔵室の冷却手段として第一蒸発器14aと、製氷室3、冷凍室4、第一切替室5、第二切替室6の冷却手段として第二蒸発器14bを備えているが、単一の冷却手段(蒸発器)で全貯蔵室を冷却する方式の冷蔵庫に本発明の構成を適用しても良い。さらには、加熱手段として、放熱手段の一部の配管を活用しても良い。すなわち、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments have been described above, the present invention is not limited to the embodiments described above, and includes various modifications. For example, in the refrigerator of this embodiment, the control parameters are set in advance so that the temperature of the heat radiation means (wall heat radiation pipe 50b) and the heating means (first switchable compartment first heater 301) is controlled within a desired temperature range. However, it is also possible to provide temperature detection means for the heat radiation means 50b and the first heater 301 for the first switching chamber and to maintain the temperature within a desired range by feedback control. In addition, the refrigerator of this embodiment includes the first evaporator 14a as cooling means for the refrigerating compartment, and the second evaporator 14b as cooling means for the ice making compartment 3, freezer compartment 4, first switchable compartment 5, and second switchable compartment 6. However, the configuration of the present invention may be applied to a refrigerator that cools all the storage compartments with a single cooling means (evaporator). Furthermore, a part of the piping of the heat radiation means may be utilized as the heating means. That is, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.

1 冷蔵庫
2 冷蔵室
3 製氷室
4 冷凍室
5 第一切替室
6 第二切替室
8a 第一蒸発器室
8b 第二蒸発器室
9a 第一ファン
9b 第二ファン
10 断熱箱体
14a 第一蒸発器(冷却手段)
14b 第二蒸発器(冷却手段)
16 ヒンジカバー
21 除霜ヒータ(加熱手段)
23a、23b 樋
24 圧縮機
25 真空断熱材
27、28、29、30 断熱仕切壁
31 制御基板
39 機械室
40a 第一蒸発器温度センサ
40b 第二蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 第二切替室温度センサ
44 第二切替室温度センサ
50a 庫外放熱器(放熱手段)
50b 壁面放熱配管(放熱手段)
50c 結露防止配管(放熱手段)
52 冷媒制御弁(冷媒制御手段)
53a 第一キャピラリチューブ(減圧手段)
53b 第二キャピラリチューブ(減圧手段)
54a、54b 気液分離器
56 逆止弁
57a、57b 熱交換部
91 外箱
92 内箱
101 第一切替室ダンパ(送風遮断手段)
102 第二切替室ダンパ(送風遮断手段)
300 第一切替室ヒータ (加熱手段)
400 第二切替室ヒータ (加熱手段)
1 refrigerator 2 refrigerating chamber 3 ice making chamber 4 freezing chamber 5 first switching chamber 6 second switching chamber 8a first evaporator chamber 8b second evaporator chamber 9a first fan 9b second fan 10 heat insulation box 14a first evaporator (cooling means)
14b second evaporator (cooling means)
16 hinge cover 21 defrosting heater (heating means)
23a, 23b Gutter 24 Compressor 25 Vacuum insulation material 27, 28, 29, 30 Heat insulation partition wall 31 Control board 39 Machine room 40a First evaporator temperature sensor 40b Second evaporator temperature sensor 41 Cold storage temperature sensor 42 Freezer temperature Sensor 43 Second switchable compartment temperature sensor 44 Second switchable compartment temperature sensor 50a Outside radiator (radiating means)
50b wall heat radiation pipe (heat radiation means)
50c Condensation prevention pipe (heat dissipation means)
52 refrigerant control valve (refrigerant control means)
53a first capillary tube (decompression means)
53b Second capillary tube (decompression means)
54a, 54b Gas-liquid separator 56 Check valves 57a, 57b Heat exchange unit 91 Outer case 92 Inner case 101 First switching chamber damper (blowing shutoff means)
102 Second switching chamber damper (blowing blocking means)
300 First switching chamber heater (heating means)
400 second switching chamber heater (heating means)

Claims (1)

圧縮手段と、放熱手段と、減圧手段と、冷却手段とが接続された冷凍サイクルと、断熱箱体と、冷蔵温度に設定された第一の貯蔵室と、該第一の貯蔵室の上部に第一の仕切壁を隔てて隣接する冷凍温度に設定された第二の貯蔵室と、前記第一の貯蔵室の下部に第二の仕切壁を隔てて隣接する冷凍温度に設定された第三の貯蔵室と、前記第一の貯蔵室の後方に第三の仕切壁を隔てて隣接する前記冷却手段が実装された蒸発器室を備えた冷蔵庫において、前記第一乃至第三の仕切壁の少なくとも一つは、真空断熱材を備えるとともに、該真空断熱材に近接するように配設された前記第一の貯蔵室を加熱する第一の加熱手段を備えた仕切壁とし、且つ、前記第一乃至第三の仕切壁の他の少なくとも一つは、真空断熱材を備えず、前記第一の貯蔵室を加熱する第二の加熱手段を備えた仕切壁として、前記第一の加熱手段の発熱密度を、前記第二の加熱手段の発熱密度より小さくしたことを特徴とする冷蔵庫。 A refrigerating cycle to which compression means, heat dissipation means, decompression means, and cooling means are connected, a heat insulating box body, a first storage chamber set to a refrigerating temperature, and above the first storage chamber A second storage chamber set to a freezing temperature adjacent across a first partition wall, and a third storage chamber set to a freezing temperature adjacent to a lower portion of the first storage chamber across a second partition wall. and an evaporator chamber in which the cooling means is mounted and which is adjacent to the rear of the first storage chamber across a third partition wall, wherein the first to third partition walls At least one partition wall includes a vacuum heat insulating material and a first heating means for heating the first storage chamber disposed adjacent to the vacuum heat insulating material; At least one other of the first to third partition walls is not provided with a vacuum insulation material and is provided with a second heating means for heating the first storage chamber. A refrigerator having a heat generation density lower than that of the second heating means.
JP2019026176A 2019-02-18 2019-02-18 refrigerator Active JP7191715B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019026176A JP7191715B2 (en) 2019-02-18 2019-02-18 refrigerator
CN201910831303.0A CN111578609A (en) 2019-02-18 2019-09-04 Refrigerator with a door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026176A JP7191715B2 (en) 2019-02-18 2019-02-18 refrigerator

Publications (2)

Publication Number Publication Date
JP2020133970A JP2020133970A (en) 2020-08-31
JP7191715B2 true JP7191715B2 (en) 2022-12-19

Family

ID=72115121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026176A Active JP7191715B2 (en) 2019-02-18 2019-02-18 refrigerator

Country Status (2)

Country Link
JP (1) JP7191715B2 (en)
CN (1) CN111578609A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144365A (en) 2002-10-23 2004-05-20 Matsushita Refrig Co Ltd Refrigerator
JP2007113825A (en) 2005-10-19 2007-05-10 Toshiba Corp Refrigerator
JP2008014509A (en) 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd Refrigerator
JP2012063043A (en) 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
JP2015135227A (en) 2013-12-20 2015-07-27 パナソニックIpマネジメント株式会社 refrigerator
JP2018025323A (en) 2016-08-09 2018-02-15 日立アプライアンス株式会社 refrigerator
JP2018096662A (en) 2016-12-16 2018-06-21 東芝ライフスタイル株式会社 Refrigerator
WO2018131157A1 (en) 2017-01-16 2018-07-19 三菱電機株式会社 Refrigerator
JP2018194295A (en) 2018-09-12 2018-12-06 東芝ライフスタイル株式会社 refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740045Y1 (en) * 1972-02-17 1972-12-04
JPH04288469A (en) * 1991-03-13 1992-10-13 Sharp Corp Condenser for refrigerator
US6898082B2 (en) * 2002-05-10 2005-05-24 Serguei V. Dessiatoun Enhanced heat transfer structure with heat transfer members of variable density
JP5571044B2 (en) * 2011-08-19 2014-08-13 日立アプライアンス株式会社 refrigerator
JP5507511B2 (en) * 2011-08-30 2014-05-28 日立アプライアンス株式会社 refrigerator
CN106813440B (en) * 2015-11-27 2019-10-29 日立环球生活方案株式会社 Refrigerator
CN206459407U (en) * 2016-05-30 2017-09-01 东芝生活电器株式会社 Refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144365A (en) 2002-10-23 2004-05-20 Matsushita Refrig Co Ltd Refrigerator
JP2007113825A (en) 2005-10-19 2007-05-10 Toshiba Corp Refrigerator
JP2008014509A (en) 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd Refrigerator
JP2012063043A (en) 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
JP2015135227A (en) 2013-12-20 2015-07-27 パナソニックIpマネジメント株式会社 refrigerator
JP2018025323A (en) 2016-08-09 2018-02-15 日立アプライアンス株式会社 refrigerator
JP2018096662A (en) 2016-12-16 2018-06-21 東芝ライフスタイル株式会社 Refrigerator
WO2018131157A1 (en) 2017-01-16 2018-07-19 三菱電機株式会社 Refrigerator
JP2018194295A (en) 2018-09-12 2018-12-06 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
CN111578609A (en) 2020-08-25
JP2020133970A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
JP2009063245A (en) Refrigerator
CN111351300A (en) Refrigerator with a door
CN111351292B (en) Refrigerator with a door
JP7191715B2 (en) refrigerator
JP6638107B1 (en) refrigerator
JP2019138481A (en) refrigerator
JP7372186B2 (en) refrigerator
JP7493305B2 (en) refrigerator
JP7364459B2 (en) refrigerator
CN111076478B (en) Refrigerator with a door
CN111473573B (en) Refrigerator with a door
JP6963044B2 (en) refrigerator
JP2020139645A (en) refrigerator
JP7369520B2 (en) refrigerator
CN109708378B (en) Refrigerator with a door
JP6934433B2 (en) refrigerator
JP7312148B2 (en) refrigerator
JP6807882B2 (en) refrigerator
JP7254227B2 (en) refrigerator
JP2019138514A (en) refrigerator
JP7454458B2 (en) refrigerator
CN111473574B (en) Refrigerator with a door
JP2023112855A (en) refrigerator
JP2019138480A (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221207

R150 Certificate of patent or registration of utility model

Ref document number: 7191715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150